图形的旋转概念与性质.ppt

合集下载

图形的旋转概念与性质

图形的旋转概念与性质
角速度和角加速度
在物理模拟中,描述物体旋转的参数包括角速度和角加速度。角速度表 示物体每秒钟转过的角度,角加速度则表示物体转动速度的变化率。
03
转动惯量
物理模拟中另一个重要的概念是转动惯量,它描述了物体转动时抵抗改
变其转动状态的能力。转动惯量的大小取决于物体的质量分布和转动轴
的位置。
04 旋转的数学原理
欧拉角
欧拉角是描述物体在三维空间中绕着 三个轴(通常为X、Y、Z轴)旋转的 角度。
欧拉角在表示旋转时存在万向节锁问 题,即当物体绕两个轴旋转时,第三 个轴的旋转角度可能会发生跳变。
欧拉角有三种类型:滚动角(绕X轴 旋转)、俯仰角(绕Y轴旋转)和偏 航角(绕Z轴旋转)。
轴角表示法
轴角表示法是通过指定旋转轴 和旋转角度来描述物体的旋转。
守恒定律
在没有外力矩作用的情况下,刚 体的角动量保持不变。
应用
解释了旋转运动的物体在没有外 力矩作用时,会保持其旋转状态。
旋转的能量守恒定律
旋转动能
刚体绕旋转轴转动的动能,与转动惯量和角速度平方成正比。
守恒定律
在没有外力做功的情况下,刚体的旋转动能保持不变。
应用
解释了旋转运动的物体在没有外力做功时,其旋转速度不会发生变 化。
在Unity中,可以使用Rotate 方法并传入负值来实现逆旋 转,即旋转相反的方向。
THANKS FOR WATCHING
感谢您的观看
相反的方向。
DirectX中的旋转
欧拉角与四元数
DirectX支持使用欧拉角或四元数来表示旋转。欧拉角是绕三个轴的旋转角度,而四元数 则是一种更稳定的表示方式,可以避免万向锁问题。
变换矩阵
通过指定变换中心和旋转角度,DirectX可以计算出对应的变换矩阵,用于更新顶点坐标 。

人教版九年级数学上册2图形的旋转课件

人教版九年级数学上册2图形的旋转课件

课堂小结
定义
把一个平面图形 绕平面内某一定点o,
沿着某一方向 转动一个角度, 图形的这种运动叫做图形的旋转。
旋转
三要素: 旋转中心 旋转方向 旋转角
性质
①对应点到旋转中心的距离相等; ②对应点与旋转中心的所连线段的 夹角等于 旋转角; ③旋转前、后的图形 全等。
课后作业
作业 内容
教材作业 从课后习题中选取
方向。
归纳总结 确定一次图形的旋转:
必须明确 旋转的三要素
旋转中心 旋转方向 旋转角
温馨提示:旋转的范围是“平面内”,其中“旋转中 心,旋转方向,旋转角度”称为旋转的三要素。
二、旋转的性质
1.AO= A'O,BO = B'O,CO = C'O
对应点到旋转中心的距离相等;
2.∠AOA' =∠BOB' =∠COC'
情境引入 这些运动有什么共同的特点? 图形的平移 图形的翻折 图形的旋转
人教版 九年级上册
学习目标
1.掌握旋转的定义及相关概念; 2.掌握旋转的基本性质并能运用性质解决 简单的数学问题。
导入新知
思考1:怎样来定义图形的旋转 这种运动?
思考2:钟表的指针、电扇的风叶在转动过程中, 其形状、大小、位置是否产生变化?
一、旋转的定义及相关概念
把一个平面度,图形的这种运动叫做图形的旋转。
1.这个定点O叫做 旋转中心;
顺时针方向
2.转动形成的角叫做 旋转角;
3.转动的方向:顺时针与逆时针; 4.如果图形上的点P经过旋转变为点P′,P 旋转角 P′ 那么这两个点叫做这个旋转的一对对应点。O
旋转了__3_0__度。
o (2)从上午6点到上午9点,时针绕__点______按__顺__时__针__方向

23.1图形的旋转教学课件(共35张PPT)

23.1图形的旋转教学课件(共35张PPT)

线段的旋转作法
C
A
O
D
B
作法: 1. 将点A绕点O顺时针旋 转60˚,得点aC; 2. 将点B绕点O顺时针旋 转60 ˚,得点D ; 3. 连接CD, 则线段CD即 为所求作.
例题 已知△OAB,画出△OAB绕点O逆时针旋转
100°后的图形。
作法:
C 图形的旋转作法
1. 连接OA。
A′
2. 作∠AOC=100°,在
花——美丽的图形变换
观察
把叶片当成一个图形, 那么它可风以车绕风着轮中的心每固个定点 转动叶一片定在角风度的。吹动下转
动到新的位置。
怎样来定义 这种图形变换?
紫荆花会徽
o
车标
雪花
这些图案有什么共同特征?
观察
这种图怎时形样以,变来绕时钟换定着把针表?义中时转的针心动指当固了针成定_在1_一点2_不0_个转°_停_图动地度形一转。,定动那角,么度从它。12可时到4
归纳
在上面两个实验中,△ABC在旋转过程中, 哪些发生了变化?
• 各点的位置发生变化。
点A
点A′
点B
点B′
点C
点C′
• 从而,各线段、各角的位置发生变化。
在上面两个实验中,△ABC在旋转过程中, 哪些没有改变?
• 边的相等关系:
AB=A′B′
BC=B′C′
对应边相等
CA=C′A′
OA=OA′
OB=OB′
A
O
BB′
A′
O 秋千的固定点
45°
把小孩看作
B
A一个质点来
分析问题
点A绕_O__点沿_顺__时__针__方向,转动了_4_5_度到点 B。

23.1.1- 旋转的概念与性质 课件

23.1.1- 旋转的概念与性质 课件
∵AE=CM=1,AB=BC=3, ∴EB=AB-AE=3-1=2,
BM=BC+CM=3+1=4. ∴BF=BM-MF=4-x. 在Rt△EBF中,由勾股定理得EB2+BF2=EF2, 即22+(4-x)2=x2, 则EF的长为2.5.
温馨提示:对于学友做错的题目,由师傅负责讲解清楚,并找出错误原因
温馨提示:学友主讲,师傅补充和纠正,其他师友进行答疑或点评
旋转的性质 1.对应点到旋转中心的距离相等; 2.两组对应点分别与旋转中心的连线所成 的角相等 3.旋转中心是唯一不动的点; 4旋转不改变图形的形状和大小.
温馨提示:学友要把每一个知识点讲给师傅听,师傅负责教会学友
例1 下列物体的运动是旋 转的有 3,5 . ①电梯的升降运动; ②行驶中的汽车车轮; ③方向盘的转动; ④骑自行车的人; ⑤坐在摩天轮里的小朋友.
温馨提示:师友进行分层次练习,基础性习题由学友直接说给师傅听,师傅指导,纠错,拓展性 习题师友自主完成。
如图,三角形ABD经过旋转后到三角形ACE的位置,其 中∠BAC=60°. (1)旋转中心是哪一点? (2)旋转了多少度?顺时针还是逆时针? (3)如果M是AB的中点,经过上述旋转后,点M转到什么 位置? 解:(1)旋转中心是点A; (2)旋转了60 °,逆时针; (或旋转了300 °,顺时针) (3)点M转到了AC的中点上. 例3 如图,点A、B、C、D都在方格纸的格点上,若 △AOB绕点O按逆时针方向旋转到△COD的位置,则旋 转的角度为( 30° )
温馨提示:师友进行分层次练习,基础性习题由学友直接说给师傅听,师傅指导,纠错,拓展性 习题师友自主完成。
变式 如图,△ABC为钝角三角形,将△ABC 绕点A逆时针旋转120°,得到△AB' C' ,连 接BB' .若AC' ∥BB' ,则∠CAB'的度数为多少 ? 解:∵将△ABC绕点A逆时针旋转120°,得 到△AB' C', ∴∠BAB' =∠CAC' =120°,AB=AB' . ∴∠AB'B= (180°-120°)=30°. 又∵AC' ∥BB' , ∴∠B'AC' =∠AB'B=30°.

人教版九年级数学上册《图形的旋转》旋转PPT课件

人教版九年级数学上册《图形的旋转》旋转PPT课件

又由∠CAC′=90°可知△CAC′为等腰直角三角形,所
以∠ CC′ A= 45°.又由∠ AC′ B′ =∠ACB=90°-60°
=30°,可得∠ CC′ B′ =15°.
新课讲解
知识点3 用旋转的知识画图
• 简单旋转作图的一般步骤: • (1)找出图形的关键点; • (2)确定旋转中心,旋转方向和旋转角; • (3)将关键点与旋转中心连接起来,然 后按旋转方向 • 分别将它们旋转一个角,得到关键点的对应点; • (4)按照原图形的顺序连接这些对应点,所得到的图 • 形就是旋转后的图形.
新课讲解
练一练
如图,A,B,C三点共线,△ACD和△BCE都是等边三角形,
△ACE旋转后到达△DCB的位置. (1) 旋转中心是哪一点? (2) 旋转角是多少度?
(1) 点C是在△ACE旋转过程中不动的点,所以点C是旋转中心. (2) △ACE旋转后到达△DCB的位置,AC绕点C转过的角即∠ACD就 是旋转角.因为△ACD是等边三角形,所以∠ACD =60°,即旋转角是
新课讲解
例 2 如图(1),E是正方形ABCD中CD边上任意一点,以点A为中 心,把△ADE顺时针旋转90°,画出旋转后的图形.
图(1) 分析:关键是确定△ADE三个顶点的对应点,
即它们旋转后的位置.
新课讲解
解:因为点A是旋转中心,
所以它知的识对点应点是它本身. 正方形ABCD中,AD=AB,∠DAB=90°,
所以旋转后点D与点B重合.
设点E的对应点为点E′.因为旋转后的图形
图(2)
与旋转前的图形全等,所以∠ABE′=∠ADE
=90°,BE′=DE.
因此,在CB的延长线上取点E′,使BE′=DE,则

旋转的定义与性质

旋转的定义与性质

02
03
2D图形旋转
在计算机图形学中,2D图 形可以通过旋转矩阵进行 旋转,以实现图形的转动 效果。
3D模型旋转
在3D图形中,模型可以通 过旋转轴心进行旋转,以 实现3D模型的动态展示和 交互。
动画中的旋转
在动画制作中,物体可以 通过连续旋转来创建动态 效果,如旋转的球体或飞 旋的车轮等。
04
CATALOGUE
旋翼机
01
旋翼机是一种利用旋转翼产生升力的飞行器,其旋翼的旋转使
机体升空。
陀螺仪
02
陀螺仪是航空航天领域中常用的惯性导航和姿态稳定设备,它
利用高速旋转的陀螺来保持方向和位置的稳定。
火箭发动机
03
火箭发动机中的燃料燃烧产生的高温高压气体通过喷嘴产生反
作用力,推动火箭旋转发射。
计算机图形学中的旋转
01
VS
详细描述
角动量是质量、速度和转动半径的函数, 表示物体绕某点旋转的动量。对于刚体, 其角动量等于刚体绕某点旋转的动量与该 点到旋转轴的距离的乘积。
旋转与万有引力的关系
总结词
万有引力是描述物体之间相互吸引的力,与物体的质量和距离有关。
详细描述
当两个物体之间存在万有引力时,它们可能会发生旋转运动。这种旋转运动受到万有引力的影响,特别是当物体 之间的距离较小时,万有引力可能导致它们发生相对旋转。
旋转的角度是连续变化的
当物体进行旋转时,其与旋转轴之间的角度会连续变化,而不是跳跃或突变。
旋转的速度是连续变化的
由于旋转的角度是连续变化的,因此旋转的速度也是连续变化的。这意味着在旋转过程 中,物体上的每一点的线速度和角速度都是连续变化的。
03
CATALOGUE

人教版九年级上册数学 23.1图形的旋转 (共90张PPT)

人教版九年级上册数学 23.1图形的旋转 (共90张PPT)

活动二
B´ A C B O


找一找:找出旋转的旋转角,这些角有什么关系? ∠AOA ′ ∠COC′ =′ ∠BOB= 对应点与旋转中心所连线段的夹角等于旋转角。
活动二

A C A´
B
旋转的性质:
转不改变图形的大小和形状)
对应点到旋转中心的距离相等;
对应点与旋转中心所连线段的夹角等于旋转角.
B
O

看一看:在旋转过程中△ABC的形状大小是否 发生改变?旋转前后的两个三角形有什么关系?
旋转前后的图形全等。 (旋转不改变图形的大小和形状。)
活动二 A
C


B
O

量一量:图中的OC和哪条线段相等?还有没有 类似这样对应相等的线段呢? OC=OC′ OA=OA ′ OB=OB ′
对应点到旋转中心的距离相等。
A D
E′
B
∴点 A 的对应点是它本身. 又∵AD = AB,∠DAB = 90°, E ∴旋转后点 D 与点 B 重合. ∴ △ABE′≌△ADE, ∴点 E 的对应点 E′在 CB 延 C 长线上,且 BE′= DE. 使 BE′= DE,连接 AE′
还有别的方法能 将△ADE旋转为 △ABE′吗?
从生活中来
23.1 图 形 的 旋 转(1)
活动1:自主学习
自学提纲:
自学课本59页练习前的内容,解决问题:
1.什么叫做图形的旋转? 2. 图形旋转的条件是什么? 3. 说一说你知道的我们生产、生活中旋转的 例子.
旋转的概念:
把一个平面图形绕着平面内某一点O 转动一个角度,叫做图形的旋转.
活动三
例:如图,E是正方形ABCD中CD边上 任意一点,以点A为中心,把△ADE顺时针 旋转90°,画出旋转后的图形.

图形的旋转_课件

图形的旋转_课件

(1)旋转中心是什么?旋转角是什么? 旋转中心是O,∠AOE、∠BOF等都是旋转角。
(2)经过旋转,点A、B分别移动到什么位置? 经过旋转,点A和点B分别移动到点E和点F的位置。
知识回顾 问题探究 课堂小结 探究二:旋转的基本性质
重点、难点知识 ★▲
活动2 集思广益,探索旋转的基本性质
如图:△ABC绕点O按顺时针方向转动一个角度得△DEF。
2图形上的每一点都绕旋转中心沿相同方向转动了相同的角度3任意一对对应点与旋转中心的连线所成的角度都是旋转角
图形的旋转
知识回顾 问题探究 课堂小结
(1)平移的定义: 在平面内 ,将一个图形 沿某个方向移动一定的距离 ,这样的图
形运动叫平移。
(2)平移的两要素
①平移方向 ②平移距离
(3)平移不改变图形形状、大小、方向,只改变图形的位置。
【思路点拨】抓住旋转的三要素。
知识回顾 问题探究 课堂小结 探究二:旋转的基本性质
重点、难点知识 ★▲
活动3 旋转性质应用
2.①如图,在△ABC中,∠CAB=65°,在同 一平面内,将△ABC绕点A旋转到△AB'C'的
位置,使得 CC'//AB,则∠BAB'=__5_0_°___。
解:∵ ∠CAB=65°, CC'//AB, ∴∠C'CA=∠CAB=65°。 ∵△ABC绕点A旋转到△AB'C'的位置 ∴AC=AC',∠C'CA=∠CC'A=65°。 所以∠BAB'=∠CAC'=180°-∠C'CA-∠CC'A=50°。 【思路点拨】抓住旋转过程中产生的等腰三角形。
重点、难点知识 ★▲
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
温故而知新:
平移的定义:
平移变换
在平面内,将一个图形沿某个方向移动一定的
距离,这样的图形运动称为平移。 平移的特征:
平移不改变图形的形状和大小。
平移前后图形是全等的。
(1)上面情景中的转动现象,有什么共同
的特征?
转动荡的秋时千针
(2)钟表的指针转、动秋的千车、轮车轮在转动过程
中,其形状、大小、位置是否发生变化呢?
E
B
C
D
2、如图:△ABD经旋转后到达△ACE的位置,点M 是AC的中点,若BD=3cm,AB=8cm,则
EC=_3__c_m_;AM=__4_c__m__。
M
3、四边形ABCD是正方形,△ADF旋转一定角度 后得到△ABE,如图所示,如果AF=4,AB=7,求 (1)指出旋转中心和旋转角度
(2)求DE的长度
◆对应点到旋转中心的距离相等.
◆对应点与旋转中心所所线段 的夹角等于旋转角.
C
O
D
旋转角就是对应点与旋转中心所连线段的夹角
试一试
E A
如图,△ABC绕点M旋转得 到△ DEF,则:
B
点C的对应点是___点__F___;
C D
M
F
旋转中心是__点__M____;
旋转方向是__顺__时_针___;
旋转角是_∠__A_M_D__,_∠__B_M__E_,_∠__C_M__F__;
4.∠A的对应角是__∠_C___; ∠B的对应角是__∠_D___;
5.旋转中心是点__O____; 旋转的角是 _∠__A_O_C_ 。
A
BC
O
D
认识旋转
O
0
45
B
A
点A绕_O_点,往_顺_时_针方向,转动了 _4_5 度到点B.
认识旋转
B/
B
A
0
/
90
A
P
线段AB绕_P_点,往_逆_时_针方向,转动了_90_度到线段A'B'.
①地下水位逐年下降;②传送带的移动; ③方向盘的转动;④水龙头开关的转动; ⑤钟摆的运动;⑥荡秋千运动. A.2 B.3 C.4 D.5
如图,△ABO绕点O旋转得到 △CDO,则:
D
1.点B的对应点是点_____;
2.线段OB的对应线段是线段 __O_D___;
3.线段AB的对应线段是线段 _C_D___;
例1:
如图,如果把钟表的指针看做四边形AOBC,它绕O点旋转得 到四边形DOEF. 在这个旋转过程中:
(1)旋转中心是什么? 旋转中心是点O
(2)经过旋转,点A、B分别移动到什么位置?点D和点E的位置
(3)旋转角是什么? ∠AOD和∠BOE都是旋转角
例2: 钟表的分针匀速旋转一周需要60分. (1)指出它的旋转中心;
(2)经过20分,分针旋转了多少度?
解:
P
(1)它的旋转中心是钟表的轴心;
O P′
(2)分针匀速旋转一周需要60分钟,因此旋转
20分钟,分针旋转的角度为 360? ? 20 ? 120?
60
动态演示
练一练
如图,在正方形ABCD中,E是CB延长线上一
点,△ABE经过旋转后得到△ADF,请按图回答:
(1)旋转中心是哪一点 ?点A(2)旋转角是多少度 ? 900
(3)BE与DF的位置关系如何?
D
C
E
F
A
B
4
7
归纳小结
1、旋转的概念:
在同一平面内,把一个图形绕着一个定点沿某个 方向转动一个角度,这样的图形运动称为旋转
2、旋转三要素: 旋转中心、旋转的角度、旋转方向. 3、旋转前、后图形的形状和大小不改变 。
4、旋转的基本性质
◆旋转前、后的图形全等.
即对应角相等,对应线段相等.
(3)∠EAF等于多少度 ? 900
(4)经过旋转 ,点B与点E分别转到
E
G
什么位置 ?
点D、点F
A
B
(5) 若点G是线段 BE的中点 ,经过旋转
后,点G转到了什么位置 ?请在图形
上作出.
D HF
C
探究:
B
C
B′ C′
B′ A

A′ C
C′
A
旋转前、后的图形全等
B
即对应角相等,对应边相等.
对应点到旋转中心的距离相等。
旋转的性质:
1.一个图形和它经过旋转所得的 图形中,对应点到旋转中心的距 离相等,任意一组对应点与旋转 中心的连线所成的角都等于旋转 角;
2.对应线段相等,对应角相等
随堂练习:1、如图:△ABC绕点A旋转后到达 △ADE处,若∠BAC=120°,∠BAD=30°,
则∠DAE=___1_2__0_0__,∠CAE=___3_0__0____。 A
在同一平面内,把一个图形绕着一个定点沿某个 方向转动一个角度,这样的图形运动叫做旋转。
这个定点 O叫做 旋转中心 ,转动的角叫 做旋转角。
A
如果图形上的点OP P经过
B
旋转变为点OPP' ,那么 两这条两线个段点叫做这个旋转
P 旋转角 P'
对的应对线应段点。
o
旋转中心
随堂练习 :
下列现象中属于旋转的有( C )个
认识旋转
B′ A
C0
100
A′
B
O
C′
△ABC绕_O_点,往_顺_时_针方向,转动了_1_00度到
△A'B'C' .
旋转的三要素:
旋转中心 旋转方向 旋转角度
ห้องสมุดไป่ตู้
找一找
(1)如图,△ABO绕点O旋转得到△CDO,则:
点A的对应点是 ____点__C__;
A
旋转中心是 ___点__O___ ; B
旋转角是 __∠__A_O_C_,___∠__B_O_D___ ;
相关文档
最新文档