高三数学-空间点线面之间的位置关系课件
合集下载
第三节空间点线面的位置关系ppt课件
C.不可能平行 是异面直线相矛盾.
答案:C
D.不可能
相交
2.(2013· 东北三校联考)下列命题正确的个数为 ①经过三点确定一个平面; ②梯形可以确定一个平面;
(
)
③两两相交的三条直线最多可以确定三个平面;
④如果两个平面有三个公共点,则这两个平面重合. A.0 C.2 B.1 D.3
解析:①④错误,②③正确. 答案:C
第三节空间点 线面的位置关 系
考纲要求: 点、直线、平面之间的位置关系 ①理解空间直线、平面位置关系的定义, 并了解如下可以作为推理 依据的公理和定理。 ◆公理 1:如果一条直线上的两点在一个平面内,那么这条直线上 所有的点在此平面内。 ◆公理 2:过不在同一直线上的三点,有且只有一个平面。 ◆公理 3:如果两个不重合的平面有一个公共点,那么它们有且只 有一个过该点的公共直线。 ◆公理 4:平行于同一条直线的两条直线互相平行。 ◆定理: 空间中如果一个角的两边与另一个角的两边分别平行, 那 么这两个角相等或互补。 ② 以立体几何的上述定义、公理和定理为出发点,认识和理 解空间中线面平行、垂直的有关性质与判定定理。
P∈α,
且P∈β⇒
_____
α∩ β = l
该点的公共直线
___________ 且P∈l
二、空间直线的位置关系 相交直线:同一平面内,有且只有一个公共点; 共面直线 平行直线:同一平面内, 没有 公共点; 1.位置关系的分类 异面直线:不同在 任何 一个平面内,没有 公共点.
1.异面直线的判定常用的是反证法,先假设
两条直线不是异面直线,即两条直线平行或相交,
由假设的条件出发,经过严格的推理,导出矛盾,
从而否定假设肯定两条直线异面.此法在异面直
§8.2 空间点、线、面的位置关系(讲解部分) 高考数学(课标版,文科)复习课件
例2 (2020届皖南八校第一次联考,15)在长方体ABCD-A1B1C1D1中,BC=CC1=1,
∠AD1B=
π 3
,则直线AB1与BC1所成角的余弦值为
.
解析 如图,∵ABCD-A1B1C1D1为长方体,
∴BC1∥AD1,∴∠D1AB1(或其补角)为异面直线AB1与BC1所成的角.
∵AB⊥平面ADD1A1,AD1⊂平面ADD1A1,∴AB⊥AD1,
例1 已知正方体ABCD-A1B1C1D1中,E,F分别为D1C1,C1B1的中点,AC∩BD= P,A1C1∩EF=Q. 求证:(1)D,B,F,E四点共面; (2)若A1C交平面DBFE于R点,则P,Q,R三点共线.
证明 如图.
(1)连接B1D1, 由已知得EF是△D1B1C1的中位线, ∴EF∥B1D1.在正方体AC1中,B1D1∥BD,∴EF∥BD. ∴EF,BD确定一个平面,即D,B,F,E四点共面. (2)正方体AC1中,设平面A1ACC1确定的平面为α,平面BDEF确定的平面为β.
方法技巧
方法1 证明点共线、线共点及点线共面的方法
1.证明点线共面问题的两种方法:(1)归一法:首先由所给条件中的部分线 (或点)确定一个平面,然后再证其余的线(或点)在这个平面内;(2)重合法:将 所有条件分为两部分,然后分别确定平面,再证两平面重合. 2.证明点共线问题的两种方法:(1)先由两点确定一条直线,再证其他各点都 在这条直线上;(2)直接证明这些点都在同一条特定直线上. 3.证明线共点问题的常用方法:先证其中两条直线交于一点,再证其他直线 经过该点.
是棱BD的中点,则异面直线AB与CM所成角的余弦值为
.
解析 取AD的中点N,连接MN,CN,又因为M是BD的中点,所以MN∥AB,故
2025届高考一轮复习《空间点、线、面的位置关系》课件
A.异面或平行 B.异面或相交
C.异面
D.相交、平行或异面
高考一轮总复习•数学
第28页
(2)(多选)如图是正四面体的平面展开图,G,H,M,N 分别为 DE,BE,EF,EC 的中 点,则在这个正四面体中,下列结论正确的是( )
由平面图形翻折得到空间图形,考查空间想象、元素的对应关系.
高考一轮总复习•数学
的棱长为 2,则 MC= 2,A1D=2 2,MD= 6,A1C=2 3.
又易知△MCE∽△DA1E,则MEDE=ECAE1=DMAC1=12,可得 ME=
3 6,CE=2
3 3.
又 ME2+CE2=23+43=2=MC2,
解析
高考一轮总复习•数学
则 DM⊥A1C, 即 DM 与 A1C 的位置关系是相交垂直.
面内.
常称为“纳入平面法”.
(2)将所有条件分为两部分,然后分别确定平面,再证两平面重合. 称为“同一法”.
2.证明点共线问题的两种方法
(1)先由两点确定一条直线,再证其他各点都在这条直线上.
(2)直接证明这些点都在同一条特定直线上.
高考一轮总复习•数学
第24页
3.证明线共点问题的常用方法 先证其中两条直线交于一点,再证其他直线经过该点. 提醒:点共线、线共点等都是应用基本事实 3,证明点为两平面的公共点,即证明点在 交线上.
高考一轮总复习•数学
第22页
得 M∈平面 D1DCC1,同理,点 M∈平面 B1BCC1.又平面 D1DCC1∩平面 B1BCC1=CC1, 所以 M∈CC1.应用基本事实 3,证明三线共点.
所以 DE,BF,CC1 三线交于一点.
高考一轮总复习•数学
第23页
1.证明点或线共面问题的两种方法
高中数学《第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系》845PPT课件
小结
(1)二面角的定义 ; (2)二面角平面角的定义;
利用二面角的平面角来刻画二面角的大小 (3)求解简单的二面角.
例 已知正方体 ABCD-A1B1C1D1 ,求 (3)二面角 C1-BD-C 的大小; (4)二面角 C1-BD-A 的大小.
例 已知正方体 ABCD-A1B1C1D1 ,求 (3)二面角 C1-BD-C 的大小; (4)二面角 C1-BD-A 的大小.
例 已知正方体 ABCD-A1B1C1D1 ,求 (3)二面角 C1-BD-C 的大小; (4)二面角 C1-BD-A 的大小.
例 已知正方体 ABCD-A1B1C1D1 ,求 (3)二面角 C1-BD-C 的大小; (4)二面角 C1-BD-A 的大小.
例 已知正方体 ABCD-A1B1C1D1 ,求 (3)二面角 C1-BD-C 的大小; (4)二面角 C1-BD-A 的大小.
例 已知正方体 ABCD-A1B1C1D1 ,求 (3)二面角 C1-BD-C 的大小; (4)二面角 C1-BD-A 的大小.
例 已知正方体 ABCD-A1B1C1D1 ,求 (1)二面角 A-BC-B1 的大小; (2)二面角 A-BC-D1 的大小;
例 已知正方体 ABCD-A1B1C1D1 ,求 (1)二面角 A-BC-B1 的大小; (2)二面角 A-BC-D1 的大小;
例 已知正方体 ABCD-A1B1C1D1 ,求 (1)二面角 A-BC-B1 的大小; (2)二面角 A-BC-D1 的大小;
定义:在二面角的棱 AB 上任取一点 O,
过 O 分别在面 和 上作棱 AB 的垂线
OM 和 ON,射线 OM 和 ON 所组成的
角叫做二面角 -AB- 的平面角.
高中数学必修2第二章-空间点、直线、平面之间的位置关系PPT
a
A
记为:a=A
33
直线与平面
平行直线: 同一平面内,没有公共点;
异面直线: 不同在任何一个平面内,没有公共点
21
平行直线
公理4 平行于同一直线的两条直线互相平行.
如果a//b,b//c,那么a//c
空间中的平行线具有传递性
D
C
F
D
AC
F
B
E
A
三条平行线共面
B
E
三条平行线不共面
22
平行直线
问题
已知三条直线两两平行,任取两条直线能确 定一个平面,问这三条直线能确定几个平面?
第二章
点、直线、平面之 间的位置关系
1
2.1 点、直线、平面 之间的位置关系
2
主要内容
2.1.1 平面 2.1.2空间中直线与直线之间的位置关系 2.1.3空间中直线与平面之间的位置关系
3
2.1.1 平 面
4
构成图形的基本元素
D′ A′
D
A
C′ B′
C
B
点、线、面
点无大小 线无粗细 面无厚薄
D
C
F
D
AC
F
B
E
A
三条平行线共面
B
E
三条平行线不共面
23
等角定理
定理 空间中如果两个角的两边分别对应 平行,那么这两个角相等或互补.
A /A C /C ,•A /A /B B
C
C
A
B
A
B
C
A
B
C
B
A
等角定理:空间中如果两个角的两边分别 对应平行且方向相同,那么这两个角相等.
高三数学精品课件:空间点、直线、平面之间的位置关系
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
考点二 空间两条直线的位置关系(基础考点——自主探究)
自主演练
3.在图中,G,N,M,H 分别是正三棱柱的顶点或所在棱 的图中①点中,,直则线表G示H直∥线MNG;H图,②M中N,是G,异H面,直N线三的点图共面形,的但是 _M__∉②_平_④_面___G_H.N(,填因序此号直).线 GH 与 MN 异面;图③中,连接 MG,GM∥HN,因此 GH 与 MN 共面;图④中,G,M, N 共面,但 H∉平面 GMN,因此 GH 与 MN 异面.所以在 图②④中,GH 与 MN 异面.
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
[主干知识·自主梳理]
小题纠偏
重温教材 自查自纠
1.已知直线 a 和平面 α,β,α∩β =l,a⊄α,a⊄β,且 a 在 α,β 内的 射影分别为直线 b 和 c,则直线 b 和 c 的位置关系是( D ) A.相交或平行 B.相交或异面 C.平行或异面 D.相交、平行或异面
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
[主干知识·自主梳理]
小题诊断
重温教材 自查自纠
1.四条线段顺次首尾相连,它们
最多可确定的平面个数有( A )
A.4 个
B.3 个
C.2 个
D.1 个
首尾相连的四条线段 每相邻两条确定一个 平面,所以最多可以 确定四个平面.
[主干知识·自主梳理] [考点分类·深度剖析] 课时作业
首页 上页 下页 尾页
[主干知识·自主梳理]
重温教材 自查自纠
2.空间中两直线的位置关系 (1)空间中两直线的位置关系
高考数学空间点、直线、平面之间的位置关系ppt课件
上一页
返回导航
下一页
第八章 立体几何与空间向量
30
A.BM=EN,且直线 BM,EN 是相交直线
√B.BM≠EN,且直线 BM,EN 是相交直线
C.BM=EN,且直线 BM,EN 是异面直线 D.BM≠EN,且直线 BM,EN 是异面直线
上一页
返回导航
下一页
第八章 立体几何与空间向量
31
【解析】 如图,取 CD 的中点 F,连接 EF,EB,BD,FN,因为△CDE 是正三角形,所以 EF⊥CD.设 CD=2,则 EF= 3.因为点 N 是正方形 ABCD 的中心,所以 BD=2 2,NF=1,BC⊥CD.因为平面 ECD⊥平面 ABCD, 所以 EF⊥平面 ABCD,BC⊥平面 ECD,所以 EF⊥NF,BC⊥EC,所以在 Rt△EFN 中,EN=2,在 Rt△BCE 中,EB=2 2,所以在等腰三角形 BDE 中,BM= 7,所以 BM≠EN.易知 BM,EN 是相交直线.故选 B.
1.判断正误(正确的打“√”,错误的打“×”) (1)若 P∈α∩β 且 l 是 α,β 的交线,则 P∈l. (2)三点 A,B,C 确定一个平面. (3)若直线 a∩b=A,则直线 a 与 b 能够确定一个平面. (4)若 A∈l,B∈l 且 A∈α,B∈α,则 l⊂α. (5)分别在两个平面内的两条直线是异面直线.
上一页
返回导航
下一页
第八章 立体几何与空间向量
7
3.空间中直线与平面、平面与平面的位置关系
(1)空间中直线和平面的位置关系
位置关系
图形表示
符号表示
直线 a 在 a⊂α
平面 α 内
公共点 有无数个公共点
上一页
返回导航
空间点线面的位置关系PPT课件
精选PPT课件
27
4.点线共面问题
例1 证明两两相交且不同点的三条直线必在同一个平面内.
B A
确定一个面,再
C
证明其余线在该
面内.
已知:AB∩AC=A,AB∩BC=B,AC∩BC=C 求证:直线AB,BC,AC共面.
证明:因为AB∩AC=A,
所以直线AB,AC确定一个平面.(推论2)
因为B∈AB,C∈AC,所以B∈,C∈, 故BC.(公理1)
作: //或
注2:当平面α上的所有点都在平面β上时,称平面α与平面β重合. (当两个平面有不共线的三个公共点,则两个平面重合)
公理2
β
a
α
α
β
β
α
精选PPT课件
10
小结:用数学符号来表示点、线、面之间的位置关系:
a B
A
Aa
Ba
B
α
A
A
B
b
a
aA
α
α
a a b A 或 a //
β
a
α
α
β
因此直线AB,BC,CA共面.
精选PPT课件
28
4.点线共面问题
例1 证明两两相交且不同点的三条直线必在同一个平面内.
B
A
C
证法二:
因为A 直线BC上, 所以过点A和直线BC确定平面 .(推论1)
因为B∈BC,所以B∈ . 又A∈,故AB ,同理AC ,
所以AB,AC,BC共面. 证法三:
G,H分别是AB,BC,CD,DA的中点,连结EF,FG,GH,HE,求证:
EFGH是一个平行四边形.
证明:连结BD,
∵ EH是△ABD的中位线,
第七章 第2讲 空间点、直线、平面之间的位置关系课件2025届高三数学一轮复习
4.已知 , 是两条直线, , 是两个平面,则下列说法中正确的为____.(填序号)①若 平行于 内的无数条直线,则 ;②若 , , ,则 与 是异面直线;③若 , ,则 ;④若 , ,则 与 一定相交.
③
解析:①忽略了 在 内这一情况,故①错误;②直线 与 没有交点,所以直线 与 可能异面也可能平行,故②错误;③直线 与平面 没有公共点,所以 ,故③正确;④直线 与平面 可能相交也可能平行,故④错误.
1.异面直线的判定过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.
2.几个唯一性结论
(1)过直线外一点有且只有一条直线与已知直线平行;
(2)过直线外一点有且只有一个平面与已知直线垂直;
(3)过平面外一点有且只有一条直线与已知平面垂直.
【用一用】
1.如图,在直三棱柱 的棱所在的直线中,与直线 成异面直线的条数为( )
不在一条直线上
两个点
一条
基本事实4:平行于同一条直线的两条直线______.
平行
(2)“三个”推论 推论1:经过一条直线和这条直线外一点,有且只有______平面.推论2:经过两条______直线,有且只有一个平面.推论3:经过两条______直线,有且只有一个平面.[提醒] 三点不一定能确定一个平面.当三点共线时,过这三点的平面有无数个,所以必须是不在一条直线上的三点才能确定一个平面.
点、线、面位置关系的判定
(1)点、线、面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体模型直观感知并认识空间点、线、面的位置关系.
(2)两条直线异面的判定:反证法或利用异面直线的判定定理.
考点三 异面直线所成的角(一题多变)
[高考考情] 异面直线所成的角是高考的热点内容,主要考查学生的空间想象能力、数学运算能力以及把空间问题转化为平面问题的能力,属于基础题,一般难度不大,常以填空题、选择题的形式出现.
③
解析:①忽略了 在 内这一情况,故①错误;②直线 与 没有交点,所以直线 与 可能异面也可能平行,故②错误;③直线 与平面 没有公共点,所以 ,故③正确;④直线 与平面 可能相交也可能平行,故④错误.
1.异面直线的判定过平面外一点和平面内一点的直线,与平面内不过该点的直线是异面直线.
2.几个唯一性结论
(1)过直线外一点有且只有一条直线与已知直线平行;
(2)过直线外一点有且只有一个平面与已知直线垂直;
(3)过平面外一点有且只有一条直线与已知平面垂直.
【用一用】
1.如图,在直三棱柱 的棱所在的直线中,与直线 成异面直线的条数为( )
不在一条直线上
两个点
一条
基本事实4:平行于同一条直线的两条直线______.
平行
(2)“三个”推论 推论1:经过一条直线和这条直线外一点,有且只有______平面.推论2:经过两条______直线,有且只有一个平面.推论3:经过两条______直线,有且只有一个平面.[提醒] 三点不一定能确定一个平面.当三点共线时,过这三点的平面有无数个,所以必须是不在一条直线上的三点才能确定一个平面.
点、线、面位置关系的判定
(1)点、线、面位置关系的判定,注意构造几何体(长方体、正方体)模型来判断,常借助正方体模型直观感知并认识空间点、线、面的位置关系.
(2)两条直线异面的判定:反证法或利用异面直线的判定定理.
考点三 异面直线所成的角(一题多变)
[高考考情] 异面直线所成的角是高考的热点内容,主要考查学生的空间想象能力、数学运算能力以及把空间问题转化为平面问题的能力,属于基础题,一般难度不大,常以填空题、选择题的形式出现.
空间中点线面的位置关系复习课件
又易知△A1BD1 为正三角形, ∴∠A1BD1=60° .
即 BA1 与 AC1 成 60° 的角.
基础知识
题型分类
思想方法
练出高分
解
(1)不是异面
直线.理由如 下:连接MN、 A1C1、AC.
∵M、N分别是A1B1、B1C1的中点, ∴MN∥A1C1.
(1)AM和CN是否是异面直线? 说明理由; (2)D1B和CC1是否是异面直线? 说明理由.
基础知识 题型分类
又∵A1A綊C1C, ∴A1ACC1为平行四边形, ∴A1C1∥AC,∴MN∥AC,
∴假设不成立,即D1B与CC1是 异面直线.
思想方法 练出高分
题型分类·深度剖析
题型二 空间两直线的位置关系
思维启迪 解析 探究提高
【例2】 如图所示,正方体 ABCD—A1B1C1D1中,M、N分 别是A1B1、B1C1的中点.问:
(1)证明直线异面通常用反证 法;(2)证明直线相交,通常用 平面的基本性质,平面图形的性 质等.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 平面基本性质的应用
思维启迪 解析 探究提高
【例1】在正方体ABCD— A1B1C1D1中,对角线A1C与平 面BDC1交于点O,AC,BD交 于点M,求证:点C1,O,M 共线.
如 图 所 示 , ∵A1A∥C1C,
∴A1A,C1C 确 定平面 A1C.
数学
北(理)
§8.3 空间点、直线、平面 之间的位置关系
第八章 立体几何
基础知识·自主学习
要点梳理
难点正本 疑点清源
1.公理的作用 公理1的作用是判断直 线是否在某个平面内; 公理2及其推论给出了 确定一个平面或判断 “直线共面”的方法;公 理3的作用是如何寻找 两相交平面的交线以及 证明“线共点”的理论依 据;平行公理是对初中 平行线的传递性在空间 中的推广.
即 BA1 与 AC1 成 60° 的角.
基础知识
题型分类
思想方法
练出高分
解
(1)不是异面
直线.理由如 下:连接MN、 A1C1、AC.
∵M、N分别是A1B1、B1C1的中点, ∴MN∥A1C1.
(1)AM和CN是否是异面直线? 说明理由; (2)D1B和CC1是否是异面直线? 说明理由.
基础知识 题型分类
又∵A1A綊C1C, ∴A1ACC1为平行四边形, ∴A1C1∥AC,∴MN∥AC,
∴假设不成立,即D1B与CC1是 异面直线.
思想方法 练出高分
题型分类·深度剖析
题型二 空间两直线的位置关系
思维启迪 解析 探究提高
【例2】 如图所示,正方体 ABCD—A1B1C1D1中,M、N分 别是A1B1、B1C1的中点.问:
(1)证明直线异面通常用反证 法;(2)证明直线相交,通常用 平面的基本性质,平面图形的性 质等.
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一 平面基本性质的应用
思维启迪 解析 探究提高
【例1】在正方体ABCD— A1B1C1D1中,对角线A1C与平 面BDC1交于点O,AC,BD交 于点M,求证:点C1,O,M 共线.
如 图 所 示 , ∵A1A∥C1C,
∴A1A,C1C 确 定平面 A1C.
数学
北(理)
§8.3 空间点、直线、平面 之间的位置关系
第八章 立体几何
基础知识·自主学习
要点梳理
难点正本 疑点清源
1.公理的作用 公理1的作用是判断直 线是否在某个平面内; 公理2及其推论给出了 确定一个平面或判断 “直线共面”的方法;公 理3的作用是如何寻找 两相交平面的交线以及 证明“线共点”的理论依 据;平行公理是对初中 平行线的传递性在空间 中的推广.
高中数学必修二课件:空间点、直线、平面之间的位置关系
5.若点M是两条异面直线a,b外的一点,则过点M且与a,b都平行的平面 有__0_或__1___个.
解析 当点M在过a且与b平行的平面或过b且与a平行的平面内时,没有满足 条件的平面;当点M不在上述两个平面内时,满足题意的平面只有1个.
那么这两个平面的位置关系一定是( C )
A.平行
B.相交
C.平行或相交
D.以上都不对
(2)已知平面α,β ,且α∥β ,直线a⊂α,直线b⊂β,则直线a与直线b具
有怎样的位置关系?画出图形.
【思路】 由α∥β,a⊂α,b⊂β,可知直线a,b无公共点.
【解析】 由题意得直线a,b无公共点,所以直线a,直线b可能平行或异 面.如图所示,在长方体模型中若直线AC就是直线a,B1D1就是直线b,则直线a 与直线b异面;若直线BD就是直线a,B1D1就是直线b,则直线a与直线b平行.
综合①②可知c与b相交或异面.
探究1 判断两直线的位置关系,不能局限于平面内,要把直线置身于空间 考虑,有时可分为平面和空间两种情形讨论.
思考题1 (1)正方体ABCD-A1B1C1D1中和AB平行的棱有_A_1_B_1,__C_D_,_C_1_D_1; 和AB异面的棱有__C_C_1_,_D_D_1_,_A_1_D_1,__B_1C_1___.
平面α与β平行,记作α∥β.
1.如何画异面直线?
答:画异面直线时,为了充分显示出它们既不平行又不相交的特点,即不 共面的特点,常常需要以辅助平面作为衬托,以加强直观性,如下图①②③, 若画成如图④的情形,就区分不开了,因此千万不能画成如图④的图形.
2.如何判断异面直线? 答:①定义法.②两直线既不平行也不相交.
③直线a不平行于平面α,则a不平行于α内任何一条直线.
空间点线面位置关系整理(ppt)
详细描述
在二维平面中,一个点可以确定一条 直线,但直线本身不能确定一个具体 的点。同样,在三维空间中,一个点 也可以确定一个平面,但平面本身不 能确定一个具体的点。
点与面之间的关系
总结词
点与面之间的关系是相对复杂的,一个点可以位于一个平面上,但不能确定一个平面。
详细描述
在二维平面中,一个点可以位于一个平面上,但这个平面本身不能被一个单独的点所确 定。在三维空间中,一个点也可以位于一个曲面上,但这个曲面本身不能被一个单独的
详细描述
线在面上的变换通常涉及到直线的平移、旋 转或倾斜等操作。这种变换可以用来描述一 个物体在平面上的运动或变化,例如桥梁的 伸缩、建筑物的旋转等。此外,这种变换还 可以用来研究几何图形在平面上的运动规律 和性质。
06
空间点线面位置关系的证明
点在线上的证明
定义法
根据点的定义,如果一个点在直线上 ,则该点满足直线的方程。通过验证 点的坐标是否满足直线的方程,可以 证明该点在线上。
3
线可以用来确定建筑物的空间形态和方向感。
点线面在建筑学中的应用
01
面在建筑学中的应用
02
面可以表示建筑物的立面、屋顶、地面等。
面可以用来确定建筑物的空间大小、形状和功能分区等。
03
点线面在计算机图形学中的应用
01
02
03
点在计算机图形学中的 应用
点可以表示像素的位置 和颜色信息。
点可以用来实现图像的 缩放、旋转和平移等变
点在面上的变换
总结词
点在面上的变换是指一个点在一个平面 上的位置变化。
VS
详细描述
与点在线上的变换类似,点在面上的变换 也可以通过平移、旋转或缩放等操作来实 现。这种变换可以用来描述一个物体在平 面上的运动或变化,例如飞行器在空中的 飞行轨迹。
在二维平面中,一个点可以确定一条 直线,但直线本身不能确定一个具体 的点。同样,在三维空间中,一个点 也可以确定一个平面,但平面本身不 能确定一个具体的点。
点与面之间的关系
总结词
点与面之间的关系是相对复杂的,一个点可以位于一个平面上,但不能确定一个平面。
详细描述
在二维平面中,一个点可以位于一个平面上,但这个平面本身不能被一个单独的点所确 定。在三维空间中,一个点也可以位于一个曲面上,但这个曲面本身不能被一个单独的
详细描述
线在面上的变换通常涉及到直线的平移、旋 转或倾斜等操作。这种变换可以用来描述一 个物体在平面上的运动或变化,例如桥梁的 伸缩、建筑物的旋转等。此外,这种变换还 可以用来研究几何图形在平面上的运动规律 和性质。
06
空间点线面位置关系的证明
点在线上的证明
定义法
根据点的定义,如果一个点在直线上 ,则该点满足直线的方程。通过验证 点的坐标是否满足直线的方程,可以 证明该点在线上。
3
线可以用来确定建筑物的空间形态和方向感。
点线面在建筑学中的应用
01
面在建筑学中的应用
02
面可以表示建筑物的立面、屋顶、地面等。
面可以用来确定建筑物的空间大小、形状和功能分区等。
03
点线面在计算机图形学中的应用
01
02
03
点在计算机图形学中的 应用
点可以表示像素的位置 和颜色信息。
点可以用来实现图像的 缩放、旋转和平移等变
点在面上的变换
总结词
点在面上的变换是指一个点在一个平面 上的位置变化。
VS
详细描述
与点在线上的变换类似,点在面上的变换 也可以通过平移、旋转或缩放等操作来实 现。这种变换可以用来描述一个物体在平 面上的运动或变化,例如飞行器在空中的 飞行轨迹。
新高考数学空间点、直线、平面之间的位置关系精品课件
D
(2)如图7-38-4所示,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有 .(填序号)
课堂考点探究
[思路点拨]根据异面直线的概念通过观察或平移判断两条直线是否异面;[解析]在题图①中,GH∥MN;在题图②中,G,H,N共面,但M∉平面GHN,因此直线GH与MN异面;在题图③中,连接MG,则GM∥HN,因此直线GH与MN共面;在题图④中,G,M,N共面,但H∉平面GMN,因此直线GH与MN异面.故填②④.
课前基础巩固
[解析]首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.
题组二 常错题
索引:对异面直线的概念理解有误致误;判断空间点、线、面位置关系时不全面或不清楚致误.3. α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是 .(填序号) ①垂直;②相交;③异面;④平行.
(续表)
两个点
课前基础巩固
基本事实
文字语言
图形语言
符号语言
作用
基本事实3
如果两个不重合的平面有_____ 公共点,那么它们有且只有 的公共直线
P∈α,且P∈β⇒ α∩β=l,且P∈l
①确定两平面相交的依据;②判定点在直线上的依据
(续表)
一个
课前基础巩固
基本事实
文字语言
图形语言
符号语言
图7-38-2
课堂考点探究
[思路点拨]设CE,D1F交于点P,再证明直线DA经过点P即可.证明:∵EF∥CD1,EF<CD1,∴CE与D1F必相交,延长CE,D1F,设交点为P,如图所示.由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理可得P∈平面ADD1A1.延长DA,又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.
(2)如图7-38-4所示,G,N,M,H分别是正三棱柱的顶点或所在棱的中点,则表示直线GH与MN是异面直线的图形有 .(填序号)
课堂考点探究
[思路点拨]根据异面直线的概念通过观察或平移判断两条直线是否异面;[解析]在题图①中,GH∥MN;在题图②中,G,H,N共面,但M∉平面GHN,因此直线GH与MN异面;在题图③中,连接MG,则GM∥HN,因此直线GH与MN共面;在题图④中,G,M,N共面,但H∉平面GMN,因此直线GH与MN异面.故填②④.
课前基础巩固
[解析]首尾相连的四条线段每相邻两条确定一个平面,所以最多可以确定四个平面.
题组二 常错题
索引:对异面直线的概念理解有误致误;判断空间点、线、面位置关系时不全面或不清楚致误.3. α是一个平面,m,n是两条直线,A是一个点,若m⊄α,n⊂α,且A∈m,A∈α,则m,n的位置关系不可能是 .(填序号) ①垂直;②相交;③异面;④平行.
(续表)
两个点
课前基础巩固
基本事实
文字语言
图形语言
符号语言
作用
基本事实3
如果两个不重合的平面有_____ 公共点,那么它们有且只有 的公共直线
P∈α,且P∈β⇒ α∩β=l,且P∈l
①确定两平面相交的依据;②判定点在直线上的依据
(续表)
一个
课前基础巩固
基本事实
文字语言
图形语言
符号语言
图7-38-2
课堂考点探究
[思路点拨]设CE,D1F交于点P,再证明直线DA经过点P即可.证明:∵EF∥CD1,EF<CD1,∴CE与D1F必相交,延长CE,D1F,设交点为P,如图所示.由P∈CE,CE⊂平面ABCD,得P∈平面ABCD.同理可得P∈平面ADD1A1.延长DA,又平面ABCD∩平面ADD1A1=DA,∴P∈直线DA,∴CE,D1F,DA三线共点.
2020高考数学总复习空间点、线、面之间的位置关系PPT课件
3.已知 a、b 是异面直线,直线 c∥直线 a,那么 c 与 b( )
A.一定是异面直线
B.一定是相交直线
C.不可能是平行直线 D.不可能是相交直线
解析:选 C 假设 c∥b,由公理 4 可知,a∥b,与 a、b 是 异面直线矛盾,故选 C.
4.如果两条异面直线称为“一对”,那么在正方体的 十二条棱中共有异面直线________对.
解析:异面直线的对数为122×4=24.
答案:24
[例 1] 如图,正方体 ABCD -A1B1C1D1 的棱长为 1,P 为 BC 的中点,Q 为线段 CC1 上的动点,过点 A,P,Q 的 平面截该正方体所得的截面记为 S.则下列命题正确的是 ________(写出所有正确命题的编号).
①当0<CQ<12时,S为四边形; ②当CQ=12时,S为等腰梯形; ③当CQ=34时,S与C1D1的交点R满足 C1R=13; ④当34<CQ<1时,S为六边形; ⑤当CQ=1时,S的面积为 26.
V=13·S△ABC·PA=13×2 3×2=43 3. (2)如图所示,取 PB 的中点 E, 连接 DE,AE,则 DE∥BC, 所以∠ADE(或其补角)是异面直线 BC 与 AD 所成的角. 在△ADE 中,DE=2,AE= 2,AD=2, 则 cos∠ADE=DE2+2DAED·A2-D AE2=222×+22×2-22=34.
[例 2]如图所示,正方体 ABCD-A1B1C1D1 中,M、N 分别为 棱 C1D1、C1C 的中点,有以下四个结论:
①直线 AM 与 CC1 是相交直线; ②直线 AM 与 BN 是平行直线; ③直线 BN 与 MB1 是异面直线; ④直线 AM 与 DD1 是异面直线. 其中正确的结论为______(写出所有正确结论的序号).
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
公理 3
如果两个不重合 的平面有一个公 共点,那么它们 有且只有一条 过
该点的公共直线
P∈α,且 P∈β⇒α∩β =l,且P∈l
基础知识梳理
2.空间两直线的位置关系 (1)位置关系的分类
有且只有一个 没有 没有
基础知识梳理
(2)平行公理 公理4:平行于同一直线的两 条直线 互相平行 ——空间平行线 的传递性. (3)等角定理 空间中如果两个角的两边分 别对应平行 ,那么这两个角相等 或互补.
课堂互动讲练
互动探究
若本例中的其他条件不变,将比例改 为AEEB=CFFB=2,HAHD=GCGD=3.求证: EH、FG、BD 三线共点.
课堂互动讲练
证明:因为AEEB=CFFB=2, 所以 EF∥AC.
又HAHD=GCGD=3, ∴HG∥AC, ∴EF∥HG,且EF>HG. 所以四边形EFGH为梯形,设EH 与FG交于点P, 则P∈平面ABD,P∈平面BCD, 所以P在两平面的交线BD上, 所以EH、FG、BD三线共点.
课堂互动讲练
解:选取平面BCF,该 平面有以下两个特点:①该 平面包含直线CF;②该平面 与DE相交于点E.在平面BCF 中,过点E作CF的平行线交 BF于点N,连结ND,可以看 出:EN与ED所成的角即为 异面直线FC与ED所成的角. 10分
规律方法总结
1.公理1反映了平面的本质属性, 通过直线的“直”和“无限延伸”的特性, 揭示了平面的“平”和“无限延展”的特 征.其作用是:(1)检验平面;(2)判断 直线在平面内;(3)由直线在平面内判 定直线上的点在平面内.
三基能力强化
1.分别在两个平面内的两条直 线的位置关系是( )
A.异面 B.平行 C.相交 D.以上都有可能 答案:D
三基能力强化
2.已知a,b是异面直线,直线 c∥直线a,则c与b( )
A.一定是异面直线 B.一定是相交直线 C.不可能是平行直线 D.不可能是相交直线 答案:C
三基能力强化
3.已知A、B、C表示不同的点, l表示直线,α、β表示不同的平面,则 下列推理错误的是( )
点击进入
感谢大家观看
最新学习可编辑资料
∴G∈α.同理,设直线D1F与DC的 延长线交于点H,则H∈平面α.
课堂互动讲练
课堂互动讲练
又∵点G、B、H均属于平面AC, 且由题设条件知E为AA1的中点且 AE∥DD1,从而AG=AD=AB,
∴△AGB为等腰直角三角形, ∴∠ABG=45°,同理∠CBH= 45°, 又∵∠ABC=90°,从而点B∈α, ∴D1、E、F、B共面.
规律方法总结
2.公理2的作用:确定平面的依 据.它提供了把空间问题转化为平面问 题的条件.例如:三点确定几个平面? 当三点共线时,三点确定无数个平面; 当三点不共线时,确定一个平面,所以 三点确定一个或无数个平面.
公理2中的“有且只有一个”包含两 层含义:(1)“有”说明平面的存在性; (2)“只有一个”说明平面的唯一性.
课堂互动讲练
例2 如图所示,已知空间四边形ABCD中, E、H分别是边AB、AD的中点,F、G分别
是边 BC、CD 上的点,且CCFB=CCGD=23,求证:
三条直线EF、GH、AC交于一点.
课堂互动讲练
【思路点拨】 先证E、F、G、 H四点共面,再证EF、GH交于一点, 然后证明这一点在AC上.
课堂互动讲练
例3 如图,在正方体ABCD-A1B1C1D1 中,点E、F分别是棱AA1、CC1的中点, 求证:D1、E、F、B共面.
课堂互动讲练
【思路点拨】 连结D1E、 D1F→D1E与DG相交,D1F与DC 相交→证明两交点与B共线.
课堂互动讲练
【证明】 ∵D1、E、F三点不共 线,
∴D1、E、F三点确定一平面α, 又由题意可知D1E与DA共面于平面 A1D且不平行,故分别延长D1E、DA 相交于G,则G∈直线D1E⊂平面α,
课堂互动讲练
【思路点拨】 (1)易证MN∥AC, 所以AM与CN不是异面直线.(2)由图易 判断D1B和CC1是异面直线,证明时常 用反证法.
课堂互动讲练
【解】 (1)不是异面直线.理由: 连结MN、A1C1、AC. ∵M、N分别是A1B1、B1C1的中点, ∴MN∥A1C1. 4分 又∵A1A綊C1C, ∴A1ACC1为平行四边形. ∴A1C1∥AC,得到MN∥AC, ∴A、M、N、C在同一平面内, 故AM和CN不是异面直线. 6分
课堂互动讲练
【证明】 ∵E、H分别是AB、AD的中点,
∴由中位线定理知,EH 綊12BD.
又∵CCFB=CCGD=23, ∴在△CBD 中,FG∥BD,且 FG=23BD.
∴由公理4知,EH∥FG,且EH<FG. ∴四边形EFGH是梯形,EH、FG为上、下 两底.
课堂互动讲练
∴两腰EF、GH所在直线必相交 于一点P.
课堂互动讲练
3.客观题中,也可用下述结论: 过平面外一点和平面内一点的直线, 与平面内不过该点的直线是异面直线, 如图.
课堂互动讲练
例4 (解题示范)(本题满分12 分)如图所示,正方体ABCD -A1B1C1D1中,M、N分别 是A1B1、B1C1的中点.问: (1)AM和CN是否是异 面直线?说明理由. (2)D1B和CC1是否是异 面直线?说明理由.
第3课时 空间点、线、面之 间的位置关系
基础知识梳理
1.平面的基本性质
名称
图示
文字表示
符号表示
公理 1
如果一条直线 上的 两点 在一
个平面内,那 么这条直线在
此平面内
A∈l,B∈l, 且A∈α, B∈α⇒l⊂α
基础知识梳理
名称
图示
文字表示
符号表示
公理 2
过不在一条直线 上的三点,有且 只有一个平面
课堂互动讲练
【名师点评】 题中是先说明D1、 E、F确定一平面,再说明B在所确定 的平面内,也可证明D1E∥BF,从而 说明四点共面.
课堂互动讲练
考点四 异面直线的判定
证明两直线为异面直线的方法: 1.定义法(不易操作). 2.反证法:先假设两条直线不 是异面直线,即两直线平行或相交, 由假设的条件出发,经过严密的推理, 导出矛盾,从而否定假设肯定两条直 线异面.此法在异面直线的判定中经 常用到.
A.A∈l,A∈α,B∈l, B∈α⇒l⊂α
B.A∈α,A∈β,B∈α, B∈β⇒a∩β=AB
C.l⊄α,A∈l⇒A∉α D.A∈α,A∈l,l⊄α⇒l∩α=A 答案:C
三基能力强化
4.如图所示,在正方体ABCD-
A1B1C1D1中,异面直线AC与B1C1
所成的角为
.
答案:45°
5.三条直线两两相交,可以确 定__________个平面.
课堂互动讲练
【名师点评】 证明异面直线的 方法中反证法最常用,不能把异面直 线误解为:分别在不同平面内的两条 直线为异面直线.
课堂互动讲练
高考检阅
(本题满分10分)由四个 全等的等边三角形围成的封 闭几何体称为正四面体.如 图,在正四面体ABCD中, E、F分别是BC和AD的中 点.CF与DE是一对异面直 线,在图中适当地选取一点 作出异面直线CF与DE的平 行线,找出异面直线CF与 DE所成的角.
课堂互动讲练
【思路点拨】 要证明M、N、K 三点共线,由公理3可知,只要证明M、 N、K都在平面BCD与平面PQR的交 线上即可.
课堂互动讲练
【证明】
PQ∩CB=M
RQ∩DB=N⇒
RP∩DC=K
MM、 、NN、 、KK∈ ∈平 平面 面BPQCDR ⇒
M、N、K在平面BCD与平面PQR 的交线上,即M、N、K三点共线.
∵P∈直线EF,EF⊂平面ABC, ∴P∈平面ABC.同理可得P∈平面 ADC, ∴P在平面ABC和平面ADC的交 线上. 又∵面ABC∩面ADC=AC, ∴P∈直线AC.故EF、GH、AC三 直线交于一点.
课堂互动讲练
【思维总结】 证明线共点的方 法一般是先证两条直线相交于一点, 然后再证明这一点在第三条直线上, 而证明后者,往往是利用这点在两个 平面的交线上.
示
个数
直线l在平面 α内
l⊂α 无数个
位置关系
直线l与平面 α相交
基础知识梳理
图示
符号表示
公共点个 数
l∩α=A
一个
直线l与平面 α平行
l∥α
0个
基础知识梳理
4.平面与平面的位置关系
位置 关系
图示
符号表 公共点个
示
数
两平 面平
行
α∥β
0个
两平 面相
交
a∩β=l
无数个(这 些公共点 均在交线l
上)
课堂互动讲练
考点三 点、线共面问题
证明若干条线(或若干个点)共面,一般来 说有两种途径:一是首先由题目条件中的部 分线(或点)确定一个平面,然后再证明其余的 线(或点)均在这个平面内;二是将所有元素分 为几个部分,然后分别确定几个平面,再证 这些平面重合.本题最容易忽视“三线共点” 这一种情况.因此,在分析题意时,应仔细 推敲问题中每一句话的含义.
课堂互动讲练
(2)是异面直线.理由: ∵ABCD-A1B1C1D1是正方体, ∴B、C、C1、D1不共面. 8分 假设D1B与CC1不是异面直线, 则存在平面α,使D1B⊂平面α, CC1⊂平面α, ∴D1、B、C、C1∈α, ∴与ABCD-A1B1C1D1是正方体 矛盾. ∴假设不成立,即D1B与CC1是异 面直线. 12分
答案:1或3
课堂互动讲练
考点一 点共线问题
证明共线问题:(1)可由两点连 一条直线,再验证其他各点均在这 条直线上;(2)可直接验证这些点都 在同一条特定的直线上——两相交 平面的唯一交线,关键是通过绘出 图形,作出两个适当的平面或辅助 平面,证明这些点是这两个平面的 公共点.