第二章多相多组分系统热力学(5)

合集下载

第二章热力学状态图

第二章热力学状态图

2.1.4 Jeffes图-PCO/PCO2标尺 PCO/PCO2标尺图的画法:
为了更方便地使用氧势图判断氧化物被CO还原的情况, Jeffesz在氧势图上增加了PCO/PCO2标尺
2CO O2 (101325 Pa) 2CO2

△Go=-58150+167.78T
p CO2 1 DG RT ln 2 RT ln p O2 2 RT ln p CO2 p CO 2 p O2



直线的位臵
(2)在同一温度下,若几种元素同时与氧相遇,则位臵 低的元素最先氧化。如1673K时,元素Si、Mn、Ca、Al、 Mg同时与氧相遇时,最先氧化的是金属Ca, 然后依次为Mg、 Al、Si、Mn。 ——注意:先氧化是指同样条件,氧化所需的最低氧分压低 (3)位臵低的元素在标准状态下可以将位臵高的氧化物还 原。如1600℃时,Mg可以还原SiO2得到液态硅。
(2) 单元相图的基本类型与特点 对于单元系,C=1;则有:
F 3 P
单相体系:P=1,F=2,自由度为2 两相共存体系:P=2,F=1,自由度为1 三相共存体系:P=3,F=1,自由度为0
O点称为三相点,现在 国际单位规定水的三相 点温度为273.16K, 通常我们说的水的冰点 温度0 0C( 273.15K)
相图:将一定压力下,温度与组成的关系图,称为相图。
2.1 埃林汉姆(Ellingham)图及其应用
2.1.1 氧势图的形成原理;
2.1.2 氧势图的热力学特征;(特殊的线;直
线斜率;直线位臵)
2.1.3 氧势图的应用(氧气标尺;Jeffes图学
生自学)
2.1 埃林汉姆(Ellingham)图及其应用 2.1.1 氧势图的形成原理

2. 1 均相多组分系统热力学

2. 1  均相多组分系统热力学

∑x dZ
B B
B
=0
• 上两式均是 吉布斯 杜亥姆公式。表明,T、p 一定的条件 吉布斯---杜亥姆公式 表明, 、 杜亥姆公式。 系统各组分偏摩尔量的变化相互联系,彼此制约。 下,系统各组分偏摩尔量的变化相互联系,彼此制约。如1、2 、 二组分系统中,组分1 的某偏摩尔量上升, 二组分系统中,组分 的某偏摩尔量上升,即dZ1>0,则必有 , dZ2<0,即组分 的相应偏摩尔量一定下降,决不可能同时上 ,即组分2 的相应偏摩尔量一定下降, 升或同时下降,变化结果必须满足Gibbs-Duhem公式。 公式。 升或同时下降,变化结果必须满足 - 公式 • 某一偏摩尔量的变化可从其它偏摩尔量的变化中求得。 某一偏摩尔量的变化可从其它偏摩尔量的变化中求得。
1.00 0.96 0.86 0.72 0.63 0.52 0.39 0.22 0
- 19.8 23.7 29.3 33.0 37.3 42.7 49.5
__
- 19.5 23.1 28.3 31.9 36.1 41.6 48.5 -
- - 0.3 - 0.6 - 1.0 - 1.1 - 1.2 - 1.1 - 1.0 -
混合物与溶液(GB3102.8 -- 93)
溶液 (solution)
广义地说,两种或两种以上物质彼此以分子或离子 状态均匀混合所形成的体系称为溶液。 为了方便,将溶液中的组分区分为溶剂及溶质, 为了方便,将溶液中的组分区分为溶剂及溶质,并 区分为溶剂及溶质 选用不同的标准态作为参照,以不同的方式加以研究。 选用不同的标准态作为参照,以不同的方式加以研究。
∂V VJ = ∂nJ p ,T ,n '
The partial molar volumes of the components of a mixture vary with composition

物理化学第二章作业及答案

物理化学第二章作业及答案

第二章多相多组分系统热力学2007-4-24§2.1 均相多组分系统热力学 练习1 水溶液(1代表溶剂水,2代表溶质)的体积V 是质量摩尔浓度b 2的函数,若 V = A +B b 2+C (b 2)2(1)试列式表示V 1和V 2与b 的关系;答: b2: 1kg 溶剂中含溶质的物质的量, b 2=n 2, 112222,,,,2T P n T P n V V V B cb n b ⎛⎫⎛⎫∂∂===+ ⎪ ⎪∂∂⎝⎭⎝⎭ ∵ V=n 1V 1+n 2V 2( 偏摩尔量的集合公式)∴ V 1=(1/n 1)(V-n 2V 2)= (1/n 1)( V-b 2V 2)= (1/n 1)(A+Bb 2+c(b 2)2-Bb 2-2cb 2)= (1/n 1)[A-c(b 2)2] (2)说明A ,B , A/n 1 的物理意义;由V = A +B b 2+C (b 2)2 , V=A;A: b 2→0, 纯溶剂的体积,即1kg 溶剂的体积B; V 2=B+2cb 2, b 2→0, 无限稀释溶液中溶质的偏摩尔体积A/n 1:V 1= (1/n 1)[A-c(b 2)2],∵b 2→0,V = A +B b 2+C (b 2)2, 纯溶剂的体积为A, ∴A/n 1 为溶剂的摩尔体积。

(3)溶液浓度增大时V 1和V 2将如何变化?由V 1,V 2 的表达式可知, b 2 增大,V 2 也增加,V 1降低。

2哪个偏微商既是化学势又是偏摩尔量?哪些偏微商称为化学势但不是偏摩尔量? 答: 偏摩尔量定义为,,c B B T P n Z Z n ⎛⎫∂= ⎪∂⎝⎭所以,,c B B T P n G G n ⎛⎫∂= ⎪∂⎝⎭ ,,c B B T P n H H n ⎛⎫∂= ⎪∂⎝⎭ ,,cBB T P n F F n ⎛⎫∂= ⎪∂⎝⎭ ,,cB B T P n U U n ⎛⎫∂= ⎪∂⎝⎭ 化学势定义为:,,c B B T P n G n μ⎛⎫∂=⎪∂⎝⎭= ,,c B T V n F n ⎛⎫∂ ⎪∂⎝⎭= ,,c B S V n U n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S P n H n ⎛⎫∂ ⎪∂⎝⎭ 可见,偏摩尔Gibbs 自由能既是偏摩尔量又是化学势。

化学势与热力学基本方程

化学势与热力学基本方程

dA dG d( pV ) SdT pdV
K i 1
idni
dH dG d(TS) TdS Vdp
K i 1
i
dni
dU dH d( pV ) TdS pdV
K i 1
idni
适用于组成可变的均相多组分系统, 并且不考虑除压力以外的其它广义力
A A(T , V , n1, n2 , , nK )
1
dn K ( ) ( )
i1 i
i
dH TdS Vdp
1
dn K ( ) ( )
i1
1
dn K ( ) ( )
i1 i
i
dG SdT Vdp
1
dn K ( ) ( )
i1 i
i
0 SdT Vdp
1
n d K ( ) ( )
Gi
dni
i
def
Gi
G ni
T , p,nji
K
G ni i i1
H G TS
n K
i1 i i
TS
U H pV
n K
i1 i i
TS
pV
A U TS
n K
i1 i i
pV
dG
G T
p,nj
dT
G p
T ,nj
dp
K i 1
idni
i i (T , p, x1, x2 , , xK 1 )
i i (T ,Vm , x1 , x2 , , xK 1 )
i i (Sm , p, x1 , x2 , , xK 1 )
i i ( Sm ,Vm , x1 , x2 , , xK 1 )
2.多相多组分系统的热力学基本方程

第二章 热力学概论

第二章 热力学概论
上一内容 下一内容 回主目录
返回
4.状态和状态函数(state function)
描述系统需要用到热力学性质,研究系统要涉及状态 描述系统需要用到热力学性质,研究系统要涉及状态 热力学性质 和状态变化。 和状态变化。 ) (1)状态 纯物质单相系统有各种宏观性质,如温度 ,压力p,体 纯物质单相系统有各种宏观性质,如温度T,压力 体 积V,热力学能 等等。 ,热力学能U 等等。 系统的状态是它所有性质的总体表现。状态确定以后, 系统的状态是它所有性质的总体表现。状态确定以后,系 统所有的性质也就确定了。 统所有的性质也就确定了。
We',1 = − p" (V " − V2 )
p1 , V1
− p (V − V ) ' − p1 (V1 − V )
' ' "
p′
p′′
p 2 , V2
V′ V′′
返回
整个过程所作的功 为三步加和
上一内容 下一内容 回主目录
(3)可逆压缩 压力缓慢增加,恢复到原状,所作的功为: 压力缓慢增加,恢复到原状,所作的功为:
热力学的局限性
不知道反应的机理、速率和微观性质。 不知道反应的机理、速率和微观性质。 只讲可能性,不讲现实性。 只讲可能性,不讲现实性。
上一内容 下一内容 回主目录
返回
二、热力学的研究对象
•研究热、功和其他形式能量之间的相互 研究热、 研究热 转换及其转换过程中所遵循的规律; 转换及其转换过程中所遵循的规律; •研究各种物理变化和化学变化过程中所 研究各种物理变化和化学变化过程中所 发生的能量效应; 发生的能量效应; •研究化学变化的方向和限度。 研究化学变化的方向和限度。 研究化学变化的方向和限度

第2章 多组分系统热力学

第2章 多组分系统热力学
第二章 多组分系统热力学
含两个或两个以上组分的系统称为多组分系统。 含两个或两个以上组分的系统称为多组分系统。 多组分系统 均相(单相 非均相(多相 多组分系统可以是均相 单相) 也可以是非均相 多相)的 多组分系统可以是均相 单相 ,也可以是非均相 多相 的。 多组分均相系统又可以区分为混合物 溶液。 混合物和 多组分均相系统又可以区分为混合物和溶液。并以不同的方法 加以研究: 加以研究: 混合物:混合物中的各组分不分为溶剂 溶质, 溶剂及 混合物:混合物中的各组分不分为溶剂及溶质,对各组分 均选用同样的标准态 标准态; 均选用同样的标准态; 溶液:溶液中的各组分区分为溶剂 溶质, 溶剂及 溶液:溶液中的各组分区分为溶剂及溶质,并选用不同的 标准态加以研究。 标准态加以研究。 气态混合物 液态溶液 混合物 液态混合物 溶液 固态溶液(固溶体) 固态溶液(固溶体) 固态混合物
(2-18)
可得: 又µB=GB=HB-TSB ,可得: HB = µB+TSB 有
µ B 1 ∂µ B ∂(µ B / T ) =− 2 + ( ) p ,n ∂T T ∂T T p ,n
=−
2) 化学势与压力的关系
µB
T
2
HB −S + =− 2 T T
(2-19)
∂µ B ( ) T ,n = VB ∂p
X = ∫ dX = ∑ ∫0 X B dn B = ∑ n B X B
X
nB
0
(2-7)
3 吉布斯 杜哈姆公式 吉布斯–杜哈姆公式 在温度、压力下, 微分, 在温度、压力下,对(2-7)微分,得: 微分
B
B
2 偏摩尔量集合公式 由X= f (T,p,nA,nB,……),当温度、压力一定时,对 = , ,当温度、压力一定时, 一微小变化, 一微小变化,

《多组分系统热力学》课件

《多组分系统热力学》课件

02
03
气候变化
多组分系统热力学可用于研究温室气 体在大气中的分布和变化,为气候变 化研究提供数据支持。
在生物学中的应用
生物代谢过程
多组分系统热力学可用于研 究生物体内的代谢过程,分 析代谢产物的生成和能量转
换效率。
生物分子相互作用
利用多组分系统热力学模型 ,可以研究生物分子之间的 相互作用和结合机制,为药 物设计和生物工程提供理论
依据。
生物系统稳定性
通过多组分系统热力学模型 ,可以分析生物系统的稳定 性和动态变化,为生物保护 和生态平衡提供理论支持。
THANK YOU
感谢聆听
相变过程
相变的概念
物质在一定条件下,从一种相转变为另一种相的过程 。
相变的热力学条件
相变过程总是向着熵增加的方向进行,同时满足热力 学第一定律和第二定律。
相变过程的分类
根据相变过程中物质状态的变化,可以分为凝聚态物 质相变和气态物质相变等。
化学反应过程
化学反应的概念
化学反应是指分子破裂成原子,原子 重新排列组合生成新分子的过程。
化学势具有加和性,即对于多组分 系统中的某一组分,其化学势等于 其他组分的化学势之和。
相平衡和化学平衡
相平衡是指多组分系统中各相之间的平衡状态,是 热力学的基本概念之一。
化学平衡是指多组分系统中化学反应达到平衡状态 时的状态,是热力学的基本概念之一。
相平衡和化学平衡是相互关联的,可以通过化学势 来判断是否达到相平衡或化学平衡状态。
04
多组分系统的热力学过程
热力学过程
热力学第一定律
能量守恒定律,即在一个封闭系统中,能量不能被 创造或消灭,只能从一种形式转化为另一种形式。

多组分系统热力学

多组分系统热力学

多组分系统热力学
多组分系统热力学是研究多个组分构成的系统的热力学行为的科学。

在多组分系统中,各个组分之间可能会相互作用,从而影响整个系统的热力学性质。

多组分系统热力学的研究内容包括:
1.热力学第一定律:能量守恒定律,即在一个封闭系统中,能量不
能被创造或消除,只能从一种形式转化为另一种形式。

2.热力学第二定律:熵增定律,即在一个封闭系统中,熵(即系统
的混乱程度)只能增加,不能减少。

这意味着,系统总是朝着熵增的方向演化,而不是熵减的方向。

3.相平衡:研究在给定的温度和压力下,不同物质之间是如何平衡
的。

4.化学平衡:研究在给定的温度和压力下,化学反应是如何平衡的。

5.热力学第三定律:绝对零度不能达到原理,即任何物质在绝对零
度下的熵均为零。

这些定律和原理对于理解多组分系统的热力学行为非常重要。

在化学工程、材料科学、生物工程等领域中,多组分系统热力学被广泛应用于研究复杂系统的热力学性质和行为。

物理化学 万洪文、詹正坤第二版第02章多相多组分系统热力学习题及答案

物理化学 万洪文、詹正坤第二版第02章多相多组分系统热力学习题及答案

第二章 多相多组分系统热力学习题及答案§2. 1 均相多组分系统热力学(P68)1. 水溶液(1代表溶剂水,2代表溶质)的体积V 是质量摩尔浓度b 2的函数,若V = A +Bb 2+C (b 2)2(1)试列式表示V 1和V 2与b 的关系; (2)说明A 、B 、A/n 1的物理意义; (3)溶液浓度增大时V 1和V 2将如何变化?解:(1) 由b 2的定义“1kg 溶剂中所含溶质的物质的量”,因此本题中可视溶剂水为1kg ,从而认为将 b 2=n 2。

★112222,,,,2T P n T P n V V V B Cb n b ⎛⎫⎛⎫∂∂===+ ⎪ ⎪∂∂⎝⎭⎝⎭ 据偏摩尔量的集合公式V=n 1V 1+n 2V 2,★V 1 =2211()V n V n -=2211()V b V n - =22222211[A+Bb +C(b )-Bb -2C(b )]n =2211[A-C(b )]n = 2211A C (b )n n - (2)20lim b V A →=,故A 表示当b 2→0,纯溶剂的体积,即1kg 溶剂水的体积;220lim b V B →=,故B 表示当b 2→0,无限稀溶液中溶质的偏摩尔体积;2101lim b AV n →=,A/n 1表示溶剂水的摩尔体积。

(3)由以上V 1和V 2 的表达式可知,溶液浓度(b 2)增大时,V 2 增大,V 1减小。

2. 哪个偏微商既是化学势又是偏摩尔量?哪些偏微商称为化学势但不是偏摩尔量?答:化学势表达式: ,,cB B T P n G n μ⎛⎫∂= ⎪∂⎝⎭= ,,cB T V n F n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S P n H n ⎛⎫∂ ⎪∂⎝⎭= ,,cB S V n U n ⎛⎫∂ ⎪∂⎝⎭偏摩尔量: ,,c B B T P n G G n ⎛⎫∂= ⎪∂⎝⎭,,,c B B T P n F F n ⎛⎫∂= ⎪∂⎝⎭,,,c B B T P n H H n ⎛⎫∂= ⎪∂⎝⎭,,,cBB T P n U U n ⎛⎫∂= ⎪∂⎝⎭ 可见,只有偏微商,,c B T P n G n ⎛⎫∂ ⎪∂⎝⎭既是化学势又是偏摩尔量,,,c B T V n F n ⎛⎫∂ ⎪∂⎝⎭、,,c B S P n H n ⎛⎫∂ ⎪∂⎝⎭、,,cB S V n U n ⎛⎫∂ ⎪∂⎝⎭称为化学势,但不是偏摩尔量。

万洪文《物理化学》教材习题解答

万洪文《物理化学》教材习题解答

第一篇化学热力学第一章热力学基本定律.1-1 0.1kg C6H6(l)在,沸点353.35K下蒸发,已知(C6H6) =30.80 kJ mol-1。

试计算此过程Q,W,ΔU和ΔH值。

解:等温等压相变。

n/mol =100/78 , ΔH = Q = n = 39.5 kJ , W= - nRT = -3.77 kJ , ΔU =Q+W=35.7 kJ1-2 设一礼堂的体积是1000m3,室温是290K,气压为pϑ,今欲将温度升至300K,需吸收热量多少?(若将空气视为理想气体,并已知其C p,m为29.29 J K-1·mol-1。

)解:理想气体等压升温(n变)。

Q=nC p,m△T=(1000pϑ)/(8.314×290)×C p,m△T=1.2×107J 1-3 2 mol单原子理想气体,由600K,1.0MPa对抗恒外压绝热膨胀到。

计算该过程的Q、W、ΔU和ΔH。

(Cp ,m=2.5 R)解:理想气体绝热不可逆膨胀Q=0 。

ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1), 因V2= nRT2/ p2, V1= nRT1/ p1,求出T2=384K。

ΔU=W=nCV,m(T2-T1)=-5.39kJ ,ΔH=nC p,m(T2-T1)=-8.98 kJ1-4 在298.15K,6×101.3kPa压力下,1 mol单原子理想气体进行绝热膨胀,最后压力为pϑ,若为;(1)可逆膨胀(2)对抗恒外压膨胀,求上述二绝热膨胀过程的气体的最终温度;气体对外界所作的功;气体的热力学能变化及焓变。

(已知C p,m=2.5 R)。

解:(1)绝热可逆膨胀:γ=5/3 , 过程方程p11-γT1γ= p21-γT2γ, T2=145.6 K ,ΔU=W=nC V,m(T2-T1)=-1.9 kJ , ΔH=nC p,m(T2-T1)=-3.17kJ(2)对抗恒外压膨胀,利用ΔU=W ,即nC V,m(T2-T1)= - p2 (V2-V1) ,求出T2=198.8K。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

为纯A的摩尔相变热( α → β )
,
八、稀溶液的依数性
1. 一相为纯物质时两相平衡的温度与组成的关系
d ln a aA,2
aA,1
A
T2
H
* m
(
A)
dT
T1
RT 2
积分上式,且设
H
* m
(
A)
不随温度变化
ln
aA,2 aA,1
H
* m
R
(
A)
1 T2
1 T1
H
* m
(
A)
R
1
T2
)
RT
ln
aB
B xB
B
pB pB* xB
pB 实际混合物中B组分的蒸气分压
pB* xB
按照Raoult定律计算的B组分 的蒸气分压
pB pB* xB, B 1, 服从Laoult定律,
为理想液态混合物
,
§2.3 重点知识回顾
9. 理想稀溶液中溶质的化学势
B
(溶质,
T
,
p,
bB
)
B,b
nB nA
据质量摩尔浓度的定义
bB
nB nAM A
xB
nAM AbB nA
M AbB
MA为溶剂的 摩尔质量, 单位 kg/mol
LOGO
xB M AbB
xB
ls
H
* m
(
A)
Tf*
RTf*Tf
Tf
令 Tf Tf* Tf
Tf*Tf
T
* f
2
M AbB
ls
H
* m
(
A)Tf
aA xA,ln aA ln xA
对数展开式 ln xA 1 xA xB
ln aA ln xA xB
xB
ls
H
* m
R
(
A)
1 Tf
1
T
* f
联立
LOGO
xB
ls
H
* m
R
(
A)
1 Tf
1
T
* f
xB
ls
H
* m
(
A)
Tf*
RTf*Tf
Tf
xB
nB nA nB
当bB 0 时, B,b 1
lim B,b 1
bB 0
,
§2.3 重点知识回顾
12. 实际溶液中溶剂的化学势
A
(溶剂,T
,
p,
xA
)
A
(l,T
)
RT
ln
aA
aA xA A
A
pA p*A xA
实际溶液中溶剂的蒸气分压 按照Raoult定律计算的溶剂的蒸气分压
当xA 1 时, A 1
lim A 1
7. 理想液态混合物的混合性质
mixV 0
mix H 0
mixS R nB ln xB
mixG RT nB ln xB
,
§2.3 重点知识回顾
8. 实际液体混合物中各组分化学势
B (l,T , p, xB ) B* (l,T , p) RT ln aB
B
(l,T
,
p,
xB
)
B
(l,T
p
由Gibbs-Helmholtz公式
G / T
T
p
H T2
R
ln aA T
p
Hm* ( A) T2
,
八、稀溶液的依数性
R
ln aA T
p
H
* m
(
A)
T2
两边除以R
ln aA T
p
H
* m
(
A)
RT 2
两边乘以dT
d
ln
aA
H
* m
(
A)
RT 2
dT
H
* m
(
A)
相 液相,相 固相
水 冰,Tf* T1,aA,1 1 水溶液 冰,Tf T2,aA,2 aA Hm* (A)=lsHm* (A) (摩尔熔化热)
ln aA
ls
H
* m
R
(
A)
1 Tf
1
T
* f
LOGO
ln aA
ls
H
* m
R
(
A)
1 Tf
1
T
* f
对稀溶液中的溶剂而言 xA 1, A 1
A
(
,T
,
p,
xA
)
A
(
,T
,
p)
A
(
,T
,
p)
RT
ln
aA
A
(
,T
,
p)
RT
ln
aA
A
(
,
T
,
p)
A
(
,
T
,
p)
A
Gm* ( A)
R
ln
aA
Gm* ( A) T
,
八、稀溶液的依数性
R ln
aA
Gm* ( A) T
等压下对温度求导
R
ln aA T
p
Gm* ( A) / T T
xA 1
,
八、稀溶液的依数性
何为依数性?p88
人们在长期的实践中发现,加入少量溶质能引 起溶剂性质的改变(如蒸汽压下降、沸点升高、 凝固点降低及渗透压等),变化的大小仅与溶质 的数量有关,而与溶质的性质无关,这就是所谓 的依数性。
蒸气压下降
pA p*A xA p*A (1 xB ) xB 1 pA p*A
(溶质,
T
)
RT
ln
bB b
B
(溶质,T
,
p,
cB
)
Hale Waihona Puke B,c(溶质,T)
RT
ln
cB c
B
(溶质,T
,
p,
xB
)
B,x
(溶质,
T
)
RT
ln
xB
标准态: T , p , bB b 1mol / kg () 时仍服从
Henry定律的溶液中溶质的状态。它是一个假想态!
,
§2.3 重点知识回顾
10. 理想稀溶液中溶剂的化学势
任 一 组 分 B 在 整 个 浓 度 范 围 内 都 符 合 Raoult 定律的液体混合物 。
pB pB* xB
6. 理想液态混合物中组分B的化学势
B
(l,T
,
p,
xB
)
* B
(l,
T
,
p)
RT
ln
xB
(1)
B (l,T , p, xB ) BO (l,T ) RT ln xB (2)
,
§2.3 重点知识回顾
多相多组分系统热力学(5)
主要内容
√ 1 §2.1 均相多组分系统热力学 √ 2 §2.2 气体热力学
3 §2.3 多组分气-液平衡系统热力学 4 §2.4 Gibbs相律 5 §2.5 单组分系统的相图 6 §2.6 两组分系统的相图 7 §2.7 三组分系统的相平衡
,
§2.3 重点知识回顾
5. 理想液态混合物的定义
x B越大,即溶质的量越多,p A 越小
,
八、稀溶液的依数性 1. 一相为纯物质时两相平衡的温度与组成的关系
凝固点下降
沸点升高
NaCl水溶液 冰
NaCl水溶液 水蒸气
设物质A、B组成α和β两相,且β相为纯物质 A, α相中有A和B,组成用xA表示。
,
八、稀溶液的依数性
1. 一相为纯物质时两相平衡的温度与组成的关系
1 T1
通式
,
八、稀溶液的依数性 2. 凝固点降低(固-液两相平衡)
定压下,纯溶剂 A(l) 纯溶剂A(s) 两相平衡的 温度称为凝固点,用Tf*表示。
定压下,溶液aA(l) 纯溶剂A(s) 两相平衡的温 度称溶液的凝固点,用Tf表示。
,
ln aA,2 aA,1
H
* m
R
(
A)
1 T2
1 T1
A
(溶剂,T
,
p,
xA
)
A
(l,T
)
RT
ln
xA
标准态:T, pØ 时纯溶剂所处的状态。
,
§2.3 重点知识回顾
11. 实际溶液中溶质的化学势
B
(溶质,T
,
p,
bB
)
B,b
(溶质,T
)
RT
ln
aB,b
aB,b
bB B,b
b
标准态与理想稀溶液相同
B,b
pB kbbB
实际溶液中溶质的蒸气分压 按照Henry定律计算的溶质的蒸气分压
相关文档
最新文档