生物信息学概述文稿演示
生物信息学导论精品PPT课件
2020/10/5
16
概述
➢ 生物信息学往哪里去
表18-1生物信息学的过去、现在和将来
二十世纪90年代 的生物信息学
当前的生物信息 学
未来的生物信息 学
2020/10/5
主要内容
大规模基因组学与蛋白质组学的实 验数据形成的一级数据库及其相应 的分析方法与工具
由一级数据库分类、归纳、注释得 到的基因组学与蛋白质组学二级数 据库 (知识库)及其相应的分析方法与 工具
细胞和生物体的完全计算机表示
目的 了解单个基因和蛋白 质的功能与用途
2020/10/5
12
概述
➢ 生物信息学的起源
DNA自动测序构成过巨大的冲击,因为它曾经是各种生物学数据高通 量产出的前沿阵地。像表达序列标签(ESTs),单核苷多态性(SNPs)都 和基因序列密切相关。随后发展的研究基因表达模式(profile)的DNA微 阵列技术、用于探测蛋白质相互作用的酵母双杂交系统、以及质谱技术极 大地让生命科学类数据库飞速膨胀。结构基因组学方面的新技术还不能大 规模地产生数据,但它们正在导致蛋白质三维结构数据的增加。
2020/10/5
14
概述
➢ 生物信息学往哪里去
尽管最近十年来,高通量检测技术与信息技术的结合让人们认识了大 量的基因和蛋白质,但是和物理学、化学相比较,生物学仍旧是一门不成 熟的学科,因为对于生命过程,我们无法根据一般性原理做出像卫星轨道 那样精确的预测。随着数据的不断膨胀和知识的积累,也借助于生物信息 学,这种情形很有可能发生改变。
生物信息学导论
Introduction to Bioinformatics
Email: Tel:
2020/10/5
1
生物信息学概述(共59张PPT)精选全文完整版
蛋白质 结构
蛋白质 功能
最基本的 生物信息
2024/11/11
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚,对大多
数DNA非编码区域的功能还知之甚少
对于第二部密码,目前则只能用统计学的方法进行分析。破译“第
二遗传密码”:即折叠密码(folding code),从蛋白质的一级结构
Rickettsia prowazekii
Helicobacter pylori
Buchnerasp. APS
Escherichia coli大南芥
Thermotoga maritima
Thermoplasma acidophilum
mouse
Caenorhabitis elegans
以基因组计划的实施为标志的基因组时代(1990年至2001年)是生
物信息学成为一个较完整的新兴学科并得到高速发展的时期。这一 时期生物信息学确立了自身的研究领域和学科特征,成为生命科学 的热点学科和重要前沿领域之一。
这一阶段的主要成就包括大分子序列以及表达序列标签 ( expressed sequence tag,EST)数据库的高速发展、BLAST( basic local alignment search tool)和FASTA(fast alignment)等工具软件的研制和相应新算法的提出、基因的寻 找与识别、电子克隆(in silico cloning)技术等,大大提高
细胞质(线粒体、叶绿体) 基因组DNA
人类基因组:3.2×109 bp 18
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登月 计划
人类基因组计划
生物信息学课堂ppt课件
只是出现在电子出版物的文本中。
5
产生 生物信息学的
❖ 20世纪后期,生物科学技术迅猛发展,无论从数量上还是从质量上都 极大地丰富了生物科学的数据资源。数据资源的急剧膨胀迫使人们寻求 一种强有力的工具去组织这些数据,以利于储存、加工和进一步利用。 而海量的生物学数据中必然蕴含着重要的生物学规律,这些规律将是解 释生命之谜的关键,人们同样需要一种强有力的工具来协助人脑完成对 这些数据的分析工作。
❖ 基因组时代--基因寻找和识别、网络数据库系统的 建立、交互界面的开发;
❖ 后基因组时代--大规模基因组分析、蛋白质组分析。
8
重要性 生物信息学的
❖ 生物信息学不仅是一门学科,更是一种重要的研究开发工具。 ❖ 从科学的角度来讲,生物信息学是一门研究生物和生物相关
系统中信息内容与信息流向的综合系统科学。只有通过生物 信息学的计算处理,人们才能从众多分散的生物学观测数据 中获得对生命运行机制的系统理解。 ❖ 从工具的角度来讲,生物信息学几乎是今后所有生物(医药) 研究开发所必需的工具。只有根据生物信息学对大量数据资 料进行分析后,人们才能选择该领域正确的研发方向。 ❖ 生物信息学不仅具有重大的科学意义,而且具有巨大的经济 效益。它的许多研究成果可以较快地产业化,成为价值很高 的产品。
分析(主要研究内容) 应用(多个领域)
主要由数据库、计算机网络和应用软件三大部分构成
2
定义
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大量数据。
生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学
生物信息学分析方法介绍PPT课件
目录
• 生物信息学概述 • 基因组学分析方法 • 转录组学分析方法 • 表观遗传学分析方法 • 蛋白质组学分析方法 • 生物信息学分析流程和方法比较
01
生物信息学概述
生物信息学的定义和重要性
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理和 技术,对生物学数据进行分析、建模和解读,以揭示生命现象的本质和规律。
研究蛋白质的序列、结构 和功能,以及蛋白质相互 作用和蛋白质组表达调控 机制。
研究基因转录本的序列、 结构和表达水平,以及转 录调控机制。
研究基因表达的表观遗传 调控机制,如DNA甲基化 、组蛋白修饰等。
通过对患者基因组、蛋白 质组和转录组等数据的分 析,为个性化医疗和精准 医学提供支持。
02
基因组学分析方法
基因组注释
基因组注释是指对基因组序列中的各 个区域进行标记和描述的过程,包括 基因、转录单元、重复序列、调控元 件等。
注释信息可以通过数据库(如RefSeq、 GeneBank等)或注释软件(如GATK、 ANNOVAR等)获取。注释信息对于 理解基因组的生物学功能和进化关系 具有重要意义。
基因组变异检测
基因组变异检测是指检测基因组序列 中的变异位点,包括单核苷酸变异、 插入和缺失等。
VS
变异检测对于遗传疾病研究、进化生 物学和生物进化研究等领域具有重要 意义。常用的变异检测方法有SNP检 测、CNV检测等,它们基于不同的原 理和技术,具有不同的适用范围和精 度。
03
转录组学分析方法
RNA测序技术
利用生物信息学方法和算法,对 RNA测序数据进行基因融合检测, 寻找融合基因及其融合方式。
基因融合检测结果可以为研究肿 瘤等疾病提供重要线索,有助于 深入了解疾病发生发展机制。
生物信息学介绍(PPT20页)
• 蛋白质怎样实现细胞和有机体的动力学:
– 生命为什么是蛋白质的运动方式
• 个体发育和系统发育的法则和机理:
– 肌体如何长成、运作、衰老和进化
• 征服疾病:
– 主要循环系统疾病、癌症、病毒源性疾病、遗传病和衰老
• 保护和利用生物资源,开发和发展生物产业:
– 生物学怎样造福人类
•
1、
功的路 。2020/10/262020/10/26Monda y, October 26, 2020
成功源于不懈的努力,人生最大的敌人是自己怯懦
•
2、
。2 020/10/ 262020 /10/26 2020/10 /2610/ 26/202 0 12:03:09 AM
每天只看目标,别老想障碍
–蛋白质的三维结构
– 蛋白质的物理性质预测
– 其他特殊局部信息:其它特殊局部结构包括 膜蛋白的跨膜螺旋、信号肽、卷曲螺旋 (Coiled Coils)等,具有明显的序列特征和结 构特征,也可以用计算方法加以预测
• cDNA 芯片相关的数据管理和分析
实验室信息管理系统 基因表达公共数据库
• 分子进化
基因芯片流程(二)
6. 图象处理(采用专门软件,对图象进行分析, 提取每个点上的数字信号),得到原始数据表。
7. 数据校正和筛选(对cy5或cy3信号进行校正, 消除实验或扫描等各环节因素对数据的影响, 同时利用筛选规则对数据中的“坏点”,“小 点”,“低信号点”进行筛选,并作标记。)
8. 差异表达基因的确定(采用ratio值对差异基因 进行判断,或采用统计方法如线性回归、主成 分分析、调整P值算法等对差异基因进行统计 推断)
远期任务
• 读懂人类基因组,发现人类遗传语言的 根本规律,从而阐明若干生 物学中的重 大自然哲学问题,像生命的起源与进化 等。这一研究的关键和核心是了解非编 码区
生物信息学PPT课件
生物信息学在农业研究中的应用
1 2 3
作物育种
生物信息学可以通过基因组学手段分析作物的遗 传变异,为作物育种提供重要的遗传资源。
转基因作物研究
通过生物信息学分析,可以了解转基因作物的基 因表达和性状变化,为转基因作物的研发和应用 提供支持。
农业环境监测
生物信息学可以帮助研究人员监测农业环境中的 微生物群落、土壤质量等指标,为农业生产提供 科学依据。
特点
生物信息学具有数据密集、技术依赖、多学科交叉、应用广泛等特点。
生物信息学的重要性
促进生命科学研究
提高疾病诊断和治疗水平
生物信息学为生命科学研究提供了强 大的数据分析和挖掘工具,有助于深 入揭示生命现象的本质和规律。
生物信息学在疾病诊断和治疗方面具 有重要作用,通过对基因组、蛋白质 组等数据的分析,有助于实现个体化 精准医疗。
03 生物信息学技术与方法
基因组测序技术
基因组测序技术概述
基因组测序是生物信息学中的一项关键技术,它能够测定生物体的 全部基因序列,为后续的基因组学研究提供基础数据。
测序原理
基因组测序主要基于下一代测序技术,如高通量测序和单分子测序, 通过这些技术可以快速、准确地测定生物体的基因序列。
测序应用
基因组测序在医学、农业、生物多样性等多个领域都有广泛应用,如 疾病诊断、药物研发、作物育种等。
生物信息学ppt课件
目录
• 生物信息学概述 • 生物信息学的主要研究领域 • 生物信息学技术与方法 • 生物信息学的应用前景 • 生物信息学的挑战与展望 • 案例分析
01 生物信息学概述
定义与特点
定义
生物信息学是一门跨学科的学科,它利用计算机科学、数学和工程学的原理、 技术和方法,对生物学数据进行分析、解释和利用,以解决生物学问题。
生物信息学简单介绍71页PPT
1、战鼓一响,法律无声。——英国 2、任何法律的根本;不,不成文法本 身就是 讲道理 ……法 律,也 ----即 明示道 理。— —爱·科 克
3、法律是最保险的头盔。——爱·科 克 4、一个国家如果纲纪不正,其国风一 定颓败 。—— 塞内加 5、法律不能使人人平等,但是在法律 面前人 人是平 等的。 ——波 洛克
44、卓越的人一大优点是:在不利与艰 难的遭遇里百折不饶。——贝多芬
45 收都不可耻。——阿卜·日·法拉兹
42、只有在人群中间,才能认识自 己。——德国
43、重复别人所说的话,只需要教育; 而要挑战别人所说的话,则需要头脑。—— 玛丽·佩蒂博恩·普尔
第01讲生物信息学概述
20世纪90年代
人类基因组计划开始 (Human Genome Project, HGP)
人类基因组计划带来了
生物信息学
人类基因组计划
(HGP,Human Genome Project) 目标:整体上破解人类遗传信息的奥秘
由美国NIH和能源部提出和带头,美、英、德、 法、日、中共同参与的国际合作项目。 完成人全部24(22+X+Y)条染色体中3.2×109个碱基 对的序列测定,主要任务包括做图(遗传图谱、 物理图谱以及转录图谱的绘制)、测序和基因识 别,其根本任务是解读和破译生物体的生老病死 以及与疾病相关的遗传信息。
(二)基因组时代的生物信息学
以基因组计划的实施为标志的基因组时代(1990年至2001 年)是生物信息学成为一个较完整的新兴学科并得到高速 发展的时期。这一时期生物信息学确立了自身的研究领域 和学科特征,成为生命科学的热点学科和重要前沿领域之 一。
这一阶段的主要成就包括大分子序列以及表达序列标签 (expressed sequence tag,EST)数据库的高速发展、 BLAST(basic local alignment search tool)和FASTA (fast alignment)等工具软件的研制和相应新算法的提 出、基因的寻找与识别、电子克隆(in silico cloning) 技术等,大大提高了管理和利用海量数据的能力。
定义二:生物信息学特指数据库类的工作,包括持 久稳固的在一个稳定的地方提供对数据的支持 (1994)
定义三:采用信息科学技术,对各种生物信息(包 括核酸、蛋白质等)的收集、加工、储存、分析、 解释的一门学科。
收集、加工、储存:计算机科学家 分析、解释:生物学家
三、生物信息学发展简史
2024生物医学信息学PPT课件
生物医学信息学PPT课件•生物医学信息学概述•生物信息学基础知识•医学图像处理技术•生物信号处理与分析目录•生物医学数据挖掘与应用•生物医学信息学伦理与法规01生物医学信息学概述定义与发展历程定义生物医学信息学是生物医学与计算机科学、信息科学等学科的交叉领域,旨在研究生物医学信息的获取、处理、存储、分析和应用等方面的理论和技术。
发展历程生物医学信息学经历了从早期的医学图像处理、生物信号处理到现代的生物信息学、临床信息学等阶段,随着大数据、人工智能等技术的发展,生物医学信息学的研究和应用领域不断拓展。
研究内容及方法研究内容生物医学信息学的研究内容包括生物医学数据的采集、处理、分析和挖掘,生物医学知识的表示、推理和应用,以及生物医学信息系统的设计、开发和应用等。
研究方法生物医学信息学采用多种研究方法,包括数学建模、统计分析、机器学习、自然语言处理等,以实现对生物医学数据的深入挖掘和有效利用。
应用领域及前景展望应用领域生物医学信息学在医疗、科研、教学等领域具有广泛的应用,如医学影像诊断、基因测序数据分析、临床决策支持、生物医学知识库构建等。
前景展望随着生物医学数据的不断积累和技术的不断进步,生物医学信息学将在精准医疗、智能诊疗、健康管理等方面发挥越来越重要的作用,为人类的健康和医疗保健事业做出更大的贡献。
02生物信息学基础知识基因组学与蛋白质组学基因组学01研究生物体基因组的组成、结构、功能及演变的科学领域,涉及基因测序、基因注释、比较基因组学等方面。
蛋白质组学02研究生物体内所有蛋白质的表达、功能、相互作用及调控的科学领域,与基因组学相辅相成,共同揭示生物体的生命活动规律。
基因组学与蛋白质组学的关系03基因组学提供生物体的遗传信息,蛋白质组学则研究这些遗传信息的表达产物,二者相互关联,共同揭示生物体的生理和病理过程。
基因表达调控与表观遗传学基因表达调控生物体内通过一系列机制调节基因的表达水平,包括转录调控、转录后调控、翻译调控等多个层面,以确保生物体在不同环境和发育阶段下能够正常生长发育。
生物信息学(东南大学版)精选ppt
09.04.2020
41
遗传连锁图:通
过计算连锁的遗
传标志之间的重
组频率,确定它
配子
们的相对距离,
一般用厘摩(cM,
即每次减数分裂
的重组
频率为1%)
表示。
末 期 II
晚 期 II
中 期 II
间期 前期 I
同源染色体 形成配对
中期 I
前 期 II
晚期 I 发生交换
09.04.2020
42
物理图谱
5、《生物信息学手册》 郝柏林 中科院物理所 上海科学技术出版社
6、《简明生物信息学》 钟扬 复旦大学 高等教育出版社
09.04.2020
2
http://
编号
第一章 第二章 第三章 第四章 第五章 第六章 第七章 第八章
第九章
第十章
09.04.2020
网上资源
名称
书稿(word)
生物信息学引论 分子生物学基础
破译遗传语言、识别基因 预测蛋白质结构和功能 认识生物界信息存贮和传递的本质 研究药物作用机制和开发新药
09.04.2020
31
第二节 生物信息学的发展历史
生物科学和 技术的 发展
人类基因组 计划的 推动
生物信息学 基本思想的产生
二十世纪 50年代
09.04.2020
生物信息学 的迅速发展
09.04.2020
生物体生长发育的本质就是遗 传信息的传递和表达
17
DNA通过自我复制,在生物体的繁衍过 程中传递遗传信息
基因通过转录和翻译,使遗传信息在生物 个体中得以表达,并使后代表现出与亲代 相似的生物性状。
基因控制着蛋白质的合成
《生物信息学概述》课件
04
生物信息学的挑战与未来发展
数据整合与标准化
数据整合
在生物信息学中,数据整合是一个重要的挑战。由于不同实验室、研究机构的数据格式、标准和质量 各不相同,如何将这些数据有效地整合在一起成为一个亟待解决的问题。
标准化
为了提高数据的可比性和可重复性,生物信息学需要制定统一的标准和规范,以确保数据的准确性和 可靠性。
03
生物信息学在医学研究中的应用
疾病诊断
基因检测
利用生物信息学技术对基因序列进行分析,检测与疾病相关的基因 变异,有助于早期发现遗传性疾病和个性化诊断。
疾病分型
通过对生物样本的基因组、转录组和蛋白质组等数据进行比较分析 ,有助于对疾病进行精确分型,为制定个性化治疗方案提供依据。
预测疾病风险
基于生物信息学的大数据分析,可以预测个体患某种疾病的风险,为 预防性干预提供科学依据。
05
实例分析
基因组学研究实例
总结词
基因组学研究实例展示了生物信息学在基因组序列分析中的应用。
详细描述
基因组学研究实例中,生物信息学发挥了重要作用。通过对基因组序列进行分析,可以 发现与人类健康、疾病相关的基因变异和功能。生物信息学方法包括基因组测序、基因
表达分析、基因变异检测等,这些方法为个性化医疗和精准医学提供了有力支持。
02
生物信息学的主要技术
基因组学
基因组测序
通过对生物体基因组的测序,分析基因序列、基因突变和基 因功能。
基因表达分析
研究基因在不同条件下的表达水平,揭示基因与生物表型之 间的关系。
蛋白质组学
蛋白质分离与鉴定
分离和鉴定生物体内的蛋白质,了解蛋白质的组成和功能。
蛋白质相互作用研究
生物信息学 NCBI数据库PPT
线虫 ACeDB, Sanger 果蝇 FlyBase, Berkeley 小鼠 MGD, Japan
酵母 Stanford, MIPS
大肠杆菌 WISC
DNA结构数据库
CUTG (Codon Usage Tabulated from GenBank, 密码子使用频度表) [日]
EPD (Eukaryotic Promotor Database, 真核生物启动子数据库) [欧]
7
2、我 的 实 验 室
简单重复序列
简单重复序列(Simple Sequence Repeats, SSRs)也称微卫星序列(Microsatellites)或短串联 重复序列(Short Tandem Repeats,STRs),是由 1-6个碱基对组成的串联重复DNA片段。SSRs在 真核和原核生物的基因组中分布广泛、数量丰富, 并具有较高的突变频率。
12
13
14
NCBI数据库
1、国外的重要生物信息中心 2、NCBI介绍
15
1、国外重要生物信息中心
16
NCBI
• 美国国家生物技术信息中心(National Center for Biotechnology Information)
• 前身是NIH所属的一个研究所的计算生物学 研究室,1988年独立为NCBI,形式上属于国家 医学图书馆(National Library of Medicine/NLM)
21
DDBJ homepage
22
22
国际核苷酸序列数据库联盟
• International Nucleotide Sequence Database Collaboration (INSDC)包括
– GenBank
《生物信息学》PPT课件
❖ 10. 通过学习应逐渐掌握的内容
编辑ppt
2
1. 什么是生物信息学?
❖ What is bioinformatics ?
❖ What do you know about bioinformatics ?
❖ 收集、维护、传播、分析以及利用在分子生物学研究中获得的大
量数据。生物信息学(bioinformatics)是生物学与计算机科学以
及应用数学等学科相互交叉而形成的一门新兴学科。它通过对生
物学实验数据的获取、加工、存储、检索与分析,进而达到揭示
数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主
要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸
和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物
信息学可以狭义地定义为:将计算机科学和数学应用于生物大分
组测序工作。
编辑ppt
7
3. 生物信息学的发展过程
大致经历了3个阶段:
❖ 前基因组时代—生物数据库的建立、检索工 具的开发、DNA和蛋白质序列分析、全局和 局部的序列对位排列;
❖ 基因组时代—基因寻找和识别、网络数据库 系统的建立、交互界面的开发;
❖ 后基因组时代—大规模基因组分析、蛋白质 组分析。
❖ 早在1956年,在美国田纳西州盖特林堡(Datlinburg)召开的 首次“生物学中的信息理论研讨会”上,便产生了生物信息 学的概念。但是,就生物信息学的发展而言,它还是一门相 当年轻的学科。直到20世纪80—90年代,伴随着计算机科 学技术的进步,生物信息学才获得突破性进展。
❖ 1987年,林华安博士正式把这一学科命名为“生物信息学” (Bioinformatics)。此后,其内涵随着研究的深入和现实需 要的变化而几经更迭。1995年,在美国人类基因组计划第一 个五年总结报告中,给出了一个较为完整的生物信息学定义: 生物信息学是一门交叉科学,它包含了生物信息的获取、加 工、存储、分配、分析、解释等在内的所有方面,它综合运 用数学、计算机科学和生物编学辑p的pt 各种工具,来阐明和理解大10 量数据所包含的生物学意义。
生物信息学概论ppt课件
2018/11/25
生物信息学
8
生命科学学院 吕巍
生物信息学( Bioinformatics )这 个名词有许多不同的定义。
从字面上来看,生物信息学是将信
息科学和技术应用于生物学。 一般提到的 " 生物信息学 " 是就指这 个狭义的概念,准确地说应该是分 子 生 物 信 息 学 ( Molecular Bioinformatics)。
2018/11/25
生物信息学
31
生命科学学院 吕巍
2018/11/25
生物信息学
32
生命科学学院 吕巍
2018/11/25
生物信息学
33
生命科学学院 吕巍
海 鞘 (ciona intestinalis) 是人类的一种无脊椎近 亲,它们的心脏、神经 系统就像是人类的简化 版。
2018/11/25
2018/11/25
生物信息学
13
生命科学学院 吕巍
生物信息学的产生
20世纪后期,生物科学技术迅猛发展,无论从数量上 还是从质量上都极大地丰富了生物科学的数据资源。 寻求一种强有力的工具去组织这些数据,以利于储存、 加工和进一步利用。 另一方面,以数据分析、处理为本质的计算机科学技 术和网络技术迅猛发展,并日益渗透到生物科学的各 个领域。 于是,一门崭新的、拥有巨大发展潜力的新学科—— 生物信息学——悄然兴起。
2018/11/25
生物信息学
11
生命科学学院 吕巍
生物信息学主要研究两种信息载体
核酸分子(DNA、RNA) 蛋白质分子
生物分子至少携带着三种信息
遗传信息 与功能相关的结构信息 进化信息
2018/11/25
生物信息学简介(1)幻灯片
面对堆积如山的生物学数据……
生物信息学概念
HGP 生物数据的激增 (每15个月翻一番)
生物学家
数学家
信息 科学家
生物信息学 (bioinfomatics)
的诞生
“We are not limited by the number of experiments that we can do, we are limited by our ability to understand the information that is generated as a result of these experiments. “
生物信息学简介(1)幻灯片
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
主讲教师:高 昇 Cell: Email: Office:教三楼803-模式识别实验室
助教:莫能斌 Cell: Email: Office:教三楼803-模式识别实验室
人类基因组方案的开展历程
正式启动 1990年 经过5年辩论, 美国国会通过“人类基因组方案〞
1990年10月1日启动 方案15年,30亿美元 多国参与(英国1989, 法国1990, 德国1995, 中国1999) 1990年 6月, 欧共体通过“欧洲人类基因组方案〞。 此外,丹麦,日本,韩国,俄罗斯和澳大利亚也参加行动行列 1999年 9月1日,杨焕明教授在第五次伦敦国际人类基因组战略讨论会 上介绍情况。会议正式承受中国参加国际合作,划定了测序区 域,正式承担1%的测序任务 2000年 6月26日各国科学家公布了人类基因组工作草图 2004年 精度大于99%的完成图公布
后基因组时代的呼唤
传统生物学:实验科学 现代生物学的开展: 数据获取日益实现自动化、半工业化 从数据库中实现数据挖掘、知识发现 海量数据 难以完全依赖实验手段对新数据进展分析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(优选)生物信息学概述
生物分子信息
生物分子至少携带着三种信息 遗传信息 与功能相关的结构信息 进化信息
生物分子信息的特征 生物分子信息数据量大 生物分子信息复杂 生物分子信息之间存在着密切的联系
遗传信息的载体——DNA
遗传信息的载体主要是DNA
控制生物体性状的基因是一系列DNA片段 生物体生长发育的本质就是遗传信息的传递和表达 DNA通过自我复制,在生物体的繁衍过程中传递遗传信息 基因通过转录和翻译,使遗传信息在生物个体中得以表达, 并使后代表现出与亲代相似的生物性状
转录
DNA
翻译
RNA
蛋白 质
2021/3/17
4
2021/3/17
DNA 前体RNA
mRNA
多肽链
生命机器的执行者--蛋白质
蛋白质功能取决于蛋白质的空间结构 蛋白质结构决定于蛋白质的序列(这是目前基本共认
的假设),蛋白质结构的信息隐含在蛋白质序列之中。
2021/3/17
DNA分子和蛋白质分子都含有进化信息
完成人全部24(22+X+Y)条染色体中3.2×109个碱基 对的序列测定,主要任务包括做图(遗传图谱、 物理图谱以及转录图谱的绘制)、测序和基因识 别,其根本任务是解读和破译生物体的生老病死 以及与疾病相关的遗传信息。
基因组(Genome): 包含细胞或生物体全套的 遗传信息的全部遗传物质 包括: 细胞核基因组DNA 细胞质(线粒体、叶绿体) 基因组DNA
通过比较相似的蛋白质序列,如肌红蛋白和血红蛋白, 可以发现由于基因复制而产生的分子进化证据。
通过比较来自于不同种属的同源蛋白质,即直系同源蛋 白质,可以分析蛋白质甚至种属之间的系统发生关系, 推测它们共同的祖先蛋白质。
2021/3/17
7
生物信息数据类型
DNA序列数据
最基本 生
物
蛋白质序列数据
人类基因组:3.2×109 bp
人类自然科学史上的 3 大计划
曼哈顿原子 弹计划
阿波罗登 月计划
人类基因组计划
At the White House on June 26, Francis Collins (r), Director of the National Human Genome Research Institute, President Clinton, and J. Craig Venter, President of Celara Genomics, lauded the thousands of scientists who contributed to the genome sequence.
20世纪90年代
人类基因组计划开始 (Human Genome Project, HGP)
人类基因组计划带来了
生物信息学
人类基因组计划
(HGP,Human Genome Project) 目标:整体上破解人类遗传信息的奥秘
由美国NIH和能源部提出和带头,美、英、德、 法、日、中共同参与的国际合作项目。
1967: Dayhoff研制出蛋白质序列图集,即后来著名的蛋白 质 信息源PIR;
1970: Needleman和Wunsch提出了著名的序列比对算法,是生物 信息学发展中最重要的贡献;
1978: Gingeras等人研制了核酸序列中酶切位点识别程序; 1981:Doolittle提出了关于序列模式的概念; 1986: 日本核酸序列数据库DDBJ诞生; 1986: 蛋白质数据库SWISS-PROT诞生; 1988: 美国国家生物技术信息中心NCBI诞生; 1988: 成立欧洲分子生物学网络(EMBNet),EMBL数据库诞生
对于第二部密码,目前则只能用统计学的方法进行分析。 破译“第二遗传密码”:即折叠密码(folding code), 从蛋白质的一级结构得到立体结构,即可直接从基因推测其 编码蛋白质所对应的生物学功能。破解折叠密码被列为“21 世纪的生物学”的重要课题。
生物分子数据是宝藏,生物信息数据库是金矿,等待我们去挖掘和利用
(二)基因组时代的生物信息学
以基因组计划的实施为标志的基因组时代(1990年至2001 年)是生物信息学成为一个较完整的新兴学科并得到高速 发展的时期。这一时期生物信息学确立了自身的研究领域 和学科特征,成为生命科学的热点学科和重要前沿领域之 一。
这一阶段的主要成就包括大分子序列以及表达序列标签 (expressed sequence tag,EST)数据库的高速发展、 BLAST(basic local alignment search tool)和FASTA (fast alignment)等工具软件的研制和相应新算法的提 出、基因的寻找与识别、电子克隆(in silico cloning) 技术等,大大提高了管理和利用海量数据的能力。
2021/3/17
二、生物信息学的概念
Bioinformatics,生物 + 信息 + 学 --新兴的交叉学科
Mathematical sciences
Computer sciences
Life sciences
定义一:生物信息学是一门收集、分析遗传数据以 及分发给研究机构的新学科 (1987)
起源于20世纪70-80年代。这一阶段的主要成 就包括核酸和蛋白质序列的初步分析、生物学数据 库的建立以及检索工具的开发。例如Dayhoff的替 换矩阵、Neelleman和Wunsch的序列比对及GenBank (由美国国立生物技术信息中心建立和维护的核酸 与蛋白质序列数据库)等大型数据库的建立,形成 了生物信息学的雏形。
分
子
信
生物分子结构数据息源自2021/3/17生物分子功能数据
直观 复杂
生物分子数据及其关系
第一部 遗传密码
第二部 遗传密码?
DNA 核酸序列
蛋白质 氨基酸序列
蛋白质 结构
蛋白质 功能
最基本的 生物信息
2021/3/17
生命体系千姿百 态的变化
维持生命活 动的机器
9
第一部遗传密码已被破译,但对密码的转录过程还不清楚, 对大多数DNA非编码区域的功能还知之甚少
定义二:生物信息学特指数据库类的工作,包括持 久稳固的在一个稳定的地方提供对数据的支持 (1994)
定义三:采用信息科学技术,对各种生物信息(包 括核酸、蛋白质等)的收集、加工、储存、分析、 解释的一门学科。
收集、加工、储存:计算机科学家 分析、解释:生物学家
三、生物信息学发展简史
(一)前基因组时代的生物信息学