研究生数模竞赛B题(2013年)

合集下载

2013全国数学建模竞赛B题优秀论文

2013全国数学建模竞赛B题优秀论文

基于最小二乘法的碎纸片拼接复原数学模型摘要首先对图片进行灰度化处理,然后转化为0-1二值矩阵,利用矩阵行(列)偏差函数,建立了基于最小二乘法的碎纸片拼接数学模型,并利用模型对图片进行拼接复原。

针对问题一,当两个数字矩阵列向量的偏差函数最小时,对应两张图片可以左右拼接。

经计算,得到附件1的拼接结果为:08,14,12,15,03,10,02,16,01,04,05,09,13,18,11,07,17,00,06。

附件2的拼接结果为:03,06,02,07,15,18,11,00,05,01 ,09,13, 10,08,12,14,17,16,04。

针对问题二,首先根据每张纸片内容的不同特性,对图片进行聚类分析,将209张图片分为11类;对于每一类图片,按照问题一的模型与算法,即列偏差函数最小则进行左右拼接,对于没有拼接到组合里的碎纸片进行人工干预,我们得到了11组碎纸片拼接而成的图片;对于拼接好的11张图片,按照问题一的模型与算法,即行偏差函数最小则进行上下拼接,对于没有拼接到组合里的碎纸片进行人工干预。

我们最终经计算,附件3的拼接结果见表9,附件4的拼接结果见表10。

针对问题三,由于图片区分正反两面,在问题二的基础上,增加图片从下到上的裁截距信息,然后进行两次聚类,从而将所有图片进行分类,利用计算机自动拼接与人工干预相结合,对所有图片进行拼接复原。

经计算,附件5的拼接结果见表14和表15该模型的优点是将图片分为具体的几类,大大的减少了工作量,缺点是针对英文文章的误差比较大。

关键字:灰度处理,图像二值化,最小二乘法,聚类分析,碎纸片拼接一、问题重述碎纸片的拼接复原技术在司法鉴定、历史文献修复与研究、军事情报获取以及故障分析等领域都有着广泛的应用。

近年来,随着德国“斯塔西”文件的恢复工程的公布,碎纸文件复原技术的研究引起了人们的广泛关注。

传统上,拼接复原工作需由人工完成,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接很难在短时间内完成任务。

2013数学建模B题论文正文

2013数学建模B题论文正文

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):20131019所属学校(请填写完整的全名):南京航空航天大学金城学院参赛队员(打印并签名) :1. 郑言言2. 刘鹏3. 茆中良指导教师或指导教师组负责人(打印并签名):孙艳波冯云霞陈小平(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2013 年 9 月 16 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要碎纸拼接技术是图像处理与模式识别领域中的一个较新但是很典型的应用,它是通过扫描和图像提取技术获取一组碎纸片的形状、颜色等信息,然后利用计算机进行相应的处理从而实现对这些碎纸片的全自动或半自动拼接还原。

2013年全国大学生数学建模竞赛B题全国一等奖论文

2013年全国大学生数学建模竞赛B题全国一等奖论文

碎纸片的拼接复原【摘要】破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

本文主要解决碎纸机切割后的碎纸片拼接复原问题。

针对第一问,附件1、2分别为沿纵向切割后的19张中英文碎纸片,本文在考虑破碎纸片携带信息量较大的基础上,利用MATLAB对附件1、2的碎纸片图像分别读入,以数字矩阵的方式进行存储。

利用数字矩阵中包含图像边缘灰度这一特征,本文采用贪心算法的思想,在首先确定原文件左右边界的基础上,以Manhattan距离来度量两两碎纸片边界差异度,利用计算机搜索依次从左往右搜寻最匹配的碎纸片进行横向配对并达成排序目的。

最终,本文在没有进行人工干预,成功地将附件1、2碎纸片分别拼接复原,得到复原图片见附录2.1、2.2,纵切中文及英文结果表分别如下:为先对本文3、第4行及第9Spearman拼接复原1. 对于给定的来自同一页印刷文字文件的碎纸机破碎纸片(仅纵切),建立碎纸片拼接复原模型和算法,并针对附件1、附件2给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果以图片形式及表格形式表达。

2. 对于碎纸机既纵切又横切的情形,请设计碎纸片拼接复原模型和算法,并针对附件3、附件4给出的中、英文各一页文件的碎片数据进行拼接复原。

如果复原过程需要人工干预,请写出干预方式及干预的时间节点。

复原结果表达要求同上。

3. 上述所给碎片数据均为单面打印文件,从现实情形出发,还可能有双面打印文件的碎纸片拼接复原问题需要解决。

附件5给出的是一页英文印刷文字双面打印文件的碎片数据。

请尝试设计相应的碎纸片拼接复原模型与算法,并就附件5的碎片数据给出拼接复原结果,结果表达要求同上。

二、模型假设1. 假设原题附件给出的破碎纸片图像是完好无损的。

2. 假设原题附件给出的破碎纸片仅包含纯文字内容(中英文),不含表格线等。

3. 假设原题附件给出的破碎纸片在切割时无油墨损失。

2013年全国研究生数学建模竞赛D题

2013年全国研究生数学建模竞赛D题

2013年全国研究生数学建模竞赛D 题空气中PM2.5问题的研究大气为地球上生命的繁衍与人类的发展提供了理想的环境。

它的状态和变化,直接影响着人类的生产、生活和生存。

空气质量问题始终是政府、环境保护部门和全国人民关注的热点问题。

2013年7月12日《中国新闻网》记者周锐报道:“2013年初以来,中国发生大范围持续雾霾天气。

据统计,受影响雾霾区域包括华北平原、黄淮、江淮、江汉、江南、华南北部等地区,受影响面积约占国土面积的1/4,受影响人口约6亿人”(中国国家发展和改革委员会(发改委)2013年7月11日公布在官方网站上的一份报告披露了上述信息,中新社北京7月11日电)。

对空气质量监测,预报和控制等问题,国家和地方政府均制定了相应政策、法规和管理办法。

2012年2月29日,环境保护部公布了新修订的《环境空气质量标准》 (GB3095—2012)[1],本次修订的主要内容:调整了环境空气功能区分类,将三类区并入二类区;增设了颗粒物(粒径小于等于2.5μm)浓度限值和臭氧8小时平均浓度限值;调整了颗粒物(粒径小于等于10μm)、二氧化氮、铅和苯并(a)芘等的浓度限值;调整了数据统计的有效性规定。

与新标准同步还实施了《环境空气质量指数(AQI)技术规定(试行) 》 (HJ633—2012)[2]。

新标准将分期实施,京津冀、长三角、珠三角等重点区域以及直辖市和省会城市已率先开始实施并发布AQI(Air Quality Index);今年113个环境保护重点城市和国家环保模范城市也已经实施;到2015年所有地级以上城市将开始实施;2016年1月1日,将在全国实施新标准。

上述规定中,启用空气质量指数AQI 作为空气质量监测指标,以代替原来的空气质量监测指标――空气污染指数API (Air Pollution Index)。

原监测指标API 为无量纲指数,它的分项监测指标为3个基本指标(二氧化硫2SO 、二氧化氮2NO 和可吸入颗粒物PM10)。

2013研究生数学建模B题建模

2013研究生数学建模B题建模

参赛密码(由组委会填写)第十届华为杯全国研究生数学建模竞赛学校广西民族大学参赛队号10608008队员姓名1.高洋洋2.黄慧冬3.李素娇参赛密码(由组委会填写)第十届华为杯全国研究生数学建模竞赛题目功率放大器非线性特性及预失真建模摘要信号的功率放大是电子通信系统的关键功能之一,其非线性失真对无线通信系统将产生诸多不良影响.功放非线性属于有源电子器件的固有特性,研究其机理并采取措施改善,具有重要意义.为了满足功率放大器线性度要求,功放线性化技术与预失真也就成为高效率发射机系统的关键技术之一.本文采用了正交多项式逼近函数、最小二乘法拟合、曲线拟合以及归一化以及NMSE评价法等.问题一,对题1给出的数据进行曲线拟合可得功放的多项式表达式,然后利用正交多项式求得预失真特性函数,最后以“输出幅度限制”为约束条件进行Matlab求解,得到了预失真补偿的结果.问题二,用一个无记忆的非线性系统来表征功率放大器的非线性,以“输出幅度限制”为约束条件进行Matlab求解,基于多项式的无记忆放大器的高效预失真结构推广到有记忆放大器的预失真中, 非线性多项式模型作为记忆预失真器模型实现了记忆非线性放大器的快速、高效的线性化.针对问题三,相邻信道功率比(Adjacent Channel Power Ratio,ACPR)是表示信道的带外失真的参数,利用Fourier变换计算功率谱密度函数,衡量由于非线性效应所产生的新频率分量对邻道信号的影响程度.文章中主要运用多项式曲线拟合的方法求出功放的非线性表达式的逼近形式,然后用NMSE参数评价了无记忆和有记忆的功放非线性模型, 结果相当乐观. 在满足预失真处理的“输出幅度限制”,且尽可能使功放的输出“功率最大化”的条件下,我们用最小二乘拟合的方法逼近功放模型的曲线,求出了无记忆和有记忆功放的放大倍数.建立预失真模型是我们还运用了正交多项式和间接学习结构,得到的预失真模型代入应用之后,结果与线性化的目标函数做归一化均方误差评价,得到的结果非常好,模型的精确度是很高的.关键词:功率放大器, 有记忆功放, 无记忆功放, 非线性失真, 预失真一、问题重述功放非线性属于有源电子器件的固有特性,研究其机理并采取措施改善,具有重要意义.目前已提出了各种技术来克服改善功放的非线性失真,其中预失真技术是被研究和应用较多的一项新技术.在数字预失真中,多项式模型由于其简单、易于实现而被普遍使用.然而多项式有效阶的确定,关系到预失真器后低通滤波器的设计和线性化的效果,因此具有非常重要的作用.针对间接结构多项式预失真器,本文提出了一种预失真无线通信中射频功率放大器预失真技术研究正交多项式模型得到预失真器的特性函数F (x ).通过理论分析及性能仿真,验证了该算法的有效性.文章给出了某功放无记忆和有记忆效应的复输入-输出测试数据,及其输入-输出幅度图,通过功放的非线性模型然后对其采取数值计算,用最小化目标误差函数的方法,求得近似的F (x ),放大器的预失真器的非线性参数,以达到预失真补偿的目的.总体原则是使预失真和功放的联合模型呈线性后误差最小.数值计算结果业界常用NMSE 参数评价其准确度.最后计算功放预失真补偿前后的功率谱密度.本文尝试解决以下三个问题:问题一,建立无记忆功放的非线性特性的数学模型和预失真模型,写出目标误差函数,计算线性化后最大可能的幅度放大倍数.问题二,建立有记忆功放的非线性特性的数学模型和预失真模型,写出目标误差函数,计算线性化后最大可能的幅度放大倍数.问题三,根据所附的数据采样频率1272.30⨯=s F MHz ,传输信道按照20MHz 来算,邻信道也是20MHz.根据给出的数据,请计算功放预失真补偿前后的功率谱密度,并用图形的方式表示三类信号的功率谱密度(输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号).二、问题分析这是一个功率放大器非线性及预失真问题,通过题意分析及查阅文献可知.功放的非线性特性特点在于各类功放的固有特性不同,特性函数G (·)差异较大,即使同一功放,由于输入信号类型、环境温度等的改变,其非线性特性也会发生变化.难点在于信号输入输出量大,以及怎样使有记忆及无记忆放大器精确反映实际功放的性能,利用曲线拟合的方式求特性函数G (·)及预失真器特性函数 F (·),如何选取最大可能的幅度放大倍数g .2.1 问题一无记忆效应的功率放大器,即当前的输出信号仅与当前时刻的输入信号有关,而与过去时刻的输入信号无关. 预失真的实质为功放模型的求逆问题,理论上如果功放模型在信号包络区间是单调的,则其逆存在。

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题(最新版)目录一、数学建模国赛 2013 年 b 题概述二、题目背景及要求三、解题思路与方法四、具体解题过程五、总结与展望正文【一、数学建模国赛 2013 年 b 题概述】数学建模国赛是一项面向全国大学生的竞技活动,旨在通过对现实问题进行抽象、建模和求解,培养学生的创新意识、团队协作精神和实际问题解决能力。

2013 年 b 题为该年度竞赛中的一道题目,具有一定的代表性和难度,本文将对此题进行分析和解答。

【二、题目背景及要求】2013 年 b 题的题目背景是关于某城市公交车站的乘客候车问题。

题目要求参赛选手建立一个数学模型,描述乘客的候车时间、乘客数量以及公交车的发车间隔等要素之间的关系,并通过模型求解在满足乘客舒适度的前提下,如何调整公交车的发车间隔,使得乘客的候车时间最短。

【三、解题思路与方法】针对这道题目,我们可以采用以下思路和方法:1.根据题目描述,建立乘客候车时间的数学模型。

我们可以将乘客的候车时间看作一个随机变量,其期望值表示乘客平均候车时间。

2.建立乘客数量与公交车发车间隔的关系。

根据题目描述,当公交车站内乘客数量超过一定阈值时,公交车会提前发车。

因此,我们可以将乘客数量作为一个影响发车间隔的因素。

3.利用数学方法求解最优的发车间隔。

根据乘客候车时间的数学模型和乘客数量与公交车发车间隔的关系,我们可以建立一个优化问题,求解在最小化乘客平均候车时间的前提下,公交车的最佳发车间隔。

【四、具体解题过程】具体解题过程如下:1.根据题目描述,建立乘客候车时间的数学模型。

假设乘客到达公交车站的间隔时间为{λ_i},每个乘客的候车时间为{t_i},则乘客平均候车时间为 E(t) = ∑(t_i * λ_i)。

2.建立乘客数量与公交车发车间隔的关系。

假设公交车发车间隔为Δt,当乘客数量超过阈值 K 时,公交车提前发车。

因此,我们可以得到以下关系式:E(t) = ∫(λ_i * min(t_i, Δt)) dλ_i + K * ∫(min(t_i, Δt - τ)) dλ_i,其中τ表示公交车提前发车的时间。

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题【最新版】目录一、数学建模国赛 2013 年 b 题概述二、题目背景与要求三、题目分析与解题思路四、解答过程与结果五、总结与启示正文【一、数学建模国赛 2013 年 b 题概述】数学建模国赛是一项面向全国大学生的竞赛活动,旨在培养学生的创新意识、团队协作精神和实际问题解决能力。

2013 年的 b 题是关于传染病传播的动力学模型,要求参赛选手运用数学方法对传染病的传播进行建模和预测。

【二、题目背景与要求】传染病在全球范围内造成了巨大的经济损失和人员伤亡。

因此,研究传染病的传播规律,预测疫情发展趋势,对制定防控措施具有重要意义。

2013 年 b 题要求参赛选手建立一个传染病传播的动力学模型,并根据实际数据进行参数估计和模型验证,最终预测疫情在未来一段时间内的传播情况。

【三、题目分析与解题思路】传染病传播的动力学模型主要包括三个基本要素:感染者、易感者和康复者。

根据题目给出的数据,我们需要建立一个包含这三个要素的数学模型,并利用相关数学方法对模型进行求解。

【四、解答过程与结果】解答过程主要包括以下几个步骤:1.根据题目描述,确定感染者、易感者和康复者之间的转换关系。

2.根据实际数据,建立初始值和边界条件。

3.利用微分方程等数学方法,求解模型。

4.对模型进行参数估计和模型验证。

5.根据模型预测疫情在未来一段时间内的传播情况。

通过以上步骤,我们可以得到传染病在未来一段时间内的传播趋势,从而为政府和相关部门制定防控措施提供科学依据。

【五、总结与启示】数学建模国赛 2013 年 b 题的解答过程充分体现了数学方法在解决实际问题中的应用价值。

通过参加此类竞赛,学生可以提高自己的数学素养、团队协作精神和创新能力。

2013年数学建模B题

2013年数学建模B题

碎纸片的拼接复原摘要本文主要研究了规则碎纸片的拼接复原问题。

首先利用二值法、Freeman链码和环形像素点匹配等算法建立基于像素点数值匹配模型,然后利用MATLAB 软件对碎纸片像素点进行数字化处理,得到各碎纸片的像素点数值矩阵,再利用MATLAB软件编程进行矩阵特征优化匹配得到复原图。

(图5、图6、图7、图8 、图9、图10)对于问题一,要解决纵向切割二维规则碎片拼接,利用MATLAB软件对碎纸片进行像素点数字化处理,根据像素点数值利用二值法和Freeman链码算法找到相邻的碎纸片,编程求解得到碎纸片的拼接复原图,对于顺序错乱的碎片进行人工干预,结合MATLAB软件求解,最后得到碎纸片的拼接复原图。

(见附录1)对于问题二,要解决横纵切割碎片的拼接,使用环形像素点匹配算法对碎纸片进行跟踪匹配,在SSDA算法的基础上确定最左侧为初始模板。

根据碎片对应的行像素特征的粗细搜索匹配,选出最佳匹配区域作为目标的当前位置,然后对模板进行逐一更新,得出每一行后再按行拼接得出复原图。

(见附录2)对于问题三,要解决横纵切割碎片的正反面拼接,根据环形像素点匹配算法和像素行算法思想进一步扩展,对碎片进行匹配得到11条行碎片,根据问题一的算法思想,进行行之间的匹配拼接,得到初始复原图后,人工微调程序输出顺序和正反面互换语句,运行程序输出完整单面图。

正反顺序对照后确定为最优复原图。

(见附录3)关键字:Freeman链码环形像素点匹配二值法一、问题的背景及重述1.1问题的背景在考古研究、公安调查取证、自动装配、虚拟现实、测量建模等领域中,经常需要把大量的碎片物体拼接成一个或几个完整物体,如考古出土的一些破损的珍贵文物需要重现历史文物的形貌;公安机关调查取证中有可能发现被撕毁的报纸、照片、文件,对这些碎片物体加以复原有利于案件的侦破。

在很多情况下,由于事先对碎片的数目和形状都无法估计,如果通过手工进行拼接,不仅费时费力,而且也不能保证能得到较好效果的复原物体。

(完整word版)2013年数学建模b题

(完整word版)2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将。

建中的任一列与矩阵值,序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

、;分别作为新生成的矩阵、。

,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

传统上,大量的纸质物证复原工作都是以人工的方式完成的,准确率较高,但效率很低。

特别是当碎片数量巨大,人工拼接不但耗费大量的人力、物力,而且还可能对物证造成一定的损坏。

随着计算机技术的发展,人们试图把计算机视觉和模式识别应用于碎纸片复原,开展对碎纸片自动拼接技术的研究,以提高拼接复原效率。

试讨论一下问题,并根据题目要求建立相应的模型和算法:、附件4(1)(2)(3)(4)纸片的自动拼接。

问题1:根据图像预处理理论,通过程序语言将图像导入matlab程序,对图像进行预处理,将碎纸片转换成适合于计算机处理的数字图像形式,并对数字图像进行灰度分析,提取灰度矩阵。

2013全国大学生数学建模竞赛B题

2013全国大学生数学建模竞赛B题

将008代表的矩阵C8的第二列元素与其它矩 阵的第一列元素进行两两匹配。记录元素相 同的个数,个数除以1980为C8矩阵第二列对 其它矩阵第一列的边缘匹配度,记为:
比较这18个数据,最大的即为与008匹配的 碎纸片。然后以所找到的碎纸片的第二列开 始,求出它与其它矩阵第一列的边缘匹配度, 找出最大的,以此类推把19张碎纸片拼接完 成。
三.问题2的分析
英文碎纸片的分析 通过观察可以发现英文字母的主要的 部分拥有同一上界和同一下界,例如:
将图片中每一行中黑色像素数少于13的及 字母的次要部分转变为二值化矩阵中的0, 将每一行中黑色像素大于等于13的及字母 的主要部分转化为二值化矩阵中的1,这样 得到的新的二值化矩阵 。例如图像转变为 如下图的方式:
二.问题1的分析
步骤一:使用matlab中的imread函数 可以做出图片的灰度矩阵 ,读取每 张图片文件的数据,其目的是将附件 中给的 bmp 格式的碎纸片图以灰度 值矩阵的形式存储。再将灰度值矩阵 转化为 0-1 矩阵,来得到模型的数 据基础;
由于该像素图片转换后为
的矩阵,ቤተ መጻሕፍቲ ባይዱ
论文中无法放置,所以仅简单举例说明:
以纸片000与001为例,匹配方式可能为:
将①②的边缘匹配度相加得到边缘匹配度 之和,将③④的边缘匹配度相加得边缘匹 配度之和,两者的和做出比较。若仅有一 个大于等于1.9,则计算机输出该匹配度, 人工判断是否碎纸片是否匹配;若两者均 大于等于1.9,计算机把两个匹配度之和输 出,人工选择判断碎纸片应是否匹配与如 何匹配;若两者均小于1.9,则计算输出最 大者,人工判断碎纸片是否匹配。这样可 以得到一些在同一横行的碎纸片的拼接。
总体思路
三步走:分行,行内排序,行间排序

数学建模国赛2013年b题

数学建模国赛2013年b题

数学建模国赛2013年b题摘要:一、数学建模国赛简介1.数学建模国赛背景2.2013 年数学建模国赛B 题内容二、2013 年数学建模国赛B 题解析1.题目背景及要求2.问题一解析3.问题二解析4.问题三解析三、数学建模竞赛对参赛者的意义1.提升实际问题解决能力2.增强团队协作能力3.培养创新思维四、数学建模竞赛的准备与建议1.积累建模知识与技能2.加强团队配合与沟通3.注重实际问题分析与解决正文:数学建模国赛是一项在我国有着广泛影响力的学科竞赛活动,旨在选拔优秀的数学建模人才,推动数学建模教育的发展。

2013 年的数学建模国赛B题,以一道实际问题为背景,要求参赛者运用数学方法解决实际问题。

2013 年数学建模国赛B 题的内容是:“输电线路的优化设计”。

该题目要求参赛者针对一个实际的输电线路工程,通过建立数学模型,分析并提出优化方案。

具体包括三个问题:1.根据给定的线路参数,计算输电线路的总电阻;2.分析不同输电线路的设计方案,确定最优设计方案;3.建立输电线路的运行维护模型,预测线路的运行状态。

通过参与数学建模竞赛,参赛者能够提升自己的实际问题解决能力。

在竞赛过程中,他们需要针对实际问题,灵活运用数学知识和方法,寻求问题的解决方案。

此外,数学建模竞赛也非常注重团队协作,参赛者需要与队友紧密配合,共同完成竞赛任务。

这不仅能够增强团队协作能力,还能培养参赛者的创新思维。

对于想要参加数学建模竞赛的同学们,有以下几点建议:1.积累建模知识与技能:熟练掌握常用的数学建模方法和工具,例如线性规划、动态规划、图论等;2.加强团队配合与沟通:与队友共同学习、讨论和解决问题,提高团队协作效率;3.注重实际问题分析与解决:在平时的学习和生活中,多关注实际问题,培养自己分析问题和解决问题的能力。

数学建模国赛对于参赛者来说,既是一次挑战,也是一次锻炼和成长的机会。

数学建模2013年b题

数学建模2013年b题

数学建模2013年b题
一、题目背景介绍
数学建模2013年b题涉及到的背景知识如下:
1.题目背景:题目来源于现实生活中的某个实际问题,需要运用数学知识进行分析和解决。

2.知识点:题目涉及到的数学知识点包括线性规划、微分方程、概率论等。

二、数学建模方法概述
数学建模方法是指运用数学理论与方法对现实问题进行抽象、简化和求解的过程。

在本题中,我们需要根据题目背景,选择合适的数学方法进行建模和求解。

三、解题步骤与方法详解
1.步骤一:阅读题目,理解题意,提炼关键信息。

2.步骤二:根据题目背景和关键信息,选择合适的数学方法进行建模。

3.步骤三:建立数学模型,列写出相应的数学方程。

4.步骤四:求解数学方程,得到模型解。

5.步骤五:检验模型解的合理性,并对模型进行优化。

6.步骤六:根据模型解分析实际问题,撰写论文。

四、模型检验与优化
1.模型检验:检验模型解是否符合实际情况,可以通过与实际数据进行对比来验证。

2.模型优化:根据实际问题的变化,对模型进行调整和改进,以提高模型的准确性和实用性。

五、应用实例与分析
以下是一个与应用实例相关的问题:
某企业在生产过程中,需要对生产流程进行优化,以降低成本、提高效益。

我们可以通过数学建模方法,对企业生产流程进行分析,找到最优的生产策略。

六、总结与展望
1.总结:通过对2013年数学建模b题的分析,我们了解了如何运用数学建模方法解决实际问题,并掌握了线性规划、微分方程等数学知识。

2.展望:未来,我们可以将所学知识应用于更多实际问题,为各行各业提供有益的决策支持。

2013年全国数学建模B题一等奖论文

2013年全国数学建模B题一等奖论文

(由由由由由由)第十届华为杯全国研究生数学建模竞参学校南京师范大学参参队号103190031.佟德宇队员姓名2.顾燕3.贾泽慧(由由由由由由)第十届华为杯全国研究生数学建模竞参题 目 功率放大器非线性特性及预失真建模摘 要针对问题一中求解输入输出信号之间的非线性功放特性函数问题, 采用了不同的多项式函数, 运用最小二乘法或正则化后的最小二乘法进行拟合求解. 并用参数NMSE 来评价所建模型的准确度. 结果发现在逼近函数选为函数基的情况下, 采用正则化后的最小二乘法得出的模型准确度最好, 其对应的参数NMSE=-68.6294.同时考虑计算量和模型准确度, 在由多项式变形函数逼近功放的模型基础上, 来进行预失真模型的建立. 根据题中给出的原则和约束, 可知预失真模型的表达式与功放模型的表达式是类似的, 从而可建立相应的预失真模型.:-11()()()K k k k z t h x t x t ==∑K=4时, 整体模型的放大倍数g=1.8693, 参数NMSE=-32.5819, EVM=2.3491; K=5时, g=1.8473, 参数NMSE=-37.1398, EVM=1.3900; K=7时, g=1.8326, 参数NMSE=-46.0624, EVM=0.4976.针对问题二, 直接将功放的输入输出与题目中所提的“和记忆多项式”模型进行拟合, 运用正则化后的最小二乘法进行求解, 这很好的保证了模型的可解性. 本题只考虑功放模型次数为5的情形. 当记忆深度为7时, 得NMSE=-45.8394; 当记忆深度为3时, 得NMSE=-44.5315. 预失真模型的建立与问题一类似, 文中以框图的方式建立了预失真处理的模型实现示意图, 并对次数为5、记忆深度为3的情形, 求解出整体模型的放大倍数g=9.4908, 参数NMSE=-37.8368, EVM=0.0128.针对问题三, 将所给的离散的、有限的输入输出数据作为随机过程的样本函数,通过其傅立叶变换得到功率谱参度函数. 文中分别给出了输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号的功率谱参度图形. 可解出它们的ACPR 分别为-155.6610、-74.3340、-104.4904, 最后对结果进行分析评价, 得出采用预失真补偿的功率放大器的输出信号效果比无预失真补偿的效果好. 关键字:最小二乘法、Tikhonov正则化、Fourier变换一、问题重述信号的功率放大是电子通信系统的关键功能之一, 其实现模块称为功率放大器( PA, Power Amplifier), 简称功放. 功放的输出信号相对于输入信号可能产生非线性变形, 这将带来无益的干扰信号, 影响信信息的正确传递和接收, 此现象称为非线性失真.功放非线性属于有源电子器件的固有特性, 研究其机理并采取措施改善, 具有重要意义. 目前已经提出了各种技术来克服功放的非线性失真, 其中预失真技术是被研究的较多的一项技术, 其最新的研究成果已经被运用于实际的产品中, 但在新算法、实现复杂度、计算速度、效果精度等方面仍有相当的研究价值.预失真的基本原理是:在功放前设置一个预失真处理模块, 这两个模块的合成总效果使整体输入-输出特性线性化, 输出功率得到充分利用.文中给出了NMSE 、EVM 等参数评价所建模型其准确度, 以及ACPR 表示信道的带外失真的参数.根据数据文件中给出的某功放无记忆效应、有记忆效应的复输入输出测试数据:(1)我们建立此功放的非线性数学模型()G ⋅, 并用NMSE 来评价所建模型的准确度.(2)根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 计算线性化后最大可能的幅度放大倍数, 建立预失真模型. 并运用评价指标参数NMSE/EVM 评价预失真补偿的计算结果.(3)应用问题二中所给的数据, 计算功放预失真补偿前后的功率谱参度(输入信号、无预失真补偿的功率放大器输出信号、采用预失真补偿的功率放大器输出信号), 并用图形的方式表示了这三类信号的功率谱参度. 最后用相邻信道功率比ACPR 对结果进行分析.二、模型假设1、假设题中所给的功放输入输出数据采样误差为0.2、假设题中所给的功放输入输出数据具有代表性、一般性.3、假设存在这样的预失真处理器, 能够做到将输入数据变为模型求解所得的预失真 处理输出结果.三、基本知识§3.1 最小二乘方法最小二乘方法[][]12产生于数据拟合问题, 它是一种基于观测数据与模型数据之间的差的平方和最小来估计数学模型中参数的方法. 输入数据t 与输出数据y 之间大致服从如下函数关系(,)y x t φ=,式中n x R ∈为待定参数. 为估计参数x 的值, 要先经过多次试验取得观测数据1122(,),(,),,(,)m m t y t y t y , 然后基于模型输出值和实际观测值的误差平方和21((,))m i ii y x t φ=−∑最小来求参数x 的值, 这就是最小二乘问题. 一般地, m n .引入函数()(,), 1,2,,i i i r x y x t i m φ=−= ,并记12()((), (), , ())m r x r x r x r x = ,则最小二乘问题即为n min ()()T x Rr x r x ∈. 如果最小二乘问题中的模型函数估计准确, 那么最小二乘问题的最优值是很靠近零的. 因此()r x 常称作残量函数.对于线性最小二乘问题, 残量函数可以表示为()r x b Ax =−,从而线性最小二乘问题可以表示为2min n x R b Ax ∈−. (3.1.1) 若A 是列满秩的, 且考虑到二次凸函数的稳定点即为最小值点, 可以直接得到x 的求解公式, 即()1T T x A A A b −=. (3.1.2) 而对于复数域上的线性最小二乘问题n 2min x C b Ax ∈−, 也可以直接得到x 的求解公式, 即为()-1T x A A A b =, (3.1.3) 其中, T A 表示A 的共轭转置.§3.2 Tikhonov 正则化在使用最小二乘方法进行参数估计的时候, 由于A 不一定是列满秩的, 故T A A 不一定是可逆的, 此时就不能够用上面所推得的公式进行直接的求解了. 为了克服这个困难,考虑Tikhonov 正则化[]3方法, 即给目标函数加上一个正则项(即一个邻近项)2k k x x λ−.此时, 最小二乘问题转化为n 221min +k k k x C x b Ax x x λ+∈=−−.其中k x 是第k 步迭代得到的解, k λ可以选为一个常数或一个单调下降趋于0的数列. 迭代的终止准则为1k k x x ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 这时问题22min n k k x C b Ax x x λ∈−+− 是可以直接求解的, 给出x 的求解公式为()()1T k k k x A A I A b x λλ−=++.显然, 此时即使A 非列满秩, 问题也是可以求解的.四、问题分析问题一题中已给出了某功放无记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 功放的特性函数可以用多项式来表示, 也可以用空间中的一由正交函数基来表示. 然后采用最小二乘法或正则化后的最小二乘法, 将这些情况都进行求解, 得出功放的特性函数()G⋅. 并在最后用参数NMSE(归一化均方误差)来评价所建模型的准确度.接着, 在前面所建模型的基础上, 选择一个计算量适当, 且准确度较好的()G⋅的一个拟合模型. 然后根据线性化原则以及“输出幅度限制”和“功率最大化”约束, 建立预失真模型, 使得整体模型线性化后放大倍数尽可能的大. 通过对优化模型的分析可知, 对预失真特性函数()F⋅的求解可以转化为对1Gg−⎛⎞⎜⎟⎝⎠的求解, 且预失真模型的表达式与功放模型的表达式是类似的. 在求解1Gg−⎛⎞⎜⎟⎝⎠时, 可以对求解所用模型的次数进行不同的选取,分别得出整体模型的g和NMSE、EVM的值, 用来评价预失真补偿的结果.问题二题中已给出了某功放有记忆效应的复输入输出测试数据, 现需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论, 本文直接将功放的输入输出与题目中所提的“和记忆多项式”模型来进行拟合, 在使用最小二乘方法求解时, 我们对目标函数加了一个正则项, 以保证求解的可实现性.预失真处理器模型的建立与问题一类似, 且给出了以框图的方式建立的预失真处理的模型实现示意图.问题三问题二中所给的输入输出数据是离散的、有限的, 在这种情况下计算功率谱参度的函数可以用自相关函数法或对随机过程{}()x t的样本函数作傅立叶变换得到, 文中采取第二种方法来求解.五、模型建立与求解§5.1 问题一的模型与求解§5.1.1 无记忆功放的特性函数()G⋅模型建立文章中已给出某功放无记忆效应的复输入输出测试数据, 这些数据是对功放输入)(tx/输出)(t z进行离散采样后得到的, 它们的值为分别为()x n/()z n(采样过程符合Nyquist采样定理要求).对于问题一, 根据文章中所给的某功放无记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G⋅. 根据函数逼近理论,可以采用1、多项式的形式2、多项式的变形的形式3、空间中的一由正交函数基的线性由合来表示4、正则化下, 空间中的一由正交函数基的线性由合来表示下面将这些情况都进行建模, 来拟合功放的特性函数()G ⋅, 并在最后进行比较选择优者.所求得的模型的数值计算结果业界常用NMSE 、EVM 等参数评价其准确度, NMSE 的具体定义如下. 采用归一化均方误差 (Normalized Mean Square Error, NMSE) 来表征计算精度, 其表达式为211021ˆ|()()|NMSE 10log |()|N n N n z n z n z n ==−=∑∑ . (5.1.1) 如果用z 表示实际信号值, ˆz表示通过模型计算的信号值, NMSE 就反映了模型与实际模块的接近程度. 显然NMSE 的值越小, 模型的数值计算结果就越准确.误差矢量幅度 (Error Vector Magnitude, EVM)定义为误差矢量信号平均功率的均方根和参照信号平均功率的均方根的比值, 以百分数形式表示. 如果用X 表示理想的信号输出值, e 表示理想输出与整体模型输出信号的误差, 可用EVM 衡量整体模型对信号的幅度失真程度:EVM 100%= . (5.1.2)模型一 多项式的形式首先根据函数逼近的Weierstrass 定理, 对解析函数采用简单的多项式来表示, 可表示为∑==Kk k k t x h t z 1)()(. (5.1.3)因为此时是要将观测数据与形式已经固定的函数(5.1.3)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 211min ()N K k k h C n k z n h x n ∈==−∑∑, (5.1.4) 其中, ()x n 和()z n 为文章中所给的输入和输出测试数据, 这些数据是对功放输入()x t 、输出()z t 进行离散采样后得到的(采样过程符合Nyquist 采样定理要求),N 为功放输入输出数据的总个数.将问题(5.1.4)与( 3.1.1)进行对应, 由( 3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中232323 (1) (1) (1) (1) (2) (2) (2) (2) () () () ()K K K x x x x x x x x A x N x N x N x N ⎡⎤…⎢⎥…⎢⎥=⎢⎥⎢⎥⎢…⎥⎣⎦, ()12,,,TK h h h h =…, ()()()()1,2,,Tz z z z N =….结果当3K =时, (见附录2.1.1)该表达式中的系数为123 2.908532278399690.060653883258900.213775998314930.43417026083854 0.198185637666730.27826757408010h ih i h i=−=−=+.根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 13.4414169873254 3k =−=.当5k =时, (见附录2.1.2 )表达式中的系数为12345 2.908037719327826 - 0.063527494375989i0.343519806629302 - 0.388942747664566i0.541211413428411 - 0.144422960285135i -0.399744749427209 - 0.558463329513045i-0.271952185146638 + 0.1205591h h h h h =====40060622i根据模型一以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -21.544782705381238 5k ==.模型二 多项式的变形同时我们也考虑了多项式变形[]4的情形来对其进行表示, 其表示式为-11()()()K k k k z t h x t x t ==∑. (5.1.5)因为此时是要将观测数据与形式已经固定的函数(5.1.5)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立()n 2-111min ()()N K k k h C n k z n h x n x n ∈==−∑∑ (5.1.6)其中N 为所给功放输入输出数据的总个数, K 为表达式的次数. 将问题(5.1.6)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为()-1T h A A A z = 其中212121(1) (1)(1) (1)(1) (1)(1)(2) (2)(2) (2)(2) (2)(2) () ()() ()() ()()K K K x x x x x x x x x x x x x x A x N x N x N x N x N x N x N −−−⎡⎤…⎢⎥⎢⎥…=⎢⎥⎢⎥⎢⎥…⎢⎥⎣⎦,()123,,,,TK h h h h h =…, ()()()()()1,2,3,,Tz z z z z N =…. 分别考虑当3k =, 5k =时, 该表达式的具体形式(即确定表达式的系数).结果当3k =时, (见附录2.1.3 )表达式中的系数为123 3.051183005392040.00000000000001 0.006071903393980.00000000000005 1.170159412626470.00000000000004h ih i h i=−=+=−−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 29.7446547565428 3k =−=.当5k =时, (见附录2.1.4 )表达式中的系数为12345 2.967983597251020.00000000000080 0.309931644197600.00000000000873 0.153664636905190.00000000002804 3.424500445954250.00000000003458 2.208212395486470.00000000001446h ih ih i h ih i=−=+=−−=−+=−.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE 45.379717608769994 5k =−=模型三 空间中的一由正交函数基的线性由合最后根据函数逼近理论, 可采用空间中的一由正交函数基[]4的线性由合来表示该特性函数(参考文献3中的方法), 其表达式为()z t h =Ψ, (5.1.7)其中正交矩阵12[() () ()]k x x x ψψψΨ= ,11()!()(1)(1)!(1)!()!kl l k k l k l x x x l l k l ψ−+=+=−−+−∑. 因为此时是要将观测数据与形式已经固定的函数(5.1.7)进行拟合, 而目的是求解该函数的各项系数, 所以该问题其实就是最简单的线性最小二乘问题.模型建立 n 2min h C z h ∈−Ψ (5.1.8) 其中()123,,,,TK h h h h h =…, ()()()()()1,2,3,,T z z z z z N =…, ()()()12[() ()()]k x n x n x n ψψψΨ= ,()()()11()!()(1)(1)!(1)!()!k l l kk l k l x n x n x n l l k l ψ−+=+=−−+−∑, N 为功放的输入输出数据的总个数. 将问题(5.1.8)与(3.1.1)进行对应, 由(3.1.3)可以直接得到系数的表达式为 ()-1T T h z =ΨΨΨ. 由于计算量较大, 我们选取7=k 来进行拟合, 得出表达式中的系数.结果(见附录2.1.5)当7=k 时, 表达式中的系数为12345 3.287412936081622-7.322701472967097-015-0.091488124421954-2.16460963736731-015-0.066219774105875 5.035305939565804-0160.038056322596937 2.726632938529483-0160.01014165858755-1.2h e ih e ih e ih e i h ===+=+=6758894247527231-016-0.005283612035716-2.653720342429833-016-0.001265433154276-1.923256069376669-016e ih e ih e i==.根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -60.5675309366592 7k ==模型四 模型三正则化模型建立对于模型三, 由于所给的数据较多, 很难避免本文3.2节中所提到的T ΨΨ奇异的情况, 故对(5.1.8)再进行一个Tikhonov 正则化. 即对(5.1.8)加一个正则项2k k h h λ−.问题转变为()1221min K M k k k h C h z h h h λ⋅×+∈=−Ψ+−. (5.1.9) 其中k h 是第k 步迭代得到的解(计算机运行求解时是要给其赋一个初始值的), 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.考虑到二次凸函数的稳定点即为最小值点, 问题(5.1.9)是可以直接求解的, 得到h 的求解公式为()()()1T Tk k k h I z n h λλ−=ΨΨ+Ψ+. (5.1.10)此处, 我们仍选取7=k 来进行拟合, 其中一些参数选取为800111, 1, 0.8, 10k k h i λλλε−+=+===.则可得出表达式(5.1.7)中的系数.结果(见附录2.1.6)123456 3.2873994140515280.000008426827987-0.0914922453118830.000002568107767-0.066218825186175-0.000000591359660.038056824724197-0.0000003129219510.010141412616440.000000153287355-0h ih ih ih i h ih =+=+===+=7.0052839775157310.000000227764411-0.0012655686759970.000000084456122ih i+=+根据上面所建立的模型以及(5.1.1)式, 可以求出NMSE 的值如下:()NMSE -68.6293523598994 7k ==模型一~模型四的总评价对四种模型下参数NMSE 的大小进行比较发现, 当选用一由正交函数基, 并运用正则化后的最小二乘方法来对功放特性函数进行拟合时(即模型四), NMSE 的值是最小的. 也就是说2121ˆ|()()||()|Nn Nn z n zn z n ==−∑∑在模型四下是最靠近0的, 故模型四是逼近效果最好的.但模型四的计算复杂度是很大, 由所得的NMSE 参数可发现模型二的计算精度也是不错的, 但其计算的复杂度比模型四要小很多, 故选择模型二来求解功放特性函数. 且在下面的无记忆功放模型的预失真处理建模中, 功放特性函数是由模型二得出的.§5.1.2四种模型的输入输出幅度比较图与评价下面将实际的与拟合的复输入输出幅度值进行作图, 以便更直观的看出模型的逼近效果.图5.1 模型一k=3实际与拟合功放输入/输出幅度散点图 图5.1模型一k=5实际与拟合功放输入/输出幅度散点图图5.3模型二k=3实际与拟合功放输入/输出幅度散点图 图5.4 模型二k=5实际与拟合功放输入/输出幅度散点图图5.5 模型三实际与拟合的功放输入/输出幅度散点图图5.6模型四实际与拟合的功放输入/输出幅度散点图根据观察比较发现, 当用正交的函数基或对其实行一个正则化(即模型三和模型四), 来对功放特性函数进行拟合的时候, 拟合情形的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果是最佳的.k=时, 其散点图的逼近效果也是很好的.同时可观察到但模型二中的次数5§5.1.3 预失真处理模型建立选定-11():()()()Kk k k G z n b x n x n =⋅=∑的阶数5K =, 通过上面的算法可以得到当F 取不同阶数的情况下, g, NMSE, EVM 的结果及图像表5.1 F 取不同阶数情况下g, NMSE, EVM 的结果F 的阶数Kg NMSE EVM 4 1.86932497973065-32.5819077399852 2.34911681195961% 5 1.84730161996524-37.1398119663279 1.38998272147897% 7 1.83264461869445-46.06241433950440.497598752653887%由表5.1的结果可以看出当F 的阶数越高时, 得到的g 的值越小(说明线性化后的幅度放大倍数越小), NMSE 、EVM 的值越小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.7理想信号与所建模型得到的输出信号对比(K=4) 图5.8理想信号与所建模型得到的输出信号对比(K=5)图5.9理想信号与所建模型得到的输出信号对比(K=7)根据观察发现, 当K 的取值越大时, 所建模型的输入输出幅度散点图与理想的输入输出幅度散点图的逼近效果越好.§5.2 问题二的模型与求解§5.2.1 有记忆功放的特性函数()G ⋅模型建立对于问题二, 根据文章中所给的某功放有记忆效应的复输入输出测试数据, 首先需要建立此功放的非线性特性数学模型, 拟合出功放的特性函数()G ⋅. 此时功放不仅与此时刻输入有关, 而且与此前某一时间段的输入有关, 其可以由为101111022220212()()()(1)()()(1)()K Mk km M k m M z n h x n m h x n h x n h x n M h x n h x n h x n M ===−=+−++−++−++−+∑∑ 01 ()(1)()K K K K K KM h x n h x n h x n M ++−++− , 0,1,2,,n N = .式中M 表示记忆深度, km h 为系数. 具有记忆效应的功放模型也可以用更一般的V olterra级数[][]56表示, 由于V olterra 级数太复杂, 简化模型有Wiener 、Hammersteint 等[][]47. 由于常用复值输入-输出信号, 上式也可表示为便于计算的“和记忆多项式”模型-110()(-)|(-)|K Mk km k m z n h x n m x n m ===∑∑ 0,1,2,,n N = (5.2.1)模型建立本文采用“和记忆多项式”模型(5.2.1)式来进行拟合. 我们用最小二乘法来求解, 由于本问中所给的输入输出的数据个数非常大, 故现在选取其中的一部分来进行拟合, 求得功放过程的模型. 我们选取输入输出数据的次数n 为1M +的倍数的数据来进行拟合, 最小二乘公式即为()()12-1(1)|10min (-)|(-)|K M K Mk km h CM nk m n Nz n h x n m x n m ××∈+==≤−∑∑∑ (5.2.2) 其中N 是指所有的功放的输入数据总个数, K 表示所选模型的最高次数, M 表示记忆深度(本文在求解模型时是事先给定的), ()x n 是第n 个复输入值, ()z n 是第n 个复输出值, km h 为系数, ()102001222212,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….由于所给的数据较多, 即便是选取了部分数据进行拟合,但仍很难避免3.2节中所提到的A A 奇异的情况, 故对(5.2.2)再进行一个Tikhonov 正则化. 即对(5.2.2)加一个正则项2k k h h λ−,则问题转变为()()122-11(1)|10min (-)|(-)|K M K Mk k km k k h CM nk m n Nh z n h x n m x n m h h λ××+∈+==≤=−+−∑∑∑ (5.2.3) 其中k h 是第k 步迭代得到的解, 而k λ可以选为一个常数或一个单调下降趋于0的数列. 而迭代的终止准则为1k k h h ε+−≤,其中ε是一个给定的误差上界.当给定一个记忆深度M 后, 我们可以将问题(5.2.3)化成如下形式的问题, 即()22min nk k h Cz n Ah h h λ∈−+− (5.2.4) 其中A 是一个()()()()/11N M K M +×⋅+的复矩阵, 即1111(1) (1)(1) (1)(1) (1) (1)(1) (22) (22)(22) (22)(22) (2) (1)(1) K K K K x M x M x M x M x M x x x x M x M x M x M x M x M x x A −−−−+++++++++++=……………… ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦而()102001121112,,,,,,,, ,,,,TK K M M KM h h h h h h h h h h =…………….考虑到二次凸函数的稳定点即为最小值点, 问题(5.2.4)是可以直接求解的, h 的求解公式为()()()1Tk kk h A A I A z n h λλ−=++. (5.2.5)本题中已给出有记忆功放输入输出数据的总个数为73920N =, 并分别取 87, 5, 10M K ε−===和 83, 5, 10M K ε−===这两种情况. 这样就可以根据(5.2.5)求得h .结果(见附录2.2.1、2.2.2)当7,5M K ==时, 由于系数共有40个, 即h 是一个401×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE -45.839408840847 7,5M K ===.当3,5M K ==时, 由于系数共有20个, 即h 是一个201×的大向量, 故将该结果放到附录中. 再根据上面所建立的模型及(5.1.1)式, 求出该模型的NMSE 值如下:NMSE 44.5315001961471 3,5M K =−==.§5.2.2有记忆功放模型的输入输出幅度图下面将实际与拟合的复输入输出幅度进行作图, 以便更直观的看出模型的逼近效果.图5.10 M=7实际与拟合功放输入/输出幅度散点图 图5.11 M=3实际与拟合功放输入/输出幅度散点图总评价根据观察比较发现, 尽管在用“和记忆多项式”模型进行拟合时, 我们只选取了一部分输入输出测量数据进行模型的建构. 但通过对上面两图的观察, 当对所有的输入测量数据进行作图时, 可发现拟合得到的输入输出幅度散点图与实际的输入输出幅度散点图的逼近效果还是很好的.§5.2.3 预失真处理模型建立上面已求得功放特性函数()G ⋅的模型, 采用“和记忆多项式”模型-110()(-)|(-)|K Mk kmk m z n hx n m x n m ===∑∑建立的功放模型. 下面建模的总体原则是使预失真和功放的联合模型呈线性后误差最小. 在此模型中, 有两个约束需要考虑:(1)输出幅度限制:即模型中的预失真处理的输出幅度不大于给出的功放输入幅度最大值.(2)功率最大化:即模型的建立必需考虑尽可能使功放的信号平均输出功率最大, 因此预失真处理后的输出幅度需尽可能提高.0≤下面我们将给出解决该优化问题的算法: 给定判断容限step1选定-110(): ()(-)|(-)|KMk km k m G z n h x n m x n m ==⋅=∑∑的阶数为5K =. 因数据量很大且算法较复杂, 本文对F 进行多次计算, 发现当阶数为5K =的时候与更高阶相比, 效果就已经很好了, 故下面只给出阶数为5K =时g, NMSE, EVM 的结果.本文取定记忆深度为 3M =, 现根据算法5.2可求得9.490829228013789g =,由于系数一共有20个, 即h 是一个201×的向量, 故将此结果放到附录中.根据上面所建模型以及(5.1.1)、(5.1.2)式, 可求出该模型的NMSE 、EVM 值如下:.NMSE -37.836849855461956EVM 0.012827957346961== 3,5M K ==由所得数据, 可以发现在该算法下, 得到的g 的值比较大(说明线性化后的幅度放大倍数大), NMSE 、EVM 的值较小(说明模型的计算精度越高, 整体模型对信号的幅度失真程度越小).图5.13 M=3, K=5实际与拟合功放输入/输出幅度散点图观察图5.13发现, 该情况下所建模型的输入输出幅度散点图与理想的输入输出幅度散点图逼近效果还是较好的. 故该模型是可行的.§5.3 问题三的模型与求解 §5.3.1背景知识功率谱的概念是针对功率有限信号的, 所表现的是单位频带内信号功率随频率的变化情况. 保留了频谱的幅度信息, 但是丢掉了相位信息, 所以频谱不同的信号其功率谱是可能相同的. 功率谱是随机过程的统计平均概念, 平稳随机过程的功率谱是一个确定函数;而频谱是随机过程样本的Fourier 变换, 对于一个随机过程而言, 频谱也是一个“随机过程”(随机的频域序列).功率谱参度(PSD), 它定义了信号或者时间序列的功率如何随频率分布. 这里功率可能是实际物理上的功率, 或者更经常便于表示抽象的信号, 被定义为信号数值的平方, 也就是当信号的负载为1欧姆(ohm)时的实际功率.由于平均值不为零的信号不是平方可积的, 所以在这种情况下就没有傅立叶变换. 维纳-辛钦定理(Wiener-Khinchin theorem)提供了一个简单的替换方法. 如果信号可以看作是平稳随机过程, 那么功率谱参度就是信号自相关函数的傅立叶变换. 信号的功率谱参度当且仅当信号是广义的平稳过程的时候才存在; 如果信号不是平稳过程, 那么自相关函数一定是两个变量的函数, 这样就不存在功率谱参度, 但是可以使用类似的技术估计时变谱参度. 随机信号是时域无限信号, 不具备可积分条件, 因此不能直接进行傅氏变换. 一般用具有统计特性的功率谱来作为谱分析的依据. 功率谱与自相关函数是一个傅氏变换对.一般的功率谱参度都是针对平稳随机过程的, 由于平稳随机过程的样本函数一般不是绝对可积的, 因此不能直接对它进行傅立叶分析. 可以有三种办法来重新定义谱参度,来克服上述困难.1. 用相关函数的傅立叶变换来定义谱参度;2. 用随机过程的有限时间傅立叶变换来定义谱参度;3. 用平稳随机过程的谱分解来定义谱参度.§5.3.2 模型建立计算功率谱参度函数通常有两种方法[]8. 一种叫做标准的自相关函数法, 其表达式为:(1)0()4()cos 2d x x G f R f τπττ∞=∫ (5.3.1)其中()x R τ表示某个各态历经的随机过程{}()x t 的自相关函数;另一种叫做直接法, 即是直接对随机过程{}()x t 的样本函数作傅立叶变换得到功率谱参度函数, 其表达式为:2(2)202()lim ()d T j ftx T G f x t e t Tπ−→∞=∫ (5.3.2)在计算机上计算功率谱参度函数时, 要求输入的数据必须是离散数值, 所以要对连续观测的数据记录必须做离散化处理. 这叫做数据采样. 离散化的数据值叫做采样数据. 实际计算时, 要求参加运算的采样数据的个数是有限的(即是说, 在有限的时间区段0-T 上进行计算). 在记录是离散的、有限的情况下, 计算功率谱参度函数的公式可以分别近似地表示为:1(1)01()22cos 2cos 2M x r M r G f t R R fr t R fM t ππ−=⎡⎤=Δ+Δ+Δ⎢⎥⎣⎦∑ (5.3.3)和21(2)202()N j fi t x i i G f t x e N t π−−Δ==ΔΔ∑ (5.3.4)这里, 将(5.3.4)式整理为()()21P f X f N=(5.3.5) 其中()X f 是()x n 的傅里叶变换, 在计算过程中可以直接调用FFT 函数.另外由题意可设出, per F 表示每个点上的频率, 其表达式为sper F F N=. M 表示每个信道所含的点的个数, 其表达式为0perF M F =.其中0F 表示每个传输信道上的频率. 故传输信道就只包含M 个点, 相邻信道也只包含M 个点.由于非线性效应产生的新频率分量由对邻道信号有一定的影响, 现用相邻信道功率比(Adjacent Channel Power Ratio, ACPR)表示信道的带外失真的参数, 衡量由于非线性效应所产生的新频率分量对邻道信号的影响程度. 其定义为。

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B 题-答案2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):评阅人评分备注全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

2013年数学建模b题纸片拼接

2013年数学建模b题纸片拼接

2013年数学建模b题纸片拼接1. 引言2013年数学建模比赛中的B题,是一道关于纸片拼接的问题。

纸片拼接这一主题,在数学建模的题目中并不常见,但却涉及了许多有趣的数学和几何问题。

在接下来的文章中,我将从不同的角度和深度来探讨这一主题,希望能够对你的理解和思考有所启发。

2. 纸片拼接的基本概念让我们来了解一下纸片拼接的基本概念。

在这个问题中,我们需要将大量的纸片按照一定的规则进行拼接,以得到一个特定的形状或图案。

这涉及到对纸片的形状、尺寸和拼接方式的研究和分析。

还需要考虑到纸片的变形和叠放等因素,这是一个具有挑战性的问题。

3. 纸片拼接的数学模型在解决纸片拼接的问题时,我们需要建立相应的数学模型来描述和分析。

这包括对纸片的几何形状进行建模,考虑到其尺寸、边界和变形等因素;同时需要建立拼接规则和约束条件,以确保拼接的合理性和有效性。

通过建立数学模型,可以更好地理解纸片拼接问题的本质,并为后续的求解和优化提供基础。

4. 深入探讨纸片拼接的几何特性在纸片拼接的过程中,我们不仅需要考虑到其形状和尺寸,还需要深入研究其几何特性。

这涉及到对纸片的曲率、折叠和叠放等几何特征的分析,以便更好地理解和控制拼接的过程。

还需要考虑到纸片的叠放和叠合时可能出现的奇异现象,这对于拼接的成功至关重要。

5. 数学建模与实际应用让我们来谈谈纸片拼接的数学建模与实际应用。

纸片拼接这一看似抽象的问题,实际上与现实生活中的许多工程和制造过程有着密切的联系。

在纺织、纸品和航空航天等领域,都存在着类似的拼接和叠放问题。

通过对纸片拼接问题的研究和建模,可以为这些实际应用提供理论支持和技术指导。

6. 总结回顾通过以上的探讨,我们可以看到,纸片拼接这一看似简单的问题,实际上涉及到许多有趣的数学和几何问题。

从纸片的基本概念、数学建模到几何特性和实际应用,我们可以更加全面、深刻和灵活地理解这一主题。

我个人认为,纸片拼接问题不仅具有学术研究的价值,还具有实际应用的潜力,希望能够引起更多人的关注和研究。

2013全国大学生数学建模比赛B题-答案

2013全国大学生数学建模比赛B题-答案

2013高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。

如有违反竞赛规则的行为,我们将受到严肃处理。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):重庆邮电大学参赛队员(打印并签名) :1.2.3.指导教师或指导教师组负责人(打印并签名):日期: 2013 年 9 月 13 日赛区评阅编号(由赛区组委会评阅前进行编号):2013高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):碎纸片的拼接复原摘要本文研究的是碎纸片的拼接复原问题。

由于人工做残片复原虽然准确度高,但有着效率低的缺点,仅由计算机处理复原,会由于各类条件的限制造成误差与错误,所以为了解决题目中给定的碎纸片复原问题,我们采用人机结合的方法建立碎纸片的计算机复原模型解决残片复原问题,并把计算机通过算法复原的结果优劣情况作为评价复原模型好坏的标准,通过人工后期的处理得到最佳结果。

面对题目中给出的BMP格式的黑白文字图片,我们使用matlab软件的图像处理功能把图像转化为矩阵形式,矩阵中的元素表示图中该位置像素的灰度值,再对元素进行二值化处理得到新的矩阵。

题目每一个附件中的碎纸片均为来自同一页的文件,所以不需考虑残片中含有未知纸张的残片以及残片中不会含有公共部分。

2013年数学建模b题

2013年数学建模b题

精心整理碎纸片的拼接复原【摘要】:碎纸片拼接技术是数字图像处理领域的一个重要研究方向,把计算机视觉和程序识别应用于碎纸片的复原,在考古、司法、古生物学等方面具有广泛的应用,具有重要的现实意义。

本文主要结合各种实际应用背景,针对碎纸机绞碎的碎纸片,基于计算机辅助对碎纸片进行自动拼接复原研究。

针对问题1,依据图像预处理理论,通过matlab程序处理图像,将图像转化成适合于计算机处理的数字图像,进行灰度分析,提取灰度矩阵。

对于仅纵切的碎纸片,根据矩阵的行提取理论,将每个灰度矩阵的第一列提取,作为新矩阵,提取每个灰度矩阵的最后一列,生成新矩阵。

建立碎纸片匹配模型:将矩阵中的任一列与矩阵中的每一列带入模型,所得p值对应的值,即为所拼接的碎片序列号。

将程序进行循环操作,得到最终的碎片自动拼接结果。

针对问题2,首先将图像信息进行灰度分析,提取灰度矩阵。

基于既纵切又横切的碎纸片,根据矩阵的行列提取理论,分别提取每个灰度矩阵的第一列和最后一列,分别生成新矩阵、;提取所有灰度矩阵的第一行和最后一行,分别作为新生成的矩阵、。

由于纸质文件边缘空白处的灰度值为常量,通过对灰度矩阵的检验提取,确定最左列的碎纸片排序。

在此基础上,采用从局部到整体,从左到右的方法,建立匹配筛选模型:,将矩阵中的任一列分别与矩阵中每一列代入模型,所得p值对应的值即为横排序;将矩阵中的任一行分别于矩阵中的任一行代入模型,所得q值对应的值即为列排序。

循环进行此程序,得计算机的最终运行结果。

所得结果有少许误差,需人工调制,更正排列顺序,得最终拼接结果。

针对问题3,基于碎纸片的文字行列特征,采用遗传算法,将所有的可能性拼接进行比较,进行择优性选择。

反面的排序结果用于对正面排序的检验,发现结果有误差,此时,进行人工干预,调换碎纸片的排序。

【关键词】:灰度矩阵欧式距离图像匹配自动拼接人工干预一、问题重述破碎文件的拼接在司法物证复原、历史文献修复以及军事情报获取等领域都有着重要的应用。

2013年全国数学建模B题

2013年全国数学建模B题

2013年全国数学建模B题1、首先运用MATLAB的imread语句将图片转化为参数,每一张图片都得到一个1980*72的矩阵,抽取每个矩阵的第1列和第72列,共得到38列数据,并对其进行编号排序,运用MATLAB进行分布聚类分析,分为18类,得到各自的搭配图形,最后进行人工编排和绘图。

程序如下:(1)clc;clear allclose allI=imread('D:\B\附件1\010.bmp');I_gray=double(I);[m,n] = size(I);a=0.3;A=0;T1=0;S=0;for i=1:mfor j=1:nA=A+I_gray(i,j)endendA=A*0.9;while(S<A)T1=T1+1;for i=1:mfor j=1:nif(I_gray(i,j)==T1)S=S+I_gray(i,j);endendendendT2=zeros(m,n);T3=zeros(m,n);M=3;N=3;for i=M+1:m-Mfor j=N+1:n-Nmax=1;min=255;for k=i-M:i+Mfor l=j-N:j+Nif I_gray(k,l)>maxmax=I_gray(k,l);endif I_gray(k,l)<minmin=I_gray(k,l);endendendT2(i,j)=(max+min)/2;T3(i,j)=max-min;endendT4=medfilt2(T2,[M,N]);T5=(T1+T4)/2;I_bw=zeros(m,n);for i=1:mfor j=1:nif I_gray(i,j)>(1+a)*T1I_bw(i,j)=255;endif I_gray(i,j)<(1-a)*T1I_bw(i,j)=0;endif (1-a)*T1<=I_gray(i,j)<=(1-a)*T1 if T3(i,j)>a*T1if I_gray(i,j)>=T4(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endelse if I_gray(i,j)>=T5(i,j)I_bw(i,j)=255;elseI_bw(i,j)=0;endendendendendsubplot(1,2,1),imshow(I)subplot(1,2,2),imshow(I_bw)(2)julei=data';julei2=zscore(julei);y=pdist(julei2);z=linkage(y);dendrogram(z,'average')[x,cmap]=imread('000.bmp '); %读取图像的数据阵和色图阵image(x);colormap(cmap);axis image off %保持宽高比并取消坐标轴2、。

数学建模2013-B题雾霾时空分布(含指导标记)

数学建模2013-B题雾霾时空分布(含指导标记)

承诺书我们仔细阅读了《全国大学生数学建模竞赛章程》和《全国大学生数学建模竞赛参赛规则》(以下简称为“竞赛章程和参赛规则”,可从全国大学生数学建模竞赛网站下载)。

我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。

我们知道,抄袭别人的成果是违反竞赛章程和参赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。

我们郑重承诺,严格遵守竞赛章程和参赛规则,以保证竞赛的公正、公平性。

如有违反竞赛章程和参赛规则的行为,我们将受到严肃处理。

我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。

我们参赛选择的题号是(从A/B/C/D中选择一项填写): B我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):燕山大学里仁学院参赛队员(打印并签名) :1. 袁丹真2. 王凯3. 张焱鑫指导教师或指导教师组负责人(打印并签名):(论文纸质版与电子版中的以上信息必须一致,只是电子版中无需签名。

以上内容请仔细核对,提交后将不再允许做任何修改。

如填写错误,论文可能被取消评奖资格。

)日期: 2014 年 08 月 25 日赛区评阅编号(由赛区组委会评阅前进行编号):编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国统一编号(由赛区组委会送交全国前编号):全国评阅编号(由全国组委会评阅前进行编号):雾霾时空分布研究摘要PM2.5一直是评估环境的重要因素,本文主要研究PM2.5的相关因素分析、时空分布、污染评估以及分布与演变。

对于问题一,采用spss软件中的person相关性分析,对附件一中PM2.5等六种影响空气质量指标的数据进行相关性分析处理,得出PM2.5的浓度与CO浓度高度相关,与SO2、NO2、PM10三者中度相关,与O3低度相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[3]
(1) Saleh 模型 Saleh 模型是根据对行波管功率放大器(traveling wave tube amplifier, TWTA)的输 入输出数据进行统计分析后得到的,TWTA 的 AM-AM 和 AM-PM 失真特性相对来说 都比较明显,并且模型参数较少,参数的提取也比较方便,是目前一种常用的无记忆 功放模型[6]。 假设功放的输入信号为:
-3-
二、 问题假设
1. 2. 3. 4. 5. 6. 不考虑时间、温度、环境等外界因素的影响; 不考虑功放因温度漂移、老化等引起功放特性的变化; 不考虑外部信号或电路自身对该功率放大器的干扰; 不考虑当输入信号、负载和元件自身发生变化时,造成系统的不稳定性的影响; 不考虑功放的特性随时间变化,假设在一定时间内功放的特性都是恒定的; 假设功率放大器的非线性特性是可逆的;
[7] 简单起见,令 A r t 用 r 表示输入信号幅度,则模型的特性函数为 :
Ar
r
Ar 1 Ar 2
r 2 1 r 2
(3)
(4)
式(3)和(4)中, r 为输入信号的包络幅度, A , A , , 为待定参数,本文 通过 Yang[8][9]最新提出的智能优化算法——布谷鸟搜索算法对参数进行寻优,得到待 定参数 1 , 1 , Q , Q 分别为 1 =3.1344, 1 =0.5920, Q =0.0100, Q =10.0000。 (2) 复系数幂级数模型 由于功放的输入输出都为射频实信号,而功放建模与预失真都在基带进行,基带 信号为复信号,需要完成射频实信号到基带复信号的转换。实系数幂级数不能表征功 放的 AM-PM 特性,因此需要复系数幂级数对功放进行建模[10]。射频中,功放的输入 输出特性用 K 阶幂级数可以表示为:
-2-
一、 问题重述
信号的功率放大是电子通信系统的关键功能之一,其实现模块称为功率放大器 (PA,Power Amplifier),简称功放。功放的输出信号相对于输入信号可能产生非线性 变形,这将带来无益的干扰信号,影响信息的正确传递和接收,此现象称为非线性失 真。传统电路设计上,可通过降低输出功率的方式减轻非线性失真效应。 功放非线性属于有源电子器件的固有特性,研究其机理并采取措施改善,具有重 要意义。目前已提出了各种技术来克服改善功放的非线性失真,其中预失真技术是被 研究和应用较多的一项新技术, 其最新的研究成果已经被用于实际的产品(如无线通信 系统等), 但在新算法、 实现复杂度、 计算速度、 效果精度等方面仍有相当的研究价值。 请研究的几个问题: 1. 无记忆功放 A. 建立无记忆功放的非线性特性的数学模型, 然后用 NMSE 评价所建模型的准确 度。 B. 根据建立无记忆功放的非线性特性的数学模型, 以线性化原则以及 “输出幅度 限制”和“功率最大化”约束,建立预失真模型。写出目标误差函数,计算线性化后 最大可能的幅度放大倍数,运用评价指标参数 NMSE / EVM 评价预失真补偿的结果。 2. 有记忆功放 A. 建立有记忆功放的非线性特性的数学模型, 然后用 NMSE 评价所建模型的准确 度。 B. 根据建立无记忆功放的非线性特性的数学模型, 以线性化原则以及 “输出幅度 限制”和“功率最大化”约束,以框图的方式建立预失真处理的模型实现示意图(提 示:可定义基本实现单元模块和确定其之间关系,组成整体图) ,然后计算预失真模型 相关参数。运用评价指标参数 NMSE / EVM 评价预失真补偿的计算结果。 3. 拓展研究 相邻信道功率比(Adjacent Channel Power Ratio,ACPR)是表示信道的带外失真的 参数,衡量由于非线性效应所产生的新频率分量对邻道信号的影响程度。其定义为
b :记忆多项式参数
12. Y:记忆多项预失真幅值系数 13. P:记忆多项预失真相角系数 14. K:记忆多项式阶数 15. M:记忆多项式深度 其他符号见正文。
-4-
四、 模型建立与求解 4.1 问题一 : 无记忆功放非线性特性与预失真建模
4.1.1 问题 1 (A):无记忆功放非线性特性建模 1. 数据分析 功放的非线性既可以从频域也可从时域来观察,常用的 AM-AM 和 AM-PM 特 性曲线则是对非线性器件比较直观的描述。AM-AM 特性表示输入信号幅度和输出信 号幅度的关系, AM-PM 特性表示和输入信号幅度相关的输出信号的附加相移[1], 无记 忆功放模型的 AM-AM 和 AM-PM 特性曲线如下图 4-1 所示。
综上可得:本文建立的 5 阶复系数幂级数模型相对 Saleh 模型能更准确描述无记 忆功放的非线性特性。 4.1.2 问题 1(B):无记忆功放非线性预失真模型 1. 无记忆多项式预失真模型原理 针对无记忆放大器的特性,使用上述复系数多项式模型对其进行模拟, 由于预失真 [11] 模型应该具备放大器非线性特性的逆特性 ,通过两个模型的叠加使得模型的输入输 出特性呈线性。通过复系数多项式预失真模型得到预失真原理图如下图 4-3 所示。
三、 符号说明
1. x t :输入信号 2. y t :输出信号 3. t :信号相角 4. r t :输入信号模值 5. a k : k 阶射频复系数 6.
ck : k
阶基带复系数
7. F :幅度特性的复系数多项式 8. :相位特性的复系数多项式 9. G :幅度特性函数 10. :相位特性函数 11.
-5-
x t r t exp j t
则功放的输出信号为:
y t A r (t ) exp j t r t
(1)


(2)
式中, A r t 和 r t 分别表示功放的 AM-AM 和 AM-PM 特性函数。为了
(a) Saleh 模型 AM-AM 与 AM-PM 曲线图
(b) 复系数多项式模型 AM-AM 与 AM-PM 曲线图 图 4-2 Saleh 模型和复系数多项式功放的 AM-AM 与 AM-PM
由上图的 AM-PM 曲线可以明显看出 Saleh 模型的相角偏移对于复系数多项式模 型更大,因此可得出复系数幂级数模型比 Saleh 模型能更准确的描述无记忆功放的非 线性特性。 然后,通过计算两个模型的 NMSE 来对模型的准确度进行定量评价。Saleh 模型 和复系数幂级数模型的 NMSE 值如下表:
-6-
[ 2.9680- 0.0000i,0.3099 - 0.0000i, -0.1537 - 0.0000i,-3.4245 - 0.0000i,2.2082 0.0000i ]。 首先,本文通过绘制 Saleh 模型、复系数幂级数模型与原始输出信号的 AM-AM 及 AM-PM 曲线来对模型的准确性进行定性评价,结果如下图所示:
参赛密码 (由组委会填写)
第十届华为杯全国研究生数学建模竞赛


桂林电子科技大学
参赛队号 1. 队员姓名 2. 3.
10595005 张晓凤 朱喜燕 蒋淑洁
参赛密码 (由组委会填写)
第十届华为杯全国研究生数学建模竞赛
题 目 功率放大器非线性特性及预失真建模

要:
功率放大器(PA)用于将已调信号放大到所需功率, 然后通过天线将信号发射出去, 它是现代无线通信系统中的关键部件。 但 PA 本身具有非线性特性及记忆效应, 严重地 影响了通信系统的正常传输。本文通过对 PA 进行研究,主要解决了如下若干问题: 问题一(A),对无记忆功放的非线性特性描述。首先,分别建立 Saleh 模型和 5 阶复系数多项式模型;然后,通过最小二乘法提取模型参数;最后,通过计算 NMSE 评价指标来定量评价两个模型的精确度。实验结果表明 5 阶复系数多项式模型的精确 度更高,NMSE 评价指标可达到-53.16dB,而 Saleh 模型只能达到-33.96dB。 问题一(B),针对无记忆功放的非线性特性。首先,分别建立 5 阶、6 阶无记忆多 项式预失真模型,并对其进行线性化处理;然后,通过自适应的 RLS 算法提取模型参 数;最后,通过计算得到模型的 NMSE、EVM 评价指标及线性化后最大幅度放大倍数, 见表 2。实验结果表明无记忆多项式预失真模型能很好地对无记忆功放系统进行线性 化。 问题二(A):对有记忆功放的非线性特性描述。首先,建立不同记忆深度与阶数的 记忆多项式模型,并对其进行函数描述;然后,利用最小二乘法提取模型参数;最后, 计算 NMSE 值见表 3。 问题二(B):针对有记忆功放的非线性特性。首先,建立 3 阶 5 级记忆多项式预失 真模型,并对其进行线性化处理;然后,通过自适应的 RLS 算法提取模型参数;最后, 通过得到线性化后功放最大幅的度放大倍数为 9.45,NMSE = -43.37dB,EVM = 0.68%。 结果表明, 本文建立的记忆多项式预失真模型能很好地对有记忆功放系统进行线性化。 问题三:对于信号的功率谱密度。本文利用 matlab 自带的 pmem 函数进行直接求 解,结果见图 4-11。由图可得,未加预失真模型时,功放输出的 ACPR 为-21dB,加入 预失真模型后,功放输出的 ACPR 改善为-40dB。 关键字:Saleh 模型,复系数多项式模型,无记忆多项式模型,记忆多项式模型,RLS
图 4-1 AM—AM 特性和 AM—PM 特性曲线
由图 4-1 可知得出 AM-AM 和 AM-PM 特性曲线为两条光滑曲线, 说明此功放模 型为准无记忆功放,这样的 AM-AM 与 AM-PM 特性曲线称为放大器的静态特性[]。 2. 无记忆功放模型——Saleh 模型和复系数幂级数模型 无记忆功放是指功放当前输出值只与此时刻的输入值有关,与之前的输入值无关 ,无记忆功放模型被证明为是简单且比较精确的行为模型,一般适用于窄带信号和 温度不变的功放系统中使用[4]。 在无记忆模型中, 通常采用复系数幂级数模型、 Saleh 模 [5] 型及 Rapp 模型等 。 本文分别建立 Saleh 模型及复系数幂级数模型对无记忆功放的非线性特性进行描 述,并通过绘制 AM-AM,AM-PM 曲线对模型进行定性评价,利用 NMSE 指标对模 型进行定量评价。
相关文档
最新文档