超声波仪器探头性能指标及其测试方法

合集下载

超声波探伤仪五大性能测试法

超声波探伤仪五大性能测试法

第九部分 实验
实验一 仪器五大性能测试
1. 水平线性
1)测准零点;
2)声程标度设为Y 或S ;总声程范围设为125mm (即每格声程设为12.5mm ); 3)使25mm 厚试块的一至五次回波依次出现在第二、四、六、八和十格,保持探头不
动,调整增益、进波门位,使进波门内回波高为50%,依次读出一至五次回波声程值(Y 或S )。

2.分辨力测试
1)用户在CSK-IA 试块上移动直探头,当85mm 和91mm 两处的回波波峰等高且调至50%,记下增益值A 。

2)稳住探头,将85mm 和91mm 两处的回波波谷调至50%,记下增益值B 。

3. 垂直线性
1)在CS-1-5试块上移动直探头,使200mm 深Φ2平底孔处的回波高为100%。

2)增益步长调至2dB ,增益每次比上次减2dB 。

3)每减一次增益记下当前波幅值%。

4. 动态范围
1)在CS-1-5试块上移动直探头,使200mm 深Φ2平底孔处的回波高为100%。

记下增益值A 。

2)使200mm 深Φ2平底孔处的回波高调对刚刚能看到波幅, 记下增益值B 。

3)动态范围=A-B 。

CS —1—5平底孔试块
25mm
4.灵敏度余量测试
1)在CS-1-5试块上移动直探头,使200mm深 2平底孔处的回波高为50%。

记下增益值A。

2)除去探头,增加增益,使噪声电平达10%,记下增益B。

3)灵敏度余量=A-B。

附:性能测试表
一、水平线性
二、垂直线性
三、分辨力
四、动态范围
五、灵敏度余量。

10 超声波探伤仪检定规程

10 超声波探伤仪检定规程

超声波探伤仪检定规程1 目的为规范超声波探伤仪的检定工作,保证检定质量,确保检测数据的正确性,特制定本规程。

2 范围本规程适用于各类型号的超声波探伤仪的首次和后续检定。

3 职责检定人员应熟悉有关规程及相应说明书等有关技术资料,熟悉仪器的操作程序,对检定结果的正确性负责。

4 要求4.1术语和计量单位4.1.1术语4.1.1.1超声波频率高于20000Hz的机械波称为超声波。

4.1.1.2标准试块由权威机构制定的试块,试块的材质、形状、及表面状态都由权威部门统一规定。

4.1.1.3动态范围仪器示波屏容纳信号大小的能力。

4.1.1.4波速超声波在单位时间内所传播的距离。

4.1.1.5探头与工件接触,用于发射和接收超声波并进行电声信号能量转换的装置。

4.1.1.6耦合剂在探头与工件表面之间施加的一层透声介质。

4.1.1.7水平线性仪器示波屏上时基线显示的水平刻度值与实际声程之间成正比的程度。

4.1.1.8垂直线性仪器示波屏上的波高与探头接收的信号之间成正比的程度。

4.1.1.9分辨力示波屏上区分相邻两缺陷的能力。

4.1.1.10盲区从探测面到能够发现缺陷的最小距离。

4.1.2计量单位4.1.2.1厚度H-------mm4.1.2.2声速C--------- m/s4.1.2.3温度t-----------℃4.1.2.4频率f---------Hz4.2概述超声波探伤仪是利用电声转换原理和超声波在介质中的传播特性对工件进行检测,通过分析示波屏上回波的位置和高度来判断缺陷有无和大小的一种装置。

4.3计量性能要求4.3.1主要技术参数4.3.1.1工作频率:1~5MHz(钢)4.3.1.2总衰减量:≥80dB4.3.1.3衰减误差:≤ 1 dB4.3.1.4垂直线性误差:≤5%4.3.1.5水平线性误差:≤ 1%4.3.1.6动态范围:≥30 dB。

4.3.1.7远场分辨力:直探头≥30dB;斜探头≥6dB。

超声波探伤仪、探头及试块

超声波探伤仪、探头及试块

第二章 超声波探伤仪、探头及试块第一节 超声波探伤仪一、超声波探伤仪的种类和A 型探伤仪工作原理1. 超声波探伤仪的分类和A 型探伤仪特点超声波探伤仪种类繁多、分类方法不一。

常见的分类方法如下:在脉冲反射式超声波探伤仪中,以A 型显示、单通道工作的携带式探作仪应用最为广泛,它常作为造船、石油、化工、机械、冶金、铁道和国防工业部门产品和设备现场探伤的重要工具。

归纳起来,它有以下特点:(1) A 型显示屏以横坐标(时间轴)刻度表示超声往复传播时间(传播距离),纵座标表示脉冲回波高度,该高度与反射体返回声压成正比。

(2) 可用单探头(或双探头)进行探伤,以单通道方式工作。

(3) 对缺陷定位准确,发现微小缺陷的能力(灵敏度)较高。

(4) 在声束复盖区域内,可同时显示不同声程上的多个缺陷;对相邻缺陷有一定分辨能力。

(5) 适用性较广,配以不同探头可对工件作纵波、横波、表面波、板波等探伤。

(6) 一般来说,设备轻便、便于携带和现场使用。

(7) 只能以回波高低来表示反射体的反射量,因而缺陷量值显示不直观、探伤结果不连续,且不易记录和存档。

按声源能动性分(缺陷是否为能动声源)能动声源探伤仪(缺陷为能动声源如声发射) 被动声源探伤仪(缺陷为被动声源) 按发射波连续性分连续波探伤仪 脉冲波探伤仪一般连续波探伤仪 共振式探伤仪 调频式探伤仪 按缺陷显示方式分 A 型显示探伤仪 B 型显示探伤仪 C 型显示探伤仪 直接成像 按声通道分 按发射脉冲频带范围分 单通道探伤仪 多通道探伤仪 窄频带探伤仪 宽频带探伤仪(8) 结果判断受人为因素影响较多,故对操作者技术水平要求较高。

本节主要介绍单通道工作的A 型脉冲反射式超声波探伤仪(以下简称超声波探伤仪)的一般工作原理、基本组成、性能测试和使用方面的知识。

2. 超声探伤仪的一般工作原理和基本组成超声探伤仪的工作原理类似于无线电雷达,因此,它有固体雷达之称号。

图2–1为该类探伤仪最简单的电路方框图。

B超国标和性能检测

B超国标和性能检测

19超声体模-KS107BG型模拟病灶说明
• KS107BG共有3个模拟病灶
– F1-F3:囊性模拟病灶
• 均为圆柱形,直径分别为2,4,6mm • 柱轴均与靶线平行,轴心分别位于深度15,30,45mm处
20检测示例(1)-C2-5
• 选择适用的性能指标
– 探头类型:凸阵 – 中心频率:3.5MHz – 半径:60mm – 适用右边红框内的指标
• 侧向分辨力的定义
– 在体模的规定深度处,扫描平面 中垂直于超声波束轴的方向上, 能够显示为两个清晰回波信号的 两靶线之间的最小间距
• 检测方法
– 将探头经耦合剂置于体模声窗表 面上,对准特定深度处的侧向分 辨力靶群
– 调节图像参数,保持靶线图像清 晰可见
– 微动探头,可分开显示为两个回 波信号的两靶线之间的最小距离, 即为该深度处的侧向分辨力
– 按照如下公式计算精度,取最大 值作为纵向几何位置精度
• G = (M – T)/T * 100% • 其中G为几何位置精度,M为测
量值,T为实际距离
12超声体模-外观
KS107BD(L)体模
KS107BG体模
13超声体模-结构
• 体膜媒质
– 在四壁、底板和声窗围成的六面体空腔内,填充符合国家标准要 求的TM材料作为标准传声媒质
• 分别位于深度10,30,50,70mm处 • 每群中靶线中心水平距离依次为4,3,2,1mm
– C: 盲区靶群
• 右侧四条相邻靶线中心横向间距均为10mm, 至声窗距离分别为8, 7, 6, 5mm • 左侧三条相邻靶线中心横向间距均为15mm, 至声窗距离分别为4, 3, 2mm
– D: 纵向靶群。共含靶线12条,相邻两线中心距离均为10mm – E: 横向靶群。位于深度40mm处,相邻两线中心距离均为10mm

仪器探头性能指标及其测试方法

仪器探头性能指标及其测试方法

仪器探头性能指标及其测试方法仪器和探头是科学检测和研究中常用的工具之一,它们的性能指标对于确保准确度和可靠性至关重要。

以下是一些常见的仪器和探头性能指标及其测试方法:1.灵敏度:灵敏度是指仪器或探头对于待测信号变化的响应程度。

在测试过程中,可以通过改变待测信号的幅度或强度,然后观察仪器或探头输出的相应变化来评估其灵敏度。

2.動态范围:动态范围是指仪器或探头能够测量的最大和最小信号之比。

一般来说,动态范围越大,仪器或探头所能测量的信号范围越广。

测试动态范围的方法是在不同强度的信号下进行测试,并观察其输出是否超出仪器或探头的最大输入范围。

3.准确度:准确度是指仪器或探头输出结果与实际值之间的偏差。

准确度可以通过与已知参考值进行比较来评估。

在测试过程中,可以使用标准品或已知条件下的样品,然后与仪器或探头的输出进行对比。

4.分辨率:分辨率是指仪器或探头能够区分的最小变化。

分辨率常用于数字仪器或探头的评估。

测试分辨率的方法是逐渐改变输入信号,观察仪器或探头输出是否能够跟踪到最小变化。

5.稳定性:稳定性是指仪器或探头在相同条件下连续测试时的一致性。

测试稳定性的方法是在相同的环境条件下连续进行多次测试,并观察仪器或探头输出是否保持一致。

6.时间响应:时间响应是指仪器或探头对于信号变化的时间相关性。

测试时间响应的方法是通过输入一个快速变化的信号,并观察仪器或探头对该信号的响应时间。

除了上述性能指标,还有一些领域特定的性能指标,如在光学领域中常用的波长范围、分光精度等指标。

总的来说,仪器和探头的性能评估需要进行一系列测试和比较,以确保其满足实际需求。

这些测试方法和指标有助于用户选择和使用合适的仪器和探头,并保证研究和检测结果的准确性和可靠性。

超声波探伤作业指导书

超声波探伤作业指导书

超声波探伤作业指导书1.总则1。

1。

适用范围:适用于夏港电厂#5机后屏过热器出口集箱三通更换后的焊缝检测。

1.2编制依据:1. 《火力发电厂焊接热处理技术规程》DL/T819—20102。

《火力发电厂焊接技术规程》DL/T869—20043。

《电力建设施工质量验收及评价规程第7部分:焊接》DL/T5210。

7—20104. 《特种设备焊接操作人员考核细则》TSG Z6002—20105。

《火力发电厂金属技术监督规程》DL/T438-20096。

《电力建设安全工作规程》(火力发电厂部分)DL5009。

1-20027。

《管道焊接接头超声波检验技术规程》DL/T820—20028。

《钢制承压管道对接焊接接头射线检验技术规范》DL/T821-20021.3人员要求:检测人员都持有中国电力工业无损检测人员二级以上资格证书.1.4检验比例:100%2.仪器、探头、试块与耦合剂2.1仪器要求:2。

1。

1探伤仪的性能指标和测试方法应符合ZBY230《A型脉冲反射式超声波探伤仪通用技术条件》及ZBJ04001《A型脉冲反射式超声波探伤系统工作性能测试方法》规定的相应条款,其工作频率为2.5MHz。

2。

1。

2仪器和斜探头的组合灵敏度:在所探头焊件最大声程处,有效探伤灵敏度余量不小于6dB.2。

2探头要求选择探头时探头的主声束不应有偏斜或双峰,且入射角β应符合规范规定的偏差范围内。

斜探头折射角的选择以直射波声束中心线至少能扫查焊接接头厚度的2/5为原则。

探测根部缺陷时,不宜使用折射角为60左右的探头。

3. 探伤准备3.1现场勘察超声波探伤人员应该掌握焊接第一手的资料,对所检焊口的材质、焊接工艺主要是焊口坡口型式情况要清楚。

焊接接头两侧的母材,探伤前应测量焊缝两侧的管壁厚度,至少每隔90°各测量一点.3.2仪器校准每班探伤前应对仪器校准一次,应校准探头的前沿、K值,距离波幅曲线应至少校准两点。

3.3焊口打磨受检焊口两侧应打磨光滑,不应存在影响探头移动的东西,打磨宽度应大于1。

超声波UT 检测方案

超声波UT 检测方案

超声波UT 检测方案1..1 工作范围本方案适用于余热锅炉、汽机中低压管道项目的对接焊口、钢结构型材对接焊缝、板材及板材对接焊缝和钢锻件的超声波探伤检验。

1..2 材料准备1..2.1 仪器根据工程项目现场的具体情况,使用脉冲反射式超声波探伤仪。

1..2.2 仪器的技术要求仪器和探头的组合灵敏度、衰减器精度、水平线性和垂直线性等各种性能指标应符合 JB/T10061《A 型脉冲反射式超声波探伤仪通用技术条件》及 JB/T10062《超声波探伤用探头性能测试方法》的规定。

a.仪器和探头的组合灵敏度:在达到所检工件最大声程时,其灵敏度余量应≥10dB。

b. 衰减器精度:任意相邻 12 dB 误差在±1dB 以内,最大累计误差不超过 1dB 。

c. 水平线性:水平线性误差不大于 1%。

d. 垂直线性:在荧光屏满刻度的 80%范围内线性显示,垂直线性误差不大于 5%。

1..2.3 探头1)晶片有效面积除另由规定外一般不应超过 50mm2,且任意一长边不大于 25 mm 。

2)单斜探头声束轴线水平偏离角不应大于 2 度,主声束垂直主方向不应有明显双峰。

3)直探头的远场分辨力应大于或等于 30 dB ,斜探头的远场分辨力应大于或等于 6dB4)仪器和探头的系统性能应按 ZBJ04001 和 JB/T10062 的规定进行测试(检验周期见表 2)。

5)探头和检验面应该紧密接触,必要时探头楔块应进行修磨使其与检验面吻合。

修磨后探头应该重新测定入射点和折射角。

表1 探头折射或 K 值选择1..2.4试块a. 试块应采用与被检工件相同或相近似声学性能的材料制成,直探头标准试块为CBI、CBII 试块;斜探头标准试块采用 CSK-IA、CSK-IIIA 试块。

b. 试块的制造要求应符合 ZBJ04001 和 JB/T10062 的规定进行测试。

c. 现场检测时,也可采用其它形式的等效试块。

.1..3检测准备1...3.1 检测表面1) 检测面的确定必须保证检查到工件被检部分的整个体积,即应检查到整条焊缝,检验区域的宽度为是焊缝本身再加上焊缝两侧各 10mm 区域(热影响区)。

超声科质量控制指标

超声科质量控制指标

超声科质量控制指标超声科质量控制指标是指在超声科技术应用过程中,为了保证诊断结果的准确性和可靠性,制定的一系列评价和监控指标。

通过对超声科质量控制指标的监测和评估,可以及时发现和纠正超声影像质量不合格的问题,提高超声诊断的准确性和可靠性,保障患者的健康和安全。

一、超声科质量控制指标的分类超声科质量控制指标可以分为以下几个方面:1. 影像质量指标:包括图象分辨率、噪声水平、灰度均匀性等。

图象分辨率是指超声图象中能够分辨出的最小空间距离,噪声水平是指超声图象中随机噪声的强度和分布情况,灰度均匀性是指超声图象中灰度值的均匀性和一致性。

2. 仪器性能指标:包括超声探头的频率响应、灵敏度、动态范围、深度探测等。

超声探头的频率响应是指超声波在探头中的频率范围,灵敏度是指超声系统对回波信号的灵敏程度,动态范围是指超声系统能够显示的最大和最小灰度值的比值,深度探测是指超声系统能够探测到的最大深度。

3. 操作规范指标:包括超声操作人员的培训和技能水平、超声设备的维护和保养等。

超声操作人员应具备良好的解剖学知识和超声技术知识,能够正确操作超声设备进行检查。

超声设备应按照规定的维护和保养要求进行定期检查和维护。

二、超声科质量控制指标的评价方法超声科质量控制指标的评价方法可以采用以下几种方式:1. 定量评价:通过测量和计算超声图象的各项指标数值,如图象分辨率、噪声水平、灰度均匀性等,来评价超声图象的质量。

可以使用专业的超声图象分析软件进行自动化计算和评价,也可以通过人工测量和计算来获得评价结果。

2. 定性评价:通过专家的经验和判断,对超声图象的质量进行主观评价。

可以根据超声图象的清晰度、对照度、细节显示等方面进行评价,给出优、良、中、差等评价结果。

3. 对照评价:将同一患者或者同一模型在不同超声设备上进行检查,比较不同设备的超声图象质量。

可以通过对照图象的清晰度、对照度、细节显示等方面进行评价,找出差异和问题所在。

三、超声科质量控制指标的监控方法超声科质量控制指标的监控方法可以采用以下几种方式:1. 定期检查:定期对超声设备进行检查和维护,包括超声探头的频率响应、灵敏度、动态范围等性能指标的测量和评估,以及超声图象的质量指标的检查和评估。

超 声 波 测 试 原 理 及 应 用.

超 声 波 测 试 原 理 及 应 用.
当有机玻璃的厚度可以忽略时探头无延迟因此超声波在试块中传播到底面的时间为如果试块材质均匀超声波声速c一定则超声波在试块中的传播距离为2斜探头的延迟参照图17把斜探头放在试块上并使探头靠近试块正面使探头的斜射声束能够同时入射在r圆弧面上




超声波测试原理及应用
实验Z1.1 超声波的产生与传播
实验Z1.2



验 试块内部,同时可以
S始波 R30 t1 t2
R60
使纵波转换为横波。 实际上,超声波在两 种固体界面上发生折 射和反射时,纵波可 以折射和反射为横波,
图1-7 斜探头延迟的测量
横波也可以折射和反射为纵波。超声波的这种现象称为波型转换,其图 解如图1-8所示。 超声波在界面上的反射、折射和波型转换满足如下斯特令折射定律: 反射: 折射:
根据实验室提供的仪器选择3的实验内容
3.波型转换的观察和测量 第1步:把可变角探头的入射角调整为0,使超声波入射在试块两个




圆弧R1和R2的下部边缘,观察反射回波,测量t1和t2,确定其波型(纵 波)。横向移动探头,观察其位置如何变化。 第2步:增大可变角探头入射角,注意回波幅度的变化。当入射角达 到某一值后,纵波的幅度会减小,在其后面又会出现两个回波,并 且幅度不断增大。测量新出现的两个回波对应的时间差,确定其波




常用的超声波探头有直探头和斜 探头两种,其结构如图1-3所示。 探头通过保护膜或斜楔向外发射 超声波;吸收背衬的作用是吸收 晶片向背面发射的声波,以减少
(a) 1-外壳 2-晶片 3-吸收背衬 6-接插头 7a-保护膜 7b-斜楔 图1-3 直探头和斜探头的基本结构( a)直探头(b)斜探头 (b) 4-电极接线 5-匹配电感

无损检测超声波检测探头选择探析

无损检测超声波检测探头选择探析

无损检测超声波检测探头选择探析摘要:超声波检测技术可以检测出工件中一些难以发现的隐藏缺陷。

由于超声波利用机械波的振动来检测工件中的缺陷,有助于检测和全面分析工件的几何特征、力学性能、内部结构等内部特性,进而全面分析工件的质量,确保产品的生产质量。

超声检测时探头的选择直接关系到检测的准确性。

我们需要提高对探头性能和指标的把握,并根据实际情况进行灵活合理的选择。

本文主要讨论超声探头的选择。

在分析超声探头的种类、性能指标和工作原理的基础上,进一步提出了无损检测中超声探头的有效选择策略。

关键词:超声波检测;超声波探头;工件缺陷;无损检测;探头超声波检测技术已广泛应用于各个领域,尤其是在缺陷检测中,效果非常明显。

超声波反射特性由缺陷方向、表面粗糙度、所含物质、相对超声波厚度和长度、缺陷类型和性质等决定,使超声波检测能够根据特性制定相应的技术规范。

特别是对缺陷尺寸和延伸长度、埋深、投影面积等方面的判断规范非常明确。

极大地保证了产品零部件的质量和安全性能。

超声波检测技术涉及的因素很多,影响的原因更为复杂,因此在实际应用中有必要选择合适的探头,以确保检测的顺利进行。

例如,在许多与超声检测相关的技术规范中,对确定缺陷的埋深、评价缺陷的等效尺寸、延伸长度、缺陷的投影面积等都有明确的方法和规定,这对保证产品部件的质量和安全使用具有重要意义。

这主要是因为缺陷对超声波的反射特性取决于缺陷的取向、几何形状、相对超声传播方向的长度和厚度、缺陷的表面粗糙度、缺陷的含量以及缺陷的类型和性质。

由此可见,超声波检测是一个综合而复杂的因素。

我们需要选择最基本的探针,这会给我们带来不必要的麻烦。

一、超声波检测探头概述超声波检测探头一般根据压电晶体的结构进行分类,具体类型如下:1. 直探头也可根据晶体数量分为单晶纵波探头和双晶纵波探头。

2. 角度探头根据透镜数量可分为单晶横波探头和双晶横波探头。

3.有两种类型的曲率探头:横波轴向曲率探头和横波轴向曲率探头。

超声检测方法

超声检测方法
第十四页,编辑于星期三:八点 四十六分。
(2)探头选择
目前应用最广、数量最多的超声换能器是以
压电效应为原理的超声换能器,它将来自发射
电路的电脉冲加到压电晶片上,变成同频率的
机械振动,从而向被检测对象辐射出超声波。
探头 耦合剂
超声波
缺陷
工件
第十五页,编辑于星期三:八点 四十六分。
同时,它又将从声场中反射回来的声信号转换 成电信号,送入接收、放大电路,变为可供在 荧光屏上观察和判断的检 测信号。
第二十一页,编辑于星期三:八点 四十六分。
同时,吸收块在靠近压电晶片的地方、其声
阻抗尽可能接近压电晶片的声阻抗。
通常是从工艺上采取措施,提高环氧树脂钨 粉吸收块的声阻抗值、使之接近压电晶片,是 制作高分辨力探头的关键。
当然采用高阻尼吸收块将显著降低超声检测
的灵敏度,因此应视具体情况综合考虑这两方 面的要求。
对斜探头来说,除了考虑获得所需的波型及足
够的声能外,还应注意不致由于斜楔的存在而使 杂波增加,影响缺陷波形的判别。
必须认真设计斜楔的形状,使斜楔中由界面反
射回来的声能不回到压电晶片上来。
斜楔的材料一般都采用有机玻璃,在斜楔的某
些部位增填吸收材料,以便把从斜楔与工件界面
反射回来的杂波尽可能吸收掉。
第二十四页,编辑于星期三:八点 四十六分。
固定缺陷位置的水浸探伤,要选用聚焦探头。
对微小缺陷,一般采用高频探头。
第四十二页,编辑于星期三:八点 四十六分。
频率上限由衰减大小决定,下限则由检测灵
敏度、脉冲宽度和声束指向性决定。
对横波斜探头来说,为了使工件中的折射角
度范围能覆盖到 90o,探头斜楔中的声速应小于

超声波UT 检测方案

超声波UT 检测方案

超声波UT 检测方案1..1 工作范围本方案适用于余热锅炉、汽机中低压管道项目的对接焊口、钢结构型材对接焊缝、板材及板材对接焊缝和钢锻件的超声波探伤检验。

1..2 材料准备1..2.1 仪器根据工程项目现场的具体情况,使用脉冲反射式超声波探伤仪。

1..2.2 仪器的技术要求仪器和探头的组合灵敏度、衰减器精度、水平线性和垂直线性等各种性能指标应符合 JB/T10061《A 型脉冲反射式超声波探伤仪通用技术条件》及 JB/T10062《超声波探伤用探头性能测试方法》的规定。

a.仪器和探头的组合灵敏度:在达到所检工件最大声程时,其灵敏度余量应≥10dB。

b. 衰减器精度:任意相邻 12 dB 误差在±1dB 以内,最大累计误差不超过 1dB 。

c. 水平线性:水平线性误差不大于 1%。

d. 垂直线性:在荧光屏满刻度的 80%范围内线性显示,垂直线性误差不大于 5%。

1..2.3 探头1)晶片有效面积除另由规定外一般不应超过 50mm2,且任意一长边不大于 25 mm 。

2)单斜探头声束轴线水平偏离角不应大于 2 度,主声束垂直主方向不应有明显双峰。

3)直探头的远场分辨力应大于或等于 30 dB ,斜探头的远场分辨力应大于或等于 6dB4)仪器和探头的系统性能应按 ZBJ04001 和 JB/T10062 的规定进行测试(检验周期见表 2)。

5)探头和检验面应该紧密接触,必要时探头楔块应进行修磨使其与检验面吻合。

修磨后探头应该重新测定入射点和折射角。

表1 探头折射或 K 值选择1..2.4试块a. 试块应采用与被检工件相同或相近似声学性能的材料制成,直探头标准试块为CBI、CBII 试块;斜探头标准试块采用 CSK-IA、CSK-IIIA 试块。

b. 试块的制造要求应符合 ZBJ04001 和 JB/T10062 的规定进行测试。

c. 现场检测时,也可采用其它形式的等效试块。

.1..3检测准备1...3.1 检测表面1) 检测面的确定必须保证检查到工件被检部分的整个体积,即应检查到整条焊缝,检验区域的宽度为是焊缝本身再加上焊缝两侧各 10mm 区域(热影响区)。

超声波传感器性能指标测试技术

超声波传感器性能指标测试技术

说明书一种超声波传感器指标检测技术技术领域本发明涉及超声波传感器指标检测技术。

背景技术超声波传感器是一种压电陶瓷器件,它通过压电效应来实现机械能和电能的双向转换。

它的传播速度为344m/s(25度)工作频率一般在20kHz~200kHz,通过反射及多谱勒效应来确定障碍物的距离及相对速度。

探测距离一般在1米~2米.它广泛地应用在倒车声纳、防盗报警、流量计、停车计时、自动门等产品系统中。

超声波传感器系统的详细工作流程为:控制器通过驱动电路驱动超声波传感器(收发一体集成式)通过压电转换,发出一束短促的、固定频率的超声波信号,当这束超声波脉冲遇到障碍物时就会发生反射,接收传感器将会收到反射的机械回波,再通过压电转换,回波电信号经过放大、滤波、检波等处理后,控制器根据发射超声波与接收到反射回波之间的时间间隔,计算出传感器与障碍物之间的距离。

以下为它的一些主要参数:声压特性声压(SPL)是表示传感器发射音量大小的参数。

用下列公式表示:SPL=20logP/Pre(dB)“P”为有效声压,“Pre”为参考声压(2×10-4ubar),超声波传感器的发射声压一般为≧100dB.灵敏度灵敏度是表示传感器接收能力强弱的参数,用如下公式表示:20logE/P(dB)“E”为产生的电压值(VRMS),“P”为输入的声压(ubar)。

超声波传感器的灵敏度一般为-60dB~-85dB.探测包络传感器的可探测区域是不规则的,一般在正后方最强,距离越远衰减越快;在斜方向的反射较弱,总体可探测区域呈扇形分布。

常规超声波传感器的检测流程如下:1、设置一个屏蔽箱,在屏蔽箱内指定的最远探测距离位置(1.5m~2米m)放一个标准测试杆,一般为¢75mm的PVC管,将待调试的传感器模块放入测试架,接上示波器。

2.系统上电,调整传感器板的可调中周,使中周与传感器内部的等效电容产生特定频率的谐振并达到最佳点;再调试传感器板的回波灵敏度(一般通过可调电阻),通过示波器观察障碍物的回波宽度达到要求的值。

超声波无损检测标准

超声波无损检测标准

超声波无损检测标准
超声波无损检测是一种常见的无损检测方法,用于检测材料的内部缺陷和结构,并评估其完整性和性能。

超声波无损检测标准主要包括以下几个方面:
1. 超声波设备标准:包括超声波检测仪器的技术要求、性能指标、工作范围和使用方法等。

例如,设备必须符合安全要求,能够提供稳定的超声波信号,并具备合适的探头和耦合剂。

2. 检测方法标准:包括超声波检测的步骤、参数选择和评估方法等。

例如,检测人员需要根据具体情况选择合适的超声波探头和频率,并进行标定和校准。

3. 缺陷评估标准:根据不同材料和应用要求,制定相应的缺陷评估标准。

例如,对钢材进行超声波探伤时,可以参考美国标准协会(ASME)的相关标准,评估缺陷的类型、大小、位置
和对材料性能的影响等。

4. 检测人员培训标准:要求进行超声波无损检测的人员具备一定的专业知识和技能,可以根据不同级别和应用领域设定相应的培训标准。

例如,按照美国无损检测协会(ASNT)的要求,可以进行超声波检测人员的培训和认证。

综上所述,超声波无损检测标准包括设备标准、方法标准、缺陷评估标准和人员培训标准等方面,以保证超声波无损检测的准确性和可靠性。

超声探伤仪校验规程

超声探伤仪校验规程

超声探伤仪校验规程1. 目的:确保UT 检测的质量活动所使用的超声探伤仪性能的符合性和有效性。

2. 范围:本校验属于仪器使用性能年度例行校验,适用于A 型脉冲反射式超声探伤仪的校准和检定,有效期为一年。

3. 引用标准3.1《A 型脉冲反射式超声探伤仪通用技术条件》(JB/T10061-1999) 3.2《无损检测名词术语》(JB3111-82) 3.3《压力容器无损检测》(JB4730-94)3.4《超声探伤用探头性能测试方法》(JB/T10062-1999) 3.5《超声探伤用1号标准试块技术条件》(JB/T10063-1999)3.6《A 型脉冲反射式超声波系统工作性能测试方法》(JB/T9214-1999)4. 职责4.1应由中心分管副总师负责领导,并负责对校验报告的签发。

4.2由中心UT Ⅲ级人员负责组织指导校验人员实施校验,并负责校验报告的审核。

4.3校验人员应由UT Ⅲ级人员提出,并报中心主任批准。

校验人员应熟悉A 型脉冲反射式超声探伤仪的结构、工作原理和使用方法,熟悉本规程的引用标准,能正确按本规程方法进行校验工作,编制校验报告。

5. 校验用标准试块及器具(应是计量部门检定合格的) 5.1各种不同频率的常用直探头和斜探头(不须检定) 5.2 CSK -IA 标准试块。

5.3不同规格的对比试块(均为炭钢锻制件)5.3.1 JB4730-94规定的阶梯试块(DB -D 1试块) 5.3.2 Z20-1(25122580Φ⨯⨯φ)Z20-2(25222580Φ⨯⨯φ) Z20-4(25422580Φ⨯⨯φ)5.4探头压块:保持探头在试块上的固定压力、重量为1kg6.校验6.1垂直线性误差测试:6.1.1测试设备a.各种频率的常用直探头b.对比试块:Z20-2或Z20-4c.探头压块6.1.2测试步骤a.连接探头与仪器“发”位置,并用探头压块将探头固定在Z20-2试块上并对准Φ2孔,调节探伤仪使示波屏上显示的孔的反射波幅度为垂直刻度的100%(满刻度),且衰减器至少有30d B余量;b.调节衰减器,依次记下每衰减2d B时孔波幅度的百分数,直至衰减到26d B,然后将孔波幅度实测值与表中的理论值相比较,取最大正偏差d(+)与最大负偏差d(-)之绝对值的和为垂直线性误差,如△d=| d(+)|+|d(-)| ;c.将底波幅度调为垂直刻度的100%,重复b调节衰减器方法,重复测试;d.在工作频率范围内,改用不同频率的探头,重复b、c方法进行测试。

超声检测探伤仪探头及系统性能

超声检测探伤仪探头及系统性能

超声检测探伤仪探头及系统性能18.1探伤仪采用A型脉冲反射式探伤仪,其工作频率范围为1MH Z~10MH Z。

仪器至少在荧光屏满刻度的80%范围内呈线性显示。

探伤仪应具有80dB以上的连续可调衰减器,步进级每档小于或等于2dB,其精度为任意相邻12dB误差在±ldB以内,最大累计误差不超过1dB。

水平线性误差不大于1%,垂直线性误差不大于5%。

其余指标应符合JB/T 10061的规定。

本条来源于JB4730标准,与原标准相比某些指标做了调整,即超声波工作频率范围由原来的1MH Z~5MH Z,修改为1MH Z~10MH Z,衰减器总调节量由原来的60dB,修改为80dB。

目前随着我国超声波检测设备技术水平的提高,数字化超声波检测设备不断成熟,以上技术指标现有设备完全能够满足。

为简化操作、提高工作效率,推荐采用数字式超声波检测设备。

其它指标符合JB/T 10061的规定。

18.2 探头18.2.1 探头应按ZBY344的规定作出标志。

因为探头上的标志是探头生产厂对探头主要性能的一种说明和保证,无损检测人员借助这些标志能够直观的了解探头的基本性能。

ZBY344对探头的标志用探头型号组成项目和排列来表示:基本频率晶片材料晶片尺寸探头种类特征基本频率:用阿拉伯数字表示,单位为MHz。

晶片材料:用化学元素缩写符号表示,见表05。

表05 晶片材料代号压电材料代号锆钛酸铅陶瓷P钛酸钡陶瓷 B钛酸铅陶瓷T铌酸锂单晶L碘酸锂单晶I石英单晶Q其它压电材料N 晶片尺寸:用阿拉伯数字表示,单位为㎜。

其中圆晶片用直径表示;方晶片用长×宽表示;分割探头晶片用分割前的尺寸表示。

探头种类:用汉语拼音缩写字母表示,见表6。

直探头也可不标出。

表6 探头种类代号种类代号直探头Z 斜探头(用K值表示)K斜探头(用折射角表示)X分割探头FG水浸探头SJ表面波探头BM可变角探头KB 探头特征:斜探头在钢中可用折射角正切值(K值)表示。

超声波教材[整理版]

超声波教材[整理版]

第三章仪器、探头和试块第一节超声波探伤仪一、超声波探伤仪概述1.作用产生电振荡→激励→放大电信号→显示2.仪器的分类(1)按超声波的连续性分类脉冲波:周期性、不连续、频率不变、根据波幅和传播时间最广泛连续波:连续且频率不变、根据透过超声波强度灵敏度低且不能确定缺陷位臵调频波:连续且频率周期性变化、根据发射波与反射波的差频变化检测面平行的缺陷(2)按缺陷显示方式分类A型显示探伤仪:时间、波幅位臵和大小B型:扫查轨迹、时间 B超平面分布和深度C型:(3)按通道分单通道多通道二、A型脉冲反射式超声波探伤仪的一般工作原理1.仪器电路方框图相当于示波器:包括同步电路、扫描电路、发射电路、接收电路、显示电路和电源电路方框图2.仪器主要组成部分的作用(1)同步电路:触发电路总指挥(2)扫描电路:水平扫描时基线时间(深度粗调、微调、扫描延迟)(3)发射电路 P73 可控硅的开关特性 RC振荡(4)接收电路衰减器、射频放大器、检波器、视频放大器,影响垂直线性、动态范围、探伤灵敏度、分辨力等重要技术指标Kv=20lgU出/U入(5)显示电路:示波管及外围电路组成(6)电源3.仪器的工作过程:根据工作原理图三、仪器主要开关旋钮的作用及其调整 P75重复频率旋钮:改变发射电路每秒钟发射脉冲的次数,与屏幕亮暗有关四、仪器的维护1.阅读说明书,按要求操作2.搬运仪器防止强烈振动3.避免在强磁场、灰尘多、电源波动大、有强烈振动及温度过高或过低的场合4.防雨、雪、水、机油进入仪器内部(新款仪器坏过、下雨)5.电源(充放电)、电源线不要弯折,插头要抓壳体6.旋钮不宜过猛7.使用后清洁8.潮湿季节,定期通电9.出现故障,关闭电源,请人维修第二节超声波测厚仪原理δ=1/2ct(脉冲式)使用:调整、测厚(特殊要求)第三节超声波探头一、压电效应某些晶体材料在交变拉压应力作用下,产生交变电场的效应称为正压电效应。

反之,在交变电场的作用下,藏身伸缩变形的效应称为逆压电效应。

超声波仪器探头性能指标及其测试方法

超声波仪器探头性能指标及其测试方法
图 3 水平线性误差测量
图 4 水平线性误差测量
(3) 在具有“扫描延迟”功能的探伤仪中,按 (2) 条的方法,将底波以前沿 对准水平刻度“ 0”,底波 B6 前沿对准水平刻度“ l0 ”,然后读取第二 至第五次底波中之最大偏差值 Lmax,再按式 (3) 计算水平线性误差△ L
(4) 在探伤仪扫描范围的各档级,至少应测试一种扫描速度下的水平线性 差。
a=x2—2xl 5 斜探头折射角的测量
测试设备: a) 探伤仪; b)l 号标准试块; C)刻度尺。 测试步骤 将探头置于 1 号标准试块上,当 K≤1.5 时,探头放在如图 10(a) 位置, 观察 Φ50mm孔的回波;1. 5<K≤2.5 时,探头放在如图 10(b) 位置,观察 Φ50mm 孔的回波;当 K>2.5 时,则观察图 10(c) 的 Φ1.5mm横通孔的回波。前后移动
口 fe=(fe-f 0) /f 0×100%……………… (7) 式中: fe 回波频率误差,%; f0 ――探头的标称频率。
图 8 探头回波频率测量
(2) 斜探头回波频率的测量 仪器连接及调节度与直探头相同,将探头置于 面的最高回波。其余步骤与直探头相同。
1 号试块上探测 R100圆弧
2、分辨力 ( 纵向 ) 测量 (1) 直探头分辨力的测量
小角度探头 ≤15%
≥50dB ≥16 dB
不动车专用
≥75dB
一、超声波探伤仪主要性能测试方法
1、电噪声电平( %)
水平线性 误差 ≤ 2%
折射角误 差
≤ 4% ≤2°
探测范围 ≥3.6m
仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大,衰减器置
“ 0”,深度粗调、深度微调置最大。读取时基线噪声平均值,用百分数表示。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

超声波仪器、探头主要组合的性能测定1、电噪声电平(%)仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大,衰减器置“0”,深度粗调、深度微调置最大。

读取时基线噪声平均值,用百分数表示。

2、灵敏度余量(dB)a)使用、Φ20直探头和CS-1-5或DB--PZ20—2型标准试块。

b)连接探头并将仪器灵敏度置最大,发射置强,抑制置零或关,增益置最大。

若此时仪器和探头的噪声电平(不含始脉冲处的多次声反射)高于满辐的10%,则调节衰减或增益,使噪音电平等于满辐度的10%记下此时衰减器的读数S0。

图1 直探头相对灵敏度(灵敏度余量)测量c)将探头置于试块端面上探测200mm处的i2平底孔,如图17所示。

移动探头使中Φ2平底孔反射波辐最高,并用衰减器将它调至满辐度的50%,记下此时衰减器的,则该探头及仪器的探伤灵敏度余量S为:S=S1--S0(dB)3、垂直线性误差测量(%)(1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照波,如图2所示。

调节探伤仪灵敏度,使参照波的辐度恰为垂直刻度的100%,且衰减器至少有30dB的余量。

测试时允许使用探头压块。

图2 垂直线性误差测量(2)用衰减器降低参照波的辐度,并依次记下每衰减2dB时参照波辐度的读数,直至衰减26dB以上。

然后将反射波辐度实测值与表l中的理论值相比较,取最大正偏差d(+)与最大负偏差d(-),则垂直线性误差△d用式(1)计算:△d=|d(+)|+|d(-)| (1)(3)在工作频率范围内,改用不同频率的探头,重复(1)和(2)的测试。

dB)(1)连接探头并在试块上探测任一反射波(一般声程大于50mm)作为参照波。

(2)调节衰减器降低参照波,并读取参照波辐度自垂直刻度的100%下降至刚能辨认之最小值(一般约为3~5%)时衰减器的调节量,此调节量则定为该探伤仪在给定频率下的动态范围。

(3)按(1)和(2)条方法,测试不同频率不同回波时的动态范围。

5、水平线性误差测量(%)(1)连接探头,并根据被测探伤议中扫描范围档级将探头置于适当厚度的试块上,如DB――D1,DB—Pz20-2,CSK-1A试块等,如图3所示。

再调节探伤仪使之显示多次无干扰底波。

(2)在不具有“扫描延迟”功能的探伤仪中,在分别将底波调到相同辐度的条件下,使第一次底波B1的前沿对准水平刻度“2”第五次底波B5的前沿对准水平刻度“10”,然后依次将每次底波调到上述相同辐度,分别读取第二、三四次底波前沿与水平刻度“4”、“6”、“8”的偏差Ln,如图4所示,然后取其最大偏差Lmax按式(2)计算水平线性误差ΔL:式中:ΔL:水平线性误差,%;B:水平全刻度读数。

图3 水平线性误差测量图4 水平线性误差测量(3)在具有“扫描延迟”功能的探伤仪中,按(2)条的方法,将底波以前沿对准水平刻度“0”,底波B6前沿对准水平刻度“l0”,然后读取第二至第五次底波中之最大偏差值Lmax,再按式(3)计算水平线性误差△L(4)在探伤仪扫描范围的各档级,至少应测试一种扫描速度下的水平线性差。

6、分辨力的测量(dB)使用、Φ20直探头a)仪器抑制置零或关,其它旋钮置适当位置,连接探头并置于CSK-IA标准试块上,探测声程分别为85mm和91mm反射面的反射波(如图9所示),移动探头使两波等高;图9 直探头分辨力的测量b)改变灵敏度使两次波辐同时达到满辐度的100%,然后测量波谷高度h,则该探头的分辨力R用下式计算:R=20lg(100/h)若h=0或两波能完全分开,则取R>30dB。

二、超声探头的测试方法1、探头回波频率及频率误差测量(1)直探头回波频率的测试a)连接被测探头并置于l号标准试块25mm厚度处,使第一次底波最高。

b)用示波器在探伤仪的接收输入端观察底波B1的扩展波形,如图8,在此波形中,以峰值点P为基准,读出在其前一周期、后两个周期共计三个周期的时间T3,根据fe=3/T3计算回波频率fe,再按下式计算回波频率误差:口fe=(fe-f0)/f0×100% (7)式中:fe回波频率误差,%;f0――探头的标称频率。

图8 探头回波频率测量(2)斜探头回波频率的测量仪器连接及调节度与直探头相同,将探头置于1号试块上探测R100圆弧面的最高回波。

其余步骤与直探头相同。

2、分辨力(纵向)测量(1)直探头分辨力的测量a)仪器抑制置零或关,其它旋钮置适当位置,连接探头并置于CSK-IA标准试块上,探测声程分别为85mm和91mm反射面的反射波(如图9所示),移动探头使两波等高;图9 直探头分辨力的测量b)改变灵敏度使两次波辐同时达到满辐度的100%,然后测量波谷高度h,则该探头的分辨力R用下式计算:R=20lg(100/h) (8)(1)若h=0或两波能完全分开,则取R>30dB。

(2)斜探头分辨力的测量a)如图10所示,探头置于CSK一1A试块的K值测量位置,耦合良好,探测试块上A(Φ50)、B(Φ44)两孔的反射波,移动探头使两波等高;b)调节衰减器和增益,使A、B西波波辐同时达到满辐度的100%,然后测量波谷高度h,则该探头的分辨力R用式(8)计算;c)若h=0或两波能完全分开,则取R>30dB。

图10 斜探头分辨力的测量(3)小角度探头分辨力的测量将探头置于K<的位置,其余测试步骤同斜探头分辨力的测量。

3、直探头声轴偏斜角的测量(1)在DB---H1试块上选取深度约为2倍被测探头近场长度的横通孔。

(2)标出探头的参考方向,将探头几何中心轴对准横通孔中心轴,然后使探头沿x方向在试块中心线上移动,测出到孔波最高点时探头的移动距离D、,其中孔波辐度最高点在+x方向时加上(+)号,在-x方向时加上(-)号,如图1l。

图11 直探头声轴偏斜角的测量(3)继续沿x方向移动探头,分别测出孔波辐度最高点至孔波辐度下降6dB时探头的移动距离W+x和w-x。

(4)使探头沿y方向对准试块中心线移动,按上两条的方法测出Dy、W+y和W-y。

(6)Dx、Dy。

表示了声轴的偏移,W+x、W-x、W+y和Wy表示了声束宽度,读数精确到1mm。

按下式计算声轴的偏斜角θ:4、斜探头、小角度入射点的测定(1)横波斜探头连接被测探头并置于CSK一1A型标准或CSK—I型标准试块上探测试块R100圆弧面,如图12所示。

前后移动探头并保持探头与试块侧面平行,使R100圆弧面的回波辐度达到最高,则此时R100圆心刻线所对应的探头侧棱上的点的即为探头的入射点。

读数精确到0.5mm。

图12 入射点的测定(2)小角度纵波探头调整仪器各旋钮使屏幕显示正常,将被测探头置于TZS—R试块的R面上(图13)探测试块A面下棱角,前后移动探头,并注意保持探头声束与试块侧面平行,使A面下棱角回波达到最高,记下此时探头前沿至试块前端以端)的距离为然后用二次反射被探测A面上棱角,同样前后移动探头,使A面上棱角回波达到最高,记下此时探头前沿至试块前端(A端)的距离XZ,则探头前沿至入射点的距离为:a=x2—2xl5 斜探头折射角的测量测试设备:a)探伤仪; b)l号标准试块;C)刻度尺。

测试步骤将探头置于1号标准试块上,当K≤时,探头放在如图10(a)位置,观察Φ50mm孔的回波;<K≤时,探头放在如图10(b)位置,观察Φ50mm孔的回波;当K>时,则观察图10(c)的Φ1.5mm横通孔的回波。

前后移动探头,直到孔的回波最高时固定下来,然后在试块上读出按3.2.5测得的入射点相对应的角度刻度β,β即为被测探头折射角,读数精确到o。

图10按下式计算K值:K=tgβ式中:β-折射角,(°);(2)小角度纵波探头K值和β角的测定在小角度探头的K值和β角测定之前,应首先测定探头的前沿距离a,然后再按图15和图16所示方法,在TZS—R试块的c面或B面进行测试,当找到端面(A面)上棱角的最大反射波高时,则探头的K值和w角用下式计算:当探头入射角在6o~8o时(如图15)k=:(X+a)/200 (11)β=arctg k当探头入射角在9o~11o时(如图16)k=(X+a)/80; (12)p=arctg k图15 图16小角度探头人射角α和折射角β对应关系如表3(斜块声速取2730m/s)。

表3(1)直探头(等同于探伤灵敏度余量)a)使用、Φ20直探头和CS-1-5或DB--PZ20—2型标准试块。

b)连接探头并将仪器灵敏度置最大,即发射置强,抑制置零或关,增益置最大。

若此时仪器和探头的噪声电平(不含始脉冲处的多次声反射)高于满辐的10%,则调节衰减或增益,使噪音电平等于满辐度的10%记下此时衰减器的读数S0。

图17 直探头相对灵敏度(灵敏度余量)测量c)将探头置于试块端面上探测200mm处的Φ2平底孔,如图17所示。

移动探头使中Φ2平底孔反射波辐最高,并用衰减器将它调至满辐度的50%,记下此时衰减器的,则该探头及仪器的探伤灵敏度余量S为:S=S1--S0(dB) (13)(2)斜探头相对灵敏度测试连接好被测试斜探头并按直探头的方法测量噪声电平S0,然后将探头并置于CSK-1A标准试块上探测R100圆弧面(如图18),耦合良好并保持声束方向与试块侧面平行,前后移动探头,使R100圆弧面的一次回波辐度最高,将其衰减至满辐度的50%,此时衰减器的读数为S2。

则斜探头的相对灵敏度S 为:S=S2-S0(dB) (14)图18 斜探头相对灵敏度测量(3)小角度纵波探头测量方法同横波探头的情况,只不过基准反射面由CSK-1A试块上的R100圆弧面改为DB-H2试块上Φ3×80横孔,如图19所示。

前后移动探头使孔波达到最高,并用衰减器将其调至满刻度的50%,记下此时衰减器的读数S3,则S3-S0。

的差值即为被测探头的相对灵敏度。

测量时注意保持探头侧面与试块侧面平行。

图19 小角度探头相对灵敏度测量7 空载始波宽度测量(1)直探头空载始波宽度a)探头置1号(或CSK-1A)试块高100mm的探测面上,使底波B1;和B2的前沿分别对准水平刻度的5和10,即水平刻度全长代表钢中纵波声程200mm。

b)探头移置DB-PZ20-2、试块或CS-1-5试块上,仪器的调整度置灵敏度余量测试状态,将探头置于空气中,擦去探头表面油层,水平刻度的“0”点至始波后沿与垂直刻20%线的交点所对应的水平距离Wo即为空载始波宽度(用钢中纵波的距离表示),如图20所示。

(2)斜探头空载始波宽度a)连接直探头并将其置于1号(或CSK-1A)标准试块高91mm的探测上,调节“扫描”和“移位”旋钮,使底波B1、B2的前沿分别对准水平刻度的5和10,并使第二次底波辐度为垂直刻度的50%~80%。

相关文档
最新文档