中职统计基础知识分布数列
中职数学数列课件
中职数学数列课件一、引言数列是数学中一个重要的概念,它是按照一定顺序排列的一列数。
数列可以用于描述自然界和现实生活中的许多现象,例如人口增长、物理运动等。
因此,掌握数列的知识对于中职学生来说具有重要的意义。
二、数列的基本概念1.数列的定义:数列是由一系列按照一定顺序排列的数构成的集合。
数列中的每个数称为数列的项,通常用字母表示,如a1,a2,a3等。
2.数列的表示方法:数列可以用列举法、通项公式法、递推公式法等方式表示。
列举法是将数列的前几项直接写出来,如1,2,3,4,5;通项公式法是通过一个公式来表示数列的任意一项,如an=n^2;递推公式法是通过前一项或前几项来递推下一项,如an=an-1+2。
3.数列的项数:数列的项数可以是有限的,也可以是无限的。
有限数列的项数是有限的,如1,2,3,4,5;无限数列的项数是无限的,如1,2,3,4,5,三、等差数列1.等差数列的定义:如果一个数列从第二项起,每一项与它前一项的差都等于同一个常数,那么这个数列称为等差数列。
这个常数称为等差数列的公差。
2.等差数列的表示方法:等差数列可以用通项公式an=a1+(n-1)d表示,其中a1是首项,d是公差,n是项数。
任意两项之间的差是公差d。
数列中的任意一项都可以表示为首项和项数的函数。
数列的前n项和可以表示为Sn=n(a1+an)/2。
四、等比数列1.等比数列的定义:如果一个数列从第二项起,每一项与它前一项的比都等于同一个常数,那么这个数列称为等比数列。
这个常数称为等比数列的公比。
2.等比数列的表示方法:等比数列可以用通项公式an=a1r^(n-1)表示,其中a1是首项,r是公比,n是项数。
任意两项之间的比是公比r。
数列中的任意一项都可以表示为首项和项数的函数。
数列的前n项和可以表示为Sn=a1(1r^n)/(1r)。
五、数列的应用数列在现实生活中有着广泛的应用,例如在金融领域中的复利计算、在物理学中的运动学问题、在生物学中的人口增长问题等。
数列知识点归纳总结职高
数列知识点归纳总结职高数列是数学中的一个重要概念,也是职高数学教学中的重点内容之一。
掌握数列的基本概念、性质和相关计算方法,对于学生在数学学习和解决实际问题中都具有重要的意义。
本文将对数列的知识点进行归纳总结,帮助职高学生快速理解和应用数列知识。
一、数列的定义和表示方式1. 数列的定义:数列是将一系列按照某种规律排列的数按一定次序排列成一个有序数.2. 数列的表示方式:数列可用函数、递推公式、通项公式等方式来表示,不同的表示方式适用于不同的问题和计算方法。
二、常见数列的类型及性质1. 等差数列:- 定义:等差数列是指数列中的相邻两项之差保持不变的数列。
- 性质:a. 通项公式:an = a1 + (n - 1) * d,其中a1为首项,d为公差。
b. 前n项和公式:Sn = (a1 + an) * n / 2,其中Sn为前n项和。
- 例题应用:计算等差数列的第n项、前n项和以及根据已知条件求等差数列中未知项数等。
2. 等比数列:- 定义:等比数列是指数列中的相邻两项之比保持不变的数列。
- 性质:a. 通项公式:an = a1 * q^(n - 1),其中a1为首项,q为公比。
b. 前n项和公式(当|q|<1时):Sn = a1 * (1 - q^n) / (1 - q),其中Sn为前n项和。
- 例题应用:计算等比数列的第n项、前n项和以及根据已知条件求等比数列中未知项数等。
3. 斐波那契数列:- 定义:斐波那契数列是指数列中的每一项都等于前两项之和的数列。
- 性质:a. 通项公式:an = an-1 + an-2,其中a1 = 1,a2 = 1。
- 例题应用:求解斐波那契数列的第n项、前n项和以及根据已知条件求斐波那契数列中未知项数等。
4. 等差中项数列:- 定义:等差中项数列是指等差数列中由相邻两项的中间项构成的数列。
- 性质:a. 通项公式:an = a1 + (2n - 1) * d / 2,其中a1为首项,d为公差。
中职数学人教版基础模块下册第六章数列《数列的概念》课件
各项依次称为这个数列的第1项(或首项)、第2项……第n项.
比如,2009是数列①的第1项,2093是数列①的第8项.
新知探究
思考:
(1)集合{1,2,3,4}与集合{4,3,2,1}是同一个集合吗?
答案:是
(2)数列1,2,3,4与数列4,3,2,1是同一个数列吗?
2009, 2021, 2033, 2045, 2057, 2069, 2081, 2093
有穷数列
有穷数列
3 000, 3 045, 3 090, 3 180, 3 360
1
1
1
1, , , , …
2
3
4
无穷数列
1, 1.4, 1.41, 1.414, …
无穷数列
−1, 1, − 1, 1, …
无穷数列
1 1,2 (3 ), 4,5, ( 6) , 7 ;
2 2,4,( 6),8,10,(
×
有关,存在什么关系?
),14;
12
数列(5)的44
),196;
4 − 1,1, − 1,( 1 ), − 1,(
数列(5)与前边哪些数列
×
1), − 1;
4 1,
, 1, − 1, ( );
, 9, − 16,
, − 36,( ).
新知探究
我们还可举出一些数列的例子.
为了方便资金暂时不足的人购物,有些购物网站推出了分期付款服务,
上图中是标价为3 000元的电脑可以享受的分期服务,不同的付款方式所对
应的付款总金额数分别为
3 000, 3 045, 3 090, 3 180, 3 360;
(4)与数列(3)对应项
中职数学数列的基本知识ppt课件
中职数学数列的基本知识ppt课件目录•数列基本概念与性质•数列求和与通项公式•数列递推关系与性质•数列极限与收敛性判断•数列在实际问题中应用举例PART01数列基本概念与性质数列定义数列表示方法数列的项通常用带下标的字母来表示数列,如{an}。
数列中的每一个数都叫做数列的项。
0302 01数列定义及表示方法按照一定顺序排列的一列数。
等差数列性质任意两项之差为常数。
从第一项开始,依次成等差数列的若干个数的和等于项数乘以中间项。
中间项等于首尾两项和的一半。
等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
等比数列定义:从第二项起,每一项与它的前一项的比值等于同一个常数的一种数列。
等比数列性质任意两项之比为常数。
中间项的平方等于首尾两项的乘积。
从第一项开始,依次成等比数列的若干个数的积等于首项乘以末项再乘以公比的次幂。
算术数列几何数列调和数列混合数列常见数列类型及特点01020304每一项与前一项的差为常数,如1, 3, 5, 7,...每一项与前一项的比为常数,如2, 4, 8, 16,...每一项的倒数成等差数列,如1, 1/2, 1/3, 1/4,...不具有明显规律的数列,需要通过其他方法进行分析和处理。
PART02数列求和与通项公式等差数列求和公式推导通过倒序相加法或错位相减法推导等差数列求和公式。
等差数列求和公式应用利用等差数列求和公式解决与等差数列相关的问题,如计算前n项和、求某一项的值等。
等比数列求和公式推导通过错位相减法或等比数列的性质推导等比数列求和公式。
等比数列求和公式应用利用等比数列求和公式解决与等比数列相关的问题,如计算前n 项和、求某一项的值等。
通过观察数列的前几项,找出数列的通项公式。
观察法根据已知的递推关系式,逐步推导出数列的通项公式。
递推法通过设定未知数,建立方程组,求解得到数列的通项公式。
待定系数法通项公式求解方法典型例题解析已知等差数列的前n项和为Sn,且S10=100,S20=300,求S30。
中职数学数列的基本知识课件
目录
• 数列基本概念与性质 • 数列求和与通项公式 • 数列在生活中的应用 • 数列极限初步认识 • 数列在职业领域中的应用 • 总结回顾与拓展延伸
01 数列基本概念与性质
数列定义及表示方法
数列定义
按照一定顺序排列的一列数。
数列表示方法
通常用带下标的字母表示,如$a_n$,其中$n$为自然数,表示数列的第$n$项 。
易错难点剖析及注意事项
等差数列与等比数列的判定
在判断一个数列是否为等差或等比数列时,需要注意公差或公比 是否恒定,以及首项是否符合定义。
公式应用中的细节问题
在使用等差数列和等比数列的通项公式和求和公式时,需要注意公 式中各项的对应关系,以及是否满足公式的使用条件。
极限概念的理解
在理解数列极限的概念时,需要注意极限的严格定义,以及极限的 唯一性、保号性等性质。
等比数列及其性质
等比数列定义:从第二项起,每一项与它的前一项的比值等 于同一个常数的一种数列。 等比数列性质
任意两项之比为常数。
中项性质:在等比数列中,如果$m+n=p+q$,则$a_m times a_n = a_p times a_q$。 等比中项:如果在$a$与$b$中间插入一个数$G$,使$a$, $G$,$b$成等比数列,那么$G$叫做$a$与$b$的等比中项 。
解答1
根据等差数列的性质和已知条件,可以列出方程组求解 得到公差d=2,进而得到通项公式an=2n-1和前n项和公 式Sn=n^2。
例题2
已知等比数列{bn}的前n项和为Tn,且b1=2,T3=26 ,求bn和Tn。
解答2
根据等比数列的性质和已知条件,可以列出方程组求解 得到公比q=3,进而得到通项公式bn=2*3^(n-1)和前 n项和公式Tn=(3^n-1)/2。
7-2-统计学-分配数列和次数分布
组距式变量数列实例
表3-5
月工资(元) 500 元以下 500-600 600-700 700-800 800-900 900-1000 1000 元以上 合 计
某车间工人按月工资分组
工人数(人) 16 28 34 56 38 18 10 200 比重(%) 8.00 14.00 17.00 28.00 19.00 9.00 5.00 100.00
公式:
次数密度=各组次数 / 各组组距
( 9)
开口组:缺上限或缺下限的组 闭口组:上下限齐全的组
(10)组中值及计算** ①闭口组
临近组组限重合时:组中值=(上限+下限)/ 2 临近组组限间断时:组中值=(下限+下组下限)/2
②开口组
缺上限时: 组中值=下限+邻组组距/ 2 缺下限时: 组中值=上限 -邻组组距/ 2
组数和组距的关系
定性关系:全距一定的情况下,组数和组距呈 反方向变动。 定量关系: 组数=全距/组距=R/d 组距=R/(1+3.322lgN) 式二为确定组距的经验公式,其中N代表组数。
(5)频数(次数)与频率(比重) (6)品质数列与变量数列 (7)等距数列与异距数列 (8)次数密度:单位组距内分布的总体单位数。
数据排序并计算全距
确定变量数列的形式(单项式或组距式) 确定组数和组距
确定组限
计算各组次数和频率 绘制表格
注意事项
(1)组距最好为5或10的倍数。 (2)最小组的下限略低于最小变量值,最大组的 上限略高于最大变量值。
(3)离散型变量分组,相邻组的组限可以间断, 也可以重叠;连续型变量分组,相邻组的组限必须重 叠。 (4)组限重叠时,临界点的总体单位按“上限不 在内”的原则归组。
单项式变量数列实例
分布数列知识点总结
分布数列知识点总结数列是数学中的一个重要概念,它在许多领域都有着广泛的应用。
在数学分析中,有一类特殊的数列被称为分布数列,它们具有一些特殊的性质和特点,是数学研究中的重要研究对象。
本文将对分布数列的相关知识点进行总结,包括分布数列的定义、性质、定理和应用等内容,以期能帮助读者深入了解和掌握这一重要概念。
一、分布数列的定义首先,我们来看一下分布数列的定义。
分布数列是指数列中具有一定分布规律的数列,其一般表示形式为{an},其中an是数列中的元素,n表示元素的序号。
通常来讲,分布数列中的元素满足一定的分布规律,这就要求我们能够找到一种规律来描述数列中各个元素之间的关系,从而能够清楚地表达出数列的分布规律。
分布数列通常可以用一个通项公式来表示,通项公式是一种能够描述数列中元素分布规律的公式,它包含了数列中各个元素的计算方式,通过通项公式,我们可以方便地求解数列中的任意元素,同时也能够描述数列中的一些重要特性和性质。
二、分布数列的性质分布数列作为一类特殊的数列,其具有一些特殊的性质和特点,这些性质和特点也是我们在研究分布数列时需要重点关注的内容。
下面,我们将来看一下分布数列的一些重要性质。
1. 有界性:分布数列通常具有一定的有界性,即数列中的元素存在一个上确界和下确界。
这是因为分布数列所描述的分布规律通常是有一定范围和限制的,因此数列中的元素通常也是有限的,这就决定了分布数列具有有界性。
2. 单调性:分布数列通常具有一定的单调性,即数列中的元素满足一定的单调增减规律。
这是因为分布数列所描述的分布规律通常是有顺序性的,因此数列中的元素通常也会具有一定的单调性。
根据数列的单调性,我们可以更好地理解和分析数列的分布规律。
3. 收敛性:分布数列通常具有一定的收敛性,即数列中的元素存在一个极限。
这是因为分布数列所描述的分布规律通常是有稳定性的,因此数列中的元素通常也会具有一定的收敛性。
通过数列的收敛性,我们可以更好地理解和分析数列的极限性质。
中职数学:数列的基本知识课件
通过使用列表法,可以把数列的每一项都列出来,更好地分析和解决数列问题。
3 经典题型解析
我们将在课件中分享一些数列的经典题型,并提供详细的解析过程。
五、练习与总结
数列练习题
通过练习题,巩固对数列知识的理解和应用能力。
数列知识点总结
对数列的概念、公式以及应用进行总结,方便复习和回顾。
数列的符号表示
数列通常用大写字母表示, 如a,b,c,...,其中a1表示 数列的第一项。
数列的分类
数列可以分为等差数列、等 比数列以及其他常见数列。
二、数列的通项公式
等差数列
等差数列是指数列中每一项与 前一项之差为常数的数列。
等差数列公式
通项公式:an = a1 + (n-1)d
等差数列性质
等差数列的相邻两项之间的差 值为常数,求和公式为 (n/2)(a1+an)。
疑难解答
最后,我们将解答你在学习数列过程中遇到的各种疑难问题。
等差数列示例
例如,1, 3, 5, 7, 9是 一个等差数列,前n 项和可以用公式计算。
等比数列求和
等比数列的前n项和 公式为Sn = a1(1 rn)/(1 - r)。
等比数列示例
例如,2, 6, 18, 54是 一个等比列的应用
1 数列在实际中的应用
数列在金融、物理、计算机科学等领域中有广泛的应用,如利润预测、物体运动轨迹的 分析等。
中职数学:数列的基本知 识课件
欢迎来到中职数学数列的基本知识课件!在这个课件中,我们将深入探讨数 列的概念、符号表示和通项公式,以及计算数列的前n项和,还会介绍数列在 实际中的应用。准备好开始了吗?让我们一起来探索数列的奥秘吧!
中职数学对口升学复习第六部分《数列》基础知识点归纳及山西历年真题汇编
中职数学对口升学复习第六部分《数列》基础知识点归纳及山西历年真题汇编第六部分数列【知识点1】数列的概念1.数列的定义数列:按一定次序排列的一列数叫做数列。
项:数列中每个数都叫做数列的项。
各项依次叫作这个数列的第1项(首项)、第2项、...第n 项。
项数:各项在数列中所处位置的编号。
2.数列的分类有穷数列:项数有限的数列. 无穷数列:项数无限的数列.3.数列的一般形式:一般形式:a 1,a 2,a 3,...,a n ,...,其中an 是数列的第n 项,叫作数列的通项,n 叫作a n 的序号整个数列记作{an }.【知识点2】数列的通项1.通项公式:a n 与n 之前的函数关系式a n =f(n).数列的通项a n 可看成是n 的函数(以正整数的子集为定义域)。
注意:①数列的通项公式可以不止一个;②数列中的数依次出现正负相间的数时,可把符合分离出来,用(-1)n 或(-1)n+1来表示;③求数列的通项公式关键是寻求各项与项数的关系并归纳其规律。
2.递推公式:给出数列第1项(或前几项)以及后一项与前1项(或前几项)的关系式【知识点3】等差数列1.定义:一个数列从第二项开始后项减前项为一个常数就是等差数列。
d a a n n =-+1(1≥n )注意:公差d 一要用后项减前项,而不能用前项减后项。
2.常数列:公差的0的数列。
例如:0,0,0,0,...3.等差通项公式①m n a d n a a m n )()1(1-+=-+=;②b kn a n +=(k=d,b=a 1-d); ()n ma a d n m-=- 4.等差中项:2后前中=a a a +5.一个数列是否为等差数列的判定:(1)定义法:看相邻两项后项与前项差是否为常数d a a n n =-+1(1)n ≥.(2)中项法:11(2)2n n n a a a n -++=≥.6. 等差数列性质:1.m n s ta a a a +=+若m+n=s+t,则2. 项数(下标)成等差数列则对应项也成等差数列【知识点4】等差数列前n 项和1.等差数列求和公式:①11()(1)2n n n a a s na n n d +==+-② Bn An s n +=22,21da B d A -== ③()n n s n n a +=为奇数时2. 若{a n }是等差数列,则nn n n n S S S S S 23,2,--成等差数列3.已知数列的前n 项和公式如何求通项公式:1111)1()2({==≥-=-n S a n S S a n n n【知识点5】等比数列1.定义:一般地,如果一个数列从第2项起,每一项与它前一项的比都等于同一个常数,那么这个数列叫作等比数列,这个常数叫做等比数列的公比,通常用字母q 表示.1,0,0n n na q a q a +=≠≠ 注意:①求公比q 一要用后项除以项,而不能用前项除以后项;②等比数列中每一项及公比q 都不为0;③不为0的常数列既是公差为0的等差数列,又是公比为1的等比数列。
中职数学:数列的基本知识课件
等比数列的通项公式
总结词
等比数列的通项公式是用来表示数列中每一项的数学表达式。
详细描述
等比数列的通项公式是 a_n=a_1×q^(n-1),其中 a_n 是第 n 项的值,a_1 是第一项的值,q 是公比 ,n 是项数。
等比数列的求和公式
总结词
等比数列的求和公式是用来计算数列 中所有项的和的数学表达式。
多个不同的极限值。
收敛数列具有有界性,即存在一 个正数M,使得数列的项都满足
$|x_n| leq M$。
收敛数列具有保序性,即如果 $x_n leq y_n$,且$lim x_n = lim y_n$,则可以推出$x_n geq
y_n$。
收敛数列的应用
在数学分析中,收敛数列是研究函数极限、连续性、可微性等概念的基础。
04
CATALOGUE
数列的极限与收敛
数列的极限定义
极限是数列的一种特性,表示 数列从某一项开始,无限接近 于一个常数。
极限的定义包括两种形式:数 列的极限和子数列的极限。
数列的极限定义是数学分析中 的基本概念之一,是研究数列 的单调性、有界性以及数列求 和等问题的关键。
收敛数列的性质
收敛数列具有唯一性,即收敛数 列只能收敛到一个点,不会出现
数列与实际问题的综合应用
总结词
数列在解决实际问题中具有广泛的应用,如人口增长、 银行利率、股票价格等都可以用数列进行描述和预测。
详细描述
数列作为一种数学工具,在解决实际问题中具有广泛的 应用。例如,人口增长可以用等差数列或等比数列进行 描述和预测;银行利率和股票价格可以用等比数列进行 计算和分析。通过建立数学模型,可以将这些实际问题 转化为数列问题,从而为决策提供科学的依据。
中职数学数列知识点总结
公差为
(1)若 ,则
若 ,则
(2) 成等比数列,公比为
中项公式
三个数 成等差数列,则有
三个数 成等比数列,则有
即
注意:等比中项不唯一
4.已知前 项和 的解析式,求通项 解题技巧:
《数列》知识点复习
第六章知识点汇总
等差数列和等比数列
等差数列
等比数列
定义
每一项与前一项之差为同一个常数
每一项与前一项之比为同一个常数
递推公式
或
注:当公差 时,数列为常数列
注:等比数列各项及公比均不能为0;
当公ቤተ መጻሕፍቲ ባይዱ为1时,数列为常数列
通项公式
=
前 项和公式
( )
(q=1)
性质
(1)
(2)若 ,则
若 ,则
中职数学数列的基本知识ppt课件
如果两个数列的极限存在 且相等,那么这两个数列 之间的任意数列的极限也 存在且等于这两个数列的 极限。
如果数列单调增加(或减 少)且有上(下)界,那 么该数列的极限存在。
利用无穷小与无穷大的性 质求解数列的极限,如无 穷小与有界函数的乘积仍 为无穷小等。
THANKS
感谢观看
递推数列周期性判断
周期性的定义
递推数列中,如果存在某个正整 数p,使得数列中任意一项与它 前面第p项相等,则称该数列具 有周期性,p为该数列的周期。
周期性判断方法
通过观察、分析数列中各项之间 的变化规律,找出可能存在的周 期p,再验证数列中任意一项是
否与它前面第p项相等。
周期性应用
利用数列的周期性,可以简化数 列的求解过程,如求数列中某项
数列表示方法
数列可以用通项公式或递推公式表示,其中通项公式表示数列中任意一项与项 数n的关系,而递推公式表示数列中相邻项之间的关系。
数列分类及特点
有穷数列和无穷数列
根据项数是否有限,数列可分为有穷 数列和无穷数列。有穷数列项数有限, 无穷数列项数无限。
单调数列和摆动数列
根据数列的增减性,数列可分为单调 数列和摆动数列。单调数列单调递增 或递减,摆动数列则不具备单调性。
性质
等比数列中,任意两项的比值相等,且等于公比;等比数列的 每一项都不为零;等比数列的公比可以是正数、负数或零(除 数列首项外)。
等比数列通项公式推导
公式形式
an=a1×qn-1,其中an表示第n项, a1表示首项,q表示公比,n表示 项数。
推导过程
根据等比数列的定义,可以得到 an/a(n-1)=q,通过递推关系,可 以得到an=a1×q×q×...×q(n-1个 q)=a1×qn-1。
中专数列知识点归纳总结
中专数列知识点归纳总结数列作为高中数学中的重要概念,在中专数学学习中也占据着重要的地位。
它不仅在数学中有着广泛的应用,而且还在其他科学领域中发挥着重要的作用。
本文将对中专数列的知识点进行归纳总结,帮助读者更好地理解和掌握相关知识。
一、数列的概念和性质1. 数列的定义数列指的是按照一定规律排列的一组数,通常用字母表示,如a₁,a₂,a₃...。
数列中的每个数称为项,用a₁,a₂,a₃...表示。
2. 数列的公式表示数列可以通过递推公式或通项公式来表示。
递推公式表示每一项与前一项之间的关系;通项公式表示第n项与n的关系。
3. 数列的分类数列可以按照公式的不同形式进行分类,常见的有等差数列和等比数列。
二、等差数列1. 等差数列的定义和性质等差数列是指数列中,任意两项之间的差恒定的数列。
设等差数列的首项为a₁,公差为d,则其通项公式为an = a₁ + (n-1)d。
2. 等差数列的求和公式等差数列的前n项和可以通过求和公式来计算,公式为Sn = (a₁ + an) * n / 2。
三、等比数列1. 等比数列的定义和性质等比数列是指数列中,任意两项之比恒定的数列。
设等比数列的首项为a₁,公比为r,则其通项公式为an = a₁ * r^(n-1)。
2. 等比数列的求和公式等比数列的前n项和可以通过求和公式来计算,公式为Sn = a₁ *(r^n - 1) / (r - 1),其中r ≠ 1。
四、数列的应用1. 等差数列的应用等差数列在实际生活中有着广泛的应用,如物理学中的匀速运动、财务学中的等额增长等。
2. 等比数列的应用等比数列在实际生活中也有着重要的应用,如生物学中的细胞分裂、经济学中的复利等。
五、数列的特殊情况1. 常数列常数列是指数列中所有的项都相等的特殊情况,其递推公式和通项公式都可以简化成相同的形式。
2. 斐波那契数列斐波那契数列是指从第3项开始,每一项都是前两项之和的数列,如1, 1, 2, 3, 5, 8, 13...。
职高数列知识点归纳总结
职高数列知识点归纳总结数列是高中数学中的重要概念之一,职高数列知识点的掌握对于学生在高职阶段的学习和职业发展具有重要意义。
本文将对职高数列知识点进行归纳总结,帮助学生更好地理解和应用数列概念。
一、数列的概念与表示方法1. 数列的定义:数列是由一系列按照一定顺序排列的数所组成的有限或无限序列。
2. 数列的表示方法:数列可以用各种符号来表示,常用的有通项公式、递推公式和文字描述等。
3. 等差数列与等比数列:等差数列中,任意两项之间的差值相等;等比数列中,任意两项之间的比值相等。
二、等差数列1. 等差数列的通项公式:设等差数列的首项为a₁,公差为d,第n 项为aₙ,则通项公式为aₙ = a₁ + (n-1)d。
2. 等差数列的求和公式:设等差数列的首项为a₁,末项为aₙ,项数为n,公差为d,则求和公式为Sₙ = (a₁ + aₙ) * n / 2。
3. 等差数列的性质:等差数列的任意几项的和等于这几项的平均值乘以项数。
三、等比数列1. 等比数列的通项公式:设等比数列的首项为a₁,公比为q,第n 项为aₙ,则通项公式为aₙ = a₁ * q^(n-1)。
2. 等比数列的求和公式:设等比数列的首项为a₁,末项为aₙ,项数为n,公比为q,则求和公式为:- 当q ≠ 1时,Sₙ = a₁ * (q^n - 1) / (q - 1)。
- 当q = 1时,Sₙ = a₁ * n。
3. 等比数列的性质:等比数列的任意几项的和等于首项与末项的比值乘以公比减一。
四、特殊数列1. 等差中项数列:等差中项数列是指等差数列中的每两项的中间项组成的数列。
其通项公式为aₙ = a₁ + (n-1)d/2。
2. 等差三项数列:等差三项数列是指等差数列中的每三项的中间项组成的数列。
其通项公式为aₙ = a₁ + (n-1)d/3。
3. 斐波那契数列:斐波那契数列是一个无限数列,其通项公式为fₙ = fₙ₋₁ + fₙ₋₂,其中前两项为1,1。
中职数学:数列的基本知识课件
⒉ 数列的项:数列中的每一个数叫做数列
的项. 其中第1个数叫做第1项(或首项),
第2个数叫做第2项,…,第n 个数叫做第n项.
其中各项在在数列中的位置的数字1,2,…
称为项数.
第3 项
例如数列1、 2、 22、 23 264
第1项
第 65 项
3.数列的分类: 只有有限项的数列叫做有穷数列; 有无限项的数列叫做无穷数列.
(2)它的一个通项公 an 式 (21是 n)n
今天我们一起收获了哪些知识?
数列的相关概念
定义 项、项数
分类 一般形式 通项公式
基本题型一
基本题型二
已知数列的通项公式, 用代入法求出数列中的 任意一项。如例1
对于简单的数列,根据 前几项观察归纳出数列 的一个通项公式。如例 2
作业
1.下述实例是否构成数列? 1)我们班全体同学的身高。 2)我们班全体同学的姓名按学号的次序排
2n (2)n
(2 ) a 1 2 1 3 1a 2 2 2 3 1a 3 2 3 3 5 因此 3 项 数 1 、 1 为 、 列 5 . 的 a 6 2 6 前 3 61
例2 求下列数列的一个通项 公式:
(1) 2 、4 、8 、16 变式 1、 3: 、 7、 15
总结规律:上述例子共同特点: 1.均是一列数;2.有一定次序。
1.数列的定义:按一定的顺序排成 的一列数叫做数列.
问:数列 1、 2、 3、4、 5与数列5、 4、 3、 2、1
是相同的数列吗?
(不是)
问:1、2、1、2 … 是数列吗? (是) 注意: ⑴ 数列的数是按一定顺序排列的。
⑵ 数列中的数可以重复.特殊的如数列 2、 2、 2、 2 … 称为常数列.
中职数学数列知识点总结
公差为
(1)若 ,则
若 ,则
(2) 成等比数列,公比为
中项公式
三个数 成等差数列,则有
三个数 成等比数列,则有
即
注意:等比中项不唯一
4.已知前 项和 的解析式,求通项 解题技巧:
《数列》知识点复习
第六章知识点汇总
等差数列和等比数列
等差数列
等比数列
定义
每一项与前一项之差为同一个常数
每一项与前一项之比为同一个常数
递推公式
或
注:当公差 时,数列为常数列
注:等比数列各项及公比均不能为0;
当公比为1时,数列为常数列
通项公式
=
前 项和公式
( )
(q=1)
性质
(Hale Waihona Puke )(2)若 ,则若 ,则
中职数学:数列的基本知识课件
分析:(1) 项数n 1 2 3 4
项an 2 4 8 16
项an 21 22 23 24
解:所给数列的前4项为 21、22、23、24,因此
它的一个通项公式是an 2n 解:所给数列的前 4项为 21 1、22 1、23 1、24 1,
第2个数叫做第2项,…,第n 个数叫做第n项.
其中反应各项在在数列中的位置的数字1, 2,…,n,称为项数.
第3 项
例如数列1、2 、22 、23 264
第1项
第 65 项
3.数列的分类: 只有有限项的数列叫做有穷数列; 有无限项的数列叫做无穷数列.
1 1、1 、1 、 1 、1 、1 、 1 、1
数列的基本知识
(1)课题引入
棋盘上共有8行8列,构成64个格子。国际象棋起源于古 代印度,关于国际象棋有这样一个传说。国王要奖赏国 际象棋的发明者,问他有什么要求,发明者说:“请在 棋盘上的第1个格子里放上1颗麦粒,在第2个格子里放 上2颗麦粒,在第3个格子里放上4颗麦粒,在第4个格子 里放上8颗麦粒,依此类推,每个格子里放的麦粒数都 是前一个格子里放的麦粒数的2倍,直到第64个格子, 请给我足够的粮食来实现上述要求”。国王觉得这并不 是很难办到的事,就欣然同意了他的要求。
9 16
项an 12
22
32 42
解:(1) 它的一个通项公式是 an n2
(2) 它的一个通项公式是
an
(1)n 2n
今天我们一起收获了哪些知识?
数列的相关概念 基本题型一 基本题型二
定义
项、项数 分类
一般形式 通项公式
已知数列的通 对于简单的数