《1.3 集合的基本运算》优秀教学教案教学设计

合集下载

1.3集合的基本运算教案-高一数学人教A版(2019)必修第一册

1.3集合的基本运算教案-高一数学人教A版(2019)必修第一册

第一章集合与常用逻辑用语1.3集合的基本运算【素养目标】1.能从教材实例中抽象出两个集合并集和交集、全集和补集的含义.(数学抽象)2.准确翻译和使用补集符号和Venn图.(数学抽象)3.掌握有关的术语和符号,并会用它们正确进行集合的并集、交集与补集运算.(数学运算) 4.能用Venn图表示两个集合的并集和交集.(直观想象)5.能根据集合间的运算结果判断两个集合之间的关系.(逻辑推理)6.能根据两个集合的运算结果求参数的取值范围.(逻辑推理)7.会用Venn图、数轴解决集合综合运算问题.(直观想象)【学法解读】1.在本节学习中,学生应依据老师创设合适的问题情境,加深对“并集”“交集”“补集”“全集”等概念含义的认识,特别是对概念中“或”“且”的理解,尽量以义务教育阶段所学过的数学内容或现实生活中的实际情境为载体创设相关问题,帮助理解.2.要注意结合实例,运用数轴、V enn图等表示集合进行运算,从而更直观、清晰地解决有关集合的运算问题.1.3.1 并集与交集必备知识·探新知基础知识(3)A⊆B (4)B⊆A(5)A=B说明:由上述五个图形可知,无论集合A,B是何种关系,A∪B恒有意义,图中阴影部分表示并集.:并集概念中的“或”与生活用语中的“或”的含义是否相同?提示:并集概念中的“或”与生活用语中的“或”的含义是不同的.生活用语中的“或”是“或此”“或彼”只取其一,并不兼存;而并集中的“或”则是“或此”“或彼”“或此彼”,可兼有.“x∈A或x∈B”包含三种情形:①x∈A,但x∉B;②x∈B,但x∉A;③x∈A且x∈B.知识点二交集(1)A与B相交(有公共元素,相互不包含)(2)A与B相离(没有公共元素,A∩B=∅)(3)A⊆B,则A∩B=A(4)B⊆A,则A∩B=B(5)A=B,A∩B=B=A:集合运算中的“且”与生活用语中的“且”相同吗?提示:集合运算中的“且”与生活用语中的“且”的含义相同,均表示“同时”的含义,即“x∈A,且x∈B”表示元素x属于集合A,同时属于集合B.知识点三并集与交集的性质(1)___A∩A=A___,A∩∅=∅.(2)____A∪A=A____,A∪∅=A.思考3:(1)对于任意两个集合A,B,A∩B与A有什么关系?A∪B与A有什么关系?(2)设A,B是两个集合,若已知A∩B=A,A∪B=B,则它们之间有何关系?集合A与B 呢?提示:(1)(A∩B)⊆A,A⊆(A∪B).(2)A∩B=A⇔A∪B=B⇔A⊆B.基础自测1.(2019·全国卷Ⅲ理,1)已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=(A) A.{-1,0,1}B.{0,1}C.{-1,1} D.{0,1,2}[解析]∵B={x|x2≤1}={x|-1≤x≤1},∴A∩B={-1,0,1,2}∩{x|-1≤x≤1}={-1,0,1},故选A.2.(2019·江苏宿迁市高一期末测试)设集合M={0,1,2},N={2,4},则M∪N=(D) A.{0,1,2} B.{2}C.{2,4} D.{0,1,2,4}[解析]M∪N={0,1,2}∪{2,4}={0,1,2,4}.3.已知集合M={x|-5<x<3},N={x|-4<x<5},则M∩N=(A)A.{x|-4<x<3}B.{x|-5<x<-4}C.{x|3<x<5} D.{x|-5<x<5}[解析]M∩N={x|-5<x<3}∩{x|-4<x<5}={x|-4<x<3},故选A.4.(2019·江苏,1)已知集合A={-1,0,1,6},B={x|x>0,x∈R},则A∩B=____{1,6}________.[解析]A∩B={-1,0,1,6}∩{x|x>0,x∈R}={1,6}.5.已知集合A={1,2,3},B={2,m,4},A∩B={2,3},则m=___3__.[解析]因为A∩B={2,3},所以3∈B.所以m=3.关键能力·攻重难题型探究题型一并集运算例1(1)设集合A={1,2,3},B={2,3,4,5},求A∪B;(2)设集合A={x|-3<x≤5},B={x|2<x≤6},求A∪B.[分析]第(1)题由定义直接求解,第(2)题借助数轴求很方便.[解析](1)A∪B={1,2,3}∪{2,3,4,5}={1,2,3,4,5}.(2)画出数轴如图所示:∴A∪B={x|-3<x≤5}∪{x|2<x≤6}={x|-3<x≤6}.[归纳提升]并集运算应注意的问题(1)对于描述法给出的集合,应先看集合的代表元素是什么,弄清是数集,还是点集……,然后将集合化简,再按定义求解.(2)求两个集合的并集时要注意利用集合元素的互异性这一属性,重复的元素只能算一个.(3)对于元素个数无限的集合进行并集运算时,可借助数轴,利用数轴分析法求解,但要注意端点的值能否取到.【对点练习】❶ (1)已知集合A ={0,2,4},B ={0,1,2,3,5},则A ∪B =__{0,1,2,3,4,5}__. (2)若集合A ={x|x>-1},B ={x|-2<x<2},则A ∪B =__{x|x>-2}___. [解析] (1)A ∪B ={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}. (2)画出数轴如图所示,故A ∪B ={x|x>-2}.题型二 交集运算例2 (1)设集合M ={-1,0,1},N ={x|x2=x}则M∩N =( B ) A .{-1,0,1} B .{0,1} C .{1}D .{0}(2)若集合A ={x|-2≤x≤3},B ={x|x<-1或x>4},则集合A∩B 等于( D ) A .{x|x≤3或x>4} B .{x|-1<x≤3} C .{x|3≤x<4}D .{x|-2≤x<-1}(3)已知A ={(x ,y)|4x +y =6},B ={(x ,y)|3x +2y =7},则A∩B =___{(1,2)}__. [分析] (1)先求出集合N 中的元素再求M 、N 的交集.(2)借助数轴求A ∩B .(3)集合A和B 的元素是有序实数对(x ,y ),A 、B 的交集即为方程组⎩⎪⎨⎪⎧4x +y =63x +2y =7的解集.[解析] (1)N ={x|x2=x}={0,1},∴M∩N ={0,1},故选B .(2)将集合A 、B 表示在数轴上,由数轴可得A∩B ={x|-2≤x<-1},故选D .(3)A ∩B ={(x ,y )|4x +y =6}∩{(x ,y )|3x +2y =7}=⎩⎨⎧⎭⎬⎫x ,y ⎪⎪⎪⎩⎪⎨⎪⎧ 4x +y =63x +2y =7={(1,2)}. [归纳提升] 求集合A∩B 的方法与步骤 (1)步骤①首先要搞清集合A 、B 的代表元素是什么.②把所求交集的集合用集合符号表示出来,写成“A∩B”的形式.③把化简后的集合A、B的所有公共元素都写出来即可(若无公共元素则所求交集为∅).(2)方法①若A、B的代表元素是方程的根,则应先解方程,求出方程的根后,再求两集合的交集;若集合的代表元素是有序数对,则A∩B是指两个方程组成的方程组的解集,解集是点集.②若A、B是无限数集,可以利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实心点表示,不含有端点的值用空心点表示.【对点练习】❷(1)(2020·天津和平区高一期中测试)设集合A={1,2,3,4},B={y|y=2x -1,x∈A},则A∩B等于(A)A.{1,3}B.{2,4}C.{2,4,5,7} D.{1,2,3,4,5,7}(2)(2020·广州荔湾区高一期末测试)设集合A={1,2,4},B={x|x2-4x+m=0},若A∩B ={1},则集合B=(D)A.{-3,1} B.{0,1}C.{1,5} D.{1,3}[解析](1)∵A={1,2,3,4},B={y|y=2x-1,x∈A},∴B={1,3,5,7},∴A∩B={1,3},故选A.(2)∵A∩B={1},∴1∈B,∴1是方程x2-4x+m=0的根,∴1-4+m=0,∴m=3.∴B={x|x2-4x+3=0}={x|(x-1)(x-3)=0}={1,3}.题型三集合的交集、并集性质的应用例3(1)设集合M={x|-2<x<5},N={x|2-t<x<2t+1,t∈R},若M∪N=M,则实数t的取值范围为___________.(2)设A={x|x2-2x=0},B={x|x2-2ax+a2-a=0}.①若A∩B=B,求a的取值范围;②若A∪B=B,求a的取值.[分析](1)把M∪N=M转化为N⊆M,利用数轴表示出两个集合,建立端点间的不等关系式求解.(2)先化简集合A,B,再由已知条件得A∩B=B和A∪B=B,转化为集合A、B的包含关系,分类讨论求a的值或取值范围.[解析] (1)由M ∪N =M 得N ⊆M ,当N =∅时,2t +1≤2-t ,即t ≤13,此时M ∪N =M 成立.当N ≠∅时,由数轴可得⎩⎪⎨⎪⎧2-t <2t +1,2t +1≤5,2-t ≥-2,解得13<t ≤2.缩上可知,实数t 的取值范围是{t |t ≤2}. (2)由x 2-2x =0,得x =0或x =2.∴A ={0,2}. ①∵A ∩B =B ,∴B ⊆A ,B =∅,{0},{2},{0,2}. 当B =∅时,Δ=4a 2-4(a 2-a )=4a <0,∴a <0;当B ={0}时,⎩⎪⎨⎪⎧a 2-a =0,Δ=4a =0,∴a =0;当B ={2}时,⎩⎪⎨⎪⎧4-4a +a 2-a =0,Δ=4a =0,无解;当B ={0,2}时,⎩⎪⎨⎪⎧2a =2,Δ=4a >0,a 2-a =0,得a =1.综上所述,得a 的取值范围是{a |a =1或a ≤0}. ②∵A ∪B =B ,∴A ⊆B .∵A ={0,2},而B 中方程至多有两个根, ∴A =B ,由①知a =1.[归纳提升] 利用交、并集运算求参数的思路(1)涉及A ∩B =B 或A ∪B =A 的问题,可利用集合的运算性质,转化为相关集合之间的关系求解,要注意空集的特殊性.(2)将集合中的运算关系转化为两个集合之间的关系.若集合中的元素能一一列举,则可用观察法得到不同集合中元素之间的关系,要注意集合中元素的互异性;与不等式有关的集合,则可利用数轴得到不同集合之间的关系.【对点练习】❸ 已知集合M ={x|2x -4=0},集合N ={x|x2-3x +m =0}, (1)当m =2时,求M∩N ,M ∪N ; (2)当M∩N =M 时,求实数m 的值. [解析] (1)由题意得M ={2}.当m =2时,N ={x|x2-3x +2=0}={1,2}, ∴M∩N ={2},M ∪N ={1,2}.(2)∵M∩N =M ,∴M ⊆N ,∵M ={2},∴2∈N ,∴2是关于x 的方程x2-3x +m =0的解,即4-6+m =0,解得m =2.课堂检测·固双基1.设集合A ={x ∈N *|-1≤x ≤2},B ={2,3},则A ∪B =( B ) A .{-1,0,1,2,3} B .{1,2,3} C .{-1,2}D .{-1,3}[解析] 集合A ={1,2},B ={2,3},则A ∪B ={1,2,3}. 2.已知集合A ={x |-3<x <3},B ={x |x <1},则A ∩B =( C ) A .{x |x <1} B .{x |x <3} C .{x |-3<x <1}D .{x |-3<x <3}[解析] A ∩B ={x |-3<x <3}∩{x |x <1}={x |-3<x <1}.故选C .3.设集合A ={2,4,6},B ={1,3,6},则如图中阴影部分表示的集合是( C )A .{2,4,6}B .{1,3,6}C .{1,2,3,4,6}D .{6}[解析] 图中阴影表示A ∪B ,又因为A ={2,4,6},B ={1,3,6},所以A ∪B ={1,2,3,4,6},故选C .4.已知集合A ={x |x ≤1},B ={x |x ≥a },且A ∪B =R ,则实数a 的取值范围是__a ≤1__. [解析] 利用数轴画图解题.要使A ∪B =R ,则a ≤1.5.已知集合A ={x |m -2<x <m +1},B ={x |1<x <5}. (1)若m =1,求A ∪B ;(2)若A ∩B =A ,求实数m 的取值范围. [解析] (1)由m =1,得A ={x |-1<x <2}, ∴A ∪B ={x |-1<x <5}.(2)∵A ∩B =A ,∴A ⊆B .显然A ≠∅.故有⎩⎪⎨⎪⎧m -2≥1,m +1≤5,解得3≤m ≤4.∴实数m 的取值范围为[3,4].素养作业·提技能A 组·素养自测一、选择题1.已知集合A ={-2,0,2},B ={x |x 2-x -2=0},则A ∩B =( B ) A .∅ B .{2} C .{0}D .{-2}[解析] 因为B ={-1,2},所以A ∩B ={2}.2.已知集合M ={x |-3<x ≤5},N ={x |x <-5,或x >4},则M ∪N =( A ) A .{x |x <-5,或x >-3} B .{x |-5<x <4} C .{x |-3<x <4}D .{x |x <-3,或x >5}[解析] 在数轴上分别表示集合M 和N ,如图所示,则M ∪N ={x |x <-5,或x >-3}.3.已知M ={(x ,y )|x +y =2},N ={(x ,y )|x -y =4},则M ∩N 等于( D ) A .x =3,y =-1 B .(3,-1) C .{3,-1}D .{(3,-1)}[解析] ∵M ,N 均为点集,由⎩⎪⎨⎪⎧ x +y =2,x -y =4,得⎩⎪⎨⎪⎧x =3,y =-1,∴M ∩N ={(3,-1)}.4.若A ={x ∈N |1≤x ≤10},B ={x ∈R |x 2+x -6=0},则图中阴影部分表示的集合为( A )A .{2}B .{3}C .{-3,2}D .{-2,3}[解析] A ={1,2,3,4,5,6,7,8,9,10},B ={-3,2},由题意可知,阴影部分为A ∩B ,A ∩B ={2}.5.集合A ={1,2},B ={1,2,3},C ={2,3,4},则(A ∩B )∪C =( D ) A .{1,2,3} B .{1,2,4} C .{2,3,4}D .{1,2,3,4}[解析] A ∩B ={1,2},(A ∩B )∪C ={1,2,3,4},故选D .6.(2019·武汉市高一调研)设集合A ={x |-1≤x <2},B ={x |x <a },若A ∩B ≠∅,则a 的取值范围是( D )A .{a |-1<a ≤2}B .{a |a >2}C .{a |a ≥-1}D .{a |a >-1}[解析] 因为A ∩B ≠∅,所以集合A ,B 有公共元素,在数轴上表示出两个集合,如图所示,易知a >-1. 二、填空题7.已知集合A ={2,3},B ={2,6,8},C ={6,8},则(C ∪A )∩B =__{2,6,8}__. [解析] ∵A ∪C ={2,3}∪{6,8}={2,3,6,8}, ∴(C ∪A )∩B ={2,3,6,8}∩{2,6,8}={2,6,8}.8.若集合A ={x |3ax -1=0},B ={x |x 2-5x +4=0},且A ∪B =B ,则a 的值是__0,13,112__. [解析] 由题意知,B ={1,4},A ∪B =B ,∴A ⊆B .当a =0时,A =∅,符合题意;当a ≠0时,A =⎩⎨⎧⎭⎬⎫13a ,∴13a =1或13a =4, ∴a =13或a =112.综上,a =0,13,112.9.已知集合A ={x |x <1,或x >5},B ={x |a ≤x ≤b },且A ∪B =R ,A ∩B ={x |5<x ≤6},则2a -b =__-4__.[解析] 如图所示,可知a =1,b =6,2a -b =-4.三、解答题10.已知集合A =⎩⎨⎧x ⎪⎪⎪ ⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫3-x >0,3x +6>0,集合B ={m |3>2m -1},求A ∩B ,A ∪B .[解析] 解不等式组⎩⎪⎨⎪⎧3-x >0,3x +6>0,得-2<x <3,则A ={x |-2<x <3}.解不等式3>2m -1,得m <2,则B ={m |m <2}. 用数轴表示集合A 和B ,如图所示.则A∩B={x|-2<x<2},A∪B={x|x<3}.11.设集合A={a2,a+1,-3},B={a-3,2a-1,a2+1},A∩B={-3},求实数a 的值.[解析]∵A∩B={-3},∴-3∈B.∵a2+1≠-3,∴a-3=-3或2a-1=-3.①若a-3=-3,则a=0,此时A={0,1,-3},B={-3,-1,1},但由于A∩B={1,-3}与已知A∩B={-3}矛盾,∴a≠0.②若2a-1=-3,则a=-1,此时A={1,0,-3},B={-4,-3,2},A∩B={-3}.综上可知a=-1.B组·素养提升一、选择题1.设集合S={x|(x-2)(x-3)≥0},T={x|x>0},则S∩T=(D)A.{x|2≤x≤3} B.{x|x≤2或x≥3}C.{x|x≥3} D.{x|0<x≤2或x≥3}[解析]∵S={x|(x-2)(x-3)≥0}={x|x≤2或x≥3},且T={x|x>0},∴S∩T={x|0<x≤2或x≥3}.故选D.2.设集合A={a,b},B={a+1,5},若A∩B={2},则A∪B等于(D)A.{1,2} B.{1,5}C.{2,5} D.{1,2,5}[解析]因为A∩B={2},所以2∈A,2∈B,所以a+1=2,所以a=1,b=2,即A={1,2},B={2,5},所以A∪B={1,2,5},故选D.3.(多选题)已知集合A={2,3,4},集合A∪B={1,2,3,4,5},则集合B可能为(AD) A.{1,2,5} B.{2,3,5}C.{0,1,5} D.{1,2,3,4,5}[解析]集合A={2,3,4},A∪B={1,2,3,4,5},则B中必有元素1和5,且有元素2,3,4中的0个,1个,2个或3个都可以,AD符合.B、C错误,故选AD.4.(多选题)已知集合A ={2,4,x 2},B ={2,x },A ∪B =A ,则x 的值可以为( ABC )A .4B .0C .1D .2 [解析] ∵A ∪B =A ,∴B ⊆A .∴x ∈A ,∴x =4或x 2=x ,由x 2=x 解得x =0或1,当x =0时,A ={2,4,0},B ={2,0},满足题意.当x =1时,A ={2,4,1},B ={2,1},满足题意.当x =4时,A ={2,4,16},B ={2,4},满足题意.故选ABC .二、填空题5.已知集合A ={x |0≤x ≤a ,a >0},B ={0,1,2,3},若A ∩B 有3个真子集,则a 的取值范围是__1≤a <2__.[解析] ∵A ∩B 有3个真子集,∴A ∩B 中有2个元素,又∵A ={x |0≤x ≤a ,a >0}, ∴1≤a <2.6.设集合M ={x |-2<x <5},N ={x |2-t <x <2t +1,t ∈R },若M ∩N =N ,则实数t 的取值范围为__t ≤2__.[解析] 当2t +1≤2-t 即t ≤13时,N =∅.满足M ∩N =N ; 当2t +1>2-t 即t >13时,若M ∩N =N 应满足⎩⎪⎨⎪⎧2-t ≥-22t +1≤5,解得t ≤2.∴13<t ≤2.综上可知,实数t 的取值范围是t ≤2.7.(2019·枣庄市第八中学考试)设集合A ={x |2a +1≤x ≤3a -5},B ={x |3≤x ≤22},则使A ⊆(A ∩B )成立的a 的取值集合为__{a |a ≤9}__.[解析] 由A ⊆(A ∩B ),得A ⊆B ,则(1)当A =∅时,2a +1>3a -5,解得a <6.(2)当A ≠∅时,⎩⎪⎨⎪⎧ 2a +1≤3a -5,2a +1≥3,3a -5≤22,解得6≤a ≤9.综合(1)(2)可知,使A ⊆(A ∩B )成立的a 的取值集合为{a |a ≤9}.三、解答题8.已知集合M ={x |2x +6=0},集合N ={x |x 2-3x +m =0}.(1)当m =-4时,求M ∩N ,M ∪N ;(2)当M ∩N =M 时,求实数m 的值.[解析](1)M={-3}.当m=-4时,N={x|x2-3x-4=0}={-1,4},则M∩N={-3}∩{-1,4}=∅,M∪N={-3}∪{-1,4}={-3,-1,4}.(2)∵M∩N=M,∴M⊆N.由于M={-3},则-3∈N,∴-3是关于x的方程x2-3x+m=0的解,∴(-3)2-3×(-3)+m=0,解得m=-18.9.某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有多少人?[解析]设参加数学、物理、化学小组的人数构成的集合分别为A,B,C,同时参加数学和化学小组的有x人,由题意可得如图所示的Venn图.由全班共36名同学参加课外探究小组可得(26-6-x)+6+(15-10)+4+(13-4-x)+x=36,解得x=8,即同时参加数学和化学小组的有8人.。

高中数学 1.1.3(集合的基本运算)教案 新人教A版必修1 教案

高中数学 1.1.3(集合的基本运算)教案 新人教A版必修1 教案

§ 集合的基本运算一. 教学目标:1. 知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.(3)能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用.2. 过程与方法学生通过观察和类比,借助Venn 图理解集合的基本运算.3.情感.态度与价值观(1)进一步树立数形结合的思想.(2)进一步体会类比的作用.(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.重点:交集与并集,全集与补集的概念.难点:理解交集与并集的概念.符号之间的区别与联系.1.学法:学生借助Venn 图,通过观察.类比.思考.交流和讨论等,理解集合的基本运算.2.教学用具:投影仪.四. 教学思路(一)创设情景,揭示课题问题1:我们知道,实数有加法运算。

类比实数的加法运算,集合是否也可以“相加”呢? 请同学们考察下列各个集合,你能说出集合C 与集合A .B 之间的关系吗?(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数引导学生通过观察,类比.思考和交流,得出结论。

教师强调集合也有运算,这就是我们本节课所要学习的内容。

(二)研探新知—般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与B 的并集. 记作:A ∪B.读作:A 并B.其含义用符号表示为:{|,}A B x x A x B =∈∈或用Venn 图表示如下:请同学们用并集运算符号表示问题1中A ,B ,C 三者之间的关系.练习.检查和反馈(1)设A={4,5,6,8),B={3,5,7,8),求A ∪B.(2)设集合A {|12},{|13},.A x x B x x AB =-<<=<<集合求让学生独立完成后,教师通过检查,进行反馈,并强调:(1)在求两个集合的并集时,它们的公共元素在并集中只能出现一次.(2)对于表示不等式解集的集合的运算,可借助数轴解题.(1)思考:求集合的并集是集合间的一种运算,那么,集合间还有其他运算吗?请同学们考察下面的问题,集合A .B 与集合C 之间有什么关系?①{2,4,6,8,10},{3,5,8,12},{8};A B C ===②{|20049}.A x x =是国兴中学年月入学的高一年级女同学B={x |x 是国兴中学2004年9月入学的高一年级同学},C={x |x 是国兴中学2004年9月入学的高一年级女同学}.教师组织学生思考.讨论和交流,得出结论,从而得出交集的定义;一般地,由属于集合A 且属于集合B 的所有元素组成的集合,称为A 与B 的交集. 记作:A ∩B.读作:A 交B其含义用符号表示为:{|,}.A B x x A x B =∈∈且接着教师要求学生用Venn 图表示交集运算.(2)练习.检查和反馈①设平面内直线1l 上点的集合为1L ,直线1l 上点的集合为2L ,试用集合的运算表示1l 的位置关系.②学校里开运动会,设A={x |x 是参加一百米跑的同学},B={x |x 是参加二百米跑的同学},C={x |x 是参加四百米跑的同学},学校规定,在上述比赛中,每个同学最多只能参加两项比赛,请你用集合的运算说明这项规定,并解释集合运算A ∩B 与A ∩C 的含义.学生独立练习,教师检查,作个别指导.并对学生中存在的问题进行反馈和纠正.(三)学生自主学习,阅读理解1.教师引导学生阅读教材第11~12页中有关补集的内容,并思考回答下例问题:(1)什么叫全集?(2)补集的含义是什么?用符号如何表示它的含义?用Venn 图又表示?(3)已知集合{|38},R A x x A =≤<求.(4)设S={x |x 是至少有一组对边平行的四边形},A={x |x 是平行四边形},B={x |x 是菱形},C={x |x 是矩形},求,,A S B C B A .在学生阅读.思考的过程中,教师作个别指导,待学生经过阅读和思考完后,请学生回答上述问题,并及时给予评价.(四)归纳整理,整体认识1.通过对集合的学习,同学对集合这种语言有什么感受?2.并集.交集和补集这三种集合运算有什么区别?(五)作业1.课外思考:对于集合的基本运算,你能得出哪些运算规律?2.请你举出现实生活中的一个实例,并说明其并集.交集和补集的现实含义.3.书面作业:教材第14页习题组第7题和B组第4题.。

1.1.3集合的基本运算教学设计-2023-2024学年高一上学期数学北师大版(2019)必修第一册

1.1.3集合的基本运算教学设计-2023-2024学年高一上学期数学北师大版(2019)必修第一册
(1)从集合A中选出所有年龄在30岁以下的员工,表示为集合A与集合{30, 31, 32, ...}的交集。
(2)从集合B中选出所有喜欢音乐的成员,表示为集合B与集合{“音乐”}的交集。
2. 请将以下集合的元素按照年龄从小到大的顺序排列,并写出每个集合的并集和交集:
(1)集合C = {5, 10, 15, 20},集合D = {12, 18, 22, 25}。
学生学习效果
教学反思与改进
回顾本学期的集合基本运算教学,我深感教学过程中存在的一些不足,需要在今后的教学中加以改进。
首先,在课前准备上,虽然我提前发放了预习材料,设计了预习问题,但学生在预习环节的反馈显示,他们对集合基本运算的概念理解不够深入。这让我意识到,仅仅依靠预习材料和问题是不够的,还需要在课堂上对学生进行更为细致的引导和讲解。
5. 请用集合的基本运算表示以下情景:
(1)从集合M中选出所有参加英语角的学生,表示为集合M与集合{“英语”}的交集。
(2)从集合N中选出所有未参加乒乓球比赛的学生,表示为集合N与集合{“乒乓球”}的补集的交集。
2. 数学建模:学生能够将集合的基本运算应用于实际问题中,通过建立数学模型来解决问题,培养学生的数学建模能力。
3. 直观想象:通过集合的基本运算的学习,学生能够培养直观想象能力,能够通过图形或直观的方式理解和表示集合的基本运算。
4. 数学运算:学生能够掌握集合的基本运算的方法和技巧,提高数学运算能力,能够准确、熟练地进行集合的基本运算。
提出问题或设置悬念,引发学生的好奇心和求知欲,引导学生进入集合的基本运算学习状态。
回顾旧知:
简要回顾上节课学习的集合的基本概念和运算规则,帮助学生建立知识之间的联系。
提出问题,检查学生对旧知的掌握情况,为集合的基本运算新课学习打下基础。

1.3集合的基本运算(全集与补集)教学设计

1.3集合的基本运算(全集与补集)教学设计

课题:1.3集合的基本运算(全集与补集)授课人:高一年级数学学科组教学内容分析教学目标描述1.知识与技能(1)在具体情境中,了解全集的含义.(2)理解在给定集合中一个子集的补集的含义,能求给定子集的补集.(3)体会图形对理解抽象概念的作用.2.过程与方法通过示例认识全集与补集,加深对补集概念的理解,完善集合运算体系,提高思维能力.3.情感、态度与价值观通过补集概念的形成与发展、理解与掌握,感知事物具有相对性,渗透相对的辨证观点.教学内容分析本节是新人教A版高中数学必修第一册第1章第1节第3部分的内容。

在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,同时已学习了并集、交集,这为学习本节内容打下了基础。

本节内容主要介绍集合的基本运算一全集与补集。

在此,通过适当的问题情境,使学生感受、认识并掌握补集的运算。

本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用。

值得注意的问题:在全集和补集的教学中,应注意利用图形的直观作用,帮助学生理解补集的概念,并能够用直观图进行求补集的运算.学科核心素养分析(考点)结合课程标准说明本节课可落实哪个或哪些学科核心素养(考点)1. 数学抽象:对全集概念、补集概念的理解;2. 逻辑推理:补集的理解;3. 数学运算:补集及集合的综合运算;4.直观想象:用Venn图、数轴表示集合的关系及运算。

体会直观图示对理解抽象概念的作用,培养数形结合的思想;5.数学建模:通过观察身边的实例,发现集合间的基本运算,体验其现实意义。

教学重点全集、补集概念的理解。

教学难点有关补集的综合运算。

学生学情分析初中的数学主要是以形象、通俗的语言方式进行表达,高一新生在小学和初中已接触过一些具体的集合,如自然数的集合,有理数的集合,一元一次不等式的解的集合。

也学习了实数的加减运算。

学生具有一定以经验型为主导的抽象思维水平,具备了一些观察、分析和经验解题的能力,但在数学的自主学习意识与独立解决问题能力、归纳概括和类比的能力有待加强。

《1.3 集合的基本运算》优秀教学教案教学设计

《1.3 集合的基本运算》优秀教学教案教学设计

第一章 集合与常用逻辑用语 第3节 集合的基本运算本节是新人教A 版高中数学必修1第1章第1节第3部分的内容。

在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础。

本节内容主要介绍集合的基本运算一并集、交集、补集。

是对集合基木知识的深入研究。

在此,通过适当的问题情境,使学生感受、认识并掌握集合的三种基本运算。

本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用。

本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点。

1.教学重点:交集、并集、补集的运算;2.教学难点:交集、并集、补集的运算性质及应用,符号之间的区别与联系。

多媒体Venn 图表示:(2)“或”的理解:三层含义:的并集。

与是的所有元素组成的集合,,由且。

即:又属于元素既属于但。

即:但不属于元素属于但。

即:但不属于元素属于B A B A B x A x B A A x B x x A B B x A x x B A 321}{.3},{.2},{.1⋂=∈∈∉∈∉∈(3)思考:下列关系式成立吗? (1) A A A = (2)A A =φ 【答案】成立(4)思考:若,B A ⊆,则A ∪B 与B 有什么关系?【答案】 。

,则若B B A B A =⊆ 3、典型例题例1.设A={4,5,6,8},B={3,5,7,8},求AUB .}8,7,6,5,4,3{}8,7,5,3{}8,6,5,4{== B A 解:例2.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB . 解:A ∪B ={x|-1<x<3}【注意】由不等式给出的集合,研究包含关系或进行运算,常用数轴。

探究二 交集的含义1、思考:考察下面的问题,集合C 与集合A 、B 之间有什么关系吗? (1) A={2,4,6,8,10}, B={3,5,8,12}, C={8}. (2)A={x|x 是立德中学今年在校的女同学},B={x|x 是立德中学今年在校的高一年级同学},问题: 在下面范围内解方程(1) 有理数范围(2)实数范围2、全集与补集的定义(1)全集的定义:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U . (2)对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合 A 相对于全集U 的补集,简称为集合A 的补集. 记作:A C U即:A C U ={x| x ∈ U 且x ∉A} 说明:补集的概念必须要有全集的限制. 3、例题例5.设U={x|x 是小于9的正整数},A={1,2,3},B={3,4,5,6},求。

《1.3 集合的基本运算》集体备课教案教学设计

《1.3 集合的基本运算》集体备课教案教学设计

1.3集合的基本运算第1课时并集与交集学习目标核心素养1.理解两个集合的并集与交集的含义,会求两个简单集合的并集和交集.(重点、难点)2.能使用Venn图表达集合的关系及运算,体会图示对理解抽象概念的作用.(难点)1.借助Venn图培养直观想象素养.2.通过集合并集、交集的运算提升数学运算素养.1.并集思考:(1)“x∈A或x∈B”包含哪几种情况?(2)集合A∪B的元素个数是否等于集合A与集合B的元素个数和?提示:(1)“x∈A或x∈B”这一条件包括下列三种情况:x∈A,但x∉B;x∈B,但x∉A;x∈A,且x∈B.用Venn图表示如图所示.(2)不等于,A∪B的元素个数小于或等于集合A与集合B的元素个数和.2.交集3.并集与交集的运算性质并集的运算性质交集的运算性质A∪B=B∪A A∩B=B∩AA∪A=A A∩A=AA∪∅=A A∩∅=∅1.设集合M={-1,0,1},N={0,1,2},则M∪N=________,M∩N=________.{-1,0,1,2}{0,1}[∵M={-1,0,1},N={0,1,2},∴M∩N={0,1},M∪N={-1,0,1,2}.]2.若集合A={x|-3<x<4},B={x|x>2},则A∪B=________.{x|x>-3}[如图:故A∪B={x|x>-3}.]3.满足{1}∪B={1,2}的集合B可能等于________.{2}或{1,2}[∵{1}∪B={1,2},∴B可能为{2}或{1,2}.],并集概念及其应用【例1】(1)设集合M={x|x2+2x=0,x∈R},N={x|x2-2x=0,x∈R},则M∪N=()A.{0}B.{0,2}C.{-2,0} D.{-2,0,2}(2)已知集合M={x|-3<x≤5},N={x|x<-5或x>5},则M∪N=()A.{x|x<-5或x>-3} B.{x|-5<x<5}C.{x|-3<x<5} D.{x|x<-3或x>5}(1)D(2)A[M={x|x2+2x=0,x∈R}={0,-2},N={x|x2-2x=0,x∈R}={0,2},故M∪N={-2,0,2},故选D.(2)在数轴上表示集合M,N,如图所示,则M∪N={x|x<-5或x>-3}.]求集合并集的两种基本方法(1)定义法:若集合是用列举法表示的,可以直接利用并集的定义求解;(2)数形结合法:若集合是用描述法表示的由实数组成的数集,则可以借助数轴分析法求解.1.已知集合A={0,2,4},B={0,1,2,3,5} ,则A∪B=________.{0,1,2,3,4,5}[A∪B={0,2,4}∪{0,1,2,3,5}={0,1,2,3,4,5}.]交集概念及其应用【例2】(1)设集合A={x|-1≤x≤2},B={x|0≤x≤4},则A∩B等于() A.{x|0≤x≤2}B.{x|1≤x≤2}C.{x|0≤x≤4} D.{x|1≤x≤4}(2)已知集合A={x|x=3n+2,n∈N},B={6,8,10,12,14},则集合A∩B中元素的个数为()A.5B.4 C.3D.2(1)A(2)D[(1)∵A={x|-1≤x≤2},B={x|0≤x≤4},如图,故A∩B={x|0≤x≤2}.(2)∵8=3×2+2,14=3×4+2,∴8∈A,14∈A,∴A∩B={8,14},故选D.]1.求集合交集的运算类似于并集的运算,其方法为:(1)定义法,(2)数形结合法.2.若A,B是无限连续的数集,多利用数轴来求解.但要注意,利用数轴表示不等式时,含有端点的值用实点表示,不含有端点的值用空心点表示.2.(2018·全国卷Ⅰ)已知集合A={0,2},B={-2,-1,0,1,2},则A∩B=() A.{0,2}B.{1,2}C.{0} D.{-2,-1,0,1,2}A[由题意知A∩B={0,2}.]3.设集合A={x|-1≤x<2},B={x|x<a},若A∩B≠∅,则a的取值范围是()A.-1<a≤2 B.a>2C.a≥-1 D.a>-1D[因为A∩B≠∅,所以集合A,B有公共元素,在数轴上表示出两个集合,如图所示,易知a>-1.]集合交、并运算的性质及综合应用[探究问题]1.设A,B是两个集合,若A∩B=A,A∪B=B,则集合A与B具有什么关系?提示:A ∩B =A ⇔A ∪B =B ⇔A ⊆B .2.若A ∩B =A ∪B ,则集合A ,B 间存在怎样的关系? 提示:若A ∩B =A ∪B ,则集合A =B .【例3】 已知集合A ={x |-3<x ≤4},集合B ={x |k +1≤x ≤2k -1},且A ∪B =A ,试求k 的取值范围.[思路点拨]A ∪B =A ――→等价转化B ⊆A ――→分B =∅和B ≠∅建立k 的不等关系――→求交集得k 的范围[解] (1)当B =∅,即k +1>2k -1时,k <2,满足A ∪B =A . (2)当B ≠∅时,要使A ∪B =A , 只需⎩⎪⎨⎪⎧-3<k +1,4≥2k -1,k +1≤2k -1,解得2≤k ≤52.综合(1)(2)可知k ≤52.1.把本例条件“A ∪B =A ”改为“A ∩B =A ”,试求k 的取值范围. [解] 由A ∩B =A 可知A ⊆B . 所以⎩⎪⎨⎪⎧-3≥k +1,2k -1≥4,即⎩⎨⎧k ≤-4,k ≥52,所以k ∈∅.所以k 的取值范围为∅.2.把本例条件“A ∪B =A ”改为“A ∪B ={x |-3<x ≤5}”,求k 的值.[解] 由题意可知⎩⎪⎨⎪⎧-3<k +1≤4,2k -1=5,解得k =3.所以k 的值为3.1.对并集、交集概念的理解(1)对于并集,要注意其中“或”的意义,“或”与通常所说的“非此即彼”有原则性的区别,它们是“相容”的.“x ∈A ,或x ∈B ”这一条件,包括下列三种情况:x ∈A 但x ∉B ;x ∈B 但x ∉A ;x ∈A 且x ∈B .因此,A ∪B 是由所有至少属于A ,B 两者之一的元素组成的集合.(2)A ∩B 中的元素是“所有”属于集合A 且属于集合B 的元素,而不是部分.特别地,当集合A 和集合B 没有公共元素时,不能说A 与B 没有交集,而是A ∩B =∅.2.集合的交、并运算中的注意事项(1)对于元素个数有限的集合,可直接根据集合的“交”“并”定义求解,但要注意集合元素的互异性.(2)对于元素个数无限的集合,进行交、并运算时,可借助数轴,利用数轴分析法求解,但要注意端点值能否取到.1.思考辨析(1)集合A ∪B 中的元素个数就是集合A 和集合B 中的所有元素的个数和.( )(2)当集合A 与集合B 没有公共元素时,集合A 与集合B 就没有交集. ( )(3)若A ∪B =A ∪C ,则B =C .( ) (4)A ∩B ⊆A ∪B .( )[答案] (1)× (2)× (3)× (4)√2.已知集合M ={-1,0,1},P ={0,1,2,3},则图中阴影部分所表示的集合是( )A.{0,1}B.{0}C.{-1,2,3} D.{-1,0,1,2,3}D[由Ve nn图,可知阴影部分所表示的集合是M∪P.因为M={-1,0,1},P ={0,1,2,3},故M∪P={-1,0,1,2,3}.故选D.]3.已知集合A={1,2,3},B={x|(x+1)(x-2)=0,x∈Z},则A∩B=() A.{1} B.{2}C.{-1,2} D.{1,2,3}B[∵B={x|(x+1)(x-2)=0,x∈Z}={-1,2},A={1,2,3}∴A∩B={2}.] 4.设A={x|x2+ax+12=0},B={x|x2+3x+2b=0},A∩B={2},C={2,-3}.(1)求a,b的值及A,B;(2)求(A∪B)∩C.[解](1)∵A∩B={2},∴4+2a+12=0,即a=-8,4+6+2b=0,即b =-5,∴A={x|x2-8x+12=0}={2,6},B={x|x2+3x-10=0}={2,-5}.(2)∵A∪B={-5,2,6},C={2,-3},∴(A∪B)∩C={2}.。

1.1.3集合的基本运算-人教B版高中数学必修第一册(2019版)教案

1.1.3集合的基本运算-人教B版高中数学必修第一册(2019版)教案

1.1.3 集合的基本运算-人教B版高中数学必修第一册(2019版)教案一、教学目标1.理解集合的概念,熟练掌握集合的基本运算。

2.掌握集合的交、并运算的概念及其性质,并能够进行简单的计算。

3.了解补集、差集的概念及其运算规律,并能够综合运用。

4.学会用集合表示式表示各种集合及其运算结果。

二、教学内容1.集合的概念2.集合的元素与特征3.集合的表示方法4.集合的基本运算5.集合运算的性质和规律三、教学重点和难点3.1 教学重点1.集合的概念和基本运算。

2.集合运算的性质和规律。

3.2 教学难点1.集合元素与特征的理解和运用。

2.集合运算的综合运用。

四、教学方法1.讲授与示范相结合,双向互动。

2.注重思维训练,举一反三。

3.实例演练,动手操作。

五、教学步骤5.1 集合与元素1.引入集合的概念,通过生活中实例进行解释。

2.对集合的元素和特征进行讲解,引导学生理解。

5.2 集合的表示方法1.列举不同的表示方法,如突出法、列举法、描述法。

2.结合实例演示各种表示方法的运用。

5.3 集合的基本运算1.引出集合的交、并、补、差等基本运算。

2.解析各种基本运算的概念和特点,并提供实例进行演练。

3.引导学生进行基本运算的计算和运用。

5.4 集合运算的性质和规律1.探究集合运算的交换律、结合律、分配律等性质。

2.对集合运算规律进行讲解和演示。

3.让学生掌握集合运算的性质和规律。

5.5 集合运算综合练习1.向学生提供一定的练习题和实际问题,让其进行综合运用。

2.引导学生用集合表示式表示各种集合及其运算结果。

3.对集合运算的错误答案进行分析和纠正。

六、教学资源1.人教B版高中数学必修第一册(2019版)课本。

2.课件PPT及各种练习题。

七、教学评估1.课后给学生布置相应的练习题,对学生进行测试。

2.对学生进行课堂表现和习题的评分。

3.对本课程的教学效果进行评估,完善课程教案和改进教学内容。

八、教学反思本堂课中,我采用了多种教学方法,如讲授、示范、动手操作等方式,增强了学生的参与性和思维性。

《1.3 集合的基本运算》公开课优秀教案教学设计(高中必修第一册)

《1.3 集合的基本运算》公开课优秀教案教学设计(高中必修第一册)

1.3集合的基本运算教学设计集合的基本运算是人教版普通高中课程标准实验教科书,数学必修1第一章第三节的内容. 在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础. 本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用. 本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点.课程目标1. 理解两个集合的并集与交集的含义,能求两个集合的并集与交集;2. 理解全集和补集的含义,能求给定集合的补集;3. 能使用Venn图表达集合的基本关系与基本运算.数学学科素养1.数学抽象:并集、交集、全集、补集含义的理解;2.逻辑推理:并集、交集及补集的性质的推导;3.数学运算:求两个集合的并集、交集及补集,已知并集、交集及补集的性质求参数(参数的范围);4.数据分析:通过并集、交集及补集的性质列不等式组,此过程中重点关注端点是否含“=”及∅问题;5.数学建模:用集合思想对实际生活中的对象进行判断与归类。

重点:1.交集、并集定义的三种语言的表达方式及交集、并集的区别与联系;2全集与补集的定义.难点:利用交集并集补集含义和Venn图解决一些与集合的运算有关的问题.教学方法:以学生为主体,采用诱思探究式教学,精讲多练。

教学工具:多媒体。

一、问题导入:实数有加、减、乘、除等运算.集合是否也有类似的运算.要求:让学生自由发言,教师不做判断。

而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本10-13页,思考并完成以下问题1. 两个集合的并集与交集的含义是什么?它们具有哪些性质?2.怎样用Venn图表示集合的并集和交集?3.全集与补集的含义是什么?如何用Venn图表示给定集合的补集?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。

三、新知探究(一)知识整理1、并集一般地,由所有属于集合A或属于集合B的元素所组成的集合,称为集合A与B的并集,记作:A∪B(读作:“A并B”)即: A∪B={x|x∈A,或x∈B}Venn图表示2 交集一般地,由属于集合A且属于集合B的元素所组成的集合,叫做集合A与B的交集,记作:A∩B(读作:“A交B”)即: A∩B={x|∈A,且x∈B}Venn图表示3.全集一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U。

1.3集合的基本运算教案

1.3集合的基本运算教案

1.3集合的基本运算教案一、内容和内容解析1.内容并集和交集的含义及并、交的基本运算.2.内容解析教科书类比数的研究,采用了“集合的含义与表示—集合的关系—集合的运算”的研究路径学习和研究集合的,共安排了三节内容.本节是第三节内容,主要研究集合的基本运算.作为数学运算的新内容、新形式,集合的运算是学生进入高中学习的第一种运算.无论是在知识上,还是在方法上,不仅对后面的学习有直接的影响,而且也是对前面所学的知识的巩固;不仅体现了数学运算素养,也蕴含着逻辑推理的基本成分,既是学生既往逻辑思维的抽象表达,也是学生进一步学习逻辑思维的基础和前提.本节内容共需要两个课时.本节课是第一课时,重点研究集合的并集和交集.在上节类比实数之间关系研究集合间关系的基础上,教科书继续类比实数运算,联想集合的运算,类比实数的加法运算研究集合的“并”运算.教材首先从学生熟悉的集合出发,结合实例,抽象概括出集合的“并”运算和“交”运算,在此基础上,从自然语言、符号语言以及图形语言三种语言的角度帮助学生理解并集和交集的含义,在渗透类比思想、数形结合思想和化归转化思想的同时,提升学生的数学抽象素养和数学运算素养.元素与集合的关系是研究集合的“并”运算和“交”运算的基础,当我们研究两个集合的运算的时候,其实质依然是回归到了元素与集合的关系.因此,集合的并集和交集也都是从元素与集合之间的关系来定义的.如明确这一点,将有助于学生理解并集与交集的含义及其符号表示.结合以上分析,确定本节课的教学重点:并集与交集的含义,用集合语言表达数学对象或数学内容.二、目标和目标解析1.目标(1)理解两个集合的并集与交集的含义,能求两个集合的并集与交集;(2)能使用Venn图表达集合的并集与交集,体会图形对理解抽象概念的作用,渗透数形结合思想,提升直观想象素养;(3)能用集合语言表达数学对象或数学内容,并能进行自然语言、图形语言、符号语言间的转换,提升数学抽象素养.2.目标解析达成上述目标的标志是:(1)能结合简单的问题和情境解释并集与交集的含义,能求两个给定集合的并集与交集.(2)对于给定的问题和情境,能使用Venn图表达集合的“交”运算和“并”运算,从中体会图形对理解抽象概念的作用.(3)在具体问题情景中,能根据需求进行自然语言、符号语言和图形语言的转换,熟悉符号语言和图形语言的表述方式,并能使用符号语言表述数学对象,积累数学抽象经验.三、教学问题诊断分析集合的运算是学生进入高中学习的第一种运算,较初中学习的数式的运算更抽象,元素与集合的关系是其研究的基础.由于之前学生已学习了集合的概念和基本关系,同时学生已有类比实数大小关系研究集合间的关系的体验,在此类比实数加法运算研究集合的“并”运算,学生在心理上会觉得比较自然,不会感到困难.但是,由于符号语言的简约、精炼和抽象,学生在把抽象出来的并集和交集概念的自然语言表述转化为符号语言时会有困难.同时,由于受生活语言负迁移的影响,学生会对并集概念中的关键词“或”的理解存在困难.交集概念中的“且”字,由于它与生活语言中的“且”字意义差别不大,学生理解起来要比较容易.结合以上分析,确定本节课的教学难点:集合并集与交集的符号表示及识别,以及对并集概念中的关键词“或”的理解.为突破这一难点,教学中要让学生熟练掌握有关集合的术语和符号,并会正确地表示一些简单的集合.要让学生体会到符号语言和图形语言的优势,加强学生的使用频率,逐渐提高学生自然语言、符号语言和图形语言的转换能力.并集里的“”包含三种情况:而生活中的“或”常常是二选一、非此即彼的意思,教学中要根据自己的生活经验结合具体实例讲清两者的区别.还可以借助代数运算帮助学生理解“或”“且”的含义,比如求方程组的解集是求各个方程的解集的交集,求方程(x+2)(x+1)=0的解集,则是求方程x+2=0和x+1=0的解集的并集.教学中还要从分析元素与集合的关系入手,借助韦恩图表示并集概念中的“或”所代表的三层含义,深化学生对并集概念的理解.四、教学过程设计(一)复习引入问题1:(1)上节课我们类比实数之间的大小关系,从元素与集合之间的关系入手研究了集合间的基本关系,两个集合间的基本关系有哪些?如何判断两个集合间的关系?(2)前面我们先后研究了集合的概念和表示方法、集合间的基本关系,接下来我们还要研究什么问题?用什么方法研究?师生活动:对于(1),教师提问后学生回答问题,教师根据学生回答的情况补充、完善.对于(2),学生独立思考后交流讨论、回答问题.学生已有类比实数大小关系研究集合间基本关系的经验,所以很容易联想到类比实数加、减、乘、除等运算来研究集合的运算.设计意图:通过引导学生回顾前面所学知识和研究方法,引导学生通过类比实数运算,联想集合运算,提出要研究的问题:集合的基本运算.进一步提高类比推理的思维能力和发现问题、提出问题的能力,提升逻辑推理素养.同时,对于集合的研究,学生也经历了通过类比数的研究,从抽象新的数学对象(概念)到研究数学对象(特性、表示方法、基本关系和基本运算)的过程.这是一个完整的数学思考过程,作为一个范例,它向学生完整展示了研究数学问题的“基本套路”,这将为后续的教学提供思维方式的示范以及学习方法的引领.(二)并集1.概念的引入问题2:阅读教科书第10页“观察”,类比实数的加法运算,集合之间可以“相加”吗?师生活动:学生独立观察,充分思考,交流探讨.通过类比和交流,得出结论,即集合也可以运算.根据学生交流讨论的情况,教师可以适时地选择以下问题进行追问.追问1:你能说出集合C 与集合A,B 之间的关系吗?师生活动:学生回忆并口答两个集合间的基本关系.通过三者关系的判断复习集合间的关系.追问2:从元素与集合之间关系的角度出发,你能发现两个问题中集合C与集合A,B之间的关系吗?你能分别用自然语言、符号语言和Venn图来叙述或表示集合 C 与集合A,B 之间的这种关系吗?师生活动:学生观察、分析、讨论交流,并尝试用三种语言表示这种关系,在学生交流的基础上教师补充、总结.从元素与集合之间关系的角度出发,学生很容易发现集合C 是由A,B 这两个集合的所有元素构成的,即集合C 是由所有属于A或属于B的元素组成的,并尝试用符号语言和图形语言表示.学生可能会在用符号语言表示时遇到困难,教师要引导学生回顾描述法,分析集合C 中的元素与A,B 两个集合元素的关系,在此基础上用符号语言表示.教师要向学生强调这里的“或”所连接的并列成分之间至少要满足一个,要与生活语言中的“或”区分开,生活中的“或”常常是二选一、非此即彼的意思.追问3:类比实数加法,你能尝试归纳概括出两个集合A 与B 的并集的定义吗?师生活动:学生在前面观察、讨论、分析的基础上,由特殊到一般,经过归纳—补充或修正—完善—得出并集的定义,教师引导和补充,并给出记号和读法:一般地,由所有属于集合A或属于集合B的元素组成的集合,称为集合A与集合B的并集(union set),记作A∪B,读作“A并B ”.设计意图:通过实数的加法运算让学生类比集合是否也可以“相加”,增强学生由旧知探究新知的兴趣和能力.借助具体而又简单的集合实例,让学生观察、比较与分析,启发引导学生用文字语言给出并集的定义,帮助学生更深刻地理解集合的并集的运算,也有利于培养自主探究能力、分析归纳能力、分析问题和解决问题的能力.2.概念的理解问题3:你能用符号语言和Venn图表示并集的概念吗?师生活动:教师引导学生把文字语言转换成符号语言和图形语言符号语言:图形语言:图1设计意图:在用文字语言表示定义的基础上,用符号语言和图形语言表示并集的定义,有助于学生更好地理解并集的概念和运算实质.用符号语言表示并集定义,强调数学符号的准确性,学生可从中体会数学符号的简洁性和严谨性.利用多种形态的Venn图表达集合的并集运算,学生可从中体会直观图示对理解抽象概念的作用,有助于提升数学抽象素养和直观想象素养.追问:定义中的关键词有哪些?如何理解它们?师生活动:教师引导学生分析,并结合Venn图强化对“或”的理解,如图2.所有:表示集合A与集合B的元素一个都不能少;或:所连接的并列成分之间至少要满足一个,即有三种情况;集合:两个集合求并集,结果还是一个集合.设计意图:引出定义之后,及时让学生分析定义,抓住定义的重点,比如“所有”、“或”、“集合”等关键词,帮助学生更深刻地理解集合的并集的概念及其运算实质.3.概念的巩固应用例1 设A={4,5,6,8}, B={3,5,7,8}, 求A∪B.师生活动:本题难度较小,学生自己独立完成后交流答案,查找错误原因,教师检查、反馈.追问:为什么相同的元素5和8只出现一次?请用Venn 图表示结果.(集合元素的互异性)设计意图:巩固元素个数为有限个的集合间的并集运算,注意运算过程中元素要不重不漏,公共元素在并集中只能出现一次.用Venn图表示结果,在加强直观性的同时,也为后面学习两个集合的交集做准备.例 2 设集合A= {x|-1< x < 2}, 集合B= {x| 1< x <3 },求A∪B.师生活动:学生独立思考后交流、讨论.如果学生思维遇到障碍,教师再引导学生回顾初中用数轴表示不等式解集的方法.在此基础上,引导学生利用数轴将集合A与集合B分别表示出来并进行求解.设计意图:是针对例1的一个提高,集合中元素的个数由有限个到无限个,学生的思维产生冲突,在寻求发现新的解决方法的过程中,引出“数轴”这一辅助工具,直观表现集合的并运算过程,渗透数形结合的思想方法,培养学生类比、分析问题和解决问题的能力.教学中要注意数轴上的空心点.通过该问题的解决,使学生意识到用描述法表示的连续型元素的数的集合,运算时常借助数轴来计算结果.4.性质问题4:下列关系式成立吗?师生活动:学生独立思考、交流讨论,教师引导学生根据并集运算的定义对性质进行合理解释.设计意图:巩固、加深对集合的并集运算和集合元素“互异性”的理解,进一步体会空集的意义,关注集合运算的特殊性,提升学生的逻辑推理能力.(三)交集过渡语:前面我们研究了集合的并运算,我们首先由特殊到一般,通过观察、归纳、抽象出并集的定义,并用符号语言和图形语言表示定义,接着对定义中的关键词进行了分析,最后又依据定义研究了并运算的两个性质.由例1和例2(引导学生看例1中的Venn图和例2中的数轴)可知,这里还有一个特殊的集合,这个集合的元素是由两个集合的公共元素组成的,类比“并集”的研究过程,请你对这种集合运算进行研究.问题5:由两个集合所有元素合并可得两集合的并集,而由两个集合的公共元素组成的集合又会是两集合的一种怎样的运算?阅读教科书第11页上的第二个思考,请类比“并集”的研究过程对这种运算进行研究.师生活动:类比“并集”的研究过程探究“交集”运算,学生独立思考后再交流,教师引导启发学生完成相关学习内容.设计意图:探究交集运算,培养学生的自学能力以及发现问题、提出问题、分析和解决问题的能力,为终身发展培养基本素质.根据学生自主探究、交流情况,教师可以灵活选择以下问题进行追问.1.概念的引入追问1:阅读教科书第11页第二个“思考”,从元素与集合之间关系的角度出发,你能发现两个问题中集合C与集合A,B之间的关系吗?你能分别用自然语言、符号语言和Venn 图来叙述或表示集合C与集合A,B之间的关系吗?师生活动:类比“并集”的研究过程,学生观察、讨论、分析,发现集合C是由这A,B两个集合的公共元素或者说相同元素构成的,即集合C是由所有既属于集合A又属于集合B 的元素组成的,并用符号语言和图形语言表示集合C与集合A,B之间的关系.追问2:类比两个集合的并集,你能归纳概括出两个集合A与B的交集的定义吗?师生活动:类比“并集”概念建构的思维过程,学生在前面观察、讨论、分析的基础上,由特殊到一般,尝试给出交集的定义,教师引导、补充和完善,并给出记号和读法:一般地,由所有属于集合A且属于集合B的元素组成的集合,称为集合A与集合B的交集(intersection set),记作A ∩B,读作“ A交B ”.设计意图:类比“并集”概念建构的思维过程(观察—归纳—抽象),借助具体而又简单的集合实例,学生通过观察、比较与分析,归纳共同特征,由此引出集合的“交”运算,并类比并集,用文字语言给出交集的定义,帮助学生更深刻地理解集合的交运算,再次培养学生的自主探究能力、分析归纳能力、分析问题和解决问题的能力.这里用已形成的思维操作程式指导“交集”概念的建构,这样的思维过程所承载的思维训练指向是“合情推理”,而且思维活动的开展也易于学生操作.2.概念的理解问题6:你能用符号语言和Venn图表示交集的概念吗?师生活动:类比并集,学生独立思考,把文字语言转换成符号语言和图形语言.需要强调的是,当两个集合没有公共元素时,两个集合的交集是空集,而不能说两个集合没有交集.符号语言:;图形语言:图3.设计意图:再次让学生体会数学符号的简洁性、严谨性和直观图示对理解抽象概念的作用,帮助学生更好地理解交集的概念和运算实质,进一步培养数学抽象素养和直观想象素养.追问4:定义中的关键词有哪些?如何理解它们?师生活动:类比“并集”的研究过程,学生自己分析定义中的关键词.所有:表示集合A与集合B的公共元素一个都不能少;且:同时、公共之意,既属于集合A又属于集合B的元素;集合:两个集合求交集,结果还是一个集合.设计意图:引出定义之后,及时让学生分析定义,抓住定义的重点,比如“所有”、“且”、“集合”等关键词,帮助学生更深刻地理解集合的交集的概念及其运算实质.3.概念的巩固应用例3 立德中学开运动会,设A= {x|x是立德中学高一年级参加百米赛跑的同学} ,B= {x|x是立德中学高一年级参加跳高比赛的同学}, 求A∩B.师生活动:学生回顾集合的表示方法和交集的含义,独立解决问题,教师个别指导、反馈.教学中可利用教学班级这个实际模型对该问题进行改编.设计意图:巩固交集的定义,利用实际模型加深学生对交集的理解.例4 设平面内直线l1上点的集合为L1,直线l2上点的集合为L2,试用集合的运算表示l1,l2的位置关系.追问:平面内两条直线的关系有几种?(平行、相交或重合)如何用集合语言来表示它们之间的关系呢?师生活动:引导学生回顾平面内两条直线的位置关系及其特征.根据集合交集的含义,学生尝试用集合运算表示直线的位置关系,教师检查,作个别指导并进行反馈.设计意图:主要目的在于使用集合语言描述几何对象及其之间的关系,加深学生对集合的关系和运算的理解.4.性质问题7:下列关系式成立吗?师生活动:类比并集的性质,学生独立思考、分析,依据交集定义进行合理解释.设计意图:巩固、加深对集合的交运算和集合元素“互异性”的理解,进一步体会空集的意义,关注集合运算的特殊性.练习:教科书第12页练习第1,2题.师生活动:学生做练习,教师根据学生练习情况给予反馈.(四)归纳总结、布置作业教师引导学生回顾本节知识,并回答以下问题:(1)什么是并集?什么是交集?它们之间有什么联系与区别?请完成下列表格.(2)你是如何研究集合的并集和交集的?(3)如何求两个集合的并集和交集?设计意图:从知识内容、研究方法和蕴含的重要数学思想等方面对本节课进行小结,通过对知识方法的梳理和归纳,帮助学生构建知识网络.同时,利用表格通过对比,使学生能区分并集和交集的概念,认识到“并”“或”与记号“∪”之间的对应关系,以及“交”“且”与记号“∩”之间的对应关系,有助于学生正确识别相关符号表述.布置作业:教科书习题1.3第1,2,3题.五、目标检测设计1.设A= {a,b,d,e}, B= {b,c,e,f},求A∩B,A∪B.设计意图:考查学生对元素个数为有限个的集合间的并集运算和交集运算的理解和掌握程度.设计意图:考查学生对元素个数为无限个的集合间的并集运算和交集运算的理解和掌握程度.3.设A= {x|x是等腰三角形},B= {x|x是直角三角形}, 求A∩B,A∪B.设计意图:考查学生对集合间的并集运算和交集运算的理解和掌握程度.此题是在既往概念学习的基础上,要求学生从集合中元素的特征性质出发,经过逻辑推理得出两个集合并集和交集的运算结果,并用符号语言予以表达,需要学生具有一定的逻辑推理能力.。

数学教学设计_1.1.3集合的基本运算

数学教学设计_1.1.3集合的基本运算

§1.1.3集合的基本运算课型:新授课教学目标:(1)知识与技能:理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;理解在给定集合中一个子集的补集的含义,会求给定子集的补集;能用Venn图表达集合的关系及运算。

体会直观图示对理解抽象概念的作用。

(2)过程与方法:类比实数的加法运算,学习集合的并运算,进一步学习集合的交运算,一个子集的补集。

(3)情感态度与价值观:培养独立思考的精神,积极发言的习惯,发展全面看问题,思考问题的思维方式。

教学重难点:(1)重点:集合的交集、并集、补集的概念。

(2)难点:如何求集合的交集、并集、补集。

教学过程:【问题1】请同学们思考讨论课本第9页的问题。

(在此,添加了以下两个小问(3)A={x|-3<x<1},B={x|-1<x<5},C={x|-3<>x<5};(4)A={x|x是小于6的正整数},B={x|x是小于9的正整数},C={x|x 是不大于8的正整数}.)【设计意图】引出两个集合并集的含义。

剖析含义中的关键词“所有”、“或”。

【问题2】前面我们已经学习了Venn图,请同学们用Venn图表示前面4个例子的并集。

【设计意图】强调两个集合的并集有三种情况:1.集合A与B没有公共元素;2.集合A与B有部分公共元素;3.集合A包含于集合B中。

【问题3】例4的讲解。

【设计意图】帮助学生学会如何求两个集合的并集,强调在求两个集合的并集时,它们的公共元素在并集中只能出现一次。

说明A∪A=A,A∪∅=A,A∪B= B∪A.【问题4】两个集合的并集有三种情况其中有两种情况是集合A与B 有公共元素的。

那么,我么么如何来描述集合A与B的公共元素呢?请同学们思考课本第10页的问题。

(在此,添加一个小问(3)A={x|-3<x<5},B={x|-1<x<2},C={x|-1<x<2}) 【设计意图】引出两个集合交集的含义。

高中数学人教A版必修1第一章《1.1.3 集合的基本运算》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学人教A版必修1第一章《1.1.3 集合的基本运算》省级名师优质课教案比赛获奖教案示范课教案公开课教案

高中数学人教A版必修1第一章《1.1.3 集合的基本运算》省级名师优质课教案比赛获奖教案示范课教案公开课教案
【省级名师教案】
1教学目标
1. 知识与技能
(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集.
(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集.
(3)能使用Venn图表达集合的运算,体会直观图示对理解抽象概念的作用.
2. 过程与方法
学生通过观察和类比,借助Venn图理解集合的基本运算.
2重点难点
重点:交集与并集,全集与补集的概念.
难点:理解交集与并集的概念.符号之间的区别与联系.
3学情分析
(1)进一步树立数形结合的思想.
(2)进一步体会类比的作用.
(3)感受集合作为一种语言,在表示数学内容时的简洁和准确.
4教学过程
4.1第一学时
教学活动
1【导入】集合的基本运算
创设情景,揭示课题
问题1:我们知道,实数有加法运算。

类比实数的加法运算,集合是否也可以“相加”呢?
请同学们考察下列各个集合,你能说出集合C与集合A.B之间的关系吗?
(1)A={1,3,5} B={2,4,6} C={1,2,3,4,5,6}。

高中数学:1.1.3《集合的基本运算》全集与补集 教学案(新人教A版必修1)

高中数学:1.1.3《集合的基本运算》全集与补集 教学案(新人教A版必修1)

1.1.3集合的基本运算(全集、补集)【教学目标】1、了解全集的意义,理解补集的概念.2、能用韦恩图表达集合的关系及运算,体会直观图示对理解抽象概念的作用3、进一步体会数学语言的简洁性与明确性,发展运用数学语言交流问题的能力。

【教学重难点】教学重点:会求给定子集的补集。

教学难点:会求给定子集的补集。

【教学过程】(一)复习集合的概念、子集的概念、集合相等的概念;两集合的交集,并集.(二)教学过程一、情景导入观察下面两个图的阴影部分,它们同集合A 、集合B 有什么关系?二、检查预习1、在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为 .2、若A 是全集U 的子集,由U 中不属于A 的元素构成的集合,叫做 ,记作 。

三、合作交流Φ=⋂A C A U ,U A C A U =⋃,A A C C U U =)(B C A C B A C U U U ⋂=⋃)(,B C A C B A C U U U ⋃=⋂)(注:是否给出证明应根据学生的基础而定.四、精讲精练例⒈设U={2,4,3-a 2},P={2,a 2+2-a },CU P={-1},求a . 解:∵-1∈CU P∴-1∈U∴3-a 2=-1得a =±2.当a =2时,P={2,4}满足题意.当a =-2时,P={2,8},8∉U舍去.因此a =2.[点评]由集合、补集、全集三者关系进行分析,特别注意集合元素的互异性,所以解题时不要忘记检验,防止产生增解。

变式训练一:已知A={0,2,4,6},CS A={-1,-3,1,3},CS B={-1,0,2},用列举法写出集合B.解:∵A={0,2,4,6},CS A={-1,-3,1,3}∴S={-3,-1,0,1,2,3,4,6}又CS B={-1,0,2} ∴B={-3,1,3,4,6}.例⒉设全集U=R,A={x|3m-1<x<2m},B={x|-1<x<3},B⊂≠CU A,求m的取值范围.解:由条件知,若A=Φ,则3m-1≥2m即m≥1,适合题意;若A≠Φ,即m<1时,CU A={x|x≥2m或x≤3m-1},则应有-1≥2m即m≤-21; 或3m-1≥3即m≥43与m<1矛盾,舍去. 综上可知:m的取值范围是m≥1或m≤-21. 变式训练二:设全集U={1,2,3,4},且A={x|x2-mx+n=0,x∈U},若CU A={2,3},求m,n的值.解:∵U={1,2,3,4},CU A={2,3}∴A={1,4}.∴1,4是方程x2-mx+n=0的两根.∴m=1+4=5,n=1×4=4.【板书设计】一、 基础知识1. 全集与补集2. 全集与补集的性质二、 典型例题例1: 例2:小结:【作业布置】本节课学案预习下一节。

人教版高中必修11.1.3集合的基本运算教学设计

人教版高中必修11.1.3集合的基本运算教学设计

人教版高中必修11.1.3集合的基本运算教学设计一、教学目标学生能够正确理解集合的定义和基本运算;掌握集合的交、并、差、补等基本运算的概念和操作方法;通过课堂练习和习题解析,巩固掌握集合的基本运算。

二、教学内容1. 集合的定义集合是一些确定的、互异的对象的总体,它们可以是任何事物。

2. 集合的表示方法集合可以使用列举法和描述法表示,其中列举法指出集合中所有元素,描述法用条件来表示集合中的元素。

3. 集合的基本运算•交集:集合A、B的交集,记作A∩B,是包含在A和B中的所有公共元素的集合。

•并集:集合A、B的并集,记作A∪B,是包含在A和B中的所有元素的集合。

•差集:集合A中去除掉属于B中的元素以后的集合,记作A-B。

•补集:相对于全集U,集合A在U中没有出现的元素构成的集合,记作A的补集。

4. 集合的基本性质•交换律:A∩B=B∩A,A∪B=B∪A•结合律:(A∩B)∩C=A∩(B∩C),(A∪B)∪C=A∪(B∪C)•分配律:A∩(B∪C)=(A∩B)∪(A∩C),A∪(B∩C)=(A∪B)∩(A∪C)•对偶律:(A∩B)的补集=A的补集∪B的补集,(A∪B)的补集=A的补集∩B的补集•恒等律:A∩U=A,A∪∅=A•互余律:A∪A的补集=U,A∩A的补集=∅。

三、教学过程1. 导入(5分钟)•挨个问学生喜欢哪些事物,然后引出集合的概念。

2. 理论教学(20分钟)•讲解集合的定义和表示方法。

•详细讲解集合的基本运算,例如交集、并集、差集和补集,要求学生理解概念。

•详细讲解集合的基本性质,例如交换律、结合律、分配律、对偶律、恒等律和互余律。

3. 练习与讨论(25分钟)•提供一些简单的集合运算问题,让学生自己尝试解答。

•对于学生提出的问题,进行讲解和解答,强化学生对于集合运算的理解。

•引导学生思考另外的问题,并进行讨论,例如“人类与非人类集合的关系”等。

4. 教学总结(5分钟)•对于本节课所学的内容进行总结,强化学生对于集合运算的理解。

1.1.3 集合的基本运算(教案)

1.1.3  集合的基本运算(教案)

§1.1 集合§1.1.3 集合的基本运算【教学目标】l.知识与技能(1)理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能使用Venn 图表达集合的运算,体会直观图示对理解抽象概念的作用。

2. 过程与方法学生通过观察和类比,借助Venn 图理解集合的基本运算。

3. 情感态度与价值观(1)进一步树立数形结合的思想;(2)进一步体会类比的作用;(3)感受集合作为一种语言,在表示数学内容时的简洁和准确。

【教学重点】交集与并集,全集与补集的概念。

【教学难点】理解交集与并集的概念;符号之间的区别与联系。

【教学方法】学生借助Venn 图,通过观察、类比、思考、交流和讨论等,理解集合的基本运算。

【教学过程】【导入新课】思路:我们知道,实数有加法运算。

类比实数的加法运算,集合是否也可以“相加”呢?请同学们考察下列各个集合,你能说出集合C 与集合,A B 之间的关系吗?(1){1,3,5},{2,4,6},{1,2,3,4,5,6};A B C ===(2){|},{|},{|}A x x B x x C x x ===是理数是无理数是实数引导学生通过观察、类比、思考和交流,得出结论。

教师强调集合也有运算,这就是我们本节课所要学习的内容。

【推进新课】【新知探究】【知识点1】1、并集的定义:文字语言:一般地,由所有属于集合A 或属于集合B 的元素所组成的集合,称为集合A 与集合B 的并集。

记作:A B (读作:“A 并B ”)。

符号语言:{},A B x x A x B =∈∈ 或。

图形语言:【说明】(1)A B 仍是一个集合,由所有属于集合A 或属于集合B 的元素组成。

(2)“或”的数学内涵:(3)对于A B ,不能认为是由A 的所有元素和B 的所有元素所组成的集合,因为A 与B 可能有公共元素,公共元素只能算一次。

1.1.3集合的基本运算(教学设计)

1.1.3集合的基本运算(教学设计)

1.1.3集合的基本运算(二)教学目标:理解在给定集合中一个子集的补集的含义,会求给定子集的补集.能用文氏图表达集合的关系及运算,体会直观图示对理解抽象概念的作用 教学重、难点:会求给定子集的补集,用文氏图表达集合的关系及运算教学过程:一、 复习集合的概念、子集的概念、集合相等的概念;两集合的交集,并集.二、 讲述新课1)全集:在给定的问题中,若研究的所有集合都是某一给定集合的子集,那么称这个给定的集合为全集.2)若A 是全集U 的子集,由U 中不属于A 的元素构成的集合,叫做A 在U 中的补集,记作A C U ,注:集合A 与集合B 之差,记为A \B ,A \B={x|x ∈A 且x ∉B },如A={1,2,3},B={2,5},A \B={1,3}.在A \B 中,B 可以不是A 的子集三、基本性质Φ=⋂A C A U ,U A C A U =⋃,A A C C U U =)(B C A C B A C U U U ⋂=⋃)(,B C A C B A C U U U ⋃=⋂)(四、例题讲解例1(1)若U={1,2,3,4,5,6},A={1,3,5},求C U A解 C u A={2,4,6}(2)U=R,求 C U Q解 C U Q ={无理数}(3)U={x|x ≥-3},A={x|x >1},求C U A解 C U A={ x|-3 ≤x ≤1}(4)U={x|x ≤8, x ∈N },A={x|x=2k+1,1 ≤k ≤3,k ∈Z},求C U Z解 C U Z={0,1,2,4,6,8}例2 已知全集U=}32,3,2{2-+a a ,若}2|,12{|-=a A ,}5{=CuA ,求实数a 值解 由322-+a a =5, 24或-=a ,经检验2=a例 3、1)全集U =R ,A={x|x >1},B={x|x+a ﹤0},B C R A, 求实数a 取值范围解 a ≥-12) A={x ∈R|-1≤x ≤3},B={ x ∈R |m-2≤x ≤m+2 }①若A ∩B={x|0≤x ≤3},求实数m 的值②若A B C R ⊆,求实数m 的取值范围解 ①m-2=0且m+2≥3, m=2 ②m >5或m ﹤-3注:端点能否取到单独考虑例 4、已知全集I={小于10的正整数},其子集A,B 满足}9,1{=B C A I ,}2{=⋂B A ,}8,6,4{=⋂B A C I ,求集合A,B分析:文氏图五 课堂练习:第11页练习4补充练习 分别用集合A,B,C 表示下图的阴影部分六 小结:1、本节课我们学习了补集的概念和基本性质2、文氏图对理解集合概念有重要作用七 课后作业:第12页A 组第9,10题B 组第4题。

集合的基本运算 精品教案

集合的基本运算 精品教案

1.1.3集合的基本运算【课题】:集合的基本运算方案一:教材分析:集合概念及其基本理论,称为集合论,是近、现代数学的一个重要的基础,一方面,许多重要的数学分支,都建立在集合理论的基础上。

另一方面,集合论及其所反映的数学思想,在越来越广泛的领域种得到应用。

教材分析:类比实数的运算关系引入集合的并集、交集与补集的概念。

【教学目标】:(1)理解两个集合的并集与交集的的含义,会求两个简单集合的并集与交集;(2)理解在给定集合中一个子集的补集的含义,会求给定子集的补集;(3)能用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用。

(4)通过使用符号表示、集合表示、图形表示集合间的关系与运算,让学生感受集合语言在描述客观现实和数学问题中的意义,学习用数学的思维方式去认识、认识解决问题的能力,同时培养学生的语义转换能力。

【教学重点】:集合的交集与并集、补集的概念以及运算。

【教学难点】:集合的交集与并集、补集“是什么”,“为什么”,“怎样做”。

【教学突破点】:从实际问题引入通过例子中的“公共元素”“所有元素”“剩余元素”组成的集合来引出集合的交集、并集、补集的概念。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件【教学过程设计】:如上图,集合A和B的公共部分叫做集合集(图1的阴影部分),集合A和B合并在一起得到的集合叫做集练习:班级 姓名 A 组一、选择题1.集合{}t M ,3,1=,{}12+-=t t N ,若M N M = ,则t 的值是 ( ) A .1 B. 2,0或-1 C. 2或1± D. 不存在2.设集合{}N k k x x A ∈=,2=,{}N k k x x B ∈==,3,则=B A ( ) A .{}N k k x x ∈=,5 B. {}N k k x x ∈=,6 C. {}N k k x x ∈=,2 D. {}N k k x x ∈=,33.已知全集{}87654321,,,,,,,=U ,{}543,,=A ,{}631,,=B ,那么集合{}872,,是( )A .B A B. B A C. ()B AC U D. ()B A C U 4.非空集合P ,Q ,R 满足关系Q Q P = ,Q R Q = ,则P ,R 的关系是( ) A .P=R B. R P ⊆ C. P R ⊆ D. Q R Q = 5.已知I 为全集,集合M ,NI ,则N N M = ,则( )A .N C M C I I ⊇ B. N C M I ⊆ C. N C M C I I ⊆ D. N C M I ⊇ 6.设全集(){}R y x y x I ∈=,,,集合()⎭⎬⎫⎩⎨⎧=--=123,x y y x M ,(){}1,+≠=x y y x N ,那么N C M C I I 等于 ( ) A .∅ B.(){}3,2 C. ()3,2 D. (){}1,+=x y y x二、填空题7.设集合{}21<≤-=x x M ,{}a x x N ≤=,若∅=N M ,则实数a 的取值范围是_______________.8.已知集合{}R x x x P ∈≥=,2,{}N x x x x Q ∈=--,022=,则=Q P ______. 9.已知全集{}23,0,2aI -=,子集{}2,22--=a aP ,{}1-=P C I ,则实数a =_________.10.已知{}R a a x ax x x A ∈-≤-=,2,{}412≤+≤=x x B ,若B B A = ,则a 的取值范围为_______________.11.设{}32,3,22-+=a a U ,{}2,b A =,{}5=A C U ,则a+b =_________.12.已知集合{}R x b m mx x x A ∈=++-=,0242,{}R x x x B ∈<=,0,若∅≠B A ,则实数m 的取值范围为__________.三、解答题13.已知集合{}02=++=q px x x A ,{}022=--=q px x x B ,且{}1-=B A ,求B A .14.全集U=Z.集合{}02832≥--=x x x A ,{}a x x B 21<-=,若B A C B U = ,求a 的取值范围. 高考练习:1.设U={x ︱x 是小于9的正整数} A={1,2,3,4},B={3,4,5,6}, 则C U A∩C U B=( )。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章 集合与常用逻辑用语 第3节 集合的基本运算
本节是新人教A 版高中数学必修1第1章第1节第3部分的内容。

在此之前,学生已学习了集合的含义以及集合与集合之间的基本关系,这为学习本节内容打下了基础。

本节内容主要介绍集合的基本运算一并集、交集、补集。

是对集合基木知识的深入研究。

在此,通过适当的问题情境,使学生感受、认识并掌握集合的三种基本运算。

本节内容是函数、方程、不等式的基础,在教材中起着承上启下的作用。

本节内容是高中数学的主要内容,也是高考的对象,在实践中应用广泛,是高中学生必须掌握的重点。

1.教学重点:交集、并集、补集的运算;
2.教学难点:交集、并集、补集的运算性质及应用,符号之间的区别与联系。

多媒体
Venn 图表示:
(2)“或”的理解:三层含义:
的并集。

与是的所有元素组成的集合,,由且。

即:又属于元素既属于但。

即:但不属于元素属于但。

即:但不属于元素属于B A B A B x A x B A A x B x x A B B x A x x B A 321}{.3},{.2},{.1⋂=∈∈∉∈∉∈
(3)思考:下列关系式成立吗? (1) A A A = (2)A A =φ 【答案】成立
(4)思考:若,B A ⊆,则A ∪B 与B 有什么关系?
【答案】 。

,则若B B A B A =⊆ 3、典型例题
例1.设A={4,5,6,8},B={3,5,7,8},求AUB .
}8,7,6,5,4,3{}8,7,5,3{}8,6,5,4{== B A 解:
例2.设集合A={x|-1<x<2},B={x|1<x<3}, 求AUB . 解:A ∪B ={x|-1<x<3}
【注意】由不等式给出的集合,研究包含关系或进行运算,常用数轴。

探究二 交集的含义
1、思考:考察下面的问题,集合C 与集合A 、B 之间有什么关系吗? (1) A={2,4,6,8,10}, B={3,5,8,12}, C={8}. (2)A={x|x 是立德中学今年在校的女同学},
B={x|x 是立德中学今年在校的高一年级同学},
问题: 在下面范围内解方程
(1) 有理数范围
(2)




2、全集与补集的定义
(1)全集的定义:一般地,如果一个集合含有我们所研究问题中所涉及的所有元素,那么就称这个集合为全集,通常记作U . (2)对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合 A 相对于全集U 的补集,简称为集合A 的补集. 记作:A C U
即:A C U ={x| x ∈ U 且x ∉A} 说明:补集的概念必须要有全集的限制. 3、例题
例5.设U={x|x 是小于9的正整数},A={1,2,3},B={3,4,5,6},求。

,B C A C U U . 解:根据题意可知:
U={1,2,3,4,5,6,7,8}, 所以:A C U ={4,5,6,7,8}, B C U = {1,2,7,8}.
例6.设全集U={x |x 是三角形},A={x |x 是锐角三角形},B={x|x 是钝角三角形}.求A∩B ,)(B A C U 。

例7.
已知全集U=R ,集合
.)(}.42|{},3|{A B A C x x B x x U 求<<=<=
解:},3|{A C U
≥=x x }43|{B A C U <≤=x x )(。

三、达标检测
1.设集合A={0,1,2,3},集合B={2,3,4},则A∩B=()
A.{2,3} B.{0,1}C.{0,1,4} D.{0,1,2,3,4}
【解析】因为集合A={0,1,2,3},集合B={2,3,4},所以A∩B={2,3},故选A.
【答案】A
2.已知集合A={x|-1≤x<3},B={x|2<x≤5},则A∪B=() A.(2,3) B.[-1,5] C.(-1,5) D.(-1,5]
【解析】∵集合A={x|-1≤x<3},B={x|2<x≤5},∴A∪B ={-1≤x≤5}.故选B.
【答案】B
3.已知A={x|x+1>0},B={-2,-1,0,1},则(∁R A)∩B=() A.{-2,-1}
C.{-1,0,1}
【解析】因为集合A={x|x>-1},所以∁R A={x|x≤-1},则(∁
A)∩B={x|x≤-1}∩{-2,-1,0,1}={-2,-1}.
R
【答案】A
4.已知全集U={x|1≤x≤5},A={x|1≤x<a},若∁U A={x|2≤x≤5},则a=________.
【解析】∵A={x|1≤x<a},∁U A={x|2≤x≤5},
∴A∪(∁U A)=U={x|1≤x≤5},
且A∩(∁U A)=∅,因此a=2.
【答案】2
5.已知集合A={x|3≤x<7},B={x|2<x<10},C={x|x<3或x≥7},求:(1)A∪B;(2)C∩B.
【解】(1)由集合A={x|3≤x<7},B={x|2<x<10},把两集合表示在数轴上如图所示:
得到A∪B={x|2<x<10}.
(2)由集合B={x|2<x<10},C={x|x<3或x≥7},
则C∩B={x|2<x<3或7≤x<10}.
四、小结
这节课的教学设计始终以《新课标》的基本理念为指导,师生互动,生生互动,充分体现学生在教学活动的主体地位。

课后,我将从目标完成情况,学生提供出的新思路,学生存在的疑问等方面进行归纳总结,及时调整和弥补为今后的教学做准备。

相关文档
最新文档