2017高考试题分类汇编之解析几何和圆锥曲线文科(word解析版)
2017年高考真题 文科数学(全国II卷)解析版
绝密★启用前2017年普通高等学校招生全国统一考试文科数学【试卷点评】【命题特点】2017年高考全国新课标II数学卷,试卷结构在保持稳定的前提下,进行了微调,一是把解答题分为必考题与选考题两部分,二是根据中学教学实际把选考题中的三选一调整为二选一.试卷坚持对基础知识、基本方法与基本技能的考查,注重数学在生活中的应用.同时在保持稳定的基础上,进行适度的改革和创新,与2016年相比难度稳中略有下降.具体来说还有以下几个特点:1.知识点分布保持稳定小知识点如:集合、复数、程序框图、线性规划、向量问题、三视图保持一道小题,大知识点如:三角与数列三小一大,概率与统计一大一小,立体几何两小一大,圆锥曲线两小一大,函数与导数三小一大(或两小一大).2.注重对数学文化与数学应用的考查教育部2017年新修订的《考试大纲(数学)》中增加了对数学文化的考查要求.2017年高考数学全国卷II文科第18题以养殖水产为题材,贴近生活.3.注重基础,体现核心素养2017年高考数学试卷整体上保持一定比例的基础题,试卷注重通性通法在解题中的运用,另外抽象、推理和建模是数学的基本思想,也是数学研究的重要方法,试卷对此都有所涉及.【命题趋势】1.函数与导数知识:函数性质的综合应用、以导数知识为背景的函数问题是高考命题热点,函数性质的重点是奇偶性、单调性及图象的应用,导数重点考查其在研究函数中的应用,注重分类讨论及化归思想的应用.2.立体几何知识:立体几何一般有两道小题一道大题,小题中三视图是必考问题,常与几何体的表面积与体积结合在一起考查,解答题一般分两问进行考查.3.解析几何知识:解析几何试题一般有3道,圆、椭圆、双曲线、抛物线一般都会涉及,双曲线一般作为客观题进行考查,多为容易题,解答题一般以椭圆与抛物线为载体进行考查,运算量较大,不过近几年高考适当控制了运算量,难度有所降低. 4.三角函数与数列知识:三角函数与数列解答题一般轮流出现,若解答题为数列题,一般比较容易,重点考查利用基本量求通项及几种求和方法,若解答题为三角函数,一般是解三角形问题,此时客观题中一般会有一道与三角函数性质有关的题目,同时客观题中会有两道数列题,一易一难,数列客观题一般具有小、巧、活的特点.【试卷解析】一、选择题:本题共12小题,每小题5分,共60分。
2017年高考数学试题分项版—解析几何(解析版)
2017年高考数学试题分项版—解析几何(解析版)一、选择题1.(2017·全国Ⅰ文,5)已知F是双曲线C:x2-错误!=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()A.错误!B.错误!C.错误!D.错误!1.【答案】D【解析】因为F是双曲线C:x2-错误!=1的右焦点,所以F(2,0).因为PF⊥x轴,所以可设P的坐标为(2,y P).因为P是C上一点,所以4-错误!=1,解得y P=±3,所以P(2,±3),|PF|=3。
又因为A(1,3),所以点A到直线PF的距离为1,所以S△APF=错误!×|PF|×1=错误!×3×1=错误!.故选D.2.(2017·全国Ⅰ文,12)设A,B是椭圆C:错误!+错误!=1长轴的两个端点.若C上存在点M满足∠AMB=120°,则m的取值范围是()A.(0,1]∪[9,+∞) B.(0,错误!]∪[9,+∞)C.(0,1]∪[4,+∞) D.(0,错误!]∪[4,+∞)2.【答案】A【解析】方法一设焦点在x轴上,点M(x,y).过点M作x轴的垂线,交x轴于点N,则N(x,0).故tan∠AMB=tan(∠AMN+∠BMN)=错误!=错误!。
又tan∠AMB=tan 120°=-错误!,且由错误!+错误!=1,可得x2=3-错误!,则错误!=错误!=-错误!。
解得|y|=错误!.又0<|y|≤错误!,即0<错误!≤错误!,结合0<m<3解得0<m≤1.对于焦点在y轴上的情况,同理亦可得m≥9.则m的取值范围是(0,1]∪[9,+∞).故选A.方法二当0<m<3时,焦点在x轴上,要使C上存在点M满足∠AMB=120°,则错误!≥tan 60°=错误!,即错误!≥错误!,解得0<m≤1.当m>3时,焦点在y轴上,要使C上存在点M满足∠AMB=120°,则错误!≥tan 60°=错误!,即错误!≥错误!,解得m≥9。
2017年全国高考卷文科数学试题及答案详细解析(选择、填空、解答全解全析) 精品
2017年普通高等学校招生全国统一考试文科数学(必修+选修I)解析版本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
第Ⅰ卷1至2页。
第Ⅱ卷3至4页。
考试结束后,将本试卷和答题卡一并交回。
第Ⅰ卷 注意事项:1.答题前,考生在答题卡上务必用直径0.5毫米黑色墨水签字笔将自己的姓名、准考证号填写清楚,并贴好条形码.请认真核准条形码上的准考证号、姓名和科目.2.每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,在试题卷上作答无效.3.第Ⅰ卷共l2小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的. 一、选择题 (1)设集合U={}1,2,3,4,{}1,2,3,M ={}2,3,4,N =则U =(M N )Ið(A ){}12, (B ){}23, (C ){}2,4 (D ){}1,4 【命题意图】本题主要考查集合交并补运算.【解析】{2,3},(){1,4}U M N C M N =∴=【答案】D(2)函数0)y x =≥的反函数为(A )2()4x y x R =∈ (B )2(0)4x y x =≥(C )24y x =()x R ∈ (D )24(0)y x x =≥ 【命题意图】本题主要考查反函数的求法.【解析】由0)y x =≥反解得24y x =,又原函数的值域为0y ≥,所以函数0)y x =≥的反函数为2(0)4x y x =≥.【答案】B(3)设向量,a b 满足||||1a b == ,12a b ⋅=-r r ,则2a b +=(A(B(C(D【命题意图】本题主要考查平面向量的数量积与长度的计算方法.【解析】2221|2|||44||14()432a b a a b b +=+⋅+=+⨯-+= ,所以2a b +=【答案】B(4)若变量x ,y 满足约束条件63-21x y x y x +≤⎧⎪-≤⎨⎪≥⎩,则=23z x y +的最小值为(A )17 (B )14 (C )5 (D )3 【命题意图】本题主要考查简单的线性规划.【解析】作出不等式组表示的可行域,从图中不难观察当直线=23z x y +过直线x=1与x-3y=-2的交点(1,1)时取得最小值,所以最小值为5. 【答案】C(5)下面四个条件中,使a b >成立的充分而不必要的条件是(A )1a b +> (B )1a b -> (C )22a b > (D )33a b >【命题意图】本题主要考查充要条件及不等式的性质.【解析】即寻找命题P ,只需由P a b ⇒>,且由a b >不能推出P ,可采用逐项验证的方法,对A ,由1a b +>,且1b b +>,所以a b >,但a b >时,并不能得到1a b +>,故答案为A 。
2017年高考数学理试题分类汇编圆锥曲线(供参考)
2017 年高考试题分类汇编之圆锥曲线(理数) 解析一、选择题 .................................................................................................................................... 1 二、填空题 .................................................................................................................................... 3 三、大题 .. (5)一、选择题【浙江卷】2.椭圆22194x y +=的离心率是 ABC .23D .59【解析】e == B.【全国1卷(理)】10.已知F 为抛物线C :y 2=4x 的核心,过F 作两条相互垂直的直线l 1,l 2,直线l 1与C 交于A 、B 两点,直线l 2与C 交于D 、E 两点,那么|AB |+|DE |的最小值为( )A .16B .14C .12D .10【解析】设AB 倾斜角为θ.作1AK 垂直准线,2AK 垂直x 轴 易知11cos 22AF GF AK AK AF P P GP Pθ⎧⎪⋅+=⎪⎪=⎨⎪⎛⎫⎪=--= ⎪⎪⎝⎭⎩(几何关系)(抛物线特性)cos AF P AFθ⋅+=∴同理1cos P AF θ=-,1cos PBF θ=+∴22221cos sin P PAB θθ==- 又DE 与AB 垂直,即DE 的倾斜角为π2θ+2222πcos sin 2P PDE θθ==⎛⎫+ ⎪⎝⎭而24y x =,即2P =.∴22112sin cos AB DE P θθ⎛+=+ ⎝最小值为16,应选A【全国Ⅱ卷(理)】9.假设双曲线C:22221x y a b-=(0a >,0b>)的一条渐近线被圆()2224x y -+=所截得的弦长为2,那么C 的离心率为( )A .2 BCD .3【解析】取渐近线by x a=,化成一样式0bx ay -=,圆心()20,得224c a =,24e =,2e =.【全国III 卷(理)】5.已知双曲线C:22221x y a b -= (a >0,b >0)的一条渐近线方程为y x =,且与椭圆221123x y += 有公共核心,那么C 的方程为( ) A. 221810x y -= B. 22145x y -= C. 22154x y -= D. 22143x y -=【解析】∵双曲线的一条渐近线方程为y =,那么b a =① 又∵椭圆221123x y +=与双曲线有公共核心,易知3c =,那么2229a b c +==②由①②解得2,a b ==,那么双曲线C 的方程为22145x y -=,应选B.【全国III 卷(理)】10.已知椭圆C :22221x y a b+=,(a >b >0)的左、右极点别离为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,那么C 的离心率为( )A.6B.3C.23D.13【解析】∵以12A A为直径为圆与直线20bx ay ab-+=相切,∴圆心到直线距离d等于半径,∴222abd aa b==+又∵0,0a b>>,那么上式可化简为223a b=∵222b a c=-,可得()2223a a c=-,即2223ca=∴6cea==,应选A【天津卷】(5)已知双曲线22221(0,0)x ya ba b-=>>的左核心为F,离心率为2.假设通过F和(0,4)P两点的直线平行于双曲线的一条渐近线,那么双曲线的方程为()A.22144x y-= B.22188x y-= C.22148x y-= D.22184x y-=【解析】由题意得224,14,22188x ya b c a bc==-⇒===⇒-=-,故选B.二、填空题【全国1卷(理)】15.已知双曲线C:22221x ya b-=(a>0,b>0)的右极点为A,以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.假设∠MAN=60°,那么C的离心率为________.【解析】如图,OA a=,AN AM b==∵60MAN∠=︒,∴3AP,222234OP OA PA a b=--∴2232tan34APOPa bθ==-又∵tan b a θ=b a =,解得223a b =∴e ===【全国2卷(理)】16.已知F 是抛物线C:28y x =的核心,M 是C 上一点,FM 的延长线交y 轴于点N .假设M 为FN 的中点,那么FN = .【解析】28y x =则4p =,核心为()20F ,,准线:2l x =-, 如图,M 为F 、N 中点,故易知线段BM 为梯形AFMC 中位线, ∵2CN =,4AF =, ∴3ME =又由概念ME MF =, 且MN NF =, ∴6NF NM MF =+=【北京卷】(9)假设双曲线221y x m-=m =_______________. 【解析】2m =⇒= 【江苏卷】8.在平面直角坐标系xOy 中,双曲线2213x y -= 的右准线与它的两条渐近线别离交于点P ,Q ,其核心是F 1 , F 2 ,那么四边形F 1 P F 2 Q 的面积是 .1(10,0)F -,2(10,0)F ,那么302102310S =⨯=. 【山东卷】14.在平面直角坐标系xOy 中,双曲线()222210,0x y a b a b -=>>的右支与核心为F 的抛物线()220x px p =>交于,A B 两点,假设4AF BF OF +=,那么该双曲线的渐近线方程为 .三、大题【全国I 卷(理)】20.(12分)已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–13),P 4(13C 上. (1)求C 的方程;(2)设直线l 不通过P 2点且与C 相交于A ,B 两点.假设直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点. 20.解:(1)依照椭圆对称性,必过3P 、4P又4P 横坐标为1,椭圆必只是1P ,因此过234P P P ,,三点 将()233011P P ⎛- ⎝⎭,,,代入椭圆方程得222113141b ab ⎧=⎪⎪⎨⎪+=⎪⎩,解得24a =,21b = ∴椭圆C 的方程为:2214x y +=.(2)①当斜率不存在时,设()():A A l x m A m y B m y =-,,,,221121A A P A P B y y k k m m m ----+=+==-得2m =,现在l 过椭圆右极点,不存在两个交点,故不知足. ②当斜率存在时,设()1l y kx b b =+≠∶()()1122A x y B x y ,,,联立22440y kx b x y =+⎧⎨+-=⎩,整理得()222148440k x kbx b +++-= 122814kbx x k -+=+,21224414b x x k -⋅=+ 则22121211P A P B y y k k x x --+=+()()21212112x kx b x x kx b x x x +-++-=222228888144414kb k kb kbk b k--++=-+()()()811411k b b b -==-+-,又1b ≠21b k ⇒=--,现在64k ∆=-,存在k 使得0∆>成立. ∴直线l 的方程为21y kx k =-- 当2x =时,1y =- 所以l 过定点()21-,. 【全国II 卷(理)】20. (12分)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 知足2NP NM =.(1)求点P 的轨迹方程;(2)设点Q 在直线x =-3上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦 点F ..解:⑴设()P x y ,,易知(0)N x , (0)NP y =,又0NM ⎛== ⎝∴M x y ⎛⎫⎪⎝⎭,又M 在椭圆上.∴2212x +=,即222x y +=. ⑵设点(3)Q Q y -,,()P P P x y ,,(0)Q y ≠, 由已知:()(3)1P P P Q P OP PQ x y y y y ⋅=⋅---=,,, ()21OP OQ OP OP OQ OP ⋅-=⋅-=,∴213OP OQ OP ⋅=+=,∴33P Q P Q P P Q x x y y x y y ⋅+=-+=. 设直线OQ :3Q y y x =⋅-,因为直线l 与OQ l 垂直. ∴3l Qk y =故直线l 方程为3()P P Qy x x y y =-+, 令0y =,得3()P Q P y y x x -=-, 13P Q P y y x x -⋅=-, ∴13P Q P x y y x =-⋅+,∵33P Q P y y x =+,∴1(33)13P P x x x =-++=-,若0Q y =,那么33P x -=,1P x =-,1P y =±,直线OQ 方程为0y =,直线l 方程为1x =-,直线l 过点(10)-,,为椭圆C 的左核心.【全国III 卷(理)】20.(12分)已知抛物线C :y 2=2x ,过点(2,0)的直线l 交C 与A ,B 两点,圆M 是以线段AB 为直径的圆.(1)证明:坐标原点O 在圆M 上; (2)设圆M 过点P (4,-2),求直线l 与圆M 的方程.解:(1)显然,当直线斜率为0时,直线与抛物线交于一点,不符合题意.设:2l x my =+,11(,)A x y ,22(,)B x y ,联立:222y xx my ⎧=⎨=+⎩得2240y my --=,2416m ∆=+恒大于0,122y y m +=,124y y =-.1212OA OBx x y y ⋅=+ 12(2)(2)my my =++21212(1)2()4m y y m y y =++++ 24(1)2(2)4m m m =-+++0=∴OA OB ⊥,即O 在圆M 上.(2)假设圆M 过点P ,那么0AP BP ⋅= 1212(4)(4)(2)(2)0x x y y --+++= 1212(2)(2)(2)(2)0my my y y --+++=21212(1)(22)()80m y y m y y +--++=化简得2210m m --=解得12m =-或1①当12m =-时,:240l x y +-=圆心为00(,)Q x y ,120122y y y +==-,0019224x y =-+=,半径||r OQ =那么圆229185:()()4216M x y -++=②当1m =时,:20l x y --=圆心为00(,)Q x y ,12012y y y +==,0023x y =+=,半径||r OQ ==那么圆22:(3)(1)10M x y -+-=【北京卷】(18)(14分)已知抛物线C :y 2=2px 过点P (1,1).过点(0,12)作直线l 与抛物线C 交于不同的两点M ,N ,过点M 作x 轴的垂线别离与直线OP 、ON 交于点A ,B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其核心坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.(18)解:(Ⅰ)把P (1,1)代入y 2=2Px 得P =12∴C :y 2=x , ∴核心坐标(14,0),准线:x =-14. (Ⅱ)设l :y =kx +12,A (x 1,y 1),B (x 2,y 2),OP :y =x ,ON :y =22yx x ,由题知A (x 1,x 1),B (x 1,122x y x ) 212y kx y x⎧>+⎪⎨⎪=⎩⇒k 2x 2+(k -1)x +14=0,x 1+x 2=21k k -,x 1·x 2=214k . 1112121112221122,22x kx x y x x y kx kx x x x ⎛⎫+ ⎪+⎝⎭+=++=+由x 1+x 2=21k k -,x 1x 2=214k , 上式()2111121122122124kk kx kx k x x x k x -=+=+-⋅=∴A 为线段BM 中点.【江苏卷】17.(14分)如图,在平面直角坐标系xOy 中,椭圆1(0)2222x y E :+a b a b=>>的左、右核心别离为F 1,F 2,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点F 1作直线PF 1的垂线l 1,过点F 2作直线PF 2的垂线l 2. (1)求椭圆E 的标准方程;(2)假设直线l 1,l 2的交点Q 在椭圆E 上,求点P 的坐标.17.解:(1)∵椭圆E 的离心率为12,∴12c a =①.∵两准线之间的距离为8,∴228a c =②.联立①②得2,1a c ==,∴3b =,故椭圆E 的标准方程为22143x y +=. (2)设00(,)P x y ,那么000,0x y >>,由题意得00001(1)1(1)x y x y x y x y +⎧=-+⎪⎪⎨-⎪=--⎪⎩,整理得0201x x x y y =-⎧⎪-⎨=⎪⎩,∵点00(,)P x y 在椭圆E 上,∴2200143x y +=,∴222002(1)33y x y -=,∴2200169,77x y ==,故点P 的坐标是4737(,)77.【江苏卷】B .[选修4-2:矩阵与变换](本小题总分值10分)已知矩阵A = ,B =. (1) 求AB ;(2)假设曲线C 1;22y =182x + 在矩阵AB 对应的变换作用下取得另一曲线C 2 ,求C 2的方程.B.解:(1)AB ==.(2)设11(,)P x y 是曲线1C 上任意一点,变换后对应的点为1`0210x x y y ⎡⎤⎢⎥⎣⎡⎤⎡⎦⎤=⎢⎥⎢⎥⎣⎦⎣⎦, 因此112x y y x =⎧⎨=⎩,即1112x yy x =⎧⎪⎨=⎪⎩,因为11(,)P x y 在曲线1C 上,因此228x y +=即曲线C 2的方程.【山东卷】(21)(本小题总分值13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为2,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M 的半径为MC ,,OS OT 是M 的两条切线,切点别离为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.(21)解:(I )由题意知 22c e a ==,22c =, 因此 2,1a b ==,因此 椭圆E 的方程为2212x y +=.(Ⅱ)设()()1122,,,A x y B x y ,由题意知0∆>,令2112t k =+,【天津卷】(19)(本小题总分值14分)设椭圆22221(0)x y a b a b +=>>的左核心为F ,右极点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的核心,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .假设APD △的面积为2,求直线AP 的方程.(19)(Ⅰ)解:设F的坐标为(,0)c-.依题意,12ca=,2pa=,12a c-=,解得1a=,12c=,2p=,于是22234b a c=-=.因此,椭圆的方程为22413yx+=,抛物线的方程为24y x=.因此,直线AP的方程为3630x y+-=,或3630x y--=.【浙江卷】21.(此题总分值15分)如图,已知抛物线2x y=,点A11()24-,,39()24B,,抛物线上的点11()()24P x y x-<<,.过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求AP PQ⋅的最大值.21.解:(Ⅰ)由题易患P(x,x2),-12<x<32,故k AP=21412xx-+=x-12∈(-1,1),故直线AP 斜率的取值范围为(-1,1).故PA =(-1设直线AP 的斜率为k ,故1(PQ +=又2(1,)PA k k k =---- ,32(1)k PA PQ PA PQ k +==(1)(1)PA PQ k k =+-,令PA PQ 的最大值为。
专题05 解析几何-2017年高考数学(文)试题分项版解析(附解析)$793250
专题05 解析几何-2017年高考数学(文)试题分项版解析1.【2017课表1,文5】已知F 是双曲线C :1322=-y x 的右焦点,P 是C 上一点,且PF与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为 A .13B .1 2C .2 3D .3 2【答案】D 【解析】【考点】双曲线【名师点睛】本题考查圆锥曲线中双曲线的简单运算,属容易题.由双曲线方程得)0,2(F ,结合PF 与x 轴垂直,可得3||=PF ,最后由点A 的坐标是(1,3),计算△APF 的面积.2.【2017课标II ,文5】若1a >,则双曲线2221x y a-=的离心率的取值范围是A. )+∞B.C.D. (1,2) 【答案】C【解析】由题意222222111c a e a a a +===+,因为1a >,所以21112a <+<,则1e <<故选C.【考点】双曲线离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.3.【2017浙江,2】椭圆22194x y +=的离心率是A B C .23D .59【答案】B 【解析】试题分析:e ==,选B . 【考点】 椭圆的简单几何性质【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于c b a ,,的方程或不等式,再根据c b a ,,的关系消掉b 得到c a ,的关系式,建立关于c b a ,,的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.4.【2017课标II ,文12】过抛物线2:4C y x =的焦点F ,C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为B. C. D. 【答案】C【考点】直线与抛物线位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,涉及弦长的问题中,应熟练地利用根与系数关系,设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.涉及中点弦问题往往利用点差法.5.【2017课标1,文12】设A 、B 是椭圆C :2213x y m+=长轴的两个端点,若C 上存在点M 满足∠AMB =120°,则m 的取值范围是A .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞【答案】A 【解析】试题分析:当03m <<,焦点在x 轴上,要使C 上存在点M 满足120AMB ∠=,则tan 603ab≥=≥01m <≤;当3m >,焦点在y 轴上,要使C 上存在点M 满足120AMB ∠=,则tan603ab ≥=≥,得9m ≥,故m 的取值范围为(0,1][9,)⋃+∞,选A . 【考点】椭圆【名师点睛】本题设置的是一道以椭圆的知识为背景的求参数范围的问题.解答问题的关键是利用条件确定b a ,的关系,求解时充分借助题设条件 120=∠AMB 转化为360tan =≥ ba,这是简化本题求解过程的一个重要措施,同时本题需要对方程中的焦点位置进行逐一讨论.6.【2017课标3,文11】已知椭圆C :22221x y a b+=,(a >b >0)的左、右顶点分别为A 1,A 2,且以线段A 1A 2为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( )A B C D .13【答案】A【考点】椭圆离心率【名师点睛】解决椭圆和双曲线的离心率的求值及范围问题其关键就是确立一个关于,,a b c 的方程或不等式,再根据,,a b c 的关系消掉b 得到,a c 的关系式,而建立关于,,a b c 的方程或不等式,要充分利用椭圆和双曲线的几何性质、点的坐标的范围等.7.【2017天津,文5】已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为(A )221412x y -=(B )221124x y -=(C )2213x y -=(D )2213y x -=【答案】D 【解析】试题分析:由题意结合双曲线的渐近线方程可得:22202tan 60c c a bba ⎧⎪=⎪=+⎨⎪⎪==⎩,解得:221,3a b ==, 双曲线方程为:2213y x -=,本题选择D 选项. 学#科网 【考点】双曲线方程【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意a 、b 、c 的关系222c a b =+,否则很容易出现错误.解本题首先画图,掌握题中所给的几何关系,再结合双曲线的一些几何性质,得到,,a b c 的关系,联立方程,求得,,a b c 的值,8.【2017天津,文12】设抛物线24y x =的焦点为F ,学 科&网准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A.若120FAC ∠=︒,则圆的方程为 .【答案】22(1)(1x y ++= 【解析】【考点】1.抛物线的方程;2.圆的方程.【名师点睛】本题设计比较巧妙,考查了圆,抛物线的方程,同时还考查了向量数量积的坐标表示,本题只有一个难点,就是0120CAF ∠=,会不会用向量的坐标表示cos CAF ∠,根据图象,可设圆心为()1,C m -,那么方程就是()()2211x y m ++-=,若能用向量的坐标表示角,即可求得m ,问题也就迎刃而解了.9.【2017北京,文10】若双曲线221y x m-=m =__________.【答案】2 【解析】试题分析:221,a b m == ,所以c a ==,解得2m = . 【考点】双曲线的方程和几何性质【名师点睛】本题主要考查的是双曲线的标准方程和双曲线的简单几何性质,属于基础题.解题时要注意a 、b 、c 的关系222c a b =+,否则很容易出现错误.以及当焦点在x 轴时,哪些量表示22,a b ,根据离心率的公式计算.10.【2017山东,文15】在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>, 的右支与焦点为F 的抛物线22(0)x py p =>交于A ,B 两点,若|AF |+|BF |=4|OF |,则该双曲线的渐近线方程为 .【答案】2y x =± 【解析】【考点】抛物线的定义与性质、双曲线的几何性质【名师点睛】若AB 是抛物线()220y px p =>的焦点弦,设A (x 1,y 1),B (x 2,y 2).则(1)y 1y 2=-p 2,x 1x 2=p 24.(2)|AB |=x 1+x 2+p =2p sin 2θ(θ为AB 的倾斜角).(3)1|AF |+1|BF |为定值2p.(4)以AB 为直径的圆与准线相切.(5)以AF 或BF 为直径的圆与y 轴相切.11.【2017课标3,文14】双曲线22219x y a -=(a >0)的一条渐近线方程为35y x =,则a = . 【答案】5【解析】由双曲线的标准方程可得渐近线方程为:3y x a=± ,结合题意可得:5a =.学%科网【考点】双曲线渐近线【名师点睛】1.已知双曲线方程22221x y a b-=求渐近线:22220x y by x a b a -=⇒=±2.已知渐近线y mx = 设双曲线标准方程222m x y λ-=3.双曲线焦点到渐近线距离为b ,垂足为对应准线与渐近线的交点.12.【2017江苏,8】 在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q ,其焦点是12,F F ,则四边形12F PF Q 的面积是 ▲ .【答案】【考点】双曲线渐近线【名师点睛】1.已知双曲线方程22221x y a b-=求渐近线:22220x y by x a b a -=⇒=±2.已知渐近线y mx = 设双曲线标准方程222m x y λ-=3,双曲线焦点到渐近线距离为b ,垂足为对应准线与渐近线的交点.13.【2017江苏,13】在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤则点P 的横坐标的取值范围是 ▲ .【答案】[-【解析】设(,)P x y ,由20PA PB ⋅≤,易得250x y -+≤,由2225050x y x y -+=⎧⎨+=⎩,可得5:5x A y =-⎧⎨=-⎩或1:7x B y =⎧⎨=⎩,由250x y -+≤得P 点在圆左边弧AB 上,结合限制条件x -≤≤,可得点P 横坐标的取值范围为[-.【考点】直线与圆,线性规划【名师点睛】线性规划问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求横坐标或纵坐标、直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法、值域范围.14.【2017课标1,文20】设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.【答案】(1)1; (2)7y x =+. 【解析】将y x m =+代入24x y =得2440x x m --=.当16(1)0m ∆=+>,即1m >-时,1,22x =±从而12||AB x x -=.由题设知||2||AB MN =,即2(1)m +,解得7m =. 所以直线AB 的方程为7y x =+.学&科网 【考点】直线与圆锥曲线的位置关系【名师点睛】本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.15.【2017课标II ,文20】设O 为坐标原点,动点M 在椭圆C 上,过M 作x轴的垂线,垂足为N ,点P 满足2NP NM = (1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明过点P 且垂直于OQ 的直线l 过C 的左焦点F. 【答案】(1)(2)见解析【解析】试题分析:(1)转移法求轨迹:设所求动点坐标及相应已知动点坐标,利用条件列两种坐标关系,最后代入已知动点轨迹方程,化简可得所求轨迹方程,(2)证明直线过定点问题,一般方法以算代证:即证,先设 P (m ,n ),则需证330m tn +-=,根据条件1OP PQ ⋅=可得2231m m tn n --+-=,而,代入即得330m tn +-=.(2)由题意知F (-1,0),设Q (-3,t ),P (m ,n ),则,.由得2231m m tn n --+-=,又由(1)知,故330m tn +-=.所以,即.又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F【考点】求轨迹方程,直线与椭圆位置关系【名师点睛】定点、定值问题通常是通过设参数或取特殊值来确定“定点”是什么、“定值”是多少,或者将该问题涉及的几何式转化为代数式或三角问题,证明该式是恒定的. 定点、定值问题同证明问题类似,在求定点、定值之前已知该值的结果,因此求解时应设参数,运用推理,到最后必定参数统消,定点、定值显现.16.【2017课标3,文20】在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.【答案】(1)不会;(2)详见解析【解析】试题分析:(1)设()()12,0,,0A x B x ,由AC ⊥BC 得1210x x +=;由韦达定理得122x x =-,矛盾,所以不存在(2)可设圆方程为2220x y mx Ey +++-=,因为过(0,1),所以1E = ,令0x = 得22012y y y y +-=⇒==-或,即弦长为3.令0x =得121,2y y ==-,所以过A ,B ,C 三点的圆在y 轴上截得的弦长为()123--=,所以所以过A ,B ,C 三点的圆在y 轴上截得的弦长为定值 解法2:设过A ,B ,C 三点的圆与y 轴的另一个交点为D ,由122x x =-可知原点O 在圆内,由相交弦定理可得122OD OC OA OB x x ===, 又1OC =,所以2OD =,所以过A ,B ,C 三点的圆在y 轴上截得的弦长为3OC OD +=,为定值. 【考点】圆一般方程,圆弦长【名师点睛】:直线与圆综合问题的常见类型及解题策略(1)处理直线与圆的弦长问题时多用几何法,即弦长的一半、弦心距、半径构成直角三角形.代数方法:运用根与系数的关系及弦长公式:12|||AB x x =-= (2)圆的切线问题的处理要抓住圆心到直线的距离等于半径,从而建立关系解决问题.学科#网17.【2017山东,文21】(本小题满分14分)在平面直角坐标系xOy 中,已知椭圆C :22221x y a b +=(a >b >0)椭圆C 截直线y =1所得线段的长度为(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线l :y =kx +m (m ≠0)交椭圆C 于A ,B 两点,交y 轴于点M .点N 是M 关于O 的对称点,圆N 的半径为|NO |. 设D 为AB 的中点,DE ,DF 与圆N 分别相切于点E ,F ,求∠EDF 的最小值.【答案】(Ⅰ)22142x y +=;(Ⅱ)EDF ∠的最小值为π2. 【解析】222(21)4240k x kx m +++-=,确定222(,)2121km m D k k -++,DN =所以2sin 2ON FDN DN∠==≥,由此可得FDN ∠的最小值为π,4EDF ∠的最小值为π2.(Ⅱ)设1122(,),(,)A x y B x y , 联立方程2224y kx mx y =+⎧⎨+=⎩ 得222(21)4240k x kmx m +++-=, 由0∆> 得2242m k <+ (*)且122421kmx x k +=+ ,因此122221my y k +=+ ,所以222(,)2121km mD k k -++ , 又(0,)N m - , 所以222222()()2121km mND m k k =-++++ 整理得:2242224(13)(21)m k k ND k ++=+ ,因为NF m =所以2422222224(31)831(21)(21)NDk k k k k NF+++==+++ 令283,3t k t =+≥故21214t k ++=所以222161611(1)2ND t t NFt t=+=++++ . 令1y t t=+ ,所以211y t '=- . 当3t ≥时,0y '>,设2EDF θ∠=, 则1sin 2NF NDθ=≥, 所以θ得最小值为6π. 从而EDF ∠的最小值为3π,此时直线l 的斜率时0. 综上所述:当0k =,(m ∈⋃时,EDF ∠取得最小值为3π.学科%网 【考点】圆与椭圆的方程、直线与圆锥曲线的位置关系、【名师点睛】圆锥曲线中的两类最值问题:①涉及距离、面积的最值以及与之相关的一些问题;②求直线或圆锥曲线中几何元素的最值以及这些元素存在最值时确定与之有关的一些问题.常见解法:①几何法,若题目的条件和结论能明显体现几何特征及意义,则考虑利用图形性质来解决;②代数法,若题目的条件和结论能体现一种明确的函数关系,则可先建立起目标函数,再求这个函数的最值,最值常用基本不等式法、配方法及导数法求解.18.【2017天津,文20】已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(I )求椭圆的离心率;(II )设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c . (i )求直线FP 的斜率; (ii )求椭圆的方程.【答案】(Ⅰ)12 (Ⅱ)(ⅰ)34 (ⅱ)2211612x y += 【解析】试题解析:(Ⅰ)解:设椭圆的离心率为e .由已知,可得21()22b c a c +=.又由222b ac =-,可得2220c ac a +-=,即2210e e +-=.又因为01e <<,解得12e =. 所以,椭圆的离心率为12. (Ⅱ)(ⅰ)依题意,设直线FP 的方程为(0)x my c m =->,则直线FP 的斜率为1m. 由(Ⅰ)知2a c =,可得直线AE 的方程为12x yc c+=,即220x y c +-=,与直线FP 的方程联立,可解得(22)3,22m c c x y m m -==++,即点Q 的坐标为(22)3(,)22m c cm m -++. 由已知|FQ |=32c ,有222(22)33[]()()222m c c c c m m -++=++,整理得2340m m -=,所以43m =,即直线FP 的斜率为34.【考点】1.椭圆方程;2.椭圆的几何性质;3.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,是一道难题重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用,,,a b c e的关系,确定椭圆离心率是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再求解过程逐步发现四边形PQNM的几何关系,从而求解面积,计算结果,本题计算量比较大,19.【2017北京,文19】已知椭圆C的两个顶点分别为A(−2,0),B(2,0),焦点在x轴上,离.(Ⅰ)求椭圆C的方程;(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点M,N,过D作AM 的垂线交BN于点E.求证:△BDE与△BDN的面积之比为4:5.【答案】(Ⅰ)2214xy+=;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)根据条件可知2,c a a ==,以及222b a c =- ,求得椭圆方程;(Ⅱ)设(,)M m n ,则(,0),(,)D m N m n -,根据条件求直线DE 的方程,并且表示直线BN 的方程,并求两条直线的交点,根据1212EBDEBDNN BD y S S BD y ∆∆⋅⋅=⋅⋅ ,根据坐标表示面积比值. 试题解析:(Ⅰ)设椭圆C 的方程为22221(0,0)x y a b a b+=>>.由题意得2,a c a=⎧⎪⎨=⎪⎩解得c =所以2221b a c =-=.所以椭圆C 的方程为2214x y +=.由点M 在椭圆C 上,得2244m n -=.所以45E y n =-. 又12||||||||25BDE E S BD y BD n =⋅=⋅△,1||||2BDN S BD n =⋅△,所以BDE △与BDN △的面积之比为4:5. 【考点】1.椭圆方程;2.直线与椭圆的位置关系.【名师点睛】本题对考生计算能力要求较高,重点考察了计算能力,以及转化与化归的能力,解答此类题目,利用,,,a b c e 的关系,确定椭圆方程是基础,通过联立直线方程与椭圆(圆锥曲线)方程的方程组,一般都是根据根与系数的关系解题,但本题需求解交点坐标,再根据面积的几何关系,从而求解面积比值,计算结果,本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等. 学科*网20.【2017江苏,17】 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F , 2F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作 直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【答案】(1)22143x y +=(2)()77(2)由(1)知,1(1,0)F -,2(1,0)F .设00(,)P x y ,因为点P 为第一象限的点,故000,0x y >>.(第17题)当01x =时,2l 与1l 相交于1F ,与题设不符.当01x ≠时,直线1PF 的斜率为001y x +,直线2PF 的斜率为01y x -.又P 在椭圆E 上,故2200143x y +=.由220022001143x y x y ⎧-=⎪⎨+=⎪⎩,解得00,77x y ==;220022001143x y x y ⎧+=⎪⎨+=⎪⎩,无解. 因此点P的坐标为.【考点】椭圆方程,直线与椭圆位置关系【名师点睛】直线和圆锥曲线的位置关系,一般转化为直线方程与圆锥曲线方程组成的方程组,利用韦达定理或求根公式进行转化,要充分利用椭圆和双曲线的几何性质、点在曲线上则点的坐标满足曲线方程.21.【2017浙江,21】(本题满分15分)如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求||||PQ PA ⋅的最大值. 【答案】(Ⅰ))1,1(-;(Ⅱ)2716【解析】试题分析:(Ⅰ)由两点求斜率公式可得AP 的斜率为21-x ,由1322x -<<,得AP 斜率的取值范围;(Ⅱ)联立直线AP 与BQ 的方程,得Q 的横坐标,进而表达||PA 与||PQ 的长度,通过函数3)1)(1()(+--=k k k f 求解||||PQ PA ⋅的最大值.学*科网解得点Q 的横坐标是)1(23422+++-=k k k x Q ,因为|P A |=1)2x +=)1(12++k k |PQ |=1)1)(1()(1222++--=-+k k k x x k Q ,所以|P A ||PQ |=3)1)(1(+--k k令3)1)(1()(+--=k k k f ,因为2)1)(24()('+--=k k k f ,所以 f (k )在区间)21,1(-上单调递增,)1,21(上单调递减,因此当k =12时,||||PQ PA ⋅取得最大值2716. 【考点】直线与圆锥曲线的位置关系【名师点睛】本题主要考查直线方程、直线与抛物线的位置关系等基础知识,同时考查解析几何的基本思想方法和运算求解能力,通过表达||PA 与||PQ 的长度,通过函数3)1)(1()(+--=k k k f 求解||||PQ PA ⋅的最大值.。
2017年高考真题分类汇编(理数)专题5解析几何(解析版)
2017年高考真题分类汇编(理数):专题5 解析几何一、单选题(共6题;共12分)1、(2017•浙江)椭圆+ =1的离心率是()A、B、C、D、2、(2017•新课标Ⅲ)已知双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,且与椭圆+ =1有公共焦点,则C的方程为()A、﹣=1B、﹣=1C、﹣=1D、﹣=13、(2017·天津)已知双曲线﹣=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为()A、=1B、=1C、=1D、=14、(2017•新课标Ⅰ卷)已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为()A、16B、14C、12D、105、(2017•新课标Ⅱ)若双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,则C的离心率为()A、2B、C、D、6、(2017•新课标Ⅲ)已知椭圆C:=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,则C的离心率为()A、B、C、D、二、填空题(共6题;共6分)7、(2017•北京卷)若双曲线x2﹣=1的离心率为,则实数m=________.8、(2017•江苏)在平面直角坐标系xOy中,A(﹣12,0),B(0,6),点P在圆O:x2+y2=50上.若≤20,则点P的横坐标的取值范围是________.9、(2017•江苏)在平面直角坐标系xOy中,双曲线﹣y2=1的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1,F2,则四边形F1PF2Q的面积是________.10、(2017•新课标Ⅰ卷)已知双曲线C:﹣=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,则C的离心率为________ .11、(2017•新课标Ⅱ)已知F是抛物线C:y2=8x的焦点,M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,则|FN|=________.12、(2017•山东)在平面直角坐标系xOy中,双曲线=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为________.三、解答题(共8题;共50分)13、(2017·天津)设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.14、(2017•北京卷)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.15、(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足= .(Ⅰ)求点P的轨迹方程;(Ⅱ)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.16、(2017•山东)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(14分)(Ⅰ)求椭圆E的方程.(Ⅱ)如图,该直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且看k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.17、(2017•浙江)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.18、(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.19、(2017•新课标Ⅰ卷)已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.20、(2017•新课标Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.答案解析部分一、单选题1、【答案】B【考点】椭圆的简单性质【解析】【解答】解:椭圆+ =1,可得a=3,b=2,则c= = ,所以椭圆的离心率为:= .故选:B.【分析】直接利用椭圆的简单性质求解即可.2、【答案】B【考点】椭圆的标准方程,椭圆的简单性质,双曲线的标准方程,双曲线的简单性质【解析】【解答】解:椭圆+ =1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,可得,即,可得= ,解得a=2,b= ,所求的双曲线方程为:﹣=1.故选:B.【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.3、【答案】B【考点】斜率的计算公式,两条直线平行的判定,双曲线的简单性质【解析】【解答】解:设双曲线的左焦点F(﹣c,0),离心率e= = ,c= a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=± x=±x,则经过F和P(0,4)两点的直线的斜率k= = ,则=1,c=4,则a=b=2 ,∴双曲线的标准方程:;故选B.【分析】由双曲线的离心率为,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.4、【答案】A【考点】抛物线的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|= •|y1﹣y2|= × =8,∴|AB|+|DE|的最小值为2|DE|=16,故选:A【分析】根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.5、【答案】A【考点】直线与圆相交的性质,双曲线的简单性质,圆与圆锥曲线的综合【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:= ,解得:,可得e2=4,即e=2.故选:A.【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.6、【答案】A【考点】圆的标准方程,直线与圆的位置关系,椭圆的简单性质【解析】【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e= = = .故选:A.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.二、填空题7、【答案】2【考点】双曲线的标准方程,双曲线的简单性质【解析】【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.8、【答案】[-5 ,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P(x0,y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0,6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5 ,1],故答案为:[﹣5 ,1].【分析】根据题意,设P(x0,y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.9、【答案】2【考点】双曲线的简单性质【解析】【解答】解:双曲线﹣y2=1的右准线:x= ,双曲线渐近线方程为:y= x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2 .故答案为:2 .【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.10、【答案】【考点】双曲线的简单性质【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°= ,可得:= ,即,可得离心率为:e= .故答案为:.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.11、【答案】6【考点】抛物线的简单性质【解析】【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2 =6.故答案为:6.【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.12、【答案】y=± x【考点】抛物线的标准方程,抛物线的简单性质,双曲线的标准方程,双曲线的简单性质,圆锥曲线的综合【解析】【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B= ,∵|AF|+|BF|=4|OF|,∴y A+y B+2× =4× ,∴=p,∴= .∴该双曲线的渐近线方程为:y=± x.故答案为:y=± x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.三、解答题13、【答案】(Ⅰ)解:设F的坐标为(﹣c,0).依题意可得,解得a=1,c= ,p=2,于是b2=a2﹣c2= .所以,椭圆的方程为x2+ =1,抛物线的方程为y2=4x.(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),联立方程组,解得点P(﹣1,﹣),故Q(﹣1,).联立方程组,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,).∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令y=0,解得x= ,故D(,0).∴|AD|=1﹣= .又∵△APD的面积为,∴× = ,整理得3m2﹣2 |m|+2=0,解得|m|= ,∴m=± .∴直线AP的方程为3x+ y﹣3=0,或3x﹣y﹣3=0.【考点】椭圆的标准方程,椭圆的简单性质,抛物线的简单性质,直线与圆锥曲线的关系,圆锥曲线的综合【解析】【分析】(Ⅰ)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(Ⅱ)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出答案.14、【答案】(1)解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p= ,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)(2)证明:设过点(0,)的直线方程为y=kx+ ,M(x1,y1),N(x2,y2),∴直线OP为y=x,直线ON为:y= x,由题意知A(x1,x1),B(x1,),由,可得k2x2+(k﹣1)x+ =0,∴x1+x2= ,x1x2=∴y1+ =kx1+ + =2kx1+ =2kx1+ =∴A为线段BM的中点.【考点】抛物线的简单性质,抛物线的应用,直线与圆锥曲线的综合问题【解析】【分析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2.)设过点(0,)的直线方程为y=kx+ ,M(x1,y1),N(x2,y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.15、【答案】解:(Ⅰ)设M(x0,y0),由题意可得N(x0,0),设P(x,y),由点P满足= .可得(x﹣x0,y)= (0,y0),可得x﹣x0=0,y= y0,即有x0=x,y0= ,代入椭圆方程+y2=1,可得+ =1,即有点P的轨迹方程为圆x2+y2=2;(Ⅱ)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3 cosα﹣2cos2α+ msinα﹣2sin2α=1,解得m= ,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF= ,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.【考点】数量积的坐标表达式,同角三角函数间的基本关系,斜率的计算公式,两条直线垂直与倾斜角、斜率的关系,轨迹方程【解析】【分析】(Ⅰ)设M(x0,y0),由题意可得N(x0,0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;(Ⅱ)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得证.16、【答案】解:(Ⅰ)由题意知,,解得a= ,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1,y1),B(x2,y2),联立,得.由题意得△= >0.,.∴|AB|= .由题意可知圆M的半径r为r= .由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|= .由题意可知,sin = .而= .令t= ,则t>1,∈(0,1),因此,= ≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【考点】函数的值域,椭圆的标准方程,椭圆的简单性质,椭圆的应用,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin = .转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.17、【答案】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k AP= =x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则AP:y=kx+ k+ ,BP:y=﹣x+ + ,联立直线AP、BP方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|= •= + =(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<﹣时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()= ,即|PA|•|PQ|的最大值为.【考点】利用导数求闭区间上函数的最值,平面向量数量积的运算,斜率的计算公式,抛物线的应用,圆锥曲线的综合【解析】【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x<可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.18、【答案】解:(Ⅰ)由题意可知:椭圆的离心率e= = ,则a=2c,①椭圆的准线方程x=± ,由2× =8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(Ⅱ)设P(x0,y0),则直线PF2的斜率= ,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF1的斜率= ,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由Q在椭圆上,则y0= ,则y02=x02﹣1,则,解得:,则,∴P(,)或P(﹣,)或P(,﹣)或P(﹣,﹣).【考点】直线的点斜式方程,两条直线的交点坐标,椭圆的简单性质,直线与圆锥曲线的关系【解析】【分析】(Ⅰ)由椭圆的离心率公式求得a=2c,由椭圆的准线方程x=± ,则2× =8,即可求得a和c的值,则b2=a2﹣c2=3,即可求得椭圆方程;(Ⅱ)设P点坐标,分别求得直线PF2的斜率及直线PF1的斜率,则即可求得l2及l1的斜率及方程,联立求得Q点坐标,由Q在椭圆方程,求得y02=x02﹣1,联立即可求得P点坐标;19、【答案】(1)解:根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.(2)证明:①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴= = =﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1,y1),B(x2,y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2= ,则= == = =﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【考点】直线的斜截式方程,椭圆的标准方程,椭圆的简单性质,圆锥曲线的综合【解析】【分析】(1.)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2.)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),联立,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).20、【答案】解:方法一:证明:(Ⅰ)当直线l的斜率不存在时,则A(2,2),B(2,﹣2),则=(2,2),=(2,﹣2),则•=0,∴⊥,则坐标原点O在圆M上;当直线l的斜率存在,设直线l的方程y=k(x﹣2),设A(x1,y1),B(x2,y2),,整理得:k2x2﹣(4k2+2)x+4k2=0,则x1x2=4,4x1x2=y12y22=(y1y2)2,由y1y2<0,则y1y2=﹣4,由•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,综上可知:坐标原点O在圆M上;方法二:设直线l的方程x=my+2,,整理得:y2﹣2my﹣4=0,设A(x1,y1),B(x2,y2),则y1y2=﹣4,则(y1y2)2=4x1x2,则x1x2=4,则•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,∴坐标原点O在圆M上;(Ⅱ)由(Ⅰ)可知:x1x2=4,x1+x2= ,y1+y2= ,y1y2=﹣4,圆M过点P(4,﹣2),则=(4﹣x1,﹣2﹣y1),=(4﹣x2,﹣2﹣y2),由•=0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,整理得:k2+k﹣2=0,解得:k=﹣2,k=1,当k=﹣2时,直线l的方程为y=﹣2x+4,则x1+x2= ,y1+y2=﹣1,则M(,﹣),半径为r=丨MP丨= = ,∴圆M的方程(x﹣)2+(y+ )2= .当直线斜率k=1时,直线l的方程为y=x﹣2,同理求得M(3,1),则半径为r=丨MP丨= ,∴圆M的方程为(x﹣3)2+(y﹣1)2=10,综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣)2+(y+ )2=或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.【考点】直线的点斜式方程,直线的斜截式方程,圆的标准方程,点与圆的位置关系,直线与圆锥曲线的关系【解析】【分析】(Ⅰ)方法一:分类讨论,当直线斜率不存在时,求得A和B的坐标,由•=0,则坐标原点O在圆M上;当直线l斜率存在,代入抛物线方程,利用韦达定理及向量数量积的可得•=0,则坐标原点O在圆M上;方法二:设直线l的方程x=my+2,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,即可求得•=0,则坐标原点O在圆M上;(Ⅱ)由题意可知:•=0,根据向量数量积的坐标运算,即可求得k的值,求得M点坐标,则半径r=丨MP丨,即可求得圆的方程.。
江西省各地2017届高三最新考试数学文试题分类汇编:圆锥曲线含答案
江西省各地2017届高三最新考试数学文试题分类汇编圆锥曲线2017。
02一、选择、填空题1、(赣州市2017届高三上学期期末考试)已知抛物线2:4C y x =的焦点为F ,准线为l ,过点F 的直线交抛物线于,A B 两点(A 在第一象限),过点A 作准线l 的垂线,垂足为E ,若60AFE ∠=°,则AFE ∆的面积为( ) A .43 B .23 C 。
433 D .2332、(红色七校2017届高三第二次联考)设抛物线2:4C y x =的焦点为F ,直线l 过点()2,0M 且与C 交于A ,B 两点,32BF =.若AM BM λ=,则λ=( ) A .14 B .12C . 2D .43、(吉安市2017届高三上学期期末考试)P 为椭圆+=1上一点,F 1,F 2分别是椭圆的左焦点和右焦点,过P 点作PH ⊥F 1F 2于H ,若PF 1⊥PF 2,则|PH |=( ) A .B .C .8D .4、(景德镇市2017届高三上学期期末考试)过点P(﹣4,0)作函数y=的切线l ,则切线l 的方程为( ) A .y=(x +4)B .y=(x +4)C .y=(x +4) D .y=(x +4)5、(上饶市2017届高三第一次模拟考试)设1F ,2F 分别为椭圆1C :221122111(0)x y a b a b +=>>与双曲线2C :222222221(0,0)x y a b a b -=>>的公共焦点,它们在第一象限内交于点M ,1290F MF ∠=︒,若椭圆的离心率134e =,则双曲线2C 的离心率2e 的值为( )A .92B 32C .32D .546、(江西省师大附中、临川一中2017届高三1月联考)抛物线22(0)y px p =>的焦点为F ,准线为l ,,A B 是抛物线上的两个动点,且满足2π=∠AFB .设线段AB 的中点M 在l 上的投影为N ,则MNAB 的最小值是( )A .3B .23C .2D .27、(新余市2017高三上学期期末考试)已知点A,B 分别是双曲线的左、右顶点,点P 是双曲线C 上异于A,B 的另外一点,且△ABP 是顶角为120°的等腰三角形,则该双曲线的渐近线方程为( ) A .x ±y=0 B .x ±y=0C .x ±y=0D .x ±y=08、(江西省重点中学协作体2017届高三下学期第一次联考)已知双曲线22221(0,0)x y a b a b -=>>的右焦点为(2,0),F 设,A B 为双曲线上关于原点对称的两点,且满足0=⋅BF AF ,若直线AB 的斜率为3,则双曲线的离心率为 。
2017高考十年高考文数分项版(新课标2专版)专题09 圆锥曲线(解析版) 含解析
【2015,2016】1.【2016新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx (k >0)与C 交于点P ,PF ⊥x 轴,则k =(A )12(B )1(C )32(D)2【答案】D 【解析】【考点】 抛物线的性质,反比例函数的性质【名师点睛】抛物线方程有四种形式,注意焦点的位置。
对于函数y =k x(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数。
2. 【2016新课标2文数】(本小题满分12分)已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 于A ,M 两点,点N 在E 上,MA NA ⊥。
(Ⅰ)当AMAN=时,求AMN △的面积 (Ⅱ) 当2AMAN=时,32k <.【答案】(Ⅰ)14449;(Ⅱ)详见解析.【解析】试题分析:(Ⅰ)先求直线AM 的方程,再求点M 的纵坐标,最后求AMN∆的面积;(Ⅱ)设()11,M x y ,将直线AM 的方程与椭圆方程组成方程组,消去y ,用k 表示1x ,从而表示||AM ,同理用k 表示||AN ,再由2AM AN=求k 的取值范围。
试题解析:(Ⅰ)设11(,)M x y ,则由题意知10y >。
由已知及椭圆的对称性知,直线AM 的倾斜角为π4.又(2,0)A -,因此直线AM 的方程为2y x =+.将2x y =-代入22143x y+=得27120y y -=。
解得0y =或127y =,所以1127y =。
因此AMN ∆的面积11212144227749AMN S ∆=⨯⨯⨯=。
【考点】椭圆的性质,直线与椭圆的位置关系【名师点睛】对于直线与椭圆的位置关系问题,通常将直线方程与椭圆方程联立进行求解,注意计算的准确性。
3。
【2015新课标2文数】已知双曲线过点(3,且渐近线方程为12y x =±,则该双曲线的标准方程为.【答案】2214x y -=【解析】试题分析:根据双曲线渐近线方程为12y x =±,可设双曲线的方程为224x y m -= ,把(代入224x y m -=得1m =.所以双曲线的方程为2214x y -=。
2017年高考全国名校试题数学分项汇编 专题09 圆锥曲线(解析版) Word版含解析
一、填空题1. 【2016高考冲刺卷(9)【江苏卷】】已知12,F F 是双曲线()222210,0x y a b a b-=>>的左右焦点,以12F F 为直径的圆与双曲线在第一象限的交点为P ,过点P 向x 轴作垂线,垂足为H ,若PH a =,则双曲线的离心率为2. 【2016高考冲刺卷(7)【江苏卷】】已知双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别是1F ,2F ,过2F 的直线交双曲线的右支于P ,Q 两点,若112||||PF F F =,且223||2||PF QF =,则该双曲线的离心率为 .【答案】75【解析】由双曲线的性质可知,1||2PF c =,2||22PF c a =-,∴2||33QF c a =-,1||3FQ c a =-2251270c ac a ⇒-+=,7()(57)05c c a c a e a --=⇒==,故填:75.3. 【江苏省扬州中学2015—2016学年第二学期质量检测】已知F 是椭圆1C :双曲线2C 的一个公共焦点,A ,B 分别是1C ,2C 在第二、四象限的公共点.若0=⋅BF AF ,则2C 的离心率是 ▲ .【解析】设双曲线的实轴长为2a ,F '为椭圆1C :2C 的另一个公共焦点,则由对称性知0AF AF '⋅=,4. 【2016高考冲刺卷(3)【江苏卷】】抛物线24y x =上的一点到其焦点距离为3,则该点坐标为 . 【答案】(2,22)±【解析】由题意知抛物线的焦点为()1,0,准线为1x =-;根据抛物线的定义:抛物线上的点到焦点的距离等于该点到准线的距离,知该点的横坐标为2,代入抛物线方程得该点坐标为(2,22)±.5. 【2016高考冲刺卷(1)【江苏卷】】以抛物线y 2=4x 的焦点为焦点,以直线y =±x 为渐近线的双曲线标准方程为________.6. 【2016高考押题卷(2)【江苏卷】】已知点(50)A 和曲线)522(142≤≤-=x x y 上的点12n P P P ,,,.若12||||||nP A P A P A ,,,成等差数列且公差1(55d ∈,,则n 的最大值为______. 【答案】14【解析】因题设的曲线是双曲线)522(1422≤≤=-x y x 上的一段,而点(50)A 是它的 7. 【江苏省扬州中学2016届高三4月质量监测】在平面直角坐标系xOy 中,已知A 、B 分别是双曲线x 2-23y =1的左、右焦点,△ABC 的顶点C 在双曲线的右支上,则sin sin sin A B C-的值是 . 【答案】12- 【解析】试题分析:由正弦定理得2122sin sin sin -=-=-=-=-c a c a AB AC BC C B A 8. 【2016高考冲刺卷(4)【江苏卷】】在平面直角坐标系xOy 中,已知方程2242x y m m--+=1表示双曲线,则实数m 的取值范围为 ▲ . 【答案】(2,4)- 【解析】试题分析:由题意得(4)(2)0(4)(2)024m m m m m -+>⇒-+<⇒-<<9. 【南通市2016届高三下学期第三次调研考试数学试题】在平面直角坐标系xOy 中,双曲线2221x y a-=与抛物线212y x =-有相同的焦点,则双曲线的两条渐近线的方程为 . 【答案】24y x =± 【解析】试题分析:由题意得21922a a +=⇒=,而双曲线2221x y a -=渐近线的方程为1,y x a =±即24y x =±10. 【2016高考押题卷(3)【江苏卷】】设双曲线1169:22=-y x C 的两焦点分别为P F F ,,21是C 上一点,若以P 为圆心的圆过C 的一个焦点和顶点,则=⋅21PF PF .11. 【2016高考押题卷(1)【江苏卷】】已知双曲线22221(0)x y a b ab 的一个焦点为(3,0),直线10x y 与双曲线右支有交点,则当双曲线离心率最小时双曲线方程为_______.【答案】22154x y【解析】由题意知方程组2222110x y a b x y 有正数解,即2222222()20b a x a x a a b 有正数解,所以0))((44222224≥+-+=∆b a a a b a ,即0122≥-+a b ,又229a b -=,故1022≤a ,即5≤a ,所以离心率53≥=a c e ,即当5a 时双曲线离心率取最小值,此时方程解为5x,双曲线方程为22154x y .12. 【2016年第一次全国大联考【江苏卷】】在平面直角坐标系xOy 中,与双曲线22154x y -=有相同渐近线,且一条准线方程为3y =的双曲线的标准方程为_______. 【答案】221810y x -=【解析】与双曲线22154x y -=有相同渐近线的双曲线的标准方程可设为2254x y λ-=,因为一条准线方程为3y=,所以双曲线焦点在y 轴上,故0,λ<23λ=⇒=-,所求方程为221810y x -=13. 【2016年第四次全国大联考【江苏卷】】设F 为双曲线22221(0,0)x y a b a b-=>>的右焦点,过点F 作双曲线一条渐近线的垂线,垂足为A ,垂线交另一条渐近线于B 点,若向量BF 与FA 同向,且3AB OA OB =+,则双曲线的离心率为_______.14. 【 2016年第二次全国大联考(江苏卷)】已知椭圆22221(0)y x a b a b +=>>的离心率为22,长轴AB 上2016个等分点从左到右依次为点122015,,,M M M ,过1M 点作斜率为(0)k k ≠的直线,交椭圆C 于12,P P 两点,1P点在x 轴上方;过2M 点作斜率为(0)k k ≠的直线,交椭圆C 于34,P P 两点,3P 点在x 轴上方;以此类推,过2015M 点作斜率为(0)k k ≠的直线,交椭圆C 于40294030,P P 两点,4029P 点在x 轴上方,则4030条直线124030,AP AP AP ,,的斜率乘积为_______. 【答案】20151.2-【解析】因为椭圆的离心率为22,所以22=2a c ,又222=a b c +,所以22=2a b ,设1P ),(11P P y x ,由椭圆对称性知22111222140301111112P P P AP AP AP BP P P P y y y b k k k k x a x a x a a ⋅⋅⋅==-=-+--==,从而4030条直线124030,AP AP AP ,,的斜率乘积配成2015组,每组乘积皆为12-,因此结果为20151.2-15. 【江苏省南京市2016届高三年级第三次学情调研适应性测试数学】如图,抛物线形拱桥的顶点距水面4米时,测得拱桥内水面宽为16米;当水面升高 3米后,拱桥内水面的宽度为 ▲ 米.二、解答题1. 【 2016年第二次全国大联考(江苏卷)】(本小题满分14分)已知椭圆)0(1:2222>>=+b a by ax C 的离心率为e ,直线:l y ex a =+与,x y 轴分别交于B A 、点.(Ⅰ)求证:直线l 与椭圆C 有且仅有一个交点; (Ⅱ)设T 为直线l 与椭圆C 的交点,若ATeAB =,求椭圆C 的离心率;(第8题)(Ⅲ)求证:直线:l y ex a =+上的点到椭圆C 两焦点距离和的最小值为2.a【答案】(Ⅰ)详见解析(Ⅱ)1.2e -=(Ⅲ)详见解析 【解析】(Ⅰ)由22221x y a b y ex a ⎧+=⎪⎨⎪=+⎩,消y 得:222222()b x a ex a a b ++=,即22222342220b x a e x ea x a a b +++-=, 222322()20b c x ea x a c +++=,2220,x cx c x c ++==-,y ec a =-+,即直线:l y ex a =+上的点到椭圆C 两焦点距离和的最小值为2.a ……14分2. 【2016年第三次全国大联考【江苏卷】】(本小题满分16分)已知椭圆)0(12222>>=+b a by a x 与双曲线1222=-y x 有相同的焦点,且点A (2,1)在椭圆上(1)试求椭圆的标准方程;(2)若点B 、C 是椭圆上的两点,直线AB 、AC 的斜率1k 、2k 满足等式2121-=k k , ①试证B 、C 两点关于原点对称;②若椭圆左顶点为P ,直线PB 、PC 与y 轴分别交于点M 、N ,试证以MN 为直径的圆D 必过两定点.【答案】(Ⅰ)13622=+y x (Ⅱ)详见解析(Ⅲ)详见解析 【解析】(1)由3212=+=c 得322=-b a ,又11422=+ba ,联立解之得3,622==b a 从而所求椭圆的标准方程为13622=+y x . )66,0(11-x y ,线段MN 中点坐标为D )66,0(2111-x yx ,121126y MN x =-从而以MN 为直径的圆方程为2211221112)66()66(-=--+x y x y x y x因点B 在椭圆上,故1362121=+y x ,故622121=+y x ,代入上式得212112)3()26(y y x y x =++,令0=y 得32=x ,于是3±=x ,故以MN 为直径的圆D 必过两定点)0,3(±.3. 【2016年第四次全国大联考【江苏卷】】(本小题满分16分)已知椭圆2222:1(0)x y C a b a b 的离心率为2,直线2x =为椭圆的一条准线. 椭圆上两点1122(,)(,)A x y B x y 、. (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点M 满足2OM OA OB =+,且121222x x y y +=-,求证:点M 在椭圆C 上;(Ⅲ)若点(1,0)M -满足2,OM OA OB λ=+求实数λ的取值范围.即实数λ的取值范围为[32,-……16分4. 【2016年第一次全国大联考【江苏卷】】 (本小题满分14分)在平面直角坐标系xOy 中,已知P 点到两定点(2,0),(2,0)D E -连线斜率之积为12-.(1)求证:动点P 恒在一个定椭圆C 上运动;(2)过F 的直线交椭圆C 于,A B 两点,过O 的直线交椭圆C 于,M N 两点,若直线AB与直线MN 斜率之和为零,求证:直线AM 与直线BN 斜率之和为定值. 【答案】(Ⅰ)详见解析(Ⅱ)详见解析【解析】(1)设(,)P x y ,则由题意得1222y y x x ⋅=-+-,化简得:22142x y += 因此动点P 恒在椭圆22142x y +=上 ……4分 即直线AM 与直线BN 斜率之和为定值0. ……14分5. 【2016高考押题卷(1)【江苏卷】】(本小题满分16分)已知椭圆C :22221(0)x y a b a b+=>> ,经过点P (1,. (1)求椭圆C 的方程;(2) 设直线l 与椭圆C 交于,A B 两点,且以AB 为直径的圆过椭圆右顶点M ,求证:直线l 恒过定点. 【答案】(Ⅰ)2214x y +=(Ⅱ)详见解析【解析】解:(1)由2222213142a b caa b c ⎧+=⎪⎪⎪=⎨⎪⎪=+⎪⎩,解得 21a b =⎧⎨=⎩,所以椭圆C 的方程是 2214x y +=. .…………………5分 综上,直线l 经过定点6(,0).5…………………14分6. 【2016高考押题卷(3)【江苏卷】】(本小题满分16分)设椭圆)0(1:2222>>=+b a by a x C 的左、右焦点分别为21,F F ,过2F 的直线l 交椭圆C 于两点Q P ,,且02160=∠PF F . (1)若21PF F ∆是等腰三角形,求椭圆C 的离心率e 的值; (2)设||||1PF PQ λ=,且3443<≤λ,求椭圆C 的离心率e 的取值范围. 【答案】(Ⅰ)21=e (Ⅱ)]913114447,313624(--∈e 【解析】(1)因21PF F ∆是等腰三角形,且02160=∠PF F ,故21PF F ∆是等边三角形,则c F F PF PF 2||||||2121===,所以由椭圆定义可得a c c 222=+,即21=e ,故所求椭圆的离心率为21=e .----------------------------------------------------------------5分; (2)由椭圆定义可得a PF PF 2||||21=+,a QF QF 2||||21=+,则a QF PQ PF 4||||||11=++,--------------------------------------------------------------------6分;222)2(2)2(4t t t e ---+=,即161222+-=tt e ,再令u t=1,由)3137,4137[++∈t ,得]9137,12137(1--∈t , 即]9137,12137(--∈u --------------------------------------------------------15分.而二次函数1612)(22+-==u u u g e 的对称轴为41=u ,而4112137>-,所以)(u g y =在]9137,12137(--∈u 上单调递增,借助图象可得函数)(u g y =的值域为]271338149,31328(2--∈e ,即离心率e 的取值范围是 ]913114447,313624(--∈e .-----------------------------------16分.7. 【2016高考押题卷(2)【江苏卷】】(本小题满分16分)定义:若12,P P 是椭圆2222:1(0)x y C a b a b +=>>上不同的两点,12PP ⊥x 轴,圆E 过12,,P P 且椭圆C 上任意一点都不在圆E 内,则称圆E 为该椭圆的一个内切圆.已知椭圆2222:1(0)x y C a b a b+=>>的离心率23=e ,且经过点P )23,1( (1)求椭圆C 的标准方程;(2)试问:椭圆C 是否存在过左焦点1F 的内切圆?若存在,求出圆E 方程;若不存在,请说明理由.(3)若圆F 是过椭圆C 上下顶点21,A A 的内切圆,过椭圆C 异于其顶点的任意一点Q 作圆F 的两条切线,切点分别为R T ,,(R T ,不在坐标轴上),直线TR 在x 轴,y 轴上的截距分别为,,m n 证明:22141n m +为定值; 由题意知,点E 在x 轴上,设点(,0),E t 则圆E 的方程为2222()().x t y m t n -+=-+8. 【2016高考冲刺卷(2)【江苏卷】】(本小题满分16分)如图,已知椭圆12222=+by a x (0>>b a )的左、右焦点为1F 、2F ,P 是椭圆上一点,M 在1PF 上,且满足MP M F λ=1(R ∈λ),M F PO 2⊥,O 为坐标原点.(1)若椭圆方程为14822=+y x ,且),(22P ,求点M 的横坐标;(2)若2=λ,求椭圆离心率e 的取值范围9. 【2016高考冲刺卷(4)【江苏卷】】 (本小题满分14分)已知椭圆:C 22142x y +=的焦点分别为12,F F .(Ⅰ)求以线段12F F 为直径的圆的方程;(Ⅱ)过点(4,0)P 任作一条直线l 与椭圆C 交于不同的两点,M N .在x 轴上是否存在点Q ,使得180PQM PQN ∠+∠=︒?若存在,求出点Q 的坐标;若不存在,请说明理由.即2222(16)4(21)(324)0k k k -+->,解得216k <. 设11(,)M x y ,22(,)N x y ,则21221621k x x k +=+,212232421k x x k -=+,11(4)y k x =-,22(4)y k x =-.由1212120y y k k x m x m+=+=--,得 10. 【南京市2016届高三年级第三次模拟考试】 (本小题满分14分) 如图,在平面直角坐标系xOy 中,已知椭圆C :22221x y a b+= (a >b >0)2(2,1)在椭圆C 上.(1)求椭圆C 的方程;(2)设直线l 与圆O :x 2+y 2=2相切,与椭圆C 相交于P ,Q 两点.①若直线l 过椭圆C 的右焦点F ,求△OPQ 的面积; ②求证: OP ⊥OQ .【答案】(1)22163x y +=(2)①635,②详见解析【解析】解:(1)由题意,得22c a =,22411a b+=,解得a 2=6,b 2=3. 因为O 到直线PQ 2,所以△O PQ 63. 因为椭圆的对称性,当切线方程为y 2 (x 3)时,△O PQ 63综上所述,△O PQ 的面积为63·································8分②解法二 消去y 得5x 2-3x +6=0.设P (x 1,y 1) ,Q (x 2,y 2),则有x 1+x 2=835. 由椭圆定义可得,PQ =PF +FQ =2a -e( x 1+x 2)=2×6-22×835=665.···············6分 ② (i)若直线PQ 的斜率不存在,则直线PQ 的方程为x =2或x =-2. 当x =2时,P (2,2),Q (2,-2). 因为OP OQ ⋅=0,所以OP ⊥OQ . 当x =-2时,同理可得OP ⊥OQ . ··························10分222612m k -+.·································12分 因为OP OQ ⋅=x 1x 2+y 1y 2=x 1x 2+(kx 1+m )(kx 2+m )=(1+k 2)x 1x 2+km (x 1+x 2)+m2=(1+k 2)×222612m k -++km ×(-2412km k +)+m 2.将m 2=2k 2+2代入上式可得OP OQ ⋅=0,所以OP ⊥OQ . 综上所述,OP ⊥OQ . ·····································14分11. 【江苏省扬州中学2015—2016学年第二学期质量检测】如图,曲线Γ由两个椭圆1T :()222210x y a b a b +=>>和椭圆2T :()222210y x b c b c+=>>组成,当,,a b c 成等比数列时,称曲线Γ为“猫眼曲线”.若猫眼曲线Γ过点()0,2M -,且,,a b c 的公比为22. (1)求猫眼曲线Γ的方程;(2)任作斜率为()0k k ≠且不过原点的直线与该曲线相交,交椭圆1T 所得弦的中点为M ,交椭圆2T 所得弦的中点为N ,求证:ONOMK k 为与k 无关的定值; (3)若斜率为2的直线l 为椭圆2T 的切线,且交椭圆1T 于点,A B ,N 为椭圆1T 上的任意一点(点N 与点,A B 不重合),求ABN ∆面积的最大值.k 存在且0k ≠,12x x ∴≠,且0x 0≠ ∴01212012y y y x x x -⋅=-- ,即21k k OM -=⋅ (8分)同理,2k k ON -=⋅ 41k k ON OM =∴得证 (10分) (3)设直线l 的方程为2y x m =+22221⎧=+⎪⎨+=⎪⎩y m y x bc ,()2222222220∴+++-=b c x x m c b c12. 【2016高考冲刺卷(3)【江苏卷】】(本小题满分16分)如图,已知椭圆C:22221x y a b +=(0a b >>)经过点31,2⎛⎫P ⎪⎝⎭,离心率12e =,直线l 的方程为4x =. (1)求椭圆C 的标准方程;(2)AB 是经过椭圆右焦点F 的任一弦(不经过点P ),设直线AB 与l 相交于点M ,记PA ,PB ,PM 的斜率分别为123,,k k k ,问:是否存在常数λ,使得123k k λk +=?若存在,求出λ的值;若不存在,说明理由.13. 【2016高考冲刺卷(5)【江苏卷】】(本题满分16分)如图21,F F 为椭圆)0(1:2222>>=+b a by a x C 的左、右焦点,E D ,是椭圆的两个顶点,椭圆的离心率23=e ,2DEF ∆的面积为231-.若点),(00y x M 在椭圆C 上,则点),(00bya x N 称为点M 的一个“椭点”,直线l 与椭圆交于B A ,两点,B A ,两点的“椭点”分别为Q P ,.(1)求椭圆C 的标准方程;(2)问是否存在过左焦点1F 的直线l ,使得以PQ 为直径的圆经过坐标原点?若存在,求出该直线的方程;若不存在,请说明理由.14. 【2016高考冲刺卷(6)【江苏卷】】在平面直角坐标系xOy 中,点C 在椭圆M :x 2a 2+y2b2=1(a>b>0)上.若点)0,(a A ,)3,0(a B ,且AB →=32BC →. (1) 求椭圆M 的离心率;(2) 设椭圆M 的焦距为4,P ,Q 是椭圆M 上不同的两点,线段PQ 的垂直平分线为直线l ,且直线l 不与y 轴重合.①若点P (-3,0),直线l 过点7)6,0(-,求直线l 的方程; ②若直线l 过点(0,-1),且与x 轴的交点为D ,求D 点横坐标的取值范围. 【答案】(1)32;(2)①y =-x -67或y =-95x -67;(3)⎝ ⎛⎭⎪⎫-113,0∪⎝ ⎛⎭⎪⎫0,113【解析】(1) 设C(x 0,y 0),则AB →=⎝ ⎛⎭⎪⎫a ,a 3,BC →=⎝ ⎛⎭⎪⎫x 0,y 0-a 3.因为AB →=32BC →,所以⎝ ⎛⎭⎪⎫a ,a 3=32(x 0,y 0-a 3)=(32x 0,32y 0-a 2),得⎩⎪⎨⎪⎧x 0=23a ,y 0=59a ,代入椭圆方程得a 2=95b 2.因为a 2-b 2=c 2,所以e =c a =23.所以x D =-k∈⎝ ⎛⎭⎪⎫-113,0∪⎝⎛⎭⎪⎫0,113. 综上所述,点D 横坐标的取值范围为⎝ ⎛⎭⎪⎫-113,0∪⎝⎛⎭⎪⎫0,113.15. 【2016高考冲刺卷(7)【江苏卷】】已知椭圆2222:1(0)x y E a b a b+=>>的离心率为2,点在E 上. (1)求椭圆E 的方程;(2)直线l 不过原点O 且不平行于坐标轴,l 与E 相交于,A B 两点,M 是线段AB 的中点.证明:直线OM 的斜率与直线l 的斜率的乘积是一个定值.16. 【2016高考冲刺卷(9)【江苏卷】】 在平面直角坐标系O x y 中,点000(,)(0)P x y y ≠在椭圆:C 2212x y +=上,过点P 的直线l 的方程为0012x xy y +=. (Ⅰ)求椭圆C 的离心率;(Ⅱ)若直线l 与x 轴、y 轴分别相交于,A B 两点,试求OAB ∆面积的最小值;(Ⅲ)设椭圆C 的左、右焦点分别为1F ,2F ,点Q 与点1F 关于直线l 对称,求证:点2,,Q P F三点共线.(Ⅲ)①当00x =时,(0,1)P ±.当直线:1l y =时,易得(1,2)Q -,此时21F P k =-,21F Q k =-. 因为22F Q F P k k =,所以三点2,,Q P F 共线. 同理,当直线:1l y =-时,三点2,,Q P F 共线.。
2017年高考数学试题:解析几何
在 中: , , 。
。
(Ⅱ)当 时:焦点在 轴。
椭圆 : 长轴为 轴 长轴上的两个端点: , 。
椭圆具有对称性(关于 轴, 轴,原点都对称) 边界值是 在左右顶点处。
假设: 点在右顶点处 点的坐标为 。如下图所示:
在 中: , , 。
。
所以:根据两个边界值 和 得到 的取值范围: 。
, 。
直线 的方程为 。 , , 。
直线 过定点 。
训练七:2017年高考文科数学新课标Ⅱ卷第5题:2017年高考文科数学新课标Ⅱ卷第5题:若 ,则双曲线 的离心率的取值范围是( )
A、 B、 C、 D、
本题解答:双曲线 。
, ,
离心率的取值范围: 。
训练八:2017年高考文科数学新课标Ⅱ卷第12题:过抛物线 : 的焦点 ,且斜率为 的直线交 于点 ( 在 轴上方), 为 的准线,点 在 上且 ,则 到直线 的距离为( )
。
训练二:2017年高考文科数学新课标Ⅰ卷第12题:设 , 是椭圆 : 长轴的两个端点,若 上存在点 满足 ,则 的取值范围是( )
A. B. C. D.
本题解答:分类讨论:(Ⅰ)当 时:焦点在 轴。
椭圆 : 长轴为 轴 长轴上的两个端点: , 。
椭圆具有对称性(关于 轴, 轴,原点都对称) 边界值是 在上下顶点处。
, 为曲线 : 上两点 , ,
直线 的斜率为 。
(Ⅱ)假设:点 的坐标为 。导函数: 切线斜率: 。
在 处的切线与直线 平行 。假设:直线 的方程为 。
联立 和 得到: 。
。
根据韦达定理得到: , 。
;
。
, , 。
2017年高考数学题分类汇编(10)圆锥曲线
2017年全国各地高考数学真题分章节分类汇编第10部分:圆锥曲线一、选择题:1.( 2010年高考全国卷I 理科9)已知1F 、2F 为双曲线C:221x y -=的左、右焦点,点p 在C 上,∠1F p 2F =060,则P 到x 轴的距离为(A)2(B)2(C)(D)1.B 【命题意图】本小题主要考查双曲线的几何性质、第二定义、余弦定理,考查转化的数学思想,通过本题可以有效地考查考生的综合运用能力及运算能力.【解析】不妨设点P 00(,)x y 在双曲线的右支,由双曲线的第二定义得21000||[()]1a PF e x a ex c =--=+=+,22000||[)]1a PF e x ex a c=-=-=-.由余弦定理得cos ∠1F P 2F =222121212||||||2||||PF PF F F PF PF +-,即cos 060=,解得2052x =,所以2200312y x =-=,故P 到x轴的距离为0||y =2.(2010年高考福建卷理科2)以抛物线24y x =的焦点为圆心,且过坐标原点的圆的方程为( )A.22x +y +2x=0 B. 22x +y +x=0 C. 22x +y -x=0 D. 22x +y -2x=0 【答案】D【解析】因为已知抛物线的焦点坐标为(1,0),即所求圆的圆心,又圆过原点,所以圆的半径为r=1,故所求圆的方程为22x-1)+y =1(,即22x -2x+y =0,选D 。
【命题意图】本题考查抛物线的几何性质以及圆的方程的求法,属基础题。
3.(2010年高考福建卷理科7)若点O 和点(2,0)F -分别是双曲线2221(a>0)ax y -=的中心和左焦点,点P 为双曲线右支上的任意一点,则OP FP ⋅的取值范围为 ( )A. )+∞B. [3)++∞C. 7[-,)4+∞D. 7[,)4+∞ 【答案】B【解析】因为(2,0)F -是已知双曲线的左焦点,所以214a +=,即23a =,所以双曲线方程为2213x y -=,设点P 00(,)x y ,则有220001(3)3x y x -=≥,解得220001(3)3x y x =-≥,因为00(2,)FP x y =+,00(,)OP x y =,所以2000(2)OP FP x x y ⋅=++=00(2)x x ++2013x -=2004213x x +-,此二次函数对应的抛物线的对称轴为034x =-,因为03x ≥,所以当03x =时,OP FP ⋅取得最小值432313⨯+-=323+,故OP FP ⋅的取值范围是[323,)++∞,选B 。
-2017年高考文科数学真题汇编:圆锥曲线老师版(最新整理)
15、(2016 年全国 I 卷)在直角坐标系 xOy 中,直线 l:y=t(t≠0)交 y 轴于点 M,交抛物线 C: y2 2 px( p 0)
于点 P,M 关于点 P 的对称点为 N,连结 ON 并延长交 C 于点 H.
OH
(I)求
;(II)除 H 以外,直线 MH 与 C 是否有其它公共点?说明理由.
4 该椭圆的离心率为( B )
112
3
(A)(B)(C)(D)
323
4
k 4、(2016 年全国 II 卷)设 F 为抛物线 C:y2=4x 的焦点,曲线 y= (k>0)与 C 交于点 P,PF⊥x 轴,则 k=(
x
D)
1
(A)
2
(B)1
3
(C)
2
(D)2
5、(2016 年全国 III 卷)已知
O 为坐标原点,F 是椭圆
b2
3.
10.(2015 年广东文)已知椭圆 x2 25
y2 m2
1 ( m 0 )的左焦点为 F1 4, 0 ,则 m (
C
)
A. 9
B. 4
C. 3
D. 2
11.(2015 年安徽文)下列双曲线中,渐近线方程为 y 2x 的是( A )
(A) x2 y2 1 4
(B) x2 y2 1 4
16.(2015 北京文)已知椭圆 C : x2 3y2 3,过点 D 1, 0 且不过点 2,1 的直线与椭圆 C 交于 A ,
两点,直线 A 与直线 x 3 交于点 . (Ⅰ)求椭圆 C 的离心率;(Ⅱ)若 A 垂直于 x 轴,求直线 的斜率;
73
x2 y2
8、(2016 年山东)已知双曲线 E: a2
2017年全国各地高考数学分类汇编7-解析几何
2017年全国各地高考数学分类汇编7-解析几何一、选择题(共12小题;共60分)1. 若双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线被圆(x−2)2+y2=4所截得的弦长为2,则C的离心率为( )A. 2B. √3C. √2D. 2√332. 过抛物线C:y2=4x的焦点F,且斜率为√3的直线交C于点M(M在x轴上方),l为C的准线,点N在l上,且MN⊥l,则M到直线NF的距离为( )A. √5B. 2√2C. 2√3D. 3√33. 若a>1,则双曲线x2a2−y2=1的离心率的取值范围是( )A. (√2,+∞)B. (√2,2)C. (1,√2)D. (1,2)4. 已知双曲线x2a2−y2b2=1(a>0,b>0)的左焦点为F,离心率为√2.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则双曲线的方程为( )A. x24−y24=1 B. x28−y28=1 C. x24−y28=1 D. x28−y24=15. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx−ay+2ab=0相切,则C的离心率为( )A. √63B. √33C. √23D. 136. 已知椭圆C:x2a2+y2b2=1(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线bx−ay+2ab=0相切,则C的离心率为( )A. √63B. √33C. √22D. 137. 已知双曲线C:x2a2−y2b2=1(a>0,b>0)的一条渐近线方程为y=√52x,且与椭圆x212+y23=1有公共焦点,则C的方程为( )A. x28−y210=1 B. x24−y25=1 C. x25−y24=1 D. x24−y23=18. 已知双曲线x2a2−y2b2=1(a>0,b>0)的右焦点为F,点A在双曲线的渐近线上,△OAF是边长为2的等边三角形(O为原点),则双曲线方程为( )A. x24−y212=1 B. x212−y24=1 C. x23−y2=1 D. x2−y23=19. 已知F是双曲线C:x2−y23=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3).则△APF的面积为( )A. 13B. 12C. 23D. 3210. 已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A,B两点,直线l2与C交于D,E两点,则∣AB∣+∣DE∣的最小值为( )A. 16B. 14C. 12D. 1011. 椭圆x 29+y 24=1 的离心率是 ( )A. √133B. √53C. 23D. 5912. 设 A ,B 是椭圆 C:x 23+y 2m =1 长轴的两个端点,若 C 上存在点 M 满足 ∠AMB =120∘,则 m 的取值范围是 ( ) A. (0,1]∪(9,+∞) B. (0,√3]∪[9,+∞)C. (0,1]∪[4,+∞)D. (0,√3]∪[4,+∞)二、填空题(共11小题;共55分)13. 在平面直角坐标系 xOy 中,A (−12,0),B (0,6),点 P 在圆 O:x 2+y 2=50 上.若 PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ ≤20,则点 P 的横坐标的取值范围是 .14. 设抛物线 y 2=4x 的焦点为 F ,准线为 l .已知点 C 在 l 上,以 C 为圆心的圆与 y 轴的正半轴相切于点 A .若 ∠FAC =120∘,则圆的方程为 .15. 在平面直角坐标系 xOy 中,双曲线 x 23−y 2=1 的右准线与它的两条渐近线分别交于点 P ,Q ,其焦点是 F 1,F 2,则四边形 F 1PF 2Q 的面积是 . 16. 双曲线x 2a2−y 29=1(a >0) 的一条渐近线方程为 y =35x ,则 a = .17. 三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中 A i 的横、纵坐标分别为第i 名工人上午的工作时间和加工的零件数,点 B i 的横、纵坐标分别为第 i 名工人下午的工作时间和加工的零件数,i =1,2,3. (1)记 Q i 为第 i 名工人在这一天中加工的零件总数,则 Q 1,Q 2,Q 3 中最大的是 .(2)记 p i 为第 i 名工人在这一天中平均每小时加工的零件数,则 p 1,p 2,p 3 中最大的是 .18. 已知双曲线 C:x 2a2−y 2b 2=1(a >0,b >0) 的右顶点为 A ,以 A 为圆心,b 为半径作圆 A ,圆 A 与双曲线 C 的一条渐近线交于 M ,N 两点,若 ∠MAN =60∘,则 C 的离心率为 . 19. 若双曲线 x 2−y 2m=1 的离心率为 √3,则实数 m = .20. 已知 F 是抛物线 C :y 2=8x 的焦点,M 是 C 上一点,FM 的延长线交 y 轴于点 N .若 M 为 FN的中点,则 ∣FN ∣= .21. 在平面直角坐标系 xOy 中,双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的右支与焦点为 F 的抛物线 x 2=2py (p >0) 交于 A ,B 两点,若 ∣AF∣+∣BF∣=4∣OF∣,则该双曲线的渐近线方程为 .22. 在平面直角坐标系 xOy 中,双曲线 x 2a2−y 2b 2=1(a >0,b >0) 的右支与焦点为 F 的抛物线 x 2=2py (p >0) 交于 A ,B 两点,若 ∣AF ∣+∣BF ∣=4∣OF ∣,则该双曲线的渐近线方程为 .23. 已知点 P 在圆 x 2+y 2=1 上,点 A 的坐标为 (−2,0),O 为原点,则 AO ⃗⃗⃗⃗⃗ ⋅AP⃗⃗⃗⃗⃗ 的最大值为 .三、解答题(共17小题;共221分)24. 在直角坐标系中 xOy ,曲线 y =x 2+mx −2 与 x 轴交于 A ,B 两点,点 C 的坐标为 (0,1),当m 变化时,解答下列问题:(1)能否出现 AC ⊥BC 的情况?说明理由; (2)证明过 A ,B ,C 三点的圆在 y 轴上截得的弦长为定值.25. 已知抛物线 C:y 2=2px 过点 P (1,1).过点 (0,12) 作直线 l 与抛物线 C 交于不同的两点 M ,N ,过点 M 作 x 轴的垂线分别与直线 OP ,ON 交于点 A ,B ,其中 O 为原点. (1)求抛物线 C 的方程,并求其焦点坐标和准线方程; (2)求证:A 为线段 BM 的中点.26. 设 A ,B 为曲线 C :y =x 24上两点,A 与 B 的横坐标之和为 4.(1)求直线 AB 的斜率;(2)设 M 为曲线 C 上一点,C 在 M 处的切线与直线 AB 平行,且 AM ⊥BM ,求直线 AB 的方程.27. 如图,在平面直角坐标系 xOy 中,椭圆 E:x 2a 2+y 2b 2=1(a >b >0) 的左、右焦点分别为 F 1,F 2,离心率为 12,两准线之间的距离为 8.点 P 在椭圆 E 上,且位于第一象限,过点 F 1 作直线 PF 1 的垂线 l 1,过点 F 2 作直线 PF 2 的垂线 l 2.(1)求椭圆 E 的标准方程; (2)若直线 l 2,l 2 的交点 Q 在椭圆 E 上,求点 P 的坐标.28. 在直角坐标系 xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρcosθ=4.(1)M 为曲线 C 1 上的动点,点 P 在线段 OM 上,且满足 ∣OM ∣⋅∣OP ∣=16%,,求点 P 的轨迹C 2 的直角坐标方程;(2)设点 A 的极坐标为 (2,π3),点 B 在曲线 C 2 上,求 △OAB 面积的最大值.29. 在直角坐标系 xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线 C 1 的极坐标方程为 ρcosθ=4.(1)M 为曲线 C 1 上的动点,点 P 在线段 OM 上,且满足 ∣OM∣⋅∣OP∣=16,求点 P 的轨迹 C 2的直角坐标方程;(2)设点 A 的极坐标为 (2,π3),点 B 在曲线 C 2 上,求 △OAB 面积的最大值.30. 在平面直角坐标系 xOy 中,已知直线 l 的参数方程为 {x =−8+t,y =t 2(t 为参数),曲线 C 的参数方程为 {x =2s 2,y =2√2s (s 为参数).设 P 为曲线 C 上的动点,求点 P 到直线 l 的距离的最小值.31. 已知矩阵 A =[0110],B =[1002].(1)求 AB ;(2)若曲线 C 1:x 28+y 22=1 在矩阵 AB 对应的变换作用下得到另一曲线 C 2,求 C 2 的方程.32. 已知抛物线 C :y 2=2x ,过点 (2,0) 的直线 l 交 C 于 A ,B 两点,圆 M 是以线段 AB 为直径的圆.(1)证明:坐标原点 O 在圆 M 上; (2)设圆 M 过点 P (4,−2),求直线 l 与圆 M 的方程.33. 设椭圆x 2a2+y 2b 2=1(a >b >0) 的左焦点为 F ,右顶点为 A ,离心率为 12.已知 A 是抛物线 y 2=2px (p >0) 的焦点,F 到抛物线的准线 l 的距离为 12. (1)求椭圆的方程和抛物线的方程;(2)设 l 上两点 P ,Q 关于 x 轴对称,直线 AP 与椭圆相交于点 B (B 异于 A ),直线 BQ 与 x轴相交于点 D .若 △APD 的面积为 √62,求直线 AP 的方程.34. 在平面直角坐标系 xOy 中,已知椭圆 C:x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √22,椭圆 C 截直线y =1 所得线段的长度为 2√2.(1)求椭圆 C 的方程;(2)动直线 l:y =kx +m (m ≠0) 交椭圆 C 于 A ,B 两点,交 y 轴于点 M%..点 N 是 M 关于O 的对称点,⊙N 的半径为 ∣NO ∣.设 D 为 AB 的中点,DE ,DF 与 ⊙N 分别相切于点 E ,F%,,求 ∠EDF 的最小值.35. 已知椭圆x 2a 2+y 2b 2=1(a >b >0) 的左焦点为 F (−c,0),右顶点为 A ,点 E 的坐标为 (0,c ),△EFA 的面积为 b 22.(1)求椭圆的离心率;(2)设点 Q 在线段 AE 上,∣FQ ∣=32c ,延长线段 FQ 与椭圆交于点 P ,点 M ,N 在 x 轴上,PM ∥QN ,且直线 PM 与直线 QN 间的距离为 c ,四边形 PQNM 的面积为 3c . (i )求直线 FP 的斜率;(ii )求椭圆的方程.36. 如图,已知抛物线 x 2=y ,点 A (−12,14),B (32,94),抛物线上的点 P (x,y )(−12<x <32),过点 B作直线 AP 的垂线,垂足为 Q .(1)求直线 AP 斜率的取值范围; (2)求 ∣PA ∣⋅∣PQ ∣ 的最大值.37. 已知椭圆 C 的两个顶点分别为 A (−2,0),B (2,0),焦点在 x 轴上,离心率为 √32.(1)求椭圆 C 的方程;(2)点 D 为 x 轴上一点,过 D 作 x 轴的垂线交椭圆 C 于不同的两点 M ,N ,过 D 作 AM 的垂线交 BN 于点 E .求证:△BDE 与 △BDN 的面积之比为 4:5.38. 设 O 为坐标原点,动点 M 在椭圆 C:x 22+y 2=1 上,过 M 做 x 轴的垂线,垂足为 N ,点 P 满足NP⃗⃗⃗⃗⃗⃗ =√2NM ⃗⃗⃗⃗⃗⃗⃗ . (1)求点 P 的轨迹方程;(2)设点 Q 在直线 x =−3 上,且 OP ⃗⃗⃗⃗⃗ ⋅PQ ⃗⃗⃗⃗⃗ =1.证明:过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .39. 已知椭圆 C :x 2a 2+y 2b 2=1(a >b >0),四点 P 1(1,1),P 2(0,1),P 3(−1,√32),P 4(1,√32) 中恰有三点在椭圆 C 上. (1)求 C 的方程;(2)设直线 l 不经过 P 2 点且与 C 相交于 A ,B 两点,若直线 P 2A 与直线 P 2B 的斜率的和为 −1,证明:l 过定点.40. 在平面直角坐标系 xOy 中,椭圆 E:x 2a 2+y 2b 2=1(a >b >0) 的离心率为 √22,焦距为 2. (1)求椭圆 E 的方程.(2)如图,该直线 l:y =k 1x −√32 交椭圆 E 于 A ,B 两点,C 是椭圆 E 上的一点,直线 OC 的斜率为 k 2,且看 k 1k 2=√24,M 是线段 OC 延长线上一点,且 ∣MC ∣:∣AB ∣=2:3,⊙M 的半径为 ∣MC ∣,OS ,OT 是 ⊙M 的两条切线,切点分别为 S ,T ,求 ∠SOT 的最大值,并求取得最大值时直线 l 的斜率.答案第一部分 1. A【解析】双曲线 C:x 2a 2−y 2b2=1(a >0,b >0) 的一条渐近线为:bx +ay =0,圆 (x −2)2+y 2=4 的圆心 (2,0),半径为 2,双曲线 C:x 2a 2−y 2b 2=1(a >0,b >0) 的一条渐近线被圆 (x −2)2+y 2=4 所截得的弦长为 2,可得圆心到直线的距离为:√22−12=√3=√a 2+b 2, 解得:4c 2−4a 2c 2=3,可得 e 2=4,即 e =2. 2. C【解析】抛物线 C:y 2=4x 的焦点 F (1,0),且斜率为 √3 的直线:y =√3(x −1),过抛物线 C:y 2=4x 的焦点 F ,且斜率为 √3 的直线交 C 于点 M (M 在 x 轴上方), 可知:{y 2=4x,y =√3(x −1),解得 M(3,2√3). 由 l 为抛物线的准线,点 N 在 l 上,且 MN 垂直于 l ,可得 N(−1,2√3),NF 的方程为:y =−√3(x −1),即 √3x +y −√3=0, 则 M 到直线 NF 的距离为:√3+2√3−√3∣√3+1=2√3.3. C4. B【解析】设双曲线的左焦点 F (−c,0),离心率 e =ca =√2,c =√2a ,则双曲线为等轴双曲线,即 a =b ,双曲线的渐近线方程为 y =±ba x =±x ,则经过 F 和 P (0,4) 两点的直线的斜率 k =4−00+c=4c ,则 4c=1,c =4,则 a =b =2√2, 所以双曲线的标准方程:x 28−y 28=1.5. A【解析】以线段 A 1A 2 为直径的圆与直线 bx −ay +2ab =0 相切, √a 2+b 2=a ,化为:a 2=3b 2. 所以椭圆 C 的离心率 e =ca=√1−b 2a 2=√63. 6. A【解析】以线段 A 1A 2 为直径的圆与直线 bx −ay +2ab =0 相切,√a 2+b 2=a ,化为:a 2=3b 2. 所以椭圆 C 的离心率 e =ca=√1−b 2a 2=√63. 7. B8. D【解析】双曲线x 2a 2−y 2b 2=1(a >0,b >0) 的右焦点为 F ,点 A 在双曲线的渐近线上,△OAF 是边长为 2 的等边三角形(O 为原点), 可得 c =2,ba =√3,即b 2a 2=3,c 2−a 2a 2=3,解得 a =1,b =√3,双曲线的焦点坐标在 x 轴,所得双曲线方程为:x 2−y 23=1.9. D10. A【解析】如图,l 1⊥l 2,直线 l 1 与 C 交于 A ,B 两点,直线 l 2 与 C 交于 D ,E 两点, 要使 ∣AB ∣+∣DE ∣ 最小,则 A 与 D ,B 与 E 关于 x 轴对称,即直线 DE 的斜率为 1, 又直线 l 2 过点 (1,0),则直线 l 2 的方程为 y =x −1,联立方程组 {y 2=4x,y =x −1, 则 y 2−4y −4=0, 所以 y 1+y 2=4,y 1y 2=−4所以 ∣DE ∣=√1+1k2⋅∣y 1−y 2∣=√2×√32=8,所以 ∣AB ∣+∣DE ∣ 的最小值为 2∣DE ∣=16.方法二:设直线 l 1 的倾斜角为 θ,则 l 2 的倾斜角为 π2+θ, 根据焦点弦长公式可得 ∣AB ∣=2p sin 2θ=4sin 2θ, ∣DE ∣=2p sin 2(π2−θ)=2p cos 2θ=4cos 2θ.所以 ∣AB ∣+DE ∣=4sin 2θ+4cos 2θ=4sin 2θcos 2θ=16sin 22θ. 因为:0<sin 22θ≤1,所以当 θ=45∘ 时,∣AB ∣+∣DE ∣ 最小,最小值为 16.11. B 12. A 【解析】假设椭圆的焦点在 x 轴上,则 0<m <3 时, 假设 M 位于短轴的端点时,∠AMB 取最大值,要使椭圆 C 上存在点 M 满足 ∠AMB =120∘,∠AMB ≥120∘,∠AMO ≥60∘,tan∠AMO =√3√m≥tan60∘=√3, 解得:0<m ≤1.当椭圆的焦点在 y 轴上时,m >3,假设 M 位于短轴的端点时,∠AMB 取最大值,要使椭圆 C 上存在点 M 满足 ∠AMB =120∘,∠AMB ≥120∘,∠AMO ≥60∘,tan∠AMO =√m√3≥tan60∘=√3,解得:m ≥9,所以 m 的取值范围是 (0,1]∪[9,+∞). 第二部分 13. [−5√2,1]【解析】根据题意,设 P (x 0,y 0),则有 x 02+y 02=50,PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ =(−12−x 0,−y 0)⋅(−x 0,6−y 0)=(12+x 0)x 0−y 0(6−y 0)=12x 0+6y +x 02+y 02≤20,化为:12x 0−6y 0+30≤0,即 2x 0−y 0+5≤0,表示直线 2x −y +5≤0 以及直线下方的区域,联立 {x 02+y 02=50,2x 0−y 0+5=0,解可得 x 0=−5 或 x 0=1, 结合图形分析可得:点 P 的横坐标 x 0 的取值范围是 [−5√2,1].14. (x +1)2+(y −√3)2=1 15. 2√3 16. 5 17. Q 1;p 2【解析】(1)若 Q i 为第 i 名工人在这一天中加工的零件总数,Q 1=A 1的纵坐标+B 1的纵坐标 ; Q 2=A 2的纵坐标+B 2的纵坐标,Q 3=A 3的纵坐标+B 3的纵坐标,由已知中图象可得:Q 1,Q 2,Q 3 中最大的是 Q 1;(2)若 p i 为第 i 名工人在这一天中平均每小时加工的零件数,则 p i 为 A i B i 中点与原点连线的斜率,故 p 1,p 2,p 3 中最大的是 p 2.18. 2√33【解析】双曲线C:x2a2−y2b2=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60∘,可得A到渐近线bx+ay=0的距离为:bcos30∘=√32b,可得:√a2+b2=√32b,即ac=√32,可得离心率为:e=2√33.19. 220. 6【解析】抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N,点M为FN 的中点,可知M的横坐标为1,则M的纵坐标为±2√2,∣FN∣=2∣FM∣=2√(1−2)2+(±2√2−0)2=6.21. y=±√22x【解析】把x2=2py(p>0)代入双曲线x2a2−y2b2=1(a>0,b>0),可得:a2y2−2pb2y+a2b2=0,所以y A+y B=2pb2a2,因为∣AF∣+∣BF∣=4∣OF∣,所以y A+y B+2×p2=4×p2,所以2pb2a2=p,所以ba =√22,所以该双曲线的渐近线方程为:y=±√22x.22. y=±√22x【解析】把x2=2py(p>0)代入双曲线x2a2−y2b2=1(a>0,b>0),可得:a2y2−2pb2y+a2b2=0,所以y A+y B=2pb2a2,因为∣AF∣+∣BF∣=4∣OF∣,所以y A+y B+2×p2=4×p2,所以2pb2a2=p,所以ba =√22.所以该双曲线的渐近线方程为:y=±√22x.23. 6第三部分24. (1)曲线y=x2+mx−2与x轴交于A,B两点,可设 A (x 1,0),B (x 2,0),则 x 1,x 2 是方程 x 2+mx −2=0 的两根,有 Δ>0, 由韦达定理可得 x 1x 2=−2, 若 AC ⊥BC ,则 k AC ⋅k BC =−1, 即有 1−00−x 1⋅1−00−x 2=−1,即为 x 1x 2=−1 这与 x 1x 2=−2 矛盾, 故不出现 AC ⊥BC 的情况.(2) 设过 A ,B ,C 三点的圆的方程为 x 2+y 2+Dx +Ey +F =0(D 2+E 2−4F >0), 由题意可得 y =0 时,x 2+Dx +F =0 与 x 2+mx −2=0 等价. 可得 D =m ,F =−2,圆的方程即为 x 2+y 2+mx +Ey −2=0,由圆过 C (0,1),可得 0+1+0+E −2=0,可得 E =1, 则圆的方程即为 x 2+y 2+mx +y −2=0, 再令 x =0,可得 y 2+y −2=0, 解得 y =1或−2.即有圆与 y 轴的交点为 (0,1),(0,−2),则过 A ,B ,C 三点的圆在 x 轴上截得的弦长为 1−(−2)=3,所以过 A ,B ,C 三点的圆在 y 轴上截得的弦长为定值 3.25. (1) 因为 y 2=2px 过点 P (1,1), 所以 1=2p , 解得 p =12,所以抛物线方程为 y 2=x ,所以焦点坐标为 (14,0),准线为 x =−14.(2) 设过点 (0,12) 的直线方程为 y =kx +12,M (x 1,y 1),N (x 2,y 2),所以直线 OP 为 y =x ,直线 ON 为:y =y 2x 2x , 由题意知 A (x 1,x 1),B (x 1,x 1y 2x 2),由 {y =kx +12,y 2=x 可得 k 2x 2+(k −1)x +14=0, 所以 x 1+x 2=1−k k 2,x 1x 2=14k 2,所以 y 1+x 1y 2x 2=kx 1+12+x 1(kx 2+12)x 2=2kx 1+x 1+x 22x 2=2kx 1+1−k k 22×14k 2x 1=2kx 1+(1−k )⋅2x 1=2x 1,所以 A 为线段 BM 的中点.26. (1) 设 A (x 1,x 124),B (x 2,x 224) 为曲线 C :y =x 24上两点,则直线 AB 的斜率为 k =x 124−x 224x 1−x 2=14(x 1+x 2)=14×4=1;(2) 设直线 AB 的方程为 y =x +t ,代入曲线 C :y =x 24,可得 x 2−4x −4t =0,即有 Δ>0,x 1+x 2=4,x 1x 2=−4t , 再由 y =x 24 的导数为 yʹ=12x ,设 M (m,m 24),可得 M 处切线的斜率为 12m ,由 C 在 M 处的切线与直线 AB 平行,可得 12m =1, 解得 m =2,即 M (2,1),由 AM ⊥BM 可得,k AM ⋅k BM =−1, 即为x 124−1x 1−2⋅x 224−1x 2−2=−1,化为 x 1x 2+2(x 1+x 2)+20=0, 即为 −4t +8+20=0, 解得 t =7,满足 Δ>0, 则直线 AB 的方程为 y =x +7.27. (1) 由题意可知:椭圆的离心率 e =ca =12,则 a =2c, ⋯⋯①椭圆的准线方程 x =±a 2c ,由 2×a 2c=8, ⋯⋯②由 ①② 解得:a =2,c =1, 则 b 2=a 2−c 2=3, 所以椭圆的标准方程:x 24+y 23=1.(2) 方法一:设 P (x 0,y 0),x 0=1 时,l 1 与 l 2 相交于点 F 1,与题设不符,当 x 0≠1 时, 则直线 l 2 的斜率 k 2=x 0−1y 0,直线 l 2 的方程 y =−x 0−1y 0(x −1),直线 PF 1 的斜率 k PF 1=y 0x 0+1, 则直线 l 1 的斜率 k 1=−x 0+1y 0,直线 l 1 的方程 y =−x 0+1y 0(x +1),联立 {y =x 0−1y 0(x −1),y =x 0+1y 0(x +1), 解得:{x =−x 0,y =x 02−1y 0, 则 Q (−x 0,x 02−1y 0), 由 P ,Q 在椭圆上,P ,Q 的横坐标互为相反数,纵坐标应相等或相反,则 y 0=x 02−1y 0或x 02−1y 0=−y 0,所以 y 02=x 02−1 或 x 02+y 02=1,则 {x 024+y 023=1,y 02=x 02−1, 解得:{x 02=167,y 02=97, 则 {x 0=±4√77,y 0=±3√77, 或 {x 02+y 02=1,x 024+y 023=1, 无解, 又 P 在第一象限,所以 P 的坐标为: P (4√77,3√77). 方法二:设 P (m,n ),由 P 在第一象限,则 m >0,n >0,当 m =1 时,k PF 2 不存在,解得:Q 与 F 1 重合,不满足题意, 当 m ≠1 时,k PF 2=nm−1,k PF 1=nm+1, 由 l 1⊥PF 1,l 2⊥PF 2,则 k l 1=−m+1n,k l 2=m−1n,直线 l 1 的方程 y =−m+1n(x +1) ⋯⋯①,直线 l 2 的方程 y =−m−1n(x −1), ⋯⋯②联立解得:x =−m ,则 Q (−m,m 2−1n), 由 Q 在椭圆方程,由对称性可得:m 2−1n=±n 2,即 m 2−n 2=1,或 m 2+n 2=1,由 P (m,n ),在椭圆方程,{m 2−1=n 2,m 24+n 23=1, 解得:{m 2=167,n 2=97 或 {1−m 2=n 2,m 24+n 23=1, 无解, 又 P 在第一象限,所以 P 的坐标为:P (4√77,3√77). 28. (1) 曲线 C 1 的直角坐标方程为:x =4%,, 设 P (x,y ),M (4,y 0),则 yx =y 04,所以 y 0=4y x,因为 ∣OM ∣∣OP ∣=16,所以 √x 2+y 2√16+y 02=16,即 (x 2+y 2)(1+y 2x 2)=16,所以 x 4+2x 2y 2+y 4=16x 2,即 (x 2+y 2)2=16x 2.两边开方得:x 2+y 2=4x , 整理得:(x −2)2+y 2=4(x ≠0),所以点 P 的轨迹 C 2 的直角坐标方程:(x −2)2+y 2=4(x ≠0).(2) 点 A 的直角坐标为 A(1,√3),显然点 A 在曲线 C 2 上,∣OA ∣=2, 所以曲线 C 2 的圆心 (2,0) 到弦 OA 的距离 d =√4−1=√3, 所以 △AOB 的最大面积 S =12∣OA ∣⋅(2+√3)=2+√3. 29. (1) 曲线 C 1 的直角坐标方程为:x =4, 设 P (x,y ),M (4,y 0),则 yx =y 04,所以 y 0=4y x,因为 ∣OM∣∣OP∣=16,所以 √x 2+y 2√16+y 02=16,即 (x 2+y 2)(1+y 2x 2)=16,所以 x 4+2x 2y 2+y 4=16x 2, 即 (x 2+y 2)=16x 2, 两边开方得:x 2+y 2=4x , 整理得:(x −2)2+y 2=4(x ≠0),所以点 P 的轨迹 C 2 的直角坐标方程:(x −2)2+y 2=4(x ≠0). (2) 设点 B 的坐标为 (ρs ,α)(ρs >0), 由题设知 ∣OA∣=2,ρs =4cosα, 于是 △OAB 面积S =12∣OA∣⋅ρs sin∠AOB =4cosα⋅∣∣sin (α−π3)∣∣=2∣∣∣sin (2α−π3)−√32∣∣∣≤2+√3,当 α=−π12 时,S 取得最大值 2+√3, 所以 △OAB 面积的最大值为 2+√3.30. 直线 l 的直角坐标方程为 x −2y +8=0,设 P(2s 2,2√2s), 所以 P 到直线 l 的距离 d =∣2√2s+8∣√5=√2s−2)2√5,所以当 s =√2 时,d 取得最小值√5=4√55. 31. (1) AB =[0110][1002]=[0210].(2) 设点 P (x,y ) 为曲线 C 1 的任意一点, 点 P 在矩阵 AB 的变换下得到点 Pʹ(x 0,y 0),则 [0210][x y ]=[2yx], 即 x 0=2y ,y 0=x ,所以 x =y 0,y =x 02,所以 y 028+x 028=1,即 x 02+y 02=8,所以曲线 C 2 的方程为 x 2+y 2=8.32. (1) 方法一:当直线 l 的斜率不存在时,A (2,2),B (2,−2), 则 OA ⃗⃗⃗⃗⃗ =(2,2),OB ⃗⃗⃗⃗⃗ =(2,−2), 所以 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =0, 所以 OA ⃗⃗⃗⃗⃗ ⊥OB⃗⃗⃗⃗⃗ , 所以坐标原点 O 在圆 M 上;当直线 l 的斜率存在,设直线 l 的方程 y =k (x −2),A (x 1,y 1),B (x 2,y 2), {y =k (x −2),y 2=2x,整理得:k 2x 2−(4k 2+2)x +4k 2=0,所以 x 1x 2=4,4x 1x 2=y 12y 22=(y 1y 2)2,由 y 1y 2<0,得 y 1y 2=−4, 由 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, 得 OA⃗⃗⃗⃗⃗ ⊥OB ⃗⃗⃗⃗⃗ , 所以坐标原点 O 在圆 M 上, 综上可知:坐标原点 O 在圆 M 上.方法二:设直线 l 的方程 x =my +2, {x =my +2,y 2=2x, 整理得:y 2−2my −4=0,A (x 1,y 1),B (x 2,y 2), 所以 y 1y 2=−4,由 (y 1y 2)2=4x 1x 2,得 x 1x 2=4, 因为 OA ⃗⃗⃗⃗⃗ ⋅OB ⃗⃗⃗⃗⃗ =x 1x 2+y 1y 2=0, 所以 OA ⃗⃗⃗⃗⃗ ⊥OB⃗⃗⃗⃗⃗ , 所以坐标原点 O 在圆 M 上.(2) 当直线 l 斜率不存在时,圆 M 的方程为 (x −2)2+y 2=4, 此时圆 M 不过点 P (4,−2),不满足条件; 当直线 l 斜率存在时,由(1)可知:x 1x 2=4,x 1+x 2=4k 2+2k 2,y 1+y 2=2k ,y 1y 2=−4,圆 M 过点 P (4,−2),则 AP⃗⃗⃗⃗⃗ =(4−x 1,−2−y 1),BP ⃗⃗⃗⃗⃗ =(4−x 2,−2−y 2), 由 AP⃗⃗⃗⃗⃗ ⋅BP ⃗⃗⃗⃗⃗ =0,得 (4−x 1)(4−x 2)+(−2−y 1)(−2−y 2)=0, 整理得:k 2+k −2=0,解得:k =−2 或 k =1,当 k =−2 时,直线 l 的方程为 y =−2x +4,且 x 1+x 2=92,y 1+y 2=−1, 则 M (94,−12),半径为 r =∣MP∣=√(4−94)2+(−2+12)2=√854,所以圆 M 的方程 (x −94)2+(y +12)2=8516.当直线斜率 k =1 时,直线 l 的方程为 y =x −2, 同理求得 M (3,1),则半径为 r =∣MP∣=√10, 所以圆 M 的方程为 (x −3)2+(y −1)2=10,综上可知:直线 l 的方程为 y =−2x +4,圆 M 的方程 (x −94)2+(y +12)2=8516 或直线 l 的方程为 y =x −2,圆 M 的方程为 (x −3)2+(y −1)2=10. 33. (1) 设 F 的坐标为 (−c,0), 依题意可得 {ca =12,a =p2,a −c =12,解得 a =1,c =12,p =2,于是 b 2=a 2−c 2=34. 所以,椭圆的方程为 x 2+4y 23=1,抛物线的方程为 y 2=4x .(2) 直线 l 的方程为 x =−1,设直线 AP 的方程为 x =my +1(m ≠0),联立方程组 {x =−1,x =my +1,解得点 P (−1,−2m ),故 Q (−1,2m ). 联立方程组 {x =my +1,x 2+4y 23=1,消去 x ,整理得 (3m 2+4)y 2+6my =0,解得 y =0,或 y =−6m3m 2+4. 所以 B (−3m 2+43m 2+4,−6m3m 2+4),所以直线 BQ 的方程为 (−6m3m 2+4−2m )(x +1)−(−3m 2+43m 2+4+1)(y −2m )=0, 令 y =0,解得 x =2−3m 23m 2+2,故 D (2−3m 23m 2+2,0),所以 ∣AD ∣=1−2−3m 23m 2+2=6m 23m 2+2,又因为 △APD 的面积为 √62,所以 12×6m 23m 2+2×2∣m∣=√62, 整理得 3m 2−2√6∣m ∣+2=0,解得 ∣m ∣=√63,所以 m =±√63,所以直线 AP 的方程为 3x +√6y −3=0,或 3x −√6y −3=0. 34. (1) 因为椭圆 C 的离心率为 √22,所以a 2−b 2a 2=12,a 2=2b 2%,,因为椭圆 C 截直线 y =1 所得线段的长度为 2√2%,, 所以椭圆 C 过点 (√2,1)%,, 因为 2a 2+1b 2=1%,, 所以 b 2=2,a 2=4%,, 所以椭圆 C 的方程为x 24+y 22=1.(2) 设 A ,B 的横坐标为 x 1,x 2,则 A (x 1,kx 1+m ),B (x 2,kx 2+m ),D (x 1+x 22,k 2(x 1+x 2)+m),联立 {x 24+y 22=1,y =kx +m%sinα2=EN DN=ON DN =2m1+2k 2√k 4+3k 2+1=22√k 4+3k 2+1可得 (1+2k 2)x 2+4kmx +2m 2−4=0,所以 x 1+x 2=−4km1+2k 2,所以 D (−2km1+2k 2,m1+2k 2)%sin α2=EN DN =ONDN =2m1+2k 2√k 4+3k 2+1=22√k 4+3k 2+1,因为 M (0,m ),则 N (0,−m ), 所以 ⊙N 的半径为 ∣m ∣,∣DN ∣=√(m 1+2k 2+m)2+(−2km 1+2k 2)2=∣2m∣1+2k 2√k 4+3k 2+1,设 ∠EDF =α, 所以sin α2=EN DN=ON DN =2m1+2k 2√k 4+3k 2+1=22√k 4+3k 2+1令 y =22√k 4+3k 2+1,则 yʹ=22√k 4+3k 2+1(k 4+3k 2+1) 当 k =0 时,sin α2 取得最小值,最小值为 12, 所以 ∠EDF 的最小值是 60∘.35. (1) 设椭圆的离心率为 e .由已知,可得 12(c +a )c =b 22.又由 b 2=a 2−c 2,可得 2c 2+ac −a 2=0,即 2e 2+e −1=0. 又因为 0<e <1,解得 e =12. 所以,椭圆的离心率为 12.(2) (i )依题意,设直线 FP 的方程为 x =my −c (m >0),则直线 FP 的斜率为 1m . 由(1)知 a =2c ,可得直线 AE 的方程为 x2c +yc =1,即 x +2y −2c =0, 与直线 FP 的方程联立,可解得 x =(2m−2)c m+c ,y =3cm+2,即点 Q 的坐标为 ((2m−2)c m+c,y =3cm+2).由已知 ∣FQ ∣=3c2,有 [(2m−2)c m+c+c]2+(3cm+2)2=(3c 2)2,整理得 3m 2−4m =0, 所以 m =43,即直线 FP 的斜率为 43.(ii )由 a =2c ,可得 b =√3c ,故椭圆方程可以表示为x 24c 2+y 23c 2=1.由(i )得直线 FP 的方程为 3x −4y +3c =0,与椭圆方程联立 {3x −4y +3c =0,x 24c 2+y 23c 2=1. 消去 y ,整理得 7x 2+6cx −13c 2=0,解得 x =−13c 7(舍去),或 x =c .因此可得点 P (c,3c2),进而可得 ∣FP ∣=√(c +c )2+(3c 2)2=5c 2,所以 ∣PQ ∣=∣FP ∣−∣FQ ∣=5c2−3c 2=c .由已知,线段 PQ 的长即为 PM 与 QN 这两条平行直线间的距离,故直线 PM 和 QN 都垂直于直线 FP . 因为 QN ⊥FP ,所以 ∣QN ∣=∣FQ ∣⋅tan∠QFN =3c 2×34=9c 8,所以三角形 FQN 的面积为 12∣FQ ∣∣QN ∣=27c 232,同理三角形 FPM 的面积等于 75c 232,由四边形 PQNM 的面积为 3c ,得75c 232−27c 232=3c ,整理得 c 2=2c ,又由 c >0,得 c =2. 所以,椭圆的方程为x 216+y 212=1.36. (1) 由题可知 P (x,x 2),−12<x <32,所以 k AP =x 2−14x+12=x −12∈(−1,1),故直线 AP 斜率的取值范围是:(−1,1). (2) 由(1)知 P (x,x 2),−12<x <32,所以 PA ⃗⃗⃗⃗⃗ =(−12−x,14−x 2), 设直线 AP 的斜率为 k ,则 AP:y =kx +12k +14,BP:y =−1k x +32k +94, 联立直线 AP ,BP 方程可知 Q (3+4k−k 22k 2+2,9k 2+8k+14k 2+4),故 PQ⃗⃗⃗⃗⃗ =(1+k−k 2−k 31+k 2,−k 4−k 3+k 2+k1+k 2),又因为 PA ⃗⃗⃗⃗⃗ =(−1−k,−k 2−k ), 故−∣PA ∣⋅∣PQ ∣=PA ⃗⃗⃗⃗⃗ ⋅PQ ⃗⃗⃗⃗⃗ =(1+k )3(k−1)1+k 2+k 2(1+k )3(k−1)1+k 2=(1+k )3(k −1),所以 ∣PA ∣⋅∣PQ ∣=(1+k )3(1−k ),令 f (x )=(1+x )3(1−x ),−1<x <1,则 fʹ(x )=(1+x )2(2−4x )=−2(1+x )2(2x −1),由于当 −1<x <−12 时 fʹ(x )>0,当 12<x <1 时 fʹ(x )<0, 故 f (x )max =f (12)=2716,即 ∣PA ∣⋅∣PQ ∣ 的最大值为 2716. 37. (1) 由椭圆的焦点在 x 轴上,设椭圆方程:x 2a2+y 2b 2=1(a >b >0),则 a =2,e =ca=√32,则 c =√3,b 2=a 2−c 2=1, 所以椭圆 C 的方程x 24+y 2=1;(2) 设 D (x 0,0)(−2<x 0<2),M (x 0,y 0),N (x 0,−y 0),y 0>0,由 M ,N 在椭圆上,则x 024+y 02=1,则 x 02=4−4y 02,则直线 AM 的斜率 k AM =y 0−0x 0+2=y 0x 0+2,直线 DE 的斜率 k DE =−x 0+2y 0,直线DE 的方程:y =−x 0+2y 0(x −x 0),直线 BN 的斜率 k BN =−y 0x0−2,直线 BN 的方程 y =−yx 0−2(x −2),{y =−x 0+2y 0(x −x 0),y =−y 0x 0−2(x −2),解得:{x =4x 0+25,y =45y 0, 过 E 做 EH ⊥x 轴,△BHE ∽△BDN ,则 ∣EH∣=4y 05,则 ∣EH∣∣ND∣=45,所以 △BDE 与 △BDN 的面积之比为 4:5.38. (1) 设 M (x 0,y 0),由题意可得 N (x 0,0),设 P (x,y ), 由点 P 满足 NP ⃗⃗⃗⃗⃗⃗ =√2NM ⃗⃗⃗⃗⃗⃗⃗ , 可得 (x −x 0,y )=√2(0,y 0), 可得 x −x 0=0,y =√2y 0, 即有 x 0=x ,y 0=√2, 代入椭圆方程x 22+y 2=1,可得 x 22+y 22=1,即有点 P 的轨迹方程为圆 x 2+y 2=2.(2) 设 Q (−3,m ),P(√2cosα,√2sinα)(0≤α<2π),OP⃗⃗⃗⃗⃗ ⋅PQ ⃗⃗⃗⃗⃗ =1,可得 (√2cosα,√2sinα)⋅(−3−√2cosα,m −√2sinα)=1, 即为 −3√2cosα−2cos 2α+√2msinα−2sin 2α=1, 解得 m =√2cosα)√2sinα, 即有 Q √2cosα)√2sinα),椭圆x 22+y 2=1 的左焦点为 F (−1,0),由 k OQ =√2cosα√2sinα,k PF =√2sinα√2cosα+1,由 k OQ ⋅k PF =−1,可得过点 P 且垂直于 OQ 的直线 l 过 C 的左焦点 F .39. (1) 根据椭圆的对称性,P 3(−1,√32),P 4(1,√32) 两点必在椭圆 C 上,又 P 4 的横坐标为 1, 所以椭圆必不过 P 1(1,1),所以 P 2(0,1),P 3(−1,√32),P 4(1,√32) 三点在椭圆 C 上,把 P 2(0,1),P 3(−1,√32) 代入椭圆 C ,得:{1b 2=1,1a 2+34b 2=1,解得 a 2=4,b 2=1, 所以椭圆 C 的方程为x 24+y 2=1.(2) ①当斜率不存在时,设 l :x =m ,A (m,y A ),B (m,−y A ), 因为直线 P 2A 与直线 P 2B 的斜率的和为 −1, 所以 k P 2A +k P 2B =y A −1m+−y A −1m=−2m=−1,解得 m =2,此时 l 过椭圆右顶点,不存在两个交点,故不满足. ②当斜率存在时,设 l :y =kx +b (b ≠1),A (x 1,y 1),B (x 2,y 2), 联立 {y =kx +b,x 2+4y 2−4=0,整理,得 (1+4k 2)x 2+8kbx +4b 2−4=0, x 1+x 2=−8kb1+4k 2,x 1x 2=4b 2−41+4k 2,则k P 2A +k P 2B=y 1−1x 1+y 2−1x 2=x 2(kx 1+b )−x 2+x 1(kx 2+b )−x 1x 1x 2=8kb 2−8k−8kb 2+8kb1+4k 24b 2−41+4k 2=8k (b−1)4(b+1)(b−1)=−1,又 b ≠1,所以 b =−2k −1,此时 Δ=−64k ,存在 k ,使得 Δ>0 成立, 所以直线 l 的方程为 y =kx −2k −1, 当 x =2 时,y =−1, 所以 l 过定点 (2,−1).40. (1) 由题意知,{ca=√22,2c =2,a 2=b 2+c 2,解得 a =√2,b =1. 所以椭圆 E 的方程为x 22+y 2=1;(2) 设 A (x 1,y 1),B (x 2,y 2),联立 {x 22+y 2=1,y =k 1x −√32,得 (4k 12+2)x 2−4√3k 1x −1=0.由题意得 Δ=64k 12+8>0.x 1+x 2=2√3k 12k 12+1,x 1x 2=−12(2k 12+1). 所以 ∣AB ∣=√1+k 12∣x 1−x 2∣=√2⋅√1+k 12√1+8k 121+2k 12.由题意可知圆 M 的半径 r 为 r =23∣AB ∣=2√23√1+k 12√1+8k 121+2k 12. 由题意设知,k 1k 2=√24, 所以 k 2=√24k 1.因此直线 OC 的方程为 y =√24k 1x . 联立 {x 22+y 2=1,y =√24k 1x, 得 x 2=8k 121+4k 12,y 2=11+4k 12. 因此,∣OC ∣=√x 2+y 2=√1+8k 121+4k 12. 由题意可知,sin∠SOT 2=r r+∣OC∣=11+∣OC∣r . 而 ∣OC∣r =√1+8k 121+4k 122√23√1+k 11+8k 11+2k 12=√2412√1+4k 1√1+k 1. 令 t =1+2k 12,则 t >1,1t ∈(0,1), 因此,∣OC∣r =2√2t 2+t−1=2√2+1t −1t 2=2√−(1t −12)2+94≥1. 当且仅当 1t =12,即 t =2 时等式成立,此时 k 1=±√22. 所以 sin∠SOT2≤12, 因此 ∠SOT 2≤π6.所以∠SOT的最大值为π.3综上所述,∠SOT的最大值为π,3取得最大值时直线l的斜率为k1=±√2.2。
2017年高考数学—圆锥曲线(解答+答案)
2017年高考数学—圆锥曲线(解答+答案)1.(17全国1理20.(12分))已知椭圆C :2222=1x y a b+(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,P 4(1,C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
若直线P 2A 与直线P 2B 的斜率的和为–1,证明:l 过定点.2.(17全国1文20.(12分))设A ,B 为曲线C :y =24x 上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程.3.(17全国2理20. (12分))设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 做x 轴的垂线,垂足为N ,点P 满足NP =u u u r u u u r.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1OP PQ ⋅=u u u r u u u r.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.(17全国3理20.(12分))已知抛物线2:2C y x =,过点(2,0)的直线l 交C 于A ,B 两点,圆M 是以线段AB为直径的圆.(1)证明:坐标原点O 在圆M 上;(2)设圆M 过点P (4,2-),求直线l 与圆M 的方程.5.(17全国3文20.(12分))在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于A ,B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现AC ⊥BC 的情况?说明理由;(2)证明过A ,B ,C 三点的圆在y 轴上截得的弦长为定值.6.(17北京理(18)(本小题14分))已知抛物线2:2C y px =过点(1,1)P ,过点1(0,)2作直线l 与抛物线C 交于不同的两点,M N ,过点M 作x 轴的垂线分别与直线,OP ON 交于点,A B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.7.(17北京文(19)(本小题14分))已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x . (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点,M N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5.8.17山东理(21)(本小题满分13分)在平面直角坐标系xOy 中,椭圆E :22221x y a b+=()0a b >>的离心率为22,焦距为2.(Ⅰ)求椭圆E 的方程;(Ⅱ)如图,动直线l :13y k x =-交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且1224k k =,M 是线段OC 延长线上一点,且:2:3MC AB =,M e 的半径为MC ,,OS OT 是M e 的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.9.(17天津理(19)(本小题满分14分))设椭圆22221(0)x y a b a b +=>>的左焦点为F ,右顶点为A ,离心率为12.已知A 是抛物线22(0)y px p =>的焦点,F 到抛物线的准线l 的距离为12. (I )求椭圆的方程和抛物线的方程;(II )设l 上两点P ,Q 关于x 轴对称,直线AP 与椭圆相交于点B (B 异于点A ),直线BQ 与x 轴相交于点D .若APD △的面积为62,求直线AP 的方程.10.(17天津文(20)(本小题满分14分))已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为22b .(Ⅰ)求椭圆的离心率;(Ⅱ)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(ⅰ)求直线FP 的斜率; (ⅱ)求椭圆的方程.11.(17浙江21.(本题满分15分))如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点13()()22P x y x -<<,.过点B 作直线AP 的垂线,垂足为Q .(Ⅰ)求直线AP 斜率的取值范围; (Ⅱ)求AP PQ ⋅的最大值.12.(17江苏17.(本小题满分14分))如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,离心率为12,两准线之间的距离为8.点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l . (1)求椭圆E 的标准方程;(2)若直线12,l l 的交点Q 在椭圆E 上,求点P 的坐标.参考答案:1.解:(1)由于34,P P 两点关于y 轴对称,故由题设知C 经过34,P P 两点又由222211134a b a b +>+知,C 不经过点1P ,所以点2P 在C 上 因此22211,1314b a b ⎧=⎪⎪⎨⎪+=⎪⎩解得2241a b ⎧=⎪⎨=⎪⎩故C 的方程为2214x y += (2)设直线2P A 与直线2P B 的斜率分别为12,k k如果l 与x 轴垂直,设:l x t =,由题设知0t ≠,且||2t <,可得,A B的坐标分别为(,t t则1222122k k t t+=-=-,得2t =,不符合题设从而可设:(1)l y kx m m =+≠,将y kx m =+代入2214x y +=得 222(41)8440k x kmx m +++-=由题设可知2216(41)0k m ∆=-+>设1122(,),(,)A x y B x y ,则2121222844,4141km m x x x x k k -+=-=++而 12121211y y k k x x --+=+ 121211kx m kx m x x +-+-=+ 1212122(1)()kx x m x x x x +-+=由题设121k k +=-,故1212(21)(1)()0k x x m x x ++-+=即222448(21)(1)04141m kmk m k k --++-=++ 解得12m k +=-当且仅当1m >-时,0∆>,于是1:2m l y x m +=-+, 所以l 过定点(2,1)-3.解:(1)设(,)P x y ,00(,)M x y ,则000(,0),(,),(0,)N x NP x x y NM y =-=u u u r u u u u r由NP =u u u r u u u r得00,x x y y ==因为00(,)M x y 在C 上,所以22122x y += 因此点P 的轨迹方程为222x y += (2)由题意知(1,0)F -设(3,),(,)Q t P m n -,则(3,),(1,),33OQ t PF m n OQ PF m tn =-=---=+-u u u r u u u r u u u r u u u rg , (,),(3,)OP m n PQ m t n ==---u u u r u u u r由1OQ PQ =u u u r u u u r g 得2231m m tn n --+-=又由(1)知222m n +=,故330m tn +-=所以0OQ PF =u u u r u u u r g ,即OQ PF ⊥u u u r u u u r .又过点P 存在唯一直线垂直于OQ ,所以过点P 且垂直于OQ 的直线l 过C 的左焦点F .4.解:(1)设1122(,),(,),:2A x y B x y l x my =+由22,2x my y x=+⎧⎨=⎩可得2240y my --=,则124y y =- 又221212,22y y x x ==,故21212()44y y x x ==因此OA 的斜率与OB 的斜率之积为1212414y y x x -==-g ,所以OA OB ⊥ 故坐标原点O 在圆M 上(2)由(1)可得21212122,()424y y m x x m y y m +=+=++=+故圆心M 的坐标为2(+2,)m m ,圆M的半径r =由于圆M 过点(4,2)P -,因此0AP BP ⋅=u u u r u u u r, 故1212(4)(4)(2)(2)0x x y y --+++=, 即121212224()2()200x x x x y y y y -+++++= 由(1)可得12124,4y y x x =-= 所以2210m m --=,解得1m =或12m =-当1m =时,直线l 的方程为10x y --=,圆心M 的坐标为(3,1),圆M的半径为M 的方程为22(3)(1)10x y -+-=当12m =-时,直线l 的方程为240x y +-=,圆心M 的坐标为91(,)42-,圆M 的半径为4,圆M 的方程为229185()()4216x y -++=5.解:(1)不能出现AC BC ⊥的情况,理由如下:设12(,0),(,0)A x B x ,则12,x x 满足220x mx +-=,所以122x x =- 又C 的坐标为(0,1),故AC 的斜率与BC 的斜率之积为121112x x --⋅=-,所以不能出现AC BC ⊥的情况 (2)BC 的中点坐标为21(,)22x ,可得BC 的中垂线方程为221()22x y x x -=- 由(1)可得12x x m +=-,所以AB 的中垂线方程为2mx =-联立22,21()22m x x y x x ⎧=-⎪⎪⎨⎪-=-⎪⎩又22220x mx +-=,可得,212m x y ⎧=-⎪⎪⎨⎪=-⎪⎩所以过A,B,C 三点的圆的圆心坐标为1(,)22m --,半径r =故圆在y轴上截得的弦长为3=,即过A,B,C 三点的圆在y 轴上截得的弦长为定值。
2017年高考试题分类汇编(解析几何)
2017年高考试题分类汇编(解析几何)考点1 直线与圆的方程1.(2017·天津文科)设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=,则圆的方程为 . 22(1)(1x y -+=2.(2017·全国卷Ⅲ文科)在直角坐标系xoy 中,曲线22y x mx =+-与x 轴交于,A B 两点,点C 的坐标为(0,1).当m 变化时,解答下列问题: (Ⅰ)能否出现AC BC ⊥的情况?说明理由; 不能出现 (Ⅱ)证明过,,A B C 三点的圆在y 轴上截得的弦长为定值. 3 考点2 椭圆的方程与性质 考法1 椭圆的方程1.(2017·全国卷Ⅰ理科)已知椭圆C :22221x y a b +=(0a b >>),四点1(1,1)P ,2(0,1)P ,3(1,2P -,4(1,2P 中恰有三点在椭圆C 上. (Ⅰ)求C 的方程. 2214x y +=(Ⅱ)设直线l 不经过点2P 且与C 相交于,A B 两点.若直线2P A 与直线2P B 的斜率的和为1-,证明:l 过定点.2.(2017·全国卷Ⅱ文科理科)设O 为坐标原点,动点M 在椭圆C :2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足2NP NM =. (Ⅰ)求点P 的轨迹方程. 222x y +=(Ⅱ)设点Q 在直线3x =-上,且1OP PQ ⋅=.证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .3.(2017·北京文科)已知椭圆C 的两个顶点分别为(2,0)A -,(2,0)B ,焦点在x(Ⅰ)求椭圆C的方程.221 4xy+=(Ⅱ)点D为x轴上一点,过D作x轴的垂线交椭圆C于不同的两点,M N,过D 作AM的垂线交BN于点E.求证:BDE∆与BDN∆的面积之比为4:5.4.(2017·天津理科)设椭圆22221(0)x ya ba b+=>>的左焦点为F,右顶点为A,离心率为12.已知A是抛物线22(0)y px p=>的焦点,F到抛物线的准线l的距离为12.(Ⅰ)求椭圆的方程和抛物线的方程.22413yx+=, 24y x=.(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线BQ与x轴相交于点D.若APD△AP的方程.5.(2017·山东理科)在平面直角坐标xOy中,椭圆E:22221(0)x ya ba b+=>>的离心率为2,焦距为2.(Ⅰ)求椭圆E的方程.221 2xy+=6.(2017·山东文科)在平面直角坐标xOy中,椭圆E:22221(0)x ya ba b+=>>的离心率为,椭圆C截直线1y=所得线段的长度为(Ⅰ)求椭圆C的方程.221 42x y+=考法2 椭圆的性质1.(2017·浙江卷)椭圆22194x y +=的离心率是 BA.3 B. 3C. 23D. 592.(2017·全国卷Ⅰ文科)设,A B 是椭圆C :2213x y m+=长轴的两个端点,若C上存在点M 满足120AMB ∠=,则m 的取值范围是 AA .(0,1][9,)+∞B .[9,)+∞C .(0,1][4,)+∞D .[4,)+∞3.(2017·全国卷Ⅲ文科理科)已知椭圆C :22221x y a b+=(a >0b >)的左、右顶点分别为12,A A ,且以线段12A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为A .3B .3C .3D .13A考点2 抛物线的方程与性质1.(2017·全国卷Ⅰ理科)已知F 为抛物线C :24y x =的焦点,过F 作两条互相垂直的直线1l ,2l ,直线1l 与C 交于,A B 两点,直线2l 与C 交于,D E 两点,则AB DE +的最小值为 A A .16 B .14 C .12 D .102.(2017·全国卷Ⅱ理科)已知F 是抛物线:C 28y x =的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 为FN 的中点,则FN = .163.(2017·全国卷Ⅱ文科)过抛物线C :24y x =的焦点F 交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上,且MN l ⊥,则M 到直线NF 的距离为 C4.(2017·全国卷Ⅰ文科)设,A B 为曲线C :24x y =上两点,A 与B 的横坐标之和为4.(Ⅰ)求直线AB 的斜率; 1k =.(Ⅱ)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且AM ⊥BM ,求直线AB 的方程. 7y x =+5.(2017·全国卷Ⅲ文科理科)已知抛物线C :22y x =,过点(2,0)的直线l 交C 与AB 两点,圆M 是以线段AB 为直径的圆. (Ⅰ)证明:坐标原点O 在圆M 上;(Ⅱ)设圆M 过点(4,2)P -,求直线l 与圆M 的方程.当1m =时,20x y --=,22(3)(1)10x y -+-=;当12m =-时,240x y +-=,229185()()4216x y -++=.6.(2017·北京理科)已知抛物线C :22y px =过点(1,1)P .过点1(0,)2作直线l 与抛物线C 交于不同的两点,M N ,过点M 作x 轴的垂线分别与直线OP ,ON 交于点,A B ,其中O 为原点.(Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程;2y x =. (Ⅱ)求证:A 为线段BM 的中点. 考点3 双曲线的方程与性质 考法1 双曲线的方程1.(2017·全国卷Ⅲ理科)已知双曲线C :22221x y a b -= (0a >,0b >)的一条渐近线方程为y x =,且与椭圆221123x y +=有公共焦点,则C 的方程为 B A .221810x y -= B .22145x y -= C .22154x y -= D .22143x y -= 2.(2017·天津卷文科)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A在双曲线的渐近线上,OAF △是边长为2的等边三角形(O 为原点),则双曲线的方程为 DA.221412x y -=B.221124x y -= C.2213x y -= D. 2213y x -= 3.(2017·天津卷理科)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,离心若经过F 和(0,4)P 两点的直线平行于双曲线的一条渐近线,则双曲线的方程为 BA.22144x y -= B.22188x y -= C.22148x y -= D.22184x y -= 4.(2017·全国卷Ⅰ文科)已知F 是双曲线C :2213y x -=的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3).则APF ∆的面积为 D A .13B .1 2C .2 3D .3 2考法2 双曲线的性质 考向1 双曲线的离心率1.(2017·北京卷文科理科)若双曲线221y x m-=则实数m =_.2 2.(2017·全国卷Ⅰ理科)已知双曲线C :22221x y a b-=(0a >,0b >)的右顶点为A ,以A 为圆心,b 为半径做圆A ,圆A 与双曲线C 的一条渐近线交于,M N 两点.若60MAN ∠=,则C 的离心率为_____.e =3.(2017·全国卷Ⅱ理科)若双曲线:C 22221x y a b-=(0a >,0b >)的一条渐近线被圆()2224x y -+=所截得的弦长为2,则C 的离心率为 A A .2 B4.(2017·全国卷Ⅱ文科)若1a >,则双曲线2221x y a-=的离心率的取值范围是A. +∞)B. 2)C. D. 12(,) C 考向2 双曲线的渐近线1.(2017·全国卷Ⅲ文科)双曲线22219x y a -=(0a >)的一条渐近线方程为35y x =,则a = . 5a = 2.(2017·山东卷)在平面直角坐标系xoy 中,双曲线22221x y a b-=(00)a b >>,的右支与焦点为F 的抛物线22x py =(0)p >,交于,A B 两点,若AF BF +4OF =,则该双曲线的渐近线方程为 . y x =.。
2017年高考数学解析几何圆锥曲线真题汇编
2017年高考数学《解析几何》真题汇编1.(北京卷(理))已知抛物线2:2C y px =过点(1,1)P ,过点1(0,)2作直线l 与抛物线C 交于不同的两点,M N ,过点M 作x 轴的垂线分别与直线,OP ON 交于点,A B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.解:(Ⅰ)因为抛物线C 过点(1,1)P ,把(1,1)P 代入22y px =,得12p =∴2:C y x =∴焦点坐标1(,0)4,准线为14x =-。
(Ⅱ)设过点1(0,)2的直线方程为1:2l y kx =+,1122(,),(,)M x y N x y 直线:OP y x =,直线22:y ON y x x =由题意知121112(,),(,)x y A x y B x x 由212y kx y x⎧=+⎪⎨⎪=⎩,可得221(1)04k x k x +-+=12122211,4k x x x x k k-∴+== 1212121112221()12222x kx x y x x y kx kx x x x ++∴+=++=+ 2111121122(1)22124kk kx kx k x x k x -=+=+-⋅=⨯ ∴A 为线段BM 中点。
2.(北京卷(文))已知椭圆C 的两个顶点分别为A (−2,0),B(2,0),焦点在x轴上,离心率为2. (Ⅰ)求椭圆C 的方程;(Ⅱ)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点,M N ,过D 作AM 的垂线交BN 于点E .求证:△BDE 与△BDN 的面积之比为4:5. 解:(Ⅰ)焦点在x 轴上,且顶点为(2,0)±2a ∴=2c e a ==c ∴=222a b c =+1b ∴=∴椭圆方程为2214x y +=(Ⅱ)设()()()00000,0,,,,D x M x y N x y - , 直线AM 的方程是()0022y y x x =++ , DE AM ∴⊥,002DE x k y +∴=-, 直线DE 的方程是()0002x y x x y +=-- ,直线BN 的方程是()0022yy x x -=-- , 直线BN 与DE 直线联立()()00000222x y x x y y y x x +⎧=--⎪⎪⎨-⎪=-⎪-⎩, 整理为:()()00000222x yx x x y x +-=-- ,即()()()2200042x x x y x --=- 即()()()220004424x x x x x ---=-,解得0425E x x +=,代入求得045E y y ==- ∴54N E y y =又4S 5BDE E BDN N S y y ==△△BDE ∴∆和BDN ∆面积的比为4:53.(全国卷Ⅰ)已知椭圆C :(a >b >0),四点P 1(1,1),P 2(0,1),P 3(–1,),P 4(1,)中恰有三点在椭圆C 上. (1)求C 的方程;(2)设直线l 不经过P 2点且与C 相交于A ,B 两点。
湖北省各地2017届高三最新考试数学理试题分类汇编:圆锥曲线-Word版含答案
湖北省各地2017届高三最新考试数学理试题分类汇编圆锥曲线2017.02一、选择、填空题1、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)抛物线24y x =的焦点到双曲线2213y x -=的渐近线的距离是A.1B.12 2、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)已知圆22:4C x y +=,点P为直线290x y +-=上一动点,过点P 向圆C 引两条切线PA 、PB , A 、B 为切点,则直线AB 经过定点A.48(,)99 B.24(,)99C.(2,0)D.(9,0)3、(荆门市2017届高三元月调考)已知椭圆C :)0(12222>>=+b a by a x 的右焦点为(,0)F c ,圆222:()M x a y c -+=,双 曲线以椭圆C 的焦点为顶点,顶点为焦点,若双曲线的两条渐近线都与圆M 相切,则椭圆C 的离心率为A C D .124、(荆州市五县市区2017届高三上学期期末)已知,O F 分别为双曲线2222:1(0,0)x y E a b a b-=>>的中心和右焦点,点,G M 分别在E 的渐近线和右支,FG OG ⊥,//GM x 轴,且OM OF =,则E 的离心率为A B C D 5、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知F 为双曲线22:1(0)33x y C a a -=>的一个焦点,则点F 到C 的一条渐近线的距离为AB .3 CD .3a6、(武汉市2017届高三毕业生二月调研考)已知直线23y x =-与抛物线24y x =交于,A B 两点,O 为坐标原点,,OA OB 的斜率分别为12,k k ,则1211k k + A.12 B. 2 C. 12- D. 13- 7、(武汉市武昌区2017届高三1月调研)已知双曲线()222210,0x y a b a b-=>>的两条渐近线分别为1l ,2l ,经过右焦点F 垂直于1l 的直线分别交1l ,2l 于,A B 两点,若OA ,AB ,OB 成等差数列,且AF 与FB反向,则该双曲线的离心率为( )A.528、(襄阳市2017届高三1月调研)已知双曲线()222210,0x y a b a b-=>>过点()4,2P ,且它的渐近线与圆(2283x y -+=相切,则该双曲线的方程为 A. 22184x y -= B. 221168x y -= C. 221812x y -= D. 2211212x y -= 9、(襄阳市优质高中2017届高三1月联考)在平面直角坐标系xoy 中,双曲线的中心在原点,焦点在y 轴上,一条渐近线与直线210x y +-=垂直,则双曲线的离心率为A.2210、(孝感市七校教学联盟2017届高三上学期期末)已知直线:10l x y --=是圆22:210C x y mx y ++-+=的对称轴,过点(,1)A m -作圆C 的一条切线,切点为B ,则||AB =( )A . 2B .C. 6 D.11、(湖北省部分重点中学2017届高三上学期第二次联考)已知双曲线C 的中心在原点,焦点在y 轴上,若双曲线C40y +-=平行,则双曲线C 的离心率为2 12、(荆州中学2017届高三1月质量检测)过点M )23,3(--且被圆2522=+y x 截得弦长为8的直线的方程为 .二、解答题1、(荆、荆、襄、宜四地七校考试联盟2017届高三2月联考)如图,曲线Γ由曲线)0,0(1:22221≤>>=+y b a b y a x C 和曲线)0,0,0(1:22222>>>=-y b a by a x C 组成,其中点21,F F 为曲线1C 所在圆锥曲线的焦点,点43,F F 为曲线2C 所在圆锥曲线的焦点, (Ⅰ)若)0,6(),0,2(32-F F ,求曲线Γ的方程;(Ⅱ)如图,作直线l 平行于曲线2C 的渐近线,交曲线1C 于点A 、B , 求证:弦AB 的中点M 必在曲线2C 的另一条渐近线上;(Ⅲ)对于(Ⅰ)中的曲线Γ,若直线1l 过点4F 交曲线1C 于点C 、D ,求△CDF 1 面积的最大值.x2、(荆门市2017届高三元月调考)椭圆C :22221(0)x y a b a b+=>>的短轴两端点为1(0,1)B -、2(0,1)B ,离心率e =点P 是椭圆C 上不在坐标轴上的任意一点,直线1B P 和2B P 分别与x 轴相交于M ,N 两点,(Ⅰ)求椭圆C 的方程和OM ON ⋅的值;(Ⅱ)若点M 坐标为(1,0),过M 点的直线l 与椭圆C 相交于,A B 两点,试求ABN △面积的最大值.3、(荆州市五县市区2017届高三上学期期末)已知抛物线2:2(0)E y px p =>的焦点为F ,过F 且垂直于x 轴的直线与抛物线E 交于,A B 两点,E 的准线与x 轴交于点C ,CAB ∆的面积为4,以点(3,0)D 为圆心的圆D 过点,A B .(Ⅰ)求抛物线E 和圆D 的方程;(Ⅱ)若斜率为(1)k k ≥的直线m 与圆D 相切,且与抛物线E 交于,M N 两点,求FM FN ⋅的取值范围.4、(天门、仙桃、潜江市2017届高三上学期期末联合考试)已知椭圆2222:1(0)x y C a b a b+=>>的离心率e =(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如图,椭圆左顶点为A ,过原点O 的直线(与坐标轴不重合)与椭圆C 交于P 、Q 两点.试问以MN 为 直径的圆是否经过定点?请证明你的结论.5、(武汉市2017届高三毕业生二月调研考)已知椭圆()2222:10x y a b a bΓ+=>>的左、右焦点分别为12,F F 2F 1. (1)求椭圆Γ的标准方程;(2)已知Γ上存在一点P ,使得直线12,PF PF 分别交椭圆Γ于,A B ,若()12122,0PF F A PF F B λλ==>,求λ的值.6、(武汉市武昌区2017届高三1月调研)已知椭圆的中心在坐标原点,()2,0A ,()0,1B 是它的两个顶点,直线(0)y kx k => 与AB 相交于点D ,与椭圆相交于,E F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值.7、(襄阳市2017届高三1月调研)已知椭圆()2222:10x y C a b a b+=>>的焦点为12,F F ,P是椭圆C 上一点,若12PF PF ⊥,12F F =12PF F ∆的面积为1.(1)求椭圆C 的方程;(2))如果椭圆C 上总存在关于直线y x m =+对称的两点A,B ,求实数m 的取值范围.8、(襄阳市优质高中2017届高三1月联考)已知椭圆()2222:10x y C a b a b+=>>的一个焦点为()3,0F ,其左顶点A 在圆22:12O x y +=上. (1)求椭圆C 的方程;(2)直线():30l x my m =+≠交椭圆C 于,M N 两点,设点N 关于x 轴的对称点为1N (点1N 与点M 不重合),且直线1N M 与x 轴的交于点P ,试问PMN ∆的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.9、(孝感市七校教学联盟2017届高三上学期期末)(1)已知椭圆C :22221x y a b+=(0a b >>)的离心率为12,以原点为圆心,120+=相切.求椭圆C 的方程;(2)已知⊙A 1:(x +2)2+y 2=12和点A 2(2,0),求过点A 2且与⊙A 1相切的动圆圆心P 的轨迹方程.10、(湖北省部分重点中学2017届高三上学期第二次联考)已知椭圆()2222:10x y C a b a b +=>>过点1,2⎛ ⎝⎭,且焦距为2. (1)求椭圆C 的标准方程;(2)设过点()2,0P -的直线l 与椭圆C 交于不同的两点A,B ,点10,2G ⎛⎫-⎪⎝⎭,如果GA GB =,求直线l 的方程.11、(荆州中学2017届高三1月质量检测)如图,OM ,ON 是两条海岸线,Q 为大海中一个小岛,A 为海岸线OM 上的一个码头.已知tan 3MON ∠=-,6km OA =,Q 到海岸线OM ,ON 的距离分别为3 kmkm .现要在海岸线ON 上再建一个码头B ,使得水上旅游线路AB (直线)经过小岛Q .(Ⅰ)求水上旅游线路AB 的长;(Ⅱ)若小岛正北方向距离小岛6 km 处的海中有一个圆形强水波P ,水波生成t h 时的半径为r =2405a <<).强水波开始生成时,一游轮以的速度自码头A 开往码头B ,问强水波是否会波及游轮的航行,并说明理由.OMN PBAQ参考答案一、选择、填空题1、D2、A3、A4、D5、A6、A7、C 8、A 9、D 10、C 11、A 12、30x +=或34150y ++=二、解答题1、(Ⅰ)2222223620416a b a a b b ⎧⎧+==⎪⎪⇒⎨⎨-==⎪⎪⎩⎩ 则曲线Γ的方程为()22102016x y y +=≤和()22102016x y y -=>…………………….3分(Ⅱ)曲线2C 的渐近线为b y x a =±,如图,设直线():bl y x m a=- 则()()22222222201b y x m a x mx m a x y a b ⎧=-⎪⎪⇒-+-=⎨⎪+=⎪⎩()()()22222242420m m a a m m ∆=-⋅⋅-=->⇒<<又由数形结合知m a ≥,a m ∴≤<设点()()()112200,,,,,A x y B x y M x y ,则1222122x x mm a x x +=⎧⎪⎨-⋅=⎪⎩,12022x x m x +∴==,()002b b my x m a a =-=-⋅ 00b y x a ∴=-,即点M 在直线by x a=-上。
2017年高考文科数学分类汇编:解析几何
2017年高考文科数学分类汇编:解析几何【训练一】:【2017年高考文科数学新课标Ⅰ卷第5题】已知F 是双曲线13:22=-y x C 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是)3,1(,则APF ∆的面积为( )A 、31 B 、21 C 、32 D 、23 【本题解析】: 。
【训练二】:【2017年高考文科数学新课标Ⅱ卷第5题】若1>a ,则双曲线1222=-y ax 的离心率的取值范围是( )A 、),2(+∞B 、)2,2(C 、)2,1(D 、)2,1( 【本题解析】:。
【训练三】:【2017年高考文科数学浙江卷第2题】椭圆14922=+y x 的离心率是( ) A 、313 B 、35C 、32D 、95【本题解析】: 。
【训练四】:【2017年高考文科数学新课标Ⅱ卷第12题】过抛物线x y C 4:2=的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且l MN ⊥,则M 到直线NF 的距离为( ) A 、5 B 、22 C 、32 D 、33 【本题解析】: 。
【训练五】:【2017年高考文科数学新课标Ⅰ卷第12题】设A 、B 是椭圆13:22=+my x C 长轴的两个端点,若C 上存在点M 满足0120=∠AMB ,则m 的取值范围是( ) A 、),9[]1,0(+∞⋃ B 、),9[]3,0(+∞⋃ C 、),4[]1,0(+∞⋃ D 、),4[]3,0(+∞⋃ 【本题解析】: 。
【训练六】:【2017年高考文科数学新课标Ⅲ卷第11题】已知椭圆1:2222=+by a x C (0>>b a )的左、右顶点分别为1A ,2A ,且以线段21A A 为直径的圆与直线02=+-ab ay bx 相切,则C 的离心率为( )A 、36 B 、33 C 、32D 、31【本题解析】:。
【训练七】:【2017年高考文科数学天津卷第5题】已知双曲线12222=-by a x (0>a ,0>b )的左焦点为F ,点A在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( )A 、112422=-y x B 、141222=-y x C 、1322=-y x D 、1322=-y x 【本题解析】: 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年高考试题分类汇编之解析几何(文)一、选择题(在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2017课表I 文)已知F 是双曲线:C 1322=-y x 的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是)3,1(,则APF ∆的面积为( ) .A 13.B 1 2.C 2 3.D 3 2【解答】解:由双曲线C :x 2﹣=1的右焦点F (2,0),PF 与x 轴垂直,设(2,y ),y >0,则y=3, 则P (2,3),∴AP ⊥PF ,则丨AP 丨=1,丨PF 丨=3, ∴△APF 的面积S=×丨AP 丨×丨PF 丨=, 同理当y <0时,则△APF 的面积S=, 故选D .【点评】本题考查双曲线的简单几何性质,考查数形结合思想,属于基础题.2.(2017课标II 文)若1a >,则双曲线2221x y a-=的离心率的取值范围是( ).A 2,)+∞ .B 2,2) .C 2) .D (1,2)【分析】利用双曲线方程,求出a ,c 然后求解双曲线的离心率的范围即可.【解答】解:a >1,则双曲线﹣y 2=1的离心率为:==∈(1,).故选:C .【点评】本题考查双曲线的简单性质的应用,考查计算能力.3.(2017浙江)椭圆22194x y +=的离心率是( ).A 133.B 53.C 23.D 59【分析】直接利用椭圆的简单性质求解即可. 【解答】解:椭圆+=1,可得a=3,b=2,则c==,所以椭圆的离心率为:=.故选:B .【点评】本题考查椭圆的简单性质的应用,考查计算能力.4.(2017课标II 文)过抛物线2:4C y x =的焦点F ,且斜率为3的直线交C 于点M (M 在x 轴上方),l 为C 的准线,点N 在l 上且MN l ⊥,则M 到直线NF 的距离为( ).A 5 .B 22 .C 23 .D 33【分析】利用已知条件求出M 的坐标,求出N 的坐标,利用点到直线的距离公式求解即可.【解答】解:抛物线C :y 2=4x 的焦点F (1,0),且斜率为的直线:y=(x ﹣1),过抛物线C :y 2=4x 的焦点F ,且斜率为的直线交C 于点M (M 在x 轴上方),l 可知:,解得M (3,2).可得N (﹣1,2),NF 的方程为:y=﹣(x ﹣1),即,则M 到直线NF 的距离为:=2.故选:C .【点评】本题考查直线与抛物线的位置关系的应用,考查计算能力.5.(2017课标I 文)设B A ,是椭圆:C 2213x y m+=长轴的两个端点,若C 上存在点M 满足0120=∠AMB ,则m 的取值范围是( ).A (0,1][9,)+∞.B (0,3][9,)+∞ .C (0,1][4,)+∞.D (0,3][4,)+∞【分析】分类讨论,由要使椭圆C 上存在点M 满足∠AMB=120°,∠AMB ≥120°,∠AMO ≥60°,当假设椭圆的焦点在x 轴上,tan ∠AMO=≥tan60°,当即可求得椭圆的焦点在y 轴上时,m >3,tan ∠AMO=≥tan60°=,即可求得m 的取值范围.【解答】解:假设椭圆的焦点在x 轴上,则0<m <3时,假设M 位于短轴的端点时,∠AMB 取最大值,要使椭圆C 上存在点M 满足∠AMB=120°, ∠AMB ≥120°,∠AMO ≥60°,tan ∠AMO=≥tan60°=,解得:0<m ≤1;当椭圆的焦点在y 轴上时,m >3,假设M 位于短轴的端点时,∠AMB 取最大值,要使椭圆C 上存在点M 满足∠AMB=120°, ∠AMB ≥120°,∠AMO ≥60°,tan ∠AMO=≥tan60°=,解得:m ≥9,∴m 的取值范围是(0,1]∪[9,+∞) 故选A .【点评】本题考查椭圆的标准方程,特殊角的三角函数值,考查分类讨论思想及数形结合思想的应用,考查计算能力,属于中档题.6.(2017课标III 文)已知椭圆:C 22221x y a b+=)0(>>b a ,的左、右顶点分别为21,A A ,且以线段21A A 为直径的圆与直线20bx ay ab -+=相切,则C 的离心率为( ).A 6 .B 3 .C 2.D 13【分析】以线段A 1A 2为直径的圆与直线bx ﹣ay +2ab=0相切,可得原点到直线的距离=a ,化简即可得出.【解答】解:以线段A 1A 2为直径的圆与直线bx ﹣ay +2ab=0相切, ∴原点到直线的距离=a ,化为:a 2=3b 2.∴椭圆C 的离心率e===.故选:A .【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.7.(2017天津文)已知双曲线22221(0,0)x y a b a b-=>>的左焦点为F ,点A 在双曲线的渐近线上,OAF ∆是边长为2的等边三角形(O 为原点),则双曲线的方程为( ).A 221412x y -= .B 221124x y -= .C 2213x y -= .D 2213y x -=【分析】利用三角形是正三角形,推出a ,b 关系,通过c=2,求解a ,b ,然后等到双曲线的方程.【解答】解:双曲线﹣=1(a >0,b >0)的右焦点为F ,点A 在双曲线的渐近线上,△OAF 是边长为2的等边三角形(O 为原点), 可得c=2,,即,,解得a=1,b=,双曲线的焦点坐标在x 轴,所得双曲线方程为:.故选:D .【点评】本题考查双曲线的简单性质的应用,考查计算能力.二、填空题(将正确的答案填在题中横线上)8. (2017天津文)设抛物线24y x =的焦点为F ,准线为l .已知点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切于点A .若120FAC ∠=︒,则圆的方程为______________________.【分析】根据题意可得F (﹣1,0),∠FAO=30°,OA==1,由此求得OA 的值,可得圆心C 的坐标以及圆的半径,从而求得圆C 方程.【解答】解:设抛物线y 2=4x 的焦点为F (1,0),准线l :x=﹣1,∵点C 在l 上,以C 为圆心的圆与y 轴的正半轴相切与点A , ∵∠FAC=120°,∴∠FAO=30°,∴OA===1,∴OA=,∴A (0,),如图所示: ∴C (﹣1,),圆的半径为CA=1,故要求的圆的标准方程为,故答案为:(x +1)2+=1.【点评】本题主要考查求圆的标准方程的方法,抛物线的简单几何性质,属于中档题.9. (2017北京文)若双曲线221y x m-=的离心率为3,则实数=m ___________________.【分析】利用双曲线的离心率,列出方程求和求解m 即可. 【解答】解:双曲线x 2﹣=1(m >0)的离心率为,可得:,解得m=2. 故答案为:2.【点评】本题考查双曲线的简单性质,考查计算能力.10. (2017山东文)在平面直角坐标系xOy 中,双曲线22221(00)x y a b a b-=>>, 的右支与焦点为F 的抛物线22(0)x py p =>交于B A ,两点,若OF BF AF 4=+,则该双曲线的渐近线方程为【分析】把x 2=2py (p >0)代入双曲线=1(a >0,b >0),可得:a 2y 2﹣2pb 2y +a 2b 2=0,利用根与系数的关系、抛物线的定义及其性质即可得出. 【解答】解:把x 2=2py (p >0)代入双曲线=1(a >0,b >0),可得:a 2y 2﹣2pb 2y +a 2b 2=0,∴y A +y B =,∵|AF |+|BF |=4|OF |,∴y A +y B +2×=4×, ∴=p , ∴=.∴该双曲线的渐近线方程为:y=±x .故答案为:y=±x .【点评】本题考查了抛物线与双曲线的标准方程定义及其性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于中档题..11.(2017课标III 文)双曲线22219x y a -=)0(>a 的一条渐近线方程为35y x =,则=a . 【分析】利用双曲线方程,求出渐近线方程,求解a 即可. 【解答】解:双曲线(a >0)的一条渐近线方程为y=x ,可得,解得a=5.故答案为:5.【点评】本题考查双曲线的简单性质的应用,考查计算能力.12.(2017江苏) 在平面直角坐标系xOy 中,双曲线2213x y -=的右准线与它的两条渐近线分别交于点P ,Q其焦点是12,F F ,则四边形12F PF Q 的面积是 .【分析】求出双曲线的准线方程和渐近线方程,得到P ,Q 坐标,求出焦点坐标,然后求解四边形的面积. 【解答】解:双曲线﹣y 2=1的右准线:x=,双曲线渐近线方程为:y=±x ,所以P (,),Q (,﹣),F 1(﹣2,0).F 2(2,0).则四边形F 1PF 2Q 的面积是:=2.故答案为:2.【点评】本题考查双曲线的简单性质的应用,考查计算能力.13.(2017江苏)在平面直角坐标系xOy 中,(12,0),(0,6),A B -点P 在圆2250O x y +=:上,若20,PA PB ⋅≤ 则点P 的横坐标的取值范围是 .【分析】根据题意,设P (x 0,y 0),由数量积的坐标计算公式化简变形可得2x 0+y 0+5≤0,分析可得其表示表示直线2x +y +5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.【解答】解:根据题意,设P (x 0,y 0),则有x 02+y 02=50,=(﹣12﹣x 0,﹣y 0)•(﹣x 0,6﹣y 0)=(12+x 0)x 0﹣y 0(6﹣y 0)=12x 0+6y +x 02+y 02≤20,化为:12x 0﹣6y 0+30≤0,即2x 0﹣y 0+5≤0,表示直线2x ﹣y +5=0以及直线上方的区域, 联立,解可得x 0=﹣5或x 0=1,结合图形分析可得:点P 的横坐标x 0的取值范围是[﹣5,1],故答案为:[﹣5,1].【点评】本题考查数量积的运算以及直线与圆的位置关系,关键是利用数量积化简变形得到关于x 0、y 0的关系式.三、解答题(应写出必要的文字说明、证明过程或演算步骤)14.(2017课标I 文)设B A ,为曲线4:2x y C =上两点,A 与B 的横坐标之和为4.(1)求直线AB 的斜率;(2)设M 为曲线C 上一点,C 在M 处的切线与直线AB 平行,且BM AM ⊥,求直线AB 的方程.【分析】(1)设A (x 1,),B (x 2,),运用直线的斜率公式,结合条件,即可得到所求; (2)设M (m ,),求出y=的导数,可得切线的斜率,由两直线平行的条件:斜率相等,可得m ,即有M 的坐标,再由两直线垂直的条件:斜率之积为﹣1,可得x 1,x 2的关系式,再由直线AB :y=x +t 与y=联立,运用韦达定理,即可得到t 的方程,解得t 的值,即可得到所求直线方程. 【解答】解:(1)设A (x 1,),B (x 2,)为曲线C :y=上两点,则直线AB 的斜率为k==(x 1+x 2)=×4=1;(2)设直线AB 的方程为y=x +t ,代入曲线C :y=,可得x 2﹣4x ﹣4t=0,即有x 1+x 2=4,x 1x 2=﹣4t , 再由y=的导数为y ′=x ,设M (m ,),可得M 处切线的斜率为m ,由C 在M 处的切线与直线AB 平行,可得m=1, 解得m=2,即M (2,1), 由AM ⊥BM 可得,k AM •k BM =﹣1,即为•=﹣1,化为x 1x 2+2(x 1+x 2)+20=0, 即为﹣4t +8+20=0,解得t=7.则直线AB 的方程为y=x +7.【点评】本题考查直线与抛物线的位置关系,注意联立直线方程和抛物线的方程,运用韦达定理,考查直线的斜率公式的运用,以及化简整理的运算能力,属于中档题.15.(2017课标II 文)设O 为坐标原点,动点M 在椭圆:C 2212x y +=上,过M 作x 轴的垂线,垂足为N ,点P 满足NM NP 2=.(1)求点P 的轨迹方程;(2)设点Q 在直线3x =-上,且1=⋅PQ OP .证明:过点P 且垂直于OQ 的直线l 过C 的左焦点F .【分析】(1)设M (x 0,y 0),由题意可得N (x 0,0),设P (x ,y ),运用向量的坐标运算,结合M 满足椭圆方程,化简整理可得P 的轨迹方程; (2)设Q (﹣3,m ),P (cos α,sin α),(0≤α<2π),运用向量的数量积的坐标表示,可得m ,即有Q 的坐标,求得椭圆的左焦点坐标,求得OQ ,PF 的斜率,由两直线垂直的条件:向量数量积为0,即可得证.【解答】解:(1)设M (x 0,y 0),由题意可得N (x 0,0), 设P (x ,y ),由点P 满足=.可得(x ﹣x 0,y )=(0,y 0), 可得x ﹣x 0=0,y=y 0,即有x 0=x ,y 0=,代入椭圆方程+y 2=1,可得+=1,即有点P 的轨迹方程为圆x 2+y 2=2; (2)证明:设Q (﹣3,m ),P (cos α,sin α),(0≤α<2π), •=1,可得(cos α,sin α)•(﹣3﹣cos α,m ﹣sin α)=1,即为﹣3cos α﹣2cos 2α+msin α﹣2sin 2α=1,当α=0时,上式不成立,则0<α<2π,解得m=,即有Q (﹣3,),椭圆+y 2=1的左焦点F (﹣1,0), 由•=(﹣1﹣cos α,﹣sin α)•(﹣3,)=3+3cos α﹣3(1+cos α)=0.可得过点P 且垂直于OQ 的直线l 过C 的左焦点F .【点评】本题考查轨迹方程的求法,注意运用坐标转移法和向量的加减运算,考查圆的参数方程的运用和直线的斜率公式,以及向量的数量积的坐标表示和两直线垂直的条件:向量数量积为0,考查化简整理的运算能力,属于中档题.16.(2017课标III 文)在直角坐标系xOy 中,曲线22y x mx =+-与x 轴交于B A ,两点,点C 的坐标为(0,1).当m 变化时,解答下列问题:(1)能否出现BC AC ⊥的情况?说明理由;(2)证明过C B A ,,三点的圆在y 轴上截得的弦长为定值.【分析】(1)设曲线y=x 2+mx ﹣2与x 轴交于A (x 1,0),B (x 2,0),运用韦达定理,再假设AC ⊥BC ,运用直线的斜率之积为﹣1,即可判断是否存在这样的情况;(2)设过A 、B 、C 三点的圆的方程为x 2+y 2+Dx +Ey +F=0(D 2+E 2﹣4F >0),由题意可得D=m ,F=﹣2,代入(0,1),可得E=1,再令x=0,即可得到圆在y 轴的交点,进而得到弦长为定值.【解答】解:(1)曲线y=x 2+mx ﹣2与x 轴交于A 、B 两点, 可设A (x 1,0),B (x 2,0), 由韦达定理可得x 1x 2=﹣2, 若AC ⊥BC ,则k AC •k BC =﹣1, 即有•=﹣1,即为x 1x 2=﹣1这与x 1x 2=﹣2矛盾, 故不出现AC ⊥BC 的情况;(2)证明:设过A 、B 、C 三点的圆的方程为x 2+y 2+Dx +Ey +F=0(D 2+E 2﹣4F >0),由题意可得y=0时,x 2+Dx +F=0与x 2+mx ﹣2=0等价, 可得D=m ,F=﹣2,圆的方程即为x 2+y 2+mx +Ey ﹣2=0,由圆过C (0,1),可得0+1+0+E ﹣2=0,可得E=1, 则圆的方程即为x 2+y 2+mx +y ﹣2=0,另解:设过A 、B 、C 三点的圆在y 轴上的交点为H (0,d ), 则由相交弦定理可得|OA |•|OB |=|OC |•|OH |, 即有2=|OH |,再令x=0,可得y 2+y ﹣2=0, 解得y=1或﹣2.即有圆与y 轴的交点为(0,1),(0,﹣2), 则过A 、B 、C 三点的圆在y 轴上截得的弦长为定值3.【点评】本题考查直线与圆的方程的求法,注意运用韦达定理和直线的斜率公式,以及待定系数法,考查方程思想和化简整理的运算能力,属于中档题.17.(2017山东文)在平面直角坐标系xOy 中,已知椭圆:C 22221x y a b+=)0(>>b a 的离心率为22,椭圆C 截直线1=y 所得线段的长度为22.(Ⅰ)求椭圆C 的方程;(Ⅱ)动直线)0(:≠+=m m kx y l 交椭圆C 于B A ,两点,交y 轴于点M .点N 是M 关于O 的对称点,圆N 的半径为NO . 设D 为AB 的中点,DF DE ,与圆N 分别相切于点F E ,,求EDF ∠的最小值.【分析】(Ⅰ)首先根据题中信息可得椭圆C 过点(,1),然后结合离心率可得椭圆方程;(Ⅱ)可将题目所求角度的最小值转化为求角度正弦的最小值,结合题目信息可求得D 、N 坐标及⊙N 半径,进而将DN 长度表示出来,可求∠EDF 最小值. 【解答】解:(Ⅰ)∵椭圆C 的离心率为,∴=,a2=2b2,∵椭圆C截直线y=1所得线段的长度为2,∴椭圆C过点(,1),∴+=1,∴b2=2,a2=4,∴椭圆C的方程为+=1.(Ⅱ)设A,B的横坐标为x1,x2,则A(x1,kx1+m),B(x2,kx2+m),D(,+m),联立可得(1+2k2)x2+4kmx+2m2﹣4=0,∴x1+x2=﹣,∴D(﹣,),∵M(0,m),则N(0,﹣m),∴⊙N的半径为|m|,|DN|==,设∠EDF=α,∴sin====,令y=,则y′=,当k=0时,sin取得最小值,最小值为.∴∠EDF的最小值是60°.【点评】本题考查圆锥曲线的最值问题,重要的是能将角度的最小值进行转化求解.18.(2017天津文)已知椭圆22221(0)x y a b a b+=>>的左焦点为,()0F c -,右顶点为A ,点E 的坐标为(0,)c ,EFA △的面积为.22b(1)求椭圆的离心率;(2)设点Q 在线段AE 上,3||2FQ c =,延长线段FQ 与椭圆交于点P ,点M ,N 在x 轴上,PM QN ∥,且直线PM 与直线QN 间的距离为c ,四边形PQNM 的面积为3c .(i )求直线FP 的斜率; (ii )求椭圆的方程.【分析】(Ⅰ)设椭圆的离心率为e .通过.转化求解椭圆的离心率.(Ⅱ)(ⅰ)依题意,设直线FP 的方程为x=my ﹣c (m >0),则直线FP 的斜率为.通过a=2c ,可得直线AE 的方程为,求解点Q 的坐标为.利用|FQ |=,求出m ,然后求解直线FP 的斜率.(ii )求出椭圆方程的表达式你,求出直线FP 的方程为3x ﹣4y +3c=0,与椭圆方程联立通过,结合直线PM 和QN 都垂直于直线FP .结合四边形PQNM 的面积为3c ,求解c ,然后求椭圆的方程.【解答】解:(Ⅰ)设椭圆的离心率为e .由已知,可得.又由b 2=a 2﹣c 2,可得2c 2+ac ﹣a 2=0,即2e 2+e ﹣1=0.又因为0<e <1,解得.所以,椭圆的离心率为;(Ⅱ)(ⅰ)依题意,设直线FP 的方程为x=my ﹣c (m >0),则直线FP 的斜率为. 由(Ⅰ)知a=2c ,可得直线AE 的方程为,即x +2y ﹣2c=0,与直线FP 的方程联立,可解得,即点Q 的坐标为.由已知|FQ |=,有,整理得3m 2﹣4m=0,所以,即直线FP 的斜率为. (ii )解:由a=2c ,可得,故椭圆方程可以表示为.由(i )得直线FP 的方程为3x ﹣4y +3c=0,与椭圆方程联立消去y ,整理得7x 2+6cx ﹣13c 2=0,解得(舍去),或x=c .因此可得点,进而可得,所以.由已知,线段PQ 的长即为PM 与QN 这两条平行直线间的距离,故直线PM 和QN 都垂直于直线FP . 因为QN ⊥FP ,所以,所以¡÷FQN 的面积为,同理¡÷FPM 的面积等于,由四边形PQNM 的面积为3c ,得,整理得c 2=2c ,又由c >0,得c=2.所以,椭圆的方程为.【点评】本题考查椭圆的方程的求法,直线与椭圆的位置关系的综合应用,考查转化思想以及计算能力.19.(2017北京文)已知椭圆C 的两个顶点分别为)0,2(),0,2(B A -,焦点在x 轴上,离心率为3. (1)求椭圆C 的方程;(2)点D 为x 轴上一点,过D 作x 轴的垂线交椭圆C 于不同的两点N M ,,过D 作AM 的垂线交BN 于点E ,求证:BDE ∆与BDN ∆的面积之比为5:4.【分析】(Ⅰ)由题意设椭圆方程,由a=2,根据椭圆的离心率公式,即可求得c ,则b 2=a 2﹣c 2=1,即可求得椭圆的方程;(Ⅱ)由题意分别求得DE 和BN 的斜率及方程,联立即可求得E 点坐标,根据三角形的相似关系,即可求得=,因此可得△BDE 与△BDN 的面积之比为4:5.【解答】解:(Ⅰ)由椭圆的焦点在x 轴上,设椭圆方程:(a >b >0),则a=2,e==,则c=,b2=a2﹣c2=1,∴椭圆C的方程;(Ⅱ)证明:设D(x0,0),(﹣2<x0<2),M(x0,y0),N(x0,﹣y0),y0>0,由M,N在椭圆上,则,则x02=4﹣4y02,则直线AM的斜率k AM==,直线DE的斜率k DE=﹣,直线DE的方程:y=﹣(x﹣x0),直线BN的斜率k BN=,直线BN的方程y=(x﹣2),,解得:,过E做EH⊥x轴,△BHE∽△BDN,则丨EH丨=,则=,∴:△BDE与△BDN的面积之比为4:5.【点评】本题考查椭圆的标准方程及简单几何性质,直线与椭圆的位置关系,直线的斜率公式,相似三角形的应用,考查数形结合思想,属于中档题.20.(2017江苏) 如图,在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为1F ,2F ,离心率为12,两准线之间的距离为.8点P 在椭圆E 上,且位于第一象限,过点1F 作直线1PF 的垂线1l ,过点2F 作直线2PF 的垂线2l .(1)求椭圆E 的标准方程; (2)若直线E 的交点Q 在椭圆E 上,求点P 的坐标.【分析】(1)由椭圆的离心率公式求得a=2c ,由椭圆的准线方程x=±,则2×=8,即可求得a 和c 的值,则b 2=a 2﹣c 2=3,即可求得椭圆方程;(2)设P 点坐标,分别求得直线PF 2的斜率及直线PF 1的斜率,则即可求得l 2及l 1的斜率及方程,联立求得Q 点坐标,由Q 在椭圆方程,求得y 02=x 02﹣1,联立即可求得P 点坐标; 方法二:设P (m ,n ),当m ≠1时,=,=,求得直线l 1及l 1的方程,联立求得Q 点坐标,根据对称性可得=±n 2,联立椭圆方程,即可求得P 点坐标.【解答】解:(1)由题意可知:椭圆的离心率e==,则a=2c ,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b2=a2﹣c2=3,∴椭圆的标准方程:;(2)方法一:设P(x 0,y0),则直线PF2的斜率=,则直线l2的斜率k2=﹣,直线l2的方程y=﹣(x﹣1),直线PF 1的斜率=,则直线l2的斜率k1=﹣,直线l1的方程y=﹣(x+1),联立,解得:,则Q(﹣x0,),由P,Q在椭圆上,P,Q的横坐标互为相反数,纵坐标应相等,则y0=,∴y02=x02﹣1,则,解得:,则,又P在第一象限,所以P的坐标为:P(,).方法二:设P(m,n),由P在第一象限,则m>0,n>0,当m=1时,不存在,解得:Q与F 1重合,不满足题意,当m≠1时,=,=,由l 1⊥PF1,l2⊥PF2,则=﹣,=﹣,直线l 1的方程y=﹣(x +1),①直线l 2的方程y=﹣(x ﹣1),②联立解得:x=﹣m ,则Q (﹣m ,), 由Q 在椭圆方程,由对称性可得:=±n 2,即m 2﹣n 2=1,或m 2+n 2=1, 由P (m ,n ),在椭圆方程,,解得:,或,无解,又P 在第一象限,所以P 的坐标为: P (,).【点评】本题考查椭圆的标准方程,直线与椭圆的位置关系,考查直线的斜率公式,考查数形结合思想,考查计算能力,属于中档题.21.(2017浙江)如图,已知抛物线2x y =,点A 11()24-,,39()24B ,,抛物线上的点)2321)(,(<<-x y x P .过点B 作直线AP 的垂线,垂足为Q .(1)求直线AP 斜率的取值范围; (2)求||||PQ PA ⋅的最大值.【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x<可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BQ方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.【解答】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k AP==x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则AP:y=kx+k+,BQ:y=﹣x++,联立直线AP、BQ方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|=•=+=(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x <时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f ()=,即|PA|•|PQ|的最大值为.【点评】本题考查圆锥曲线的最值问题,考查运算求解能力,考查函数思想,注意解题方法的积累,属于中档题.- 21 - / 21。