【精品】高中数学——圆锥曲线
圆锥曲线

概念
01
焦点
02
准线03离Fra bibliotek率04
焦准距
06
弦和焦点弦
05
焦半径
定义中提到的定点,称为圆锥曲线的焦点。
定义中提到的定直线称为圆锥曲线的准线。
固定的常数(即圆锥曲线上一点到焦点与对应准线的距离比值)称为圆锥曲线的离心率。
焦点到对应准线的距离称为焦准距。
焦点到曲线上一点的线段称为焦半径。
类似圆,圆锥曲线上任意两点之间的连线段称为弦;过焦点的弦称为焦点弦。平行于准线的焦点弦称为通径, 物理学中又称为正焦弦。
(1)两条动直线交点为圆锥曲线上的某个定点
即从圆锥曲线上某一点引出两直线AC、AD,如果CD经过定点B,则kAC+kAD为定值。反之,如果已知kAC+kAD 为定值,也能推出CD经过某定点B。
斜率之和为定值如图,A为圆锥曲线上的定点,A'是A关于x轴的对称点。在过A‘的切线上找一点B,过B作割 线CD,连接AC、AD。这就有了两动直线AC、AD,其交点为圆锥曲线上的定点A,且经过定点B。
圆锥曲线是光滑的,因此有切线和法线的概念。
对于同一个椭圆或双曲线,有两个“焦点-准线”的组合可以得到它。因此,椭圆和双曲线有两个焦点和两 条准线。而抛物线只有一个焦点和一条准线。
圆锥曲线是轴对称图形,对称轴为过焦点且与准线垂直的直线。在椭圆和双曲线的情况,该直线通过两个焦 点,该直线称为圆锥曲线的焦轴。对于椭圆和双曲线,还关于焦点连线的垂直平分线对称,因此椭圆和双曲线有 两条对称轴。
早期对圆锥曲线进行系统研究成就最突出的可以说是古希腊数学家阿波罗尼(Apollonius,前262~前190)。 他与欧几里得是同时代人,其巨著《圆锥曲线》与欧几里得的《几何原本》同被誉为古代希腊几何的登峰造极之 作。
高考数学中的常见圆锥曲线

高考数学中的常见圆锥曲线圆锥曲线是高中数学中重要的一章内容,也是高考中经常出现的考点之一。
圆锥曲线是平面解析几何的基础,对于学习解析几何和进一步学习微积分等数学课程具有重要的意义。
在高考数学中,常见的圆锥曲线有椭圆、双曲线和抛物线。
接下来,我们将对每种圆锥曲线进行详细的介绍。
一、椭圆椭圆是圆锥曲线中的一种,其定义为到定点F1和F2的距离之和等于定长2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为椭圆的长轴。
椭圆的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与长轴之比,记作e。
在椭圆中,离心率小于1。
3. 扁压比:定义为短轴与长轴之比,记作b/a。
在椭圆中,扁压比小于1。
椭圆的方程可以通过坐标系中点P(x,y)到焦点F1、F2的距离之和等于定长2a来表示。
椭圆的标准方程为:(x-x0)^2/a^2 + (y-y0)^2/b^2 = 1在高考中,关于椭圆的考点主要包括椭圆的性质和椭圆的方程与图像等方面的题目。
二、双曲线双曲线是圆锥曲线中的另一种,其定义为到定点F1和F2的距离之差等于定常2a的点P的轨迹。
其中,F1和F2是称为焦点的点,2a称为双曲线的距。
双曲线的其他要素有:1. 焦距:定义为焦点之间的距离,记作2c。
2. 离心率:定义为焦距与距之比,记作e。
在双曲线中,离心率大于1。
3. 长半轴:定义为从顶点到较远焦点的距离,记作a。
4. 短半轴:定义为从顶点到双曲线与x轴或y轴的交点的距离,记作b。
在双曲线中,短半轴小于距。
双曲线的标准方程为:(x-x0)^2/a^2 - (y-y0)^2/b^2 = 1在高考中,关于双曲线的考点主要包括双曲线的性质和双曲线的方程与图像等方面的题目。
三、抛物线抛物线是圆锥曲线中的最后一种,其定义为点P到定直线(直矩)的距离等于点P到定直线(焦准)的距离。
抛物线的定直线称为准线,定直线的焦点称为焦点,焦距的两倍称为抛物线的焦距。
高中数学-圆锥曲线知识点

高中数学-圆锥曲线知识点解析几何是数学中的一个重要分支,它研究的是几何图形在坐标系中的性质和变换。
其中,圆锥曲线是解析几何中的重要内容之一,下面将介绍椭圆和双曲线的知识点。
一、椭圆1、定义:椭圆是平面内与两定点F1、F2的距离之和(大于│F1F2│)为常数的点的轨迹。
其中,定点F1、F2叫做椭圆的焦点,两焦点之间的距离│F1F2│叫做椭圆的焦距。
注:2a>│F1F2│非常重要,因为当2a=│F1F2│时,其轨迹为线段F1F2;当2a<│F1F2│时,其轨迹不存在。
2、标准方程、图形和性质:椭圆的标准方程为│MF1│+│MF2│=2a(a>0),其中M为椭圆上任一点。
椭圆的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定椭圆的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。
椭圆的离心率e=(<e<1),长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。
二、双曲线1、定义:双曲线是平面内与两定点F1、F2的距离之差(小于│F1F2│)为常数的点的轨迹。
其中,定点F1、F2叫做双曲线的焦点,两焦点之间的距离│F1F2│叫做双曲线的焦距。
2、标准方程、图形和性质:双曲线的标准方程为│MF1│-│MF2│=2a(a>0),其中M为双曲线上任一点。
双曲线的焦点在y项系数的大小决定,由x、y项系数的大小关系可以确定双曲线的长轴、短轴、焦距、焦点坐标、离心率和顶点坐标等性质。
双曲线的离心率e>1,长轴长=2a,短轴长=2b,焦点在长轴上,对称轴为x轴或y轴,原点是对称中心。
以上是解析几何中椭圆和双曲线的基本知识点,掌握了这些知识,可以更好地理解和应用解析几何。
双曲线是一种与两个定点和一个常数有关的点的轨迹,其轨迹上满足两个定点到该点距离之差的绝对值小于定点之间距离的常数。
这两个定点分别称为双曲线的焦点,该常数为双曲线的焦距。
对于双曲线上的任意一点M,其到焦点F1和F2的距离之差的绝对值减去焦距的结果为常数2a。
高中数学圆锥曲线

高中数学圆锥曲线
圆锥曲线是一种几何图形,其特征是给定一定的半径和法线,由一个指定的焦点出发,以改变半径和法线来形成曲线。
又叫旋绕曲线或磁石曲线。
圆锥曲线在几何图形中占有重要的地位,它可以描述出各种各样的形状,甚至极端的形状,如环形、抛物线等。
圆锥曲线的特性是,它的曲线点和直线切线的夹角是固定的,这个夹角叫做它的曲率,它的曲率的大小决定了曲线的半径和法线。
曲率不同,曲线就会不同。
相对于较小的曲率,大曲率的曲率会产生大的弯曲程度,大曲率曲线经常用来描述一些紧凑的或复杂的物体的形状。
圆锥曲线在高中数学中有着重要的应用,比如抛物线,它是一种特殊的圆锥曲线,其方程的系数可以来描述出它的曲率及方向。
还有双曲线,这也是一种圆锥曲线,它的系数可以描述出它的曲率及方向。
圆锥曲线的系上也有很多的应用,比如求最大面积的运动路线,以及求最短路径,等等。
高中圆锥曲线公式总结大全

高中圆锥曲线公式总结大全
高中数学中,圆锥曲线是一个重要的内容,包括椭圆、双曲线和抛物线。
这些曲线的公式是
几何、物理、工程等领域中常用的,下面是圆锥曲线公式总结:
1. 椭圆公式
椭圆的标准方程为:((x-h)^2)/a^2 + ((y-k)^2)/b^2 = 1。
其中,(h,k)表示椭圆的中心坐标,a和b分别表示椭圆在x和y方向上的半轴长度。
2. 双曲线公式
双曲线的标准方程为:((x-h)^2)/a^2 - ((y-k)^2)/b^2 = 1。
其中,(h,k)表示双曲线的中心坐标,a和b分别表示双曲线在x和y方向上的半轴长度。
3. 抛物线公式
抛物线的标准方程为:y = ax^2 + bx + c。
其中,a、b和c分别为常数,a表示抛物线的开口方向、大小,b表示抛物线水平方向位置,c表示抛物线的最低点(也就是y轴截距)。
4. 曲率半径公式
曲线在某一点的曲率半径R可以使用以下公式计算:R = [(1+(y')^2)^(3/2)]/|y''|。
其中,y'和y''分别表示曲线在该点处的一阶和二阶导数。
5. 弧长公式
曲线在两点之间的弧长可以使用以下公式计算:L = ∫(a to b)[((1+(y')^2)^(1/2)]dx。
其中,a和b分别代表起点和终点,在这个区间内,x的取值范围满足 a≤x≤b。
总之,圆锥曲线的公式是高中数学中的重要内容,不仅在理论研究方面有着广泛的应用,也
在实际问题的建模和解决中具有重要意义。
高中数学知识点精讲精析 圆锥曲线

2.1 圆锥曲线1.涉及圆锥曲线上的点与两个焦点构成的三角形,常用第一定义结合正余弦定理;2.涉及焦点、准线、圆锥曲线上的点,常用统一的定义。
3.思维方式:等价转换思想,数形结合特别注意:圆锥曲线各自定义的区别与联系4.距离和差最值问题,常利用三角形两边之和差与第三边之间的关系. 数量关系用定义来进行转换5.以抛物线焦点弦为直径的圆与准线相切.类似有:以椭圆焦点弦为直径的圆与相对应的准线相离;以双曲线焦点弦为直径的圆与相应的准线相交.以上结论均可用第二定义证明之.1.抛物线x y 22=上的一点P(x , y)到点A(a,0)(a ∈R)的距离的最小值记为)(a f ,求)(a f 的表达式【解析】由于x y 22=,而===其中x 0≥(1)a ≤1时,当且仅当x=0时, )(a f =|PA|min =|a|.(2)a>时, 当且仅当x=a-1时, )(a f =|PA|min.所以)(a f =||,11a a a ≤⎧⎪> 2 求两条渐近线为02=±y x 且截直线03=--y x 所得弦长为338的双曲线方程 【解析】设双曲线方程为x 2-4y 2=λ. 联立方程组得: 22x -4y =30x y λ⎧⎨--=⎩,消去y 得,3x 2-24x+(36+λ)=0设直线被双曲线截得的弦为AB ,且A(11,x y ),B(22,x y ),那么:1212283632412(36)0x x x x λλ+=⎧⎪+⎪=⎨⎪∆=-+>⎪⎩ 那么:=解得: λ=4,所以,所求双曲线方程是:2214x y -= 21 已知直线y=ax+1与双曲线3x 2-y 2=1交于A B 两点,(1)若以AB 线段为直径的圆过坐标原点,求实数a 的值 (2)是否存在这样的实数a ,使A B 两点关于直线12y x =对称?说明理由【解析】(1)联立方程223x -y =11y ax ⎧⎨=+⎩,消去y 得:(3-a 2)x 2-2ax-2=0.设A(11,x y ),B(22,x y ),那么:122122222323(2)8(3)0a x x a x x a a a ⎧+=⎪-⎪⎪=-⎨-⎪∆=+->⎪⎪⎩由于以AB 线段为直径的圆经过原点,那么:OA OB ⊥,即12120x x y y += 所以:1212(1)(1)0x x ax ax +++=,得到:222222(1)10,633a a a a a a-+⨯+⨯+=<--,解得a=1± (2)假定存在这样的a ,使A(11,x y ),B(22,x y )关于直线12y x = 那么:221122223x -y =13x -y =1⎧⎨⎩,两式相减得:222212123(x -x )=y -y ,从而12121212y -y 3(x +x )=.......(*)x -x y +y 因为A(11,x y ),B(22,x y )关于直线12y x =对称,所以 12121212y +y 1x +x =222y -y 2x -x ⎧⨯⎪⎪⎨⎪=-⎪⎩代入(*)式得到:-2=6 也就是说:不存在这样的a ,使A(11,x y ),B(22,x y )关于直线12y x 对称。
(完整版)高中数学圆锥曲线知识点总结

高中数学知识点大全—圆锥曲线一、考点(限考)概要:1、椭圆:(1)轨迹定义:①定义一:在平面内到两定点的距离之和等于定长的点的轨迹是椭圆,两定点是焦点,两定点间距离是焦距,且定长2a大于焦距2c。
用集合表示为:;②定义二:在平面内到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做椭圆。
其中定点叫焦点,定直线叫准线,常数是离心率用集合表示为:;(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
(3)参数方程:(θ为参数);3、双曲线:(1)轨迹定义:①定义一:在平面内到两定点的距离之差的绝对值等于定长的点的轨迹是双曲线,两定点是焦点,两定点间距离是焦距。
用集合表示为:②定义二:到定点的距离和它到一条定直线的距离之比是个常数e,那么这个点的轨迹叫做双曲线。
其中定点叫焦点,定直线叫准线,常数e是离心率。
用集合表示为:(2)标准方程和性质:注意:当没有明确焦点在个坐标轴上时,所求的标准方程应有两个。
4、抛物线:(1)轨迹定义:在平面内到定点和定直线的距离相等的点的轨迹是抛物线,定点是焦点,定直线是准线,定点与定直线间的距离叫焦参数p。
用集合表示为:(2)标准方程和性质:①焦点坐标的符号与方程符号一致,与准线方程的符号相反;②标准方程中一次项的字母与对称轴和准线方程的字母一致;③标准方程的顶点在原点,对称轴是坐标轴,有别于一元二次函数的图像;二、复习点睛:1、平面解析几何的知识结构:2、椭圆各参数间的关系请记熟“六点六线,一个三角形”,即六点:四个顶点,两个焦点;六线:两条准线,长轴短轴,焦点线和垂线PQ;三角形:焦点三角形。
则椭圆的各性质(除切线外)均可在这个图中找到。
3、椭圆形状与e的关系:当e→0,c→0,椭圆→圆,直至成为极限位置的圆,则认为圆是椭圆在e=0时的特例。
当e→1,c→a椭圆变扁,直至成为极限位置的线段,此时也可认为是椭圆在e=1时的特例。
高中数学中的圆锥曲线

高中数学中的圆锥曲线圆锥曲线是数学中重要的一部分,并且在高中数学课程中占据着重要的位置。
它包括椭圆、双曲线和抛物线三种形式,每种形式都有其独特的特点和性质。
在本文中,我们将深入探讨高中数学中的圆锥曲线,包括定义、基本方程以及应用。
一. 椭圆椭圆是圆锥曲线中最简单的形式之一,可以通过一个平面与一个圆锥相交而得到。
它的定义是所有到两个焦点距离之和等于常数的点的轨迹。
椭圆的方程可以表示为(x-h)²/a² + (y-k)²/b² = 1(a>b)。
椭圆具有许多有趣的性质。
首先,它有两个对称轴,即长轴和短轴。
椭圆的中心位于坐标轴原点(h,k),长轴的长度为2a,短轴的长度为2b。
其次,椭圆可以用来表示行星的运动轨迹、地球的椭球形等现象。
此外,椭圆还具有焦点反射性质,意味着光线从一个焦点射入,会反射到另一个焦点。
二. 双曲线双曲线也是由一个平面与圆锥相交而得到,但其定义是所有到两个焦点距离之差等于常数的点的轨迹。
双曲线的方程可以表示为(x-h)²/a²- (y-k)²/b² = 1(a>b)。
双曲线的性质相对复杂一些。
首先,双曲线也有两个对称轴,分别是横轴和纵轴。
其次,双曲线具有渐进线,即曲线与两条直线无限靠近但永远不相交。
另外,双曲线也可以用于描述光的折射现象、天体运动等。
值得注意的是,双曲线还有一种特殊情况,即双曲线退化为两条直线的情况,这也是我们所熟知的直线。
三. 抛物线抛物线是圆锥曲线中最常见的形式,可以通过一个平面与一个圆锥平行于其侧面切割而得到。
它的定义是所有到焦点距离等于直线到焦点的距离的点的轨迹。
抛物线的方程可以表示为y² = 4ax。
抛物线的性质非常有趣。
首先,抛物线有一个对称轴,即与其平行的坐标轴。
其次,抛物线具有焦点和准线的性质,即焦点到准线的距离等于焦距。
另外,抛物线还可以用来描述抛射运动、橋梁设计等现象。
高中数学中的圆锥曲线知识点总结

高中数学中的圆锥曲线知识点总结圆锥曲线是高中数学中重要的几何概念之一,包括椭圆、双曲线和抛物线。
在本文中,我们将对这些圆锥曲线的基本概念、性质和相关公式进行总结。
一、椭圆1. 概念:椭圆是平面上到两个定点F1和F2的距离之和等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:椭圆的两个焦点F1和F2之间的距离为2c,椭圆的长轴为2a,短轴为2b,有关系式c^2 = a^2 - b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
椭圆的离心率小于1。
- 焦点与定点关系:椭圆上的任意一点P到两个焦点F1和F2的距离之和等于常数2a,即PF1 + PF2 = 2a。
- 弦与切线性质:椭圆上任意一条弦与该点处的切线垂直。
3. 相关公式:- 椭圆标准方程:(x^2)/(a^2) + (y^2)/(b^2) = 1 或 (y^2)/(a^2) +(x^2)/(b^2) = 1(其中a > b)。
- 焦点坐标公式:F1(-c,0),F2(c,0)。
- 离心率公式:e = c/a。
- 曲率半径:任意一点P在椭圆上的曲率半径为a^2/b。
二、双曲线1. 概念:双曲线是平面上到两个定点F1和F2的距离之差等于常数2a的点的轨迹。
2. 基本性质:- 长轴和短轴:双曲线的两个焦点F1和F2之间的距离为2c,双曲线的长轴为2a,短轴为2b,有关系式c^2 = a^2 + b^2。
- 离心率:离心率e定义为离焦距离2c与长轴2a之比,即e = c/a。
双曲线的离心率大于1。
- 焦点与定点关系:双曲线上的任意一点P到两个焦点F1和F2的距离之差等于常数2a,即|PF1 - PF2| = 2a。
- 弦与切线性质:双曲线上任意一条弦与该点处的切线垂直。
3. 相关公式:- 双曲线标准方程:(x^2)/(a^2) - (y^2)/(b^2) = 1 或 (y^2)/(a^2) -(x^2)/(b^2) = 1(其中a > b)。
高中数学——圆锥曲线

数学定义几何学基本概念:从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点。
常用直线与 X 轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定。
在空间,两个平面相交时,交线为一条直线。
因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
空间直线的方向空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。
直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。
在欧几里得几何学中,直线只是一个直观的几何对象。
在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。
关系式◆直线的斜率:k=(y2-y1)/(x2-x1) (x1≠x2)(1)一般式:适用于所有直线Ax+By+C=0 (其中A、B不同时为0)两直线平行时:A1/A2=B1/B2≠C1/C2两直线垂直时:A1A2+B1B2=0两直线重合时:A1/A2=B1/B2=C1/C2两直线相交时:A1/A2≠B1/B2(2)点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为y-y0=k(x-x0)当k不存在时,直线可表示为x=x0(3)截距式:不适用于和任意坐标轴垂直的直线和过原点的直线知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为x/a+y/b=1(4)斜截式: Y=KX+B (K≠0)当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小。
高考数学中的圆锥曲线知识点总结

高考数学中的圆锥曲线知识点总结圆锥曲线是高中数学中比较重要和难度较大的一部分内容,也是高考数学必考的一个知识点。
它是由圆锥(一种立体图形)与平面相交所得到的一类曲线,在空间中可以表现为椭圆、双曲线和抛物线三种不同形态。
下面本文将对这一知识点进行总结,帮助同学们更好地掌握和应用这一重要知识点。
一、椭圆1. 定义椭圆是平面上到两个确定点F1和F2的距离的和等于定值2a 的所有点的轨迹。
2. 公式椭圆的标准方程为:(x² / a²) + (y² / b²) = 1其中,a、b均为正数,a代表椭圆短轴一半长度,b代表椭圆长轴一半长度。
3. 性质(1)椭圆的长轴和短轴分别是椭圆的最长直径和最短直径;(2)椭圆的两个焦点F1和F2在椭圆的长轴上,且满足距离为2a;(3)椭圆的离心率e的值在[0,1)之间;(4)椭圆的对称轴分别是椭圆的长轴和短轴;(5)椭圆的直径有两个对称轴,有四个半轴;(6)椭圆的周长为4aE(e),其中E(e)为第二类完全椭圆积分,用数值表或计算器可得。
二、双曲线1. 定义双曲线是平面上到两个确定点F1和F2的距离的差为定值2a 的所有点的轨迹。
2. 公式双曲线的标准方程为:(x² / a²) - (y² / b²) = 1其中,a、b均为正数,a代表双曲线的距离两点的差的一半,b 代表双曲线离心率的倒数。
3. 性质(1)双曲线有两个相交且交点为对称中心的对称轴;(2)双曲线的长轴是对称轴之间的距离,短轴是横截距;(3)双曲线的离心率e的值在(1,+∞)之间;(4)双曲线的渐近线是与双曲线无限靠近但不相交的直线。
三、抛物线1. 定义抛物线是平面上到一个定点F到直线L的距离等于点P到直线L距离的平方的一半的所有点的轨迹。
2. 公式抛物线的标准方程有两种:(1)矩形坐标系下为:y = ax²(2)平面直角坐标系下为:(x - h)² = 4p(y - k)其中,a、p均为正数,a代表抛物线开口的方向,p代表抛物线的几何意义。
圆锥曲线知识点总结

圆锥曲线知识点总结圆锥曲线是解析几何中的重要内容,由平面与一个双曲面、椭圆面或者抛物线面相交而得到。
在高中数学课程中,学习圆锥曲线是必不可少的。
本文将对圆锥曲线的定义、基本方程、性质和应用进行总结。
一、圆锥曲线的定义圆锥曲线就是平面与一个双曲面、椭圆面或者抛物线面相交而得到的曲线,在平面上的图像可以呈现出不同的形状。
二、圆锥曲线的基本方程1. 双曲线:双曲线的基本方程为:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
2. 椭圆:椭圆的基本方程为:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$。
其中,a和b分别为椭圆的两个半轴。
3. 抛物线:抛物线的基本方程为:$y^2=2px$。
其中,p为抛物线的焦距。
三、圆锥曲线的性质1. 双曲线的性质:双曲线的两个分支镜像对称于原点,焦点到曲线的距离之差为常数。
双曲线还具有渐近线,即曲线趋近于两根直线。
2. 椭圆的性质:椭圆的两个焦点在椭圆的长轴上,且焦点到任意点的距离之和为常数。
此外,椭圆也具有主轴、短轴和焦距等重要概念。
3. 抛物线的性质:抛物线的焦点位于抛物线的顶点上,且焦点到抛物线上任意点的距离等于焦点到该点的法线距离。
四、圆锥曲线的应用1. 双曲线的应用:双曲线在电磁学中有广泛的应用,例如电磁波的传播、天线的辐射以及电磁场分布等方面。
2. 椭圆的应用:椭圆在力学、天文学和导航等领域有着重要的应用。
例如椭圆轨道运动的物体、天体运动规律的研究以及导航系统中的卫星轨道等。
3. 抛物线的应用:抛物线在物理学和工程学中有着广泛的应用。
例如自由落体运动、射击运动以及卫星的发射轨道等。
综上所述,圆锥曲线是解析几何中的重要内容,通过本文的总结,我们了解了圆锥曲线的定义、基本方程、性质和应用。
在学习过程中,我们需要深入理解每个曲线的特点和应用领域,为解决实际问题提供有力的数学工具。
希望本文对你对圆锥曲线的学习有所帮助。
高中数学圆锥曲线结论(完美版本)

高中数学圆锥曲线结论(完美版本)————————————————————————————————作者:————————————————————————————————日期:2椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y ya b +=.6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
高中数学圆锥曲线知识点总结

高中数学圆锥曲线知识点总结高中数学圆锥曲线知识点总结一、基本概念1、圆锥曲线:圆锥曲线是由一系列圆及其与它们的共轭切面围成的曲线,也可以看作是由一条曲线以及一个光滑曲面所围成的曲线空间。
2、圆弧:圆弧是曲线上一定角度范围内的闭合曲线,实际中常用于表示圆的片段。
3、渐开线:渐开线是由来自同一个圆的两个圆弧构成的弧线,渐开线的共轭切面是一条直线,而此直线又可在空间上做一个新的圆锥曲线。
二、圆锥曲线的性质1、圆锥曲线的曲线部分是由圆弧和渐开线组成的,曲线上每个点都是圆切弧上的一个点;2、圆锥曲线的表面部分是一个椭圆锥曲面,其参数方程由三个椭圆锥参数函数组成,其积分可以计算出圆锥曲面上的面积;3、点P(x,y,z)在圆锥曲线上,则其有连续的x,y,z三个坐标参数,并且满足圆锥曲线的参数方程;4、圆锥曲线的曲线部分是椭圆锥曲线,并且任一点在曲线上的切线方向都是一致的;5、圆锥曲线的曲线与曲面的连接,是一条中间缝合曲线,即渐开线,渐开线也可以看作是空间曲线上的锥面的交线。
6、圆锥曲线的曲线部分与表面部分的连接,是一条中间缝合曲线,被称为椭圆锥曲线,椭圆锥曲线也是一条空间曲线上的椭圆锥面的交线。
7、圆锥曲线的曲线部分与表面部分之间的交点的曲线,也被称为椭圆锥曲线,它也可以看作是圆锥曲线上的椭圆锥线的交点的曲线。
三、圆锥曲线的应用1、圆锥曲线在建筑学上常用于建造拱顶、圆顶、屋顶等,这些曲线具有很好的象征性;2、圆锥曲线在航空和航天工程上常用于设计飞机、火箭的运动轨迹;3、圆锥曲线在汽车制造上常用于设计汽车的底盘,以实现更好的操控性能;4、圆锥曲线在计算机渲染上常用于设计三维物体,以获得更加逼真的渲染效果;5、圆锥曲线在绘画上常用于创作凹凸有致的曲线,以实现更加自然的线条。
总之,圆锥曲线是一种非常有用的曲线,它在不同领域有着广泛的应用。
高中数学圆锥曲线总结

数学圆锥曲线总结1、圆锥曲线的两个定义:(1)第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段F F,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|F F|,定义中的“绝对值”与<|F F|不可忽视。
若=|F F|,则轨迹是以F,F为端点的两条射线,若﹥|F F|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
(2)第二定义中要注意定点和定直线是相应的焦点和准线,且“点点距为分子、点线距为分母”,其商即是离心率。
圆锥曲线的第二定义,给出了圆锥曲线上的点到焦点距离与此点到相应准线距离间的关系,要善于运用第二定义对它们进行相互转化。
Attention:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线;⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
(2)(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线;⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。
(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线;⑤离心率:,抛物线。
高中数学第二章圆锥曲线圆锥曲线的几何性质旋转曲面的应用素材1

旋转曲面的应用1.一般的旋转曲面方程定义4.3。
1 在空间,一条曲线 绕一定直线l 旋转一周所产生的曲面S 叫做旋转曲面(或回转曲面). 叫做S 的母线,l 称为S的的旋转轴,简称为轴.xyzO P M 01Γ设1M 为旋转曲面S 的母线上的任一点,在 绕轴l 旋转时,1M也绕l 旋转而形成一个圆,称其为S 的纬圆、纬线或平行圆. 以l 为边界的半平面与S 的交线称为S 的经线.S 的纬圆实际上是过母线上的点且垂直于轴l 的平面与S 的交线。
S 的所有纬圆构成整个S .S 的所有经线的形状相同,且都可以作为S 的母线,而母线不一定是经线. 这里因为母线不一定为平面曲线,而经线为平面曲线。
在直角坐标系下,设旋转曲面S 的母线为:⎩⎨⎧==0),,(0),,(21z y x F z y x F (1) 旋转轴为l 000:x xy y z z XY Z---== (2)这里0(,,)P x y z 为l 上一点,X ,Y ,Z 为l 的方向数。
设M 1 (x 1,y 1,z 1) 为母线上的任意点,过M 1的纬圆总可看成过1M 且垂直于轴l 的平面与以P 0为中心,01P M 为半径的球面的交线。
故过M 1的纬圆的方程为⎩⎨⎧111()()()0X x x Y y y Z z z -+-+-=(3)222222000101010()()()()()()x x y y z z x x y y z z -+-+-=-+-+-(4)当M 1跑遍整个母线时,就得出旋转曲面的所有纬圆,所求的旋转曲面就可以看成是由这些纬圆构成的。
由于M 1 (x 1,y 1,z 1) 在母线 上,有⎩⎨⎧==0),,(0),,(22221111z y x F z y x F (5)从(3)、(4)、(5)4个等式消去参数x 1,y 1,z 1得一个方程F (x ,y ,z ) = 0即为S 的方程。
例1 求直线 :0112-==z y x 绕直线:l x y z ==旋转所得的旋转曲面S 的方程。
(word完整版)高中数学圆锥曲线结论(最完美版本)

1 .点P处的切线PT平分△PF1F2在点P 处的外角.2 . PT平分△PF1F2在点P处的外角,那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相离.4 .以焦点半径PF i为直径的圆必与以长轴为直径的圆内切.2 25 .假设P o(X o, y o)在椭圆与yY 1上,那么过P0 a b的椭圆的切线方程是警缪1. a b2 26 .假设P0(X o, y o)在椭圆占4 1外,那么过a bP0作椭圆的两条切线切点为P1、P2, 那么切点弦P1P2的直线方程是x o x y o y-2~ ~2~1.a b2 27.椭圆\ 4 1 (a>b>0)的左右焦点a b分别为F1, F2,点P为椭圆上任意一点F1PF2 ,那么椭圆的焦点角形的面积为S F PF b2 tan-. 1 222 28 .椭圆=yr 1 (a>b>0)的焦半径公a b式:IMF I | a ex0,|MF2 | a e%(F1( c,0),F2(C,0) M(x0,y.)).9 .设过椭圆焦点F作直线与椭圆相交P、Q两点,A为椭圆长轴上一个顶点,连结AP和AQ分别交相应于焦点F的椭圆准线于M、N 两点,那么MF XNF.10 .过椭圆一个焦点F的直线与椭圆交于两点P、Q,A I、A2为椭圆长轴上的顶点,A I P和A2Q交于点M, A2P和A I Q交于点N,那么MFXNF.2 211. AB是椭圆与当1的不平行于对称轴a b的弦,M(x°,y°)为AB的中点,那么b2k OM k AB _2,a即K AB整.a V.双曲线1 .点P处的切线PT平分△PF1F2在点P处的内角.2 . PT平分△PF1F2在点P处的内角, 那么焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3 .以焦点弦PQ为直径的圆必与对应准线相交.4 .以焦点半径PF1为直径的圆必与以实轴为直径的圆相切.(内切:P在右支;外切:P在左支)2 25 .假设P o(%,y.)在双曲线与3 1 (a>a b0,b>0〕上,那么过B的双曲线的切为AB 的中点,那么K OM K AB 线方程是粤.当1.a b2 26.假设R〔X°,y.〕在双曲线与匕ab 1 (a>0,b>0〕外,那么过Po作双曲线的两条切线切点为P「P2,那么切点弦P1P2的直线方程是X0X y0 y 1.即K ABb2X.-20a y.212.右P Q〔X.,y.〕在双曲线—2ab2X.-2 )a y.1 (a>0,b>0〕内,那么被Po所平分的中点弦的方程是2 2X Q X y°y X0 y2 27.双曲线 : 〕a b 右焦点分别为线上任意一点1 〔a>0,b>o〕的左F 2,点P为双曲F1PF2 ,那么双曲线2 . 2 2aba213.假设P0(x0,y0)在双曲线—ab2 yb7 1(a>的焦点角形的面积为S2 2 F1PF2b2cot—.20,b>0〕内,那么过Po的弦中点的轨2 2迹方程是3线誓岑.a2b2a2b28 .双曲线: I 1 〔a>0,b>o〕的焦a b半径公式:〔F1〔 c,0〕, F2〔c,0〕当M〔X0,y°〕在右支上时,|MF1| ex0 a ,| MF2 | ex0 a.当M〔X0, y°〕在左支上时,|MF1| eX0 a,|MF2| eX0 a9 .设过双曲线焦点F作直线与双曲线椭圆与双曲线的对偶性质-椭1.相交P、Q两点,A为双曲线长轴上一个顶点,连结AP和AQ分别2.交相应于焦点F的双曲线准线于M、N 两点,那么MFXNF.10.过双曲线一个焦点F的直线与双曲3.线交于两点P、Q, A「A2为双曲线2 2椭圆三-yy 1 〔a>b>o〕的两个顶 a b 点为A〔 a,0〕,A2〔a,0〕,与y轴平行的直线交椭圆于P r P2时A1P1与A2P22 2交点的轨迹方程是3多1. a b2 2过椭圆与与1 〔a> 0, b>0〕上任 a b 一点A〔X0,y.〕任意作两条倾斜角互补的直线交椭圆于B,C两点,那么直线BC有定向且k Bc骆〔常数〕.a y.2 2假设P为椭圆33 1 〔a>b>0〕上 a b实轴上的顶点,A1P和A2Q交于点异于长轴端点的任一点,F1, F 2是焦M, A2P和A1Q交于点N,那么MF点, PFE PF2F1±NF.tan — cot —.2 11. AB是双曲线三a2纭 1 (a> 0,b> 0) b 4. 设椭圆得a24 1 (a>b>0)的两个b2的不平行于对称轴的弦,M 〔X., y°〕焦点为F I、F2,P 〔异于长轴端点〕为椭圆上任意一点,在△ PF1F2中, 记F1PF2 ,PF1F2 , F i F2P ,那么有点F作直线交该椭圆右支于M,N两点,弦MN的垂直平分线交x轴于P,贝E|MN |210.椭圆与ae.22yb21 ( a> b>0)sin c --- ----- e.sin sin a ,A、B、是椭圆上的两点,线段AB的垂直平分线与x轴相交于点25.假设椭圆与a 2 y_b21 (a> b>0)的左、右焦点分别为F i、F2,左准线为L,2 .2P(x°,0),那么a211.设P点是椭圆三aX2 ,2a baa> b>0)那么当0<e<点1时,可在椭圆上求一点P,使得PF i是P到对应准线距离d与PF2的比例中项.2 26. P为椭圆二与1 (a>b>0)上任a b 上异于长轴端点的任一点,F i、F2 为其焦点记F1PF2 ,那么八2b21) 1P削0、一点,F i,F2为二焦点,A为椭圆内一定点,那么2) S PF1F2 b2tan-.1 2 2212.设A、B是椭圆与a 1 ( a> b2a |AF2 11PA | | PF i | 2a |AF1 |,当且仅当A,F2,P三点共线时,等号成立>0)的长轴两端点,P是椭圆上的一点, PAB ,PBA , BPA , c、e分别是椭圆的半焦距离心率,那么有2 27.椭圆区舁1与直线a bAx By C 0有公共点的充要条件是A2a2B2b2(Ax0 By0 C)2.2 28.椭圆一4 1 (a>b>0), O a b为坐标原点,P、Q为椭圆上两动点, 且OP OQ .(1)|PA|tan tanS PAB2 . .2ab |cos |2a2bb213.椭圆9. 1)2)3)2 2c cos1 e2.(3)2.(2)2a2xacot2yb21 ( a>b>0)的右准线l与X轴相交于点E ,过椭圆1 1 1 1 .| OP |2|OQ |2a2b2;|OP2+|OQ|2的最大值为2 2S OPQ的最小值是告红a b右焦点F的直线与椭圆相交于A、B2 24a2b2 .~~2 ,a b2冬i (a>b>0)的右焦b两点,点C在右准线l上,且BC x轴,那么直线AC经过线段EF的中点.14 .过椭圆焦半径的端点作椭圆的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过椭圆焦半径的端点作椭圆的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .椭圆焦三角形中,内点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).(注:在椭圆焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点.)17 .椭圆焦三角形中,内心将内点与非焦顶点连线段分成定比e.18 .椭圆焦三角形中,半焦距必为内、外点到椭圆中央的比例中项.椭圆与双曲线的对偶性质一双曲线2 21 .双曲线二4 1 (a>0,b>0) a b的两个顶点为A( a,0) , A2(a,0), 与y轴平行的直线交双曲线于P1、P2时A1P1与A2P2交点的轨迹2 2方程是x2 4 1.a b2 22 .过双曲线与4 1 (a>0,b>o)a b上任一点A(x0,y0)任意作两条倾斜角互补的直线交双曲线于B,C两点,那么直线BC有定向且k Bc 辂(常数).a V.23 .假设P为双曲线与a>0)右(或左)支上除顶点外的任一点,F1, F 2是焦点,PF1F2 , PF2F1,那么c-a tan—cot—(或c a 2 2c a x----- tan—cot —7.c a 2 22 24.设双曲线与与1 (a>0,b>0) a b的两个焦点为F「F2,P (异于长轴端点)为双曲线上任意一点,在△PF1F2 中,记F1PF2 ,PF1F2 , \F2P ,那么有sin c--------------------- --- e.(sin sin ) a2 25 .假设双曲线-2 -V2- 1 (a>0,b>0) a b的左、右焦点分别为F「F2,左准线为L,那么当1<ew V2 1时,可在双曲线上求一点巳使得PF1是P到对应准线距离d与PF2的比例中项. 2 26 . P为双曲线与4 1 (a>0,b> a b2£ 1( a> 0,b0)上任一点,F I,F2为二焦点,A 为双曲线内一定点,那么2 ,SPF1F2b COt二.22 212.设A、B是双曲线与与a b 1 (aIAF2I 2a |PA| |PF i|,当且仅当>0,b>0)的长轴两端点,P是双曲线上的一点,PABA,F2,P三点共线且P和A, F2在y PBA , BPA , C、e 分别是轴同侧时,等号成立双曲线的半焦距离心率,那么有2 7.双曲线x2 a与直线Ax2y2 1 (a> 0,b> 0) b By C 0有公共点的充要条件是A2a2B2b2C2.2 28.双曲线tI 1 (b>a >a b0), O为坐标原点,P、Q为双曲线上两动点,且OP OQ .1)2)3)2 . .2ab | cos ||PA|「2-N | a c cos |2tan tan 1 e .SPAB2, 22a b ,2一 2 cotb a 213.双曲线占a2j 1 (a> 0,b>(1)| OP |2|OQ I2(2) |OP2+|OQ|2的最小值为2,2(3) S OPQ的最小值是-2巴b2a2 2 4a b . ~22 ;b a2 29.过双曲线与匕1 (a>0,b>0)a b的右焦点F作直线交该双曲线的右支于M,N两点,弦MN的垂直平分线交x轴于P,那么|PF | e .|MN | 22 210.双曲线 \ 4 1 (a>0,b>a b0) ,A、B是双曲线上的两点, 线段AB的垂直平分线与x轴相2 .2交于点P(x°,0),那么x.a~^或 a2 ,2a b x-- .a2 211.设P点是双曲线与与1 (a>a2b20,b> 0)上异于实轴端点的任一点,F1、F2为其焦点记F1PF2 ,那么⑴|PF1||PF2|产一.⑵1 cos0)的右准线l与x轴相交于点E , 过双曲线右焦点F的直线与双曲线相交于A、B两点,点C在右准线l上,且BCx轴,那么直线AC经过线段EF的中点.14.过双曲线焦半径的端点作双曲线的切线,与以长轴为直径的圆相交,那么相应交点与相应焦点的连线必与切线垂直.15 .过双曲线焦半径的端点作双曲线的切线交相应准线于一点,那么该点与焦点的连线必与焦半径互相垂直.16 .双曲线焦三角形中,外点到一焦点的距离与以该焦点为端点的焦半径之比为常数e(离心率).〔注:在双曲线焦三角形中,非焦顶点的内、外角平分线与长轴交点分别称为内、外点〕.17 .双曲线焦三角形中,其焦点所对的旁心将外点与非焦顶点连线段分成定比e.18 .双曲线焦三角形中,半焦距必为内、外点到双曲线中央的比例中项.圆锥曲线问题解题方法圆锥曲线中的知识综合性较强,因而解题时就需要运用多种根底知识、采用多种数学手段来处理问题.熟记各种定义、根本公式、法那么固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧.一.紧扣定义,灵活解题灵活运用定义,方法往往直接又明了.例1.点A (3, 2), F (2, 0),双曲线2X2匕1,P为双曲线上一点.31求|PA| 1|PF|的最小值.2解析:如下图,双曲线离心率为2, F为右焦点,由第1二定彳t知1|PF|即点P到准线距离.1 5|PA| |PF| |PA| |PE| AM -2 2二.引入参数,简捷明快参数的引入,尤如化学中的催化剂,能简化和加快问题的解决.例2.求共焦点F、共准线l的椭圆短轴端点的轨迹方程.解:取如下图的坐标系,设点F到准线l的距离为p (定值),椭圆中央坐标为M (t, 0) (t为参数) ,叫.2 .b pc pt再设椭圆短轴端点坐标为P (x, y),那么X c ty b ..pt消去t,得轨迹方程y2 px三 .数形结合,直观显示将“数〞与“形〞两者结合起来,充分发挥“数〞的严密性和“形〞的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化.熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题.例3.x,y R,且满足方程x2 y2 3(y 0),又m --3 ,求m 范围.解析:m —-的几何意义为,曲线x 3x2 y2 3(y 0)上的点与点(—3, — 3)连线的斜率,如下图四.应用平几,一目了然用代数研究几何问题是解析几何的本质特征,因此,很多“解几〞题中的一些图形性质就和“平几〞知识相关联,要抓住关键,适时引用,问题就会迎刃而解.例4.圆(x 3)2 y2 4和直线y mx的交点为P、Q,那么|OP||OQ|的值为.解:OMP ~ OQN|OP||OQ| |OM||ON| 5五.应用平面向量,简化解题向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具.例5.椭圆:工y- 1 ,直线l :24 16y12 81, P是l上一点,射线OP交椭圆于六.应用曲线系,事半功倍利用曲线系解题,往往简捷明快,收到事半功 倍之效.所以灵活运用曲线系是解析几何中重要 的解题方法和技巧之一.例6.求经过两圆x 2 y 2 6x 4 0和 22x y 6y 28 0的父点,且圆心在直线x y 4 0上的圆的方程.点R,点Q 在OP 上且满足|OQ||OP| |OR|2 ,当 点P 在l 上移动时,求点Q 的轨迹方程.解:设所求圆的方程为:22_22_x 2y 26x 4 (x 2y 26y 28) 0 (1 )x 2 (1)y 2 6x 6 y (284) 0分析:考生见到此题根本上用的都是解析 几何法,给解题带来了很大的难度,而如果用向 量共线的条件便可简便地解出. 解:如图,OQ, OR, OP 共线,设 OR OQ , OP OQ , OQ (x, y),贝U 那么圆心为(」_ , _J_),在直线11x y 4 0 上解得 7故所求的方程为x 2 y 2 x 7y 32 0OR ( x, y) , OP ( x, y) 2七.巧用点差,简捷易行在圆锥曲线中求线段中点轨迹方程,往往采用 点差法,此法比其它方法更简捷一些.例7.过点A (2, 1)的直线与双曲线2x 2 — 1相交于两点P 1、P 2,求线段P 1P 2中点2的轨迹方程.解:设 P ,(x1,Y I ) , P 2(x 2, y 2),那么2X I 2 X22 Y I2 2Y 2 2|OQ||OP| |OR| <2> —<1> 得(X 2 X I )(X I X 2)1 2(Y 2 Y I )(Y I2Y 2)2 22 |OQ|2 2|OQ|22点R 在椭圆上,P 点在直线l 上 2 222———匕1,三△ 12416 12 8 2 2即士 L 二y241612 8化简整理得点Q 的轨迹方程为: 22 _(x 1) (y 1) 2 … -—广1(直线y — x 上万 5 5 323局部) 即 Y 2 Y I2( X I X 2) X 2 X IY I Y 2设P 1P 2的中点为M(X O , y 0),那么kP 1P 2Y 2 Y Ix 2 X 12xY O又,而P I 、A 、M 、P 2共线k P 1P2k AM,即^X O 2Y O的轨迹方程是2x 2 y 2 4x y 0P 1P 2中点M解析几何题怎么解高考解析几何试题一般共有4题(2个选择题,1个填空题,1个解做题),共计30分左右,考查的 知识点约为20个左右.其命题一般紧扣课本,突出重点,全面考查.选择题和填空题考查直线,圆, 圆锥曲线,参数方程和极坐标系中的根底知识.解做题重点考查圆锥曲线中的重要知识点,通过知识 的重组与链接,使知识形成网络,着重考查直线与圆车t 曲线的位置关系,求解有时还要用到平几的基 本知识,这点值得考生在复课时强化.例1点T 是半圆O 的直径AB 上一点,AB=2、OT=t (0<t<1),以AB 为直腰作直角梯形 AA B B ,使AA 垂直且等于AT,使BB 垂直且等于BT , A B 交半圆于P 、Q 两点,建立如图所 示的直角坐标系.⑴写出直线A B 的方程; (2)计算出点P 、Q 的坐标;(3)证实:由点P 发出的光线,经AB 反射后,反射光线 通过点Q.饼斛:通过I 卖图,看出A , B 点的坐标. 一…' ' .'一 ,.…(1 )显然A 1,1 t , B 1,1 t ,于是直线A B 的方程为ytx 1 ;222(2)由方程组 x y 1,解出 P(0,1)、Q(1/,」^); y tx 1, 1 t 1 t由直线PT 的斜率和直线QT 的斜率互为相反数知,由点 P 发出的光线经点T 反射,反射光线通 过点Q.需要注意的是,Q 点的坐标本质上是三角中的万能公式,有趣吗?22例2直线l 与椭圆\ J 1(a b 0)有且仅有一个交点Q,且与x 轴、y 轴分别交于R 、S, a b 求以线段SR 为对角线的矩形ORPS 的一个顶点P 的轨迹方程.讲解:从直线l 所处的位置,设出直线l 的方程,由,直线l 不过椭圆的四个顶点,所以设直线l 的方程为y kx m(k 0). 代入椭圆方程 b 2x 2 a 2y 2 a 2b 2,得 b 2x 2 a 2(k 2x 2 2kmx m 2)a 2b 2.化简后,得关于x 的一■兀二次方程 (a 2k 2b 2)x 2 2ka 2mxa 2m 2 a 2b 20.于是其判别式(2ka 2m)2 4(a 2k 2 b 2)(a 2m 2 a 2b 2) 4a 2b 2(a 2k 2 b 2 m 2).由,得^ 二0 .即a 2k 2 b 2 m 2.①在直线方程y kx m 中,分别令y=0, x=0,求得R ( —,0),S(0,m). k(3) k PTk QT2t1t(it 2昌m I, y x—, k — 令顶点P 的坐标为(x, y), 由,得 k解得 xym.m y.2, 2代入①式并整理,得 a 2 b 2 1,即为所求顶点P 的轨迹方程.x 2 3 y 22. 2方程土上1形似椭圆的标准方程,你能画出它的图形吗?22x y例3双曲线x 2 4 1的离心率e .,过A (a,0),B(0, b)的直线到原点的距离是 —.a 2b 2 32(1)求双曲线的方程;的值.设C(x i ,y i ),D(x 2,y 2),CD 的中点是 E(x o ,y o ),那么2(2)考虑直线l 的斜率的存在性,可分两种情况:解出 e i)当k 存在时,设l 的方程为y k(x c)于是椭圆方程可转化为x 2 2y 2 2c 2 0 ................................. ②(2)直线y kx5(k 0)交双曲线于不同的点 C, D 且C, D 都在以B 为圆心的圆上,求k讲解::( 1) £ a2卡原点到直线AB:二 1的距离dab ■..a 2 1, ab 2■、.ab c、3~2~故所求双曲线方程为x 2 2V y 1.(2)把y kx 5代入x 23y 23中消去y,整理得(12 23k 2)x 230kx 78x .x 1x 22 15 k U y 0kx 05; : । 2 , kBE1 3ky 01x 0x 0 ky 0 k0,即15 k 3k 25 k---------- - k 0,又 k 1 3k 20, k故所求k= ± a.为了求出 k 的值,需要通过消元,想法设法建构k 的方程.例4椭圆 C 的中央在原点,焦点F I 、F 2在x 轴上,点P 为椭圆上的一个动点, 的最大值为90° ,直线l 过左焦点F I 与椭圆交于A 、B 两点,4ABF 2的面积最大值为 且/ 12.F 1PF 2(1)求椭圆C 的离心率; (2)求椭圆C 的方程. 讲解: (D 设IPF I I「I ,|PF 2| "F I F 2|2c ,对PF I F 2,由余弦定理,得cos F 1PF 21 22r 1 r 2 4c2rj 2(.L)22r 1r 2 4c 2 2rj 24a 4c 1------------- 1 1 r 1 r 2 2 2(七壬卜面给出此题的另一解法,请读者比拟二者的优劣: 设过左焦点的直线方程为:x my c (这样设直线方程的好处是什么?还请读者进一步反思反思 2 2椭圆的方程为:x ^ \ 1,A(x 1,y 1),B(x 2,y 2) a b 由e 字得:a 2 2c 2,b 2 c 2,于是椭圆方程可化为: 把①代入②并整理得:(m 2 2)y 2 2mcy c 2 于是y 〞y 2是上述方程的两根. AB 边上的高h 一c1 m 2当且仅当m=0取等号,即S max 收02. 由题意知v2c 2 12,于是b 2 c 2 66,a 2 12V2 .故当△ ABF 2面积最大时椭圆的方程为: 上 工12. 262将①代入②,消去y 得 x 2 2k 2(x c)2 2c 20,整理为x 的一元二次方程,得._2、22_2.2、 一(1 2k )x 4ck x 2c (k 1) 0.那么x i 、x 2是上述方程的两根.且 | x 2 x i | 2 .. 2c1 k AB 边上的高 h | FR | sin BF 1 F 21 2c |k|,2,1 k2kk 2| x 2 x i |2 2c(1 k 2);~2,1 2k厂也可这样求解:2c 1cc/1 k 2、 |k | c S -2 2c( 2) |—| 22c212k1 k 212产区| M y 2|2.2c 2.rviki 1 2k 2k 2k 4k 24k 42'2"1 1 42k k,2c 2.c | k | | x ix 2 |ii)当k 不存在时,把直线x c 代入椭圆方程得 y£c ,|AB|由①②知S 的最大值为V2c 2由题意得2c 2 = 12所以c 2 6 2 b 212 2故当△ ABF 2面积最大时椭圆的方程为: 上12. 2 2V 1.6 2x 2 2y 2 2c 2 0 .................. (2|AB| \(x 1、2 z、2x ) (y1 m2 | y 2 y 1|1 m2 4m2 2, 2,2c 4c (m 2)2m 2-22 2c(1 m 2)从而 S l|AB|h 二2 2c(1m2)22 m 2 22c221 m22 2c 21m2c(m 2)22 2c 2■ m1 1 122m 212c 2. 1.2 2例5直线y x 1与椭圆之与1〔a b 0〕相交于A、B两点,且线段AB的中点在直 a b 线l :x 2y 0上.〔1〕求此椭圆的离心率;〔2 〕假设椭圆的右焦点关于直线l的对称点的在圆x2y24上,求此椭圆的方程.y 讲解:〔1〕设A、B两点的坐标分别为A〔x1,y〕 BM, y?〕.那么由x2-2 a2 2、 2 2 2 2(a b )x 2a x a a,- 4.2如果| AB | ——,求直线MQ的万程;〔2〕求动弦AB的3中点P的轨迹方程.、… r 4、2讲解:〔1〕由1A Bi可,可得|MP| J MA |2 (LA%2J12(迪)2 1,由射影定理,得2 . 3 3|MB |2|MP | |MQ |,得|MQ | 3,在RtAMOQ 中,|OQ | <| MQ |2 |MO |2、32 2 2 M5 ,故a 盘或a <5 ,所以直线AB方程是2x J5y 2运 0或2x 岛2匹 0; x 1, y2行2_ 1 b2根据韦达定理,得x1 x2与,,y2函 a bX2)2b 2a2b2「•线段AB的中点坐标为〔2 .2a b~2 -2 , -2 ~2 a b a b2由得二J a2b22b-2 a 厂0, a2 2b2 2(a2 c2) 2c2,故椭圆的离心率为〔2〕由〔1〕知 b c,从而椭圆的右焦点坐标为F〔b,0〕,设F〔b,0〕关于直线l:x 2y 0的对称点为(x°, y°),那么也x0 b 2 f 0,解得X. 3 b且y°2 b 55由得4,3 2(b)52 2(-b)2 4, b24,故所求的椭圆方程为—1 .5 8 4.M:x2(y 2〕2 1,Q是x轴上的动点,QA, QB分别切.M于A, B两点, (DC............ I _ z — I 1............................... ~~z 2 y_2(2)连接MB, MQ,设P(x,y),Q(a,0),由点M, P, Q 在一直线上,得一 -一,(*) a x由射影定理得| MB |2 |MP | | MQ |,即 &一(y 2)2 商—4 1,(**)7 c 1把(*)及(**)洎去a,并注意到y 2,可得x2(y -)2—(y 2).4 16适时应用平面几何知识,这是快速解答此题的要害所在,还请读者反思其中的微妙a—例- 如图,在Rt^ABC 中,/CBA=90° , AB=2 , AC=旧.2DO=2 ,曲线E过C点,动点P在E上运动,且保持| PA |+| PB |的值不变.(1)建立适当的坐标系,求曲线E的方程;(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设-DM ,试确定DNDO LAB 于.点,OA=OB ,实数讲解: 的取值范围.(1)建立平面直角坐标系,如下图 : | PA |+| PB |=| CA |+|CB | V=得 22 ( 22)22V2「•动点P的轨迹是椭圆;、区b 1,c 1;曲线E的方程是(2)设直线L的方程为y kx 2,代入曲线E的方程x i 2y2 2,得(2k22(8k)2 4(2k 1)8k x2x〔x22 ,2k2 162 .2k 1i) L与y轴重合时, ii) L与y轴不重合时, x2x1 0,.(x〔x2)2x1 x2xx2x2x i1)x2 8kx 0设M1 ( 〞乂), N(x2, y),0,| DM |rDNu由①得DMDNxD X MX D X Nx1x2 x1 0, .,.0< < 1 ,1 2-.(x x2)2x1 x264k226(2k2 1)3213(2 -7)k那抛物线有两个不同的交点,因此l 与l 不重合,l 不是CD 的垂直平分线.此题是课此题的深化,你能够找到它的原形吗?知识在记忆中积累,水平在联想中提升 .课本是 高测试题的生长点,复课切忌忘掉课本!1,A(x 1,y 1),B(x 2,y 2)由 e / 得 a 2 2c 2,b21 .,・•・ 6 3(2-2) 8.■ ■ 432V~ 3(2 -r) k16 ・二 4 16 31,10 32, 1.的取值范围是10 3值得读者注意的是,直线 L 与y 轴重合的情况易于遗漏,应当引起警惕.例8直线l 过抛物线y 22 Px(p 0)的焦点,且与抛物线相交于 A (x 1, y 1)和B(x 2, y 2)两点.(1)求证:4x 1x 2p 2; (2)求证:对于抛物线的任意给定的一条弦 CD,直线l 不是CD 的垂直平分线.讲解:(1)易求得抛物线的焦点F (£°). 2,2 …・右l ,x 轴,那么l 的方程为x P 显然x 1x 2 —.右l 不垂直于x2,八〞 4 轴,可设y k(x P),代入抛物线方程整理得 2__ _ 2x 2P(1 ,)x — k 4 0,那么x 1x 2—.综上可知 4X I X 24.2. 2(2)设C(J c) D(L d)且c d ,那么CD 的垂直平分线l 的万程为y Jd 2p' ' 2p' 2c d——(x 2P2 2〞) 4P假设l 过F,那么0,2, 2一3(R c d )整理得 (c d)(2p 2 c 2 d 2) 2p 2 4p2p 2 c 2 d 2 0 ,d 0.这时l 的方程为y=0,从而l 与抛物线y 2 Px 只相交于原点.而l 与。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学定义几何学基本概念:从平面解析几何的角度来看,平面上的直线就是由平面直角坐标系中的一个二元一次方程所表示的图形。
求两条直线的交点,只需把这两个二元一次方程联立求解,当这个联立方程组无解时,二直线平行;有无穷多解时,二直线重合;只有一解时,二直线相交于一点.常用直线与X轴正向的夹角(叫直线的倾斜角)或该角的正切(称直线的斜率)来表示平面上直线(对于X轴)的倾斜程度。
可以通过斜率来判断两条直线是否互相平行或互相垂直,也可计算它们的交角。
直线与某个坐标轴的交点在该坐标轴上的坐标,称为直线在该坐标轴上的截距。
直线在平面上的位置,由它的斜率和一个截距完全确定.在空间,两个平面相交时,交线为一条直线.因此,在空间直角坐标系中,用两个表示平面的三元一次方程联立,作为它们相交所得直线的方程。
空间直线的方向空间直线的方向用一个与该直线平行的非零向量来表示,该向量称为这条直线的一个方向向量。
直线在空间中的位置,由它经过的空间一点及它的一个方向向量完全确定。
在欧几里得几何学中,直线只是一个直观的几何对象.在建立欧几里得几何学的公理体系时,直线与点、平面等都是不加定义的,它们之间的关系则由所给公理刻画。
关系式◆直线的斜率:k=(y2-y1)/(x2—x1)(x1≠x2)(1)一般式:适用于所有直线Ax+By+C=0(其中A、B不同时为0)两直线平行时:A1/A2=B1/B2≠C1/C2两直线垂直时:A1A2+B1B2=0两直线重合时:A1/A2=B1/B2=C1/C2两直线相交时:A1/A2≠B1/B2(2)点斜式:知道直线上一点(x0,y0),并且直线的斜率k存在,则直线可表示为y-y0=k(x-x0)当k不存在时,直线可表示为x=x0(3)截距式:不适用于和任意坐标轴垂直的直线和过原点的直线知道直线与x轴交于(a,0),与y轴交于(0,b),则直线可表示为x/a+y/b=1(4)斜截式:Y=KX+B(K≠0)当k>0时,y随x的增大而增大;当k〈0时,y随x的增大而减小.两直线平行时K1=K2两直线垂直时K1XK2=-1(5)两点式x1不等于x2y1不等于y2(y-y1)/(y2-y1)=(x—x1)/(x2—x1)(6)法线式x·cosα+ysinα-p=0(7)点到直线方程注意:各种不同形式的直线方程的局限性:①点斜式和斜截式都不能表示斜率不存在的直线;②两点式不能表示与坐标轴平行的直线;③截距式不能表示与坐标轴平行或过原点的直线;④直线方程的一般式中系数A、B不能同时为零.(8)两平行直线间的距离IC1-C2I/根号下A的平方加上B的平方椭圆椭圆作图范例椭圆是平面上到两定点的距离之和为常值的点之轨迹,也可定义为到定点距离与到定直线间距离之比为常值的点之轨迹。
它是圆锥曲线的一种,即圆锥与平面的截线.椭圆在方程上可以写为标准式x^2/a^2+y^2/b^2=1,它还有其他一些表达形式,如参数方程表示等等。
椭圆在开普勒行星运行三定律中扮演了重要角色,即行星轨道是椭圆,以恒星为焦点。
椭圆的第一定义tuǒyuán平面内与两定点F、F’的距离的和等于常数2a(2a〉|FF'|)的动点P的轨迹叫做椭圆.即:│PF│+│PF’│=2a其中两定点F、F’叫做椭圆的焦点,两焦点的距离│FF’│叫做椭圆的焦距。
椭圆的第二定义平面上到定点F距离与到定直线间距离之比为常数e(即椭圆的偏心率,e=c/a)的点的集合(定点F不在定直线上,该常数为小于1的正数)其中定点F为椭圆的焦点,定直线称为椭圆的准线(该定直线的方程是x=±a^2/c 或者y=±a^2/c)。
椭圆的其他定义根据椭圆的一条重要性质也就是椭圆上的点与椭圆短轴两端点连线的斜率之积是定值可以得出:平面内与两定点的连线的斜率之积是常数k的动点的轨迹是椭圆,此时k应满足一定的条件,也就是排除斜率不存在的情况切线与法线的几何性质定理1:设F1、F2为椭圆C的两个焦点,P为C上任意一点。
若直线AB切椭圆C于点P,则∠APF1=∠BPF2。
定理2:设F1、F2为椭圆C的两个焦点,P为C上任意一点。
若直线AB为C在P点的法线,则AB平分∠F1PF2。
上述两定理的证明可以查看参考资料[1]。
计算机图形学约束椭圆必须一条直径与X轴平行,另一条直径Y轴平行。
不满足此条件的几何学椭圆在计算机图形学上视作一般封闭曲线.标准方程高中课本在平面直角坐标系中,用方程描述了椭圆,椭圆的标准方程中的“标准”指的是中心在原点,对称轴为坐标轴.椭圆的标准方程有两种,取决于焦点所在的坐标轴:1)焦点在X轴时,标准方程为:x^2/a^2+y^2/b^2=1(a>b>0)2)焦点在Y轴时,标准方程为:x^2/b^2+y^2/a^2=1(a〉b>0)其中a>0,b〉0。
a、b中较大者为椭圆长半轴长,较短者为短半轴长(椭圆有两条对称轴,对称F点在Y轴轴被椭圆所截,有两条线段,它们的一半分别叫椭圆的长半轴和短半轴或半长轴和半短轴)当a>b时,焦点在x轴上,焦距为2*(a^2—b^2)^0。
5,焦距与长。
短半轴的关系:b^2=a^2—c^2,准线方程是x=a^2/c和x=—a^2/c,c为椭圆的半焦距。
又及:如果中心在原点,但焦点的位置不明确在X轴或Y轴时,方程可设为mx^2+ny^2=1(m>0,n>0,m≠n)。
既标准方程的统一形式.椭圆的面积是πab。
椭圆可以看作圆在某方向上的拉伸,它的参数方程是:x=acosθ,y=bsinθ标准形式的椭圆在(x0,y0)点的切线就是:xx0/a^2+yy0/b^2=1lk一般方程Ax^2;+Bxy+Cy^2;+Dx+Ey+F=0(A.C不为0)公式椭圆的面积公式S=π(圆周率)×a×b(其中a,b分别是椭圆的长半轴,短半轴的长).或S=π(圆周率)×A×B/4(其中A,B分别是椭圆的长轴,短轴的长).椭圆的周长公式椭圆周长没有公式,有积分式或无限项展开式.椭圆周长(L)的精确计算要用到积分或无穷级数的求和。
如L=∫[0,π/2]4a*sqrt(1—(e*cost)²;)dt≈2π√((a²;+b²)/2)[椭圆近似周长],其中a为椭圆长半轴,e为离心率椭圆离心率的定义为椭圆上的点到某焦点的距离和该点到该焦点对应的准线的距离之比,设椭圆上点P到某焦点距离为PF,到对应准线距离为PL,则e=PF/PL椭圆的准线方程x=±a^2/c椭圆的离心率公式e=c/a(0〈e<1,因为2a〉2c)椭圆的焦准距:椭圆的焦点与其相应准线(如焦点(c,0)与准线x=+a²;/C)的距离,数值=b²/c椭圆焦半径公式焦点在x轴上:|PF1|=a+ex0|PF2|=a-ex0椭圆过右焦点的半径r=a—ex过左焦点的半径r=a+ex焦点在y轴上:|PF1|=a-ey0|PF2|=a+ey0椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,数值=2b^2/a点与椭圆位置关系点M(x0,y0)椭圆x^2/a^2+y^2/b^2=1点在圆内:x0^2/a^2+y0^2/b^2<1点在圆上:x0^2/a^2+y0^2/b^2=1点在圆外:x0^2/a^2+y0^2/b^2〉1直线与椭圆位置关系y=kx+m①x^2/a^2+y^2/b^2=1②由①②可推出x^2/a^2+(kx+m)^2/b^2=1相切△=0相离△〈0无交点相交△〉0可利用弦长公式:A(x1,y1)B(x2,y2)|AB|=d=√(1+k^2)|x1—x2|=√(1+k^2)(x1—x2)^2=√(1+1/k^2)|y1-y2|=√(1+1/k^2)(y1—y2)^2椭圆的斜率公式过椭圆上x^2/a^2+y^2/b^2=1上一点(x,y)的切线斜率为—(b^2)X/(a^2)y椭圆焦点三角形面积公式若∠F1PF2=θ,则S=b^2tanθ/2椭圆参数方程的应用求解椭圆上点到定点或到定直线距离的最值时,用参数坐标可将问题转化为三角函数问题求解x=a×cosβ,y=b×sinβa为长轴长的一半相关性质由于平面截圆锥(或圆柱)得到的图形有可能是椭圆,所以它属于一种圆锥截线。
例如:有一个圆柱,被截得到一个截面,下面证明它是一个椭圆(用上面的第一定义):将两个半径与圆柱半径相等的半球从圆柱两端向中间挤压,它们碰到截面的时候停止,那么会得到两个公共点,显然他们是截面与球的切点。
设两点为F1、F2对于截面上任意一点P,过P做圆柱的母线Q1、Q2,与球、圆柱相切的大圆分别交于Q1、Q2则PF1=PQ1、PF2=PQ2,所以PF1+PF2=Q1Q2由定义1知:截面是一个椭圆,且以F1、F2为焦点用同样的方法,也可以证明圆锥的斜截面(不通过底面)为一个椭圆例:已知椭圆C:x^2/a^2+y^2/b^2=1(a〉b〉0)的离心率为√6/3,短轴一个端点到右焦点的距离为√3.(1)求椭圆C的方程。
(2)直线l:y=x+1与椭圆交于A,B两点,P为椭圆上一点,求△PAB面积的最大值。
(3)在(2)的基础上求△AOB的面积.一分析短轴的端点到左右焦点的距离和为2a,端点到左右焦点的距离相等(椭圆的定义),可知a=√3,又c/a=√6/3,代入得c=√2,b=√(a^2—c^2)=1,方程是x^2/3+y^2/1=1,二要求面积,显然以ab作为三角形的底边,联立x^2/3+y^2/1=1,y=x+1解得x1=0,y1=1,x2=-1.5,y2=—0.5.利用弦长公式有√(1+k^2))[x2—x1](中括号表示绝对值)弦长=3√2/2,对于p点面积最大,它到弦的距离应最大,假设已经找到p到弦的距离最大,过p做弦的平行线,可以发现这个平行线是椭圆的切线是才会最大,这个切线和弦平行故斜率和弦的斜率=,设y=x+m,利用判别式等于0,求得m=2,—2。
结合图形得m=—2.x=1。
5,y=-0。
5,p(1。
5,-0。
5),三直线方程x—y+1=0,利用点到直线的距离公式求的√2/2,面积1/2*√2/2*3√2/2=3/4,双曲线双曲线(Hyperbola)是指与平面上两个定点的距离之差的绝对值为定值的点的轨迹,也可以定义为到定点与定直线的距离之比是一个大于1的常数的点之轨迹。
双曲线是圆锥曲线的一种,即圆锥面与平面的交截线。
双曲线在一定的仿射变换下,也可以看成反比例函数。
定义:我们把平面内与两个定点F1,F2的距离的差的绝对值等于一个常数的轨迹称为双曲线定义1:平面内,到两个定点的距离之差的绝对值为常数(小于这两个定点间的距离[1])的点的轨迹称为双曲线。