高等数学课件完整版

合集下载

高等数学课件详细

高等数学课件详细
分学
多元微积分的应用实例
物理学:描述物理现象,如流体力学、电磁学等 工程学:解决工程问题,如结构分析、控制系统设计等 经济学:分析经济模型,如市场均衡、最优化问题等 计算机科学:用于图像处理、机器学习等领域
无穷级数与常微分
07
方程
无穷级数的概念和性质
性质:收敛性、发散 性、绝对收敛性、条
件收敛性等

常微分方程的概念和分类
常微分方程:描述函数在某点或某区 间上的变化规律的方程
一阶常微分方程:只含有一个未知函 数和一个自变量的方程
二阶常微分方程:含有两个未知函数 和两个自变量的方程
高阶常微分方程:含有多个未知函数 和多个自变量的方程
线性常微分方程:未知函数和自变量 之间的关系是线性的方程
非线性常微分方程:未知函数和自变 量之间的关系是非线性的方程
常微分方程的基本解法与实例
基本解法:分离变量法、积分因子法、常数变易法等 实例:求解一阶线性常微分方程、求解二阶线性常微分方程等 应用:在物理、化学、生物等领域有广泛应用 难点:求解高阶常微分方程、求解非线性常微分方程等
微分方程的应用实例
生物:描述生物种群增长、 生态平衡等现象
化学:描述化学反应速率、 物质扩散等现象
06
多元函数微积分
多元函数的极限与连续性
多元函数的极限:定义、性质、计算方法 多元函数的连续性:定义、性质、判断方法 多元函数的可微性:定义、性质、判断方法 多元函数的可导性:定义、性质、判断方法 多元函数的可积性:定义、性质、判断方法 多元函数的积分:定义、性质、计算方法
偏导数与全微分
性质。
函数连续性的 性质:连续函 数具有局部有 界性、局部保 号性、局部保 序性等性质。

高等数学课件完整

高等数学课件完整

要点二
二重积分的性质
二重积分具有一些基本性质,如线性性、可加性、保号性 等。这些性质在求解二重积分时非常有用。
07 无穷级数
常数项级数的概念与性质
常数项级数的定义
由一系列常数按照一定顺序排列并加上正负号组 成的无穷序列。
收敛与发散
常数项级数可能收敛于一个有限值,也可能发散 至无穷大或不存在。
级数的基本性质
特点
高等数学具有抽象性、严谨性和 应用广泛性等特点,需要学生具 备较强的逻辑思维能力和数学基 础。
高等数学的重要性
培养逻辑思维能力
高等数学的学习有助于培养学生的逻辑思维能力,提高学生的数学 素养和解决问题的能力。
为后续课程打下基础
高等数学是许多后续课程的基础,如物理学、工程学、经济学等, 掌握高等数学有助于学生更好地理解和应用这些学科的知识。
不定积分的性质
不定积分具有线性性、 可加性、常数倍性等基 本性质,这些性质在求 解积分时非常有用。
基本积分公式
掌握基本积分公式是求 解不定积分的基础,如 幂函数、指数函数、三 角函数等的基本积分公 式。
定积分的概念与性质
定积分的定义
定积分是积分学中的另一个重 要概念,它表示函数在某个区
间上的积分值。定积分记为 ∫[a,b]f(x)dx,其中a和b是积
函数的性质
函数具有有界性、单调性、奇偶性、周 期性等重要性质,这些性质对于研究函 数的图像和变化规律具有重要意义。
极限的概念与性质
1 2 3
极限的定义
极限是描述函数在某一点或无穷远处的变化趋势 的重要工具,它可以通过不同的方式定义,如数 列极限、函数极限等。
极限的性质
极限具有唯一性、有界性、保号性、四则运算法 则等重要性质,这些性质对于求解极限问题和证 明极限定理具有重要作用。

高等数学课件(完整版)详细

高等数学课件(完整版)详细
M L ( x , y )ds ; ( 2) 当 f ( x , y ) 1时, L弧长 Lds ;
z f ( x, y)
( 3) 当 f ( x , y )表示立于L上的 柱面在点( x , y )处的高时,
S柱面面积 f ( x , y )ds.
L
s
L
(4) 曲线弧对x轴及 y轴的转动惯量,
f ( x , y )ds f ( x , y )ds f ( x , y )ds.
L1 L2
2. 函数f ( x , y )在闭曲线 L上对弧长的 曲线积分记为L f ( x , y )ds.
4.性质
(1) [ f ( x , y ) g( x , y )]ds f ( x , y )ds g( x , y )ds.
I x x 2 ds,
L
I y y 2 ds.
L
(5) 曲线弧的重心坐标
xds x , ds
L L
yds y . ds
L L
五、小结
1、对弧长曲线积分的概念
2、对弧长曲线积分的计算
3、对弧长曲线积分的应用
思考题
对弧长的曲线积分的定义中 S i 的符号 可能为负吗?


f ( x , y , z )ds

2 2 2 f [ ( t ), ( t ), ( t )] ( t ) ( t ) ( t )dt

( )
x a cos t , 例1 求 I xyds, L : 椭圆 (第象限). L y b sin t ,


( )
注意:
1. 定积分的下限 一定要小于上限 ; 2. f ( x, y )中 x, y 不彼此独立, 而是相互有关的 .

高等数学(完整版)详细(课堂PPT)

高等数学(完整版)详细(课堂PPT)

因此
Sn
a, 0,
n 为奇数 n 为偶数
从而
lim
n
Sn
不存在
,
因此级数发散.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
例2. 判别下列级数的敛散性:
(1)
ln
n1
n
n
1
;
解: (1)
(2) n1n(n11) .
Sn
ln 2 1
ln 3 2
ln 4 3
的敛散性.
证: 将级数 un 的前 k 项去掉, 所得新级数 uk n
n1
n1
的部分和为
n
n uk l Sk n Sk
l 1
由于n 时, n 与Sk n 极限状况相同, 故新旧两级
数敛散性相同.
当级数收敛时, 其和的关系为 S Sk .
类似可证前面加上有限项的情况 .
性质4. 收敛级数加括弧后所成的级数仍收敛于原级数
将各项依
n1
un u1 u2 u3
n1
un
称上式为无穷级数,其中第 n 项 un 叫做级数的一般项,
级数的前 n 项和
n
Sn uk u1 u2 u3 un
k 1
称为级数的部分和. 若 lim Sn S 存在, 则称无穷级数
n
收敛 , 并称 S 为级数的和, 记作
S un
1 n (n 1)n
34
二 、交错级数及其审敛法
设 un 0 , n 1, 2, , 则各项符号正负相间的级数 u1 u2 u3 (1)n1un
称为交错级数 .
定理6 . ( Leibnitz 判别法 ) 若交错级数满足条件:

高等数学完整详细PPT课件

高等数学完整详细PPT课件


原式
lim a cos ax sinbx x0 bcos bx sinax
cos bx lim x0 cos ax
1.
第27页/共175页
例5 求 lim tan x . x tan 3 x
2

原式
lim
x
sec2 3sec2
x 3x
1 3
lim
x
cos2 3x cos2 x
2
2
1 lim 6cos 3x sin3x lim sin6x
第14页/共175页
例4 设函数f ( x)在[0,1]上连续, 在(0,1)内可导, 证明:
至少存在一点 (0,1),使 f ( ) 2[ f (1) f (0)].
证 分析: 结论可变形为
f (1) f (0) 10
f () 2
f ( x) ( x 2 )
x .
设 g( x) x2 ,
F(b) F(a) f (b) f (a) f () .
F (b) F (a) F ()
当 F ( x) x, F (b) F (a) b a, F ( x) 1,
f (b) f (a) f () F (b) F (a) F ()
f (b) f (a) f (). ba
第10页/共175页
例3 证明当x 0时, x ln(1 x) x. 1 x
证 设 f ( x) ln(1 x),
f ( x)在[0, x]上满足拉氏定理的条件,
f ( x) f (0) f ()( x 0), (0 x)
f (0) 0, f ( x) 1 , 由上式得 1 x
ln(1 x) x , 1
又0 x 1 1 1 x

高等数学全套精品课件完整版

高等数学全套精品课件完整版
t (,)

例2
设f
(
x)

1 2
0

x

1 ,
求函数
f
(x

3)的定义域.
1 x2


f
(x)

1 2
0 x1 1 x2

f
(x

3)

1 2
0 x31 1 x32

1 2
3 x 2 2 x 1
y 2x 1
例1 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U

E
t

2E t;
2 当 t ( , ]时,
2
U
( , E)
2
E
o

(,0) t
2
单三角脉冲信号的电压
U

0

E

0
U (a) {x a x a }.


a
a
a x
点a的去心的邻域,
记作U
0
(a
).
U (a) { x 0 x a }.
4.常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B) 例如 A {1,2},

高等数学课件 完整版 详细

高等数学课件 完整版 详细

h0
2!
即 ( x n ) nx n1 .
更一般地 ( x ) x1 . ( R)
例如,
(
x )
1
11
x2
2
1. 2x
( x 1 )
(1)x 11
1 x2
.
导数与微分
14
例4 求函数 f ( x) a x (a 0, a 1)的导数.
解 (a x ) lim a xh a x
h0
一、问题的提出
1.自由落体运动的瞬时速度问题
如图, 求 t0时刻的瞬时速度,
取一邻近于t
的时刻
0
t
,
运动时间
t
,
平均速度 v
s t
s s0 t t0
g 2 (t0
t).
当 t t0时, 取极限得
瞬时速度 v lim g(t0 t)
tt0
2
gt0 .
导数与微分
t0 t
t
1
2.切线问题 割线的极限位置——切线位置
导数与微分
播放 8
★ 单侧导数
1.左导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
2.右导数:
f( x0 )
lim
x x0 0
f (x) x
f (x0 ) x0
lim
x 0
f (x0
x) x
f (x0 );
f ( x0 ) tan , (为倾角)o
y f (x)
T
M
x0
x

高等数学课件完整版

高等数学课件完整版

-x f (x)
y
y f (x)
f (x)
o
xx
奇函数
4.函数的周期性:
设函数f ( x)的定义域为D, 如果存在一个不为零的
数l, 使得对于任一x D, ( x l ) D. 则称f ( x)为周
期函数, l称为f ( x)的周期. 且f ( x l) f ( x)恒成立.
(通常说周期函数的周期是指其最小正周期).
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 , 点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a) {x a x a }.
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 的一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
例如,
2x 1,
f
(
x)
x
2
1,

高等数学课件

高等数学课件

微积分在力学中的应用: 解决力学问题,如牛顿第 二定律、能量守恒等
微积分在电学中的应用: 解决电学问题,如电场强 度、电势等
微积分在热力学中的应用: 解决热力学问题,如热传 导、热对流等
微积分在光学中的应用: 解决光学问题,如折射率、 反射率等
微积分在声学中的应用: 解决声学问题,如声速、 声压等
微积分在材料科学中的应 用:解决材料科学问题, 如应力、应变等
傅里叶变换与拉 普拉斯变换的关 系:傅里叶变换 是拉普拉斯变换 的特殊情况,当 s=jω时,傅里 叶变换等于拉普 拉斯变换
傅里叶变换与拉 普拉斯变换的应 用:信号处理、 控制系统分析、 图像处理等领域
05
高等数学解题方法
代数法与因式分解法
代数法:通过代数运算求解问题的方法, 包括解方程、解不等式等
导数与微分
导数:函数在某一点的切线斜率 微分:函数在某一点的增量 导数与微分的关系:导数是微分的极限 导数的计算方法:极限法、导数公式、导数表等 微分的计算方法:微分公式、微分表等 导数与微分的应用:求极限、求导数、求微分等
不定积分与定积分
不定积分:求导数的逆运算,用于求解微分方程 定积分:求函数在某一区间上的面积,用于求解物理问题 积分公式:牛顿-莱布尼茨公式,用于求解不定积分 积分技巧:换元法、分部积分法、积分表等,用于求解定积分
高等数学课件完整版
单击添加副标题
汇报人:
目录
01 03 05
单击添加目录项标题
02
高等数学基础知识
04
高等数学解题方法
06
高等数学概述 高等数学核心内容 高等数学实际应用案例
01
添加章节标题
02
高等数学概述
高等数学的定义

《高等数学课件》课件

《高等数学课件》课件
导数的定义
导数是函数在某一点的变化率,表示函数在该 点的斜率或切线斜率。
导数的几何意义
导数在几何上表示曲线在某一点处的切线斜率 。
导数的性质
导数具有一些重要的性质,如线性性质、乘积法则、商的导数法则等。
导数的计算方法
基本初等函数的导数
对于一些基本的初等函数,如幂函数、指数 函数、三角函数等,它们的导数已经给出。
链式法则
乘积法则用于计算两个函数的导数,公式为 (uv)'=u'v+uv'。
乘积法则
链式法则是计算复合函数导数的重要工具, 通过链式法则可以将复合函数的导数转化为 简单函数的导数。
商的导数法则
商的导数法则是计算分式函数的导数的关键 ,公式为(u/v)'=(u'v-uv')/v^2。
微分的概念与性质
详细描述
无穷级数在数学、物理、工程等领域有广泛的应用。在 数学领域,无穷级数可以用来证明一些数学定理,如泰 勒定理等;在物理领域,无穷级数可以用来描述一些物 理现象,如振动和波动等;在工程领域,无穷级数可以 用来解决一些工程问题,如信号处理和图像处理等。
感谢您的观看
THANKS
重积分、方向导数等概念的基础。
06
微分方程
微分方程的基本概念
总结词
理解微分方程的基本定义和分类
详细描述
介绍微分方程的定义,以及微分方程 的分类,如线性微分方程、非线性微 分方程、一阶微分方程、高阶微分方 程等。
一阶微分方程的解法
总结词
掌握一阶微分方程的常见解法
详细描述
介绍一阶微分方程的常见解法,如变量分离法、积分因子法、常数变易法等,并 举例说明每种解法的应用。

-高等数学-课件完整版

-高等数学-课件完整版
高等数学-课件完整版
2020/10/17
一、 基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
2020/10/17
点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a) {x a x a }.
a
a
a x
点a的去心的邻域,
记作
U
0
(
a
).
U (a) { x 0 x a }.
2020/10/17
5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2

f
(
x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
2020/10/17
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
2020/10/17
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;

《高等数学的》PPT课件

《高等数学的》PPT课件

n n QRQP
Q
P
M R
五.两平面的夹角
设平面Π1的法向量为 n1={A1,B1,C1} 设平面Π2的法向量为 n2={A2,B2,C2}
n1
n2 θ
Π2
θ
Π1
两平面的法向量的夹角称 为两平面的夹角
如下图中的角θ.
由cos θ=|cos(n1,^n2)|
则两平面的夹角θ可由 两个向量夹角公式来确 定.
(2)通过z轴和点(-3,1,-2);
(3)平行于x轴且经过两点(4,0,-2)和
(5,1,7) .
(1).y+ 5=0;
(2).x+ 3y=0;
(3).9y- z- 2=0.
小结
空间平面方程: (用三元一次方程 表示)
三点式
向量式 n (r r )
一般式 A B C x D y , n { z A , B , C }
例2 求过 1 , 0 , 1 ) 点 , ( a 且 { 2 ,1 ,1 } 平 b ,{ 1 , 行 1 ,0 } 的
的平 . 面方程

设 所 的 求 法 平 n , n 向 a 面 ,n 量 b , 为
n a b .
i j k nab2 1 1ij3k.
1 1 0
AB{3,3,3},AC{0,2,3}, i jk
ABAC3 3 33i9j6k 0 2 3
因为该向量垂直平面 可取 n={-3,9,6} 不妨取点A(1,1,-1),可得点法式 方程:
x-3y-2z=0 为所求平面方程.
例5
指出下列各平面的特殊
z
位置,并画出各平面:
(1).x=0, y=0, z=0.
点法式方程的建立 已知平面上一点M0及其法向
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

5.绝对值:
a
a a
a0 a0
运算性质:
ab a b;
( a 0)
a a; bb
a b a b a b.
绝对值不等式:
x a (a 0)
a x a;
x a (a 0)
x a 或 x a;
二、函数概念
定义 设x 和y 是两个变量,D是一个给定的数集, 如果对于每个数x D , 变量 y 按照一定法则总有
对应法则f
(
W
y f (x0 )
自变量
)
因变量
约定: 定义域是自变量所能取的使算式有意义 Байду номын сангаас一切实数值.
例如, y 1 x2 例如, y 1
1 x2
D :[1,1] D : (1,1)
如果自变量在定 y
义域内任取一个数值
时,对应的函数值总
是只有一个,这种函 W
数叫做单值函数,否
y
则叫与多值函数.
确定的数值和它对应,则称 y 是 x的函数,记作
y f ( x) 数集D叫做这个函数的定义域
因变量
自变量
当x0 D时, 称f ( x0 )为函数在点x0处的函数值.
函数值全体组成的数集 W { y y f ( x), x D} 称为函数的值域.
函数的两要素: 定义域与对应法则.
( x D x0)
o
例如,x2 y2 a2.
(x, y)
x
x
D
定义: 点集C {( x, y) y f ( x), x D} 称为
函数y f ( x)的图形.
几个特殊的函数举例
(1) 符号函数
y
1 当x 0
y
sgn
x
0
当x 0
1 当x 0
1
o
x
-1
x sgn x x
(2) 取整函数 y=[x]
y
[x]表示不超过 x 的最大整数 4
3
2
-4 -3 -2 -1 1o -11 2 3 4 5 x -2 -3 -4
阶梯曲线
(3) 狄利克雷函数
y
D( x)
1 0
当x是有理数时 当x是无理数时
y
1
• 无理数点
o
有理数点
x
(4) 取最值函数
y max{ f ( x), g( x)}
y
f (x)
g( x)
一、基本概念
1.集合: 具有某种特定性质的事物的总体.
组成这个集合的事物称为该集合的元素.
aM, aM, A {a1 , a2 ,, an }
有限集
M { x x所具有的特征} 无限集
若x A,则必x B,就说A是B的子集. 记作 A B.
数集分类: N----自然数集 Z----整数集 Q----有理数集 R----实数集
y
y f (x)
f (x1)
f (x2 )
o
x
I
3.函数的奇偶性:
设D关于原点对称, 对于x D, 有 f ( x) f ( x) 称 f ( x)为偶函数;
三、函数的特性
1.函数的有界性:
若X D, M 0, x X , 有 f ( x) M 成立,
则称函数f ( x)在X上有界.否则称无界.
y M
y M
y=f(x)
o
x
有界 X
x0
o
X
x 无界
-M
-M
2.函数的单调性:
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (1) f ( x1 ) f ( x2 ),
有限区间
[a,) {x a x} (,b) {x x b}
无限区间
oa
x
ob
x
区间长度的定义:
两端点间的距离(线段的长度)称为区间的长度.
3.邻域: 设a与是两个实数 , 且 0.
数集{ x x a }称为点a的邻域 , 点a叫做这邻域的中心, 叫做这邻域的半径 .
U (a) {x a x a }.
数集间的关系: N Z, Z Q, Q R. 若A B,且B A,就称集合A与B相等. ( A B) 例如 A {1,2},
C { x x2 3x 2 0}, 则 A C. 不含任何元素的集合称为空集. (记作 ) 例如, { x x R, x2 1 0}
规定 空集为任何集合的子集.
a
a
a x
点a的去心的邻域,
记作U
0
(a
).
U (a) { x 0 x a }.
4.常量与变量: 在某过程中数值保持不变的量称为常量, 而数值变化的量称为变量. 注意 常量与变量是相对“过程”而言的. 常量与变量的表示方法: 通常用字母a, b, c等表示常量, 用字母x, y, t等表示变量.
则称函数 f ( x)在区间 I上是单调增加的 ;
y
y f (x)
f (x2 )
f (x1)
o
x
I
设函数 f ( x)的定义域为D, 区间I D, 如果对于区间 I 上任意两点x1及 x2 , 当 x1 x2时, 恒有 (2) f ( x1 ) f ( x2 ), 则称函数 f ( x)在区间I上是单调减少的;
2.区间: 是指介于某两个实数之间的全体实数. 这两个实数叫做区间的端点.
a,b R,且a b.
{x a x b} 称为开区间, 记作 (a,b)
oa
b
x
{x a x b} 称为闭区间, 记作[a,b]
oa
b
x
{x a x b} 称为半开区间, 记作 [a,b)
{x a x b} 称为半开区间, 记作 (a,b]
o
x
y min{ f ( x), g( x)}
y
f (x)
g( x)
o
x
在自变量的不同变化范围中, 对应法则用不同的 式子来表示的函数,称为分段函数.
例如,
2x 1,
f
(
x)
x
2
1,
x0 x0
y x2 1
y 2x 1
例1 脉冲发生器产生一个单三角脉冲,其波形如图
所示,写出电压U与时间t(t 0)的函数关系式.
解 当 t [0, ]时, 2
U
E
t
2E t;
2 当 t ( , ]时,
2
U
( , E)
2
E
o
(,0) t
2
单三角脉冲信号的电压
U
0
E
0
(t
),
即U 2E (t )
2
当 t (,) 时, U 0.
U
( , E)
2
E
U U (t)是一个分段函数,
其表达式为
o
(,0) t
2
2E t,
U(t)
2E (t
0,
),
t [0, ] 2
t ( ,] 2
t (,)
例2
设f
(
x)
1 2
0
x
1 ,
求函数
f
(x
3)的定义域.
1 x2

f
(
x)
1 2
0 x1 1 x2
f
(
x
3)
1 2
0 x31 1 x32
1 2
3 x 2 2 x 1
故 D f :[3,1]
相关文档
最新文档