三角形的中位线-2020-2021学年八年级数学下册尖子生同步培优题典(原卷版)【苏科版】
2020-2021学年八年级数学下册尖子生同步培优题典 专题1
2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】专题1.9第1章三角形的证明单元测试(基础卷)姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分120分,试题共26题,选择10道、填空8道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.等腰三角形的周长为26cm,一边长为6cm,那么腰长为()A.6cm B.10cm C.6cm或10cm D.14cm【分析】题中给出了周长和一边长,而没有指明这边是否为腰长,则应该分两种情况进行分析求解.【解析】①当6cm为腰长时,则腰长为6cm,底边=26﹣6﹣6=14cm,因为14>6+6,所以不能构成三角形;②当6cm为底边时,则腰长=(26﹣6)÷2=10cm,因为6﹣6<10<6+6,所以能构成三角形;故选:B.2.下列说法中:①两个全等三角形一定成轴对称;②等腰三角形的对称轴是底边上的中线;③等边三角形一边上的高所在的直线就是这边的垂直平分线;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形.正确的有()A.1个B.2个C.3个D.4个【分析】根据题轴对称的性质,对题中条件进行一一分析,排除错误答案.【解析】①两个全等三角形不一定成轴对称,因为它们不一定关于某直线对称,故①的结论错误;②等腰三角形的对称轴是底边上的中线所在的直线,故②结论错误;③等边三角形一边上的高所在的直线就是这边的垂直平分线,正确;④一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,符合轴对称性质,正确.所以正确的有2个.故选:B.3.如图,已知AB∥CD,OA、OC分别平分∠BAC和∠ACD,OM⊥AC于点M,且OM=3,则AB、CD 之间的距离为()A.2B.4C.6D.8【分析】作OF⊥AB,延长FO与CD交于G点,根据角平分线的性质可得,OM=OF=OG,即可求得AB与CD之间的距离.【解析】作OF⊥AB,延长FO与CD交于G点,∵AB∥CD,∴FG垂直CD,∴FG就是AB与CD之间的距离.∵∠ACD平分线的交点,OE⊥AC交AC于M,∴OM=OF=OG,∴AB与CD之间的距离等于2OM=6.故选:C.4.如图:DE是△ABC中AC边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC的周长为()厘米.A.16B.18C.26D.28【分析】利用线段垂直平分线的性质得AE=CE,再等量代换即可求得三角形的周长.【解析】∵DE是△ABC中AC边的垂直平分线,∴AE=CE,∴△EBC的周长=BC+BE+CE=BC+BE+CE=BC+AB=10厘米+8厘米=18厘米,故选:B.5.如图,在△ABC中,AB=AC,点D是BC边上的中点,∠BAD=50°,则∠C的大小为()A.20°B.30°C.40°D.50°【分析】根据等腰三角形的三线合一定理可得AD⊥BC,然后根据三角形的内角和定理求得∠B的度数,然后根据等腰三角形中等边对等角即可求解.【解析】∵AB=AC,点D为BC的中点,∴AD⊥BC,又∵∠BAD=50°,∴∠B=90°﹣∠BAD=90°﹣50°=40°,又∵AB=AC,∴∠C=∠B=40°.故选:C.6.到三角形三个顶点的距离相等的点是三角形()的交点.A.三个内角平分线B.三边垂直平分线C.三条中线D.三条高【分析】根据线段垂直平分线上的点到两端点的距离相等解答.【解析】到三角形三个顶点的距离相等的点是三角形三边垂直平分线的交点.故选:B.7.如图,△ABC是等边三角形,AD是角平分线,△ADE是等边三角形,下列结论不正确的是()A.AD⊥BC B.EF=FD C.BE=BD D.AE=AC【分析】根据等腰三角形三线合一,即可一一判断.【解析】∵△ABC是等边三角形,△AED是等边三角形,∴AB=AC=BC,∠BAC=60°,AE=AD=ED,∠EAD=60°,∵∠DAB=∠DAC=30°,∴AD⊥BC,故①正确,∠EAB=∠BAD=30°,∴AB⊥ED,EF=DF,故②正确∴BE=BD,故③正确,无法得出AC=AE,故④错误;故选:D.8.如图,在Rt△ABC中,∠B=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC 的其他边上,则可以画出的不同的等腰三角形的个数最多为()A.4B.5C.6D.7【分析】①以B为圆心,BC长为半径画弧,交AB于点D,△BCD就是等腰三角形;②以A为圆心,AC长为半径画弧,交AB于点E,△ACE就是等腰三角形;③以C为圆心,BC长为半径画弧,交AC于点F,△BCF就是等腰三角形;④以C为圆心,BC长为半径画弧,交AB于点K,△BCK就是等腰三角形;⑤作AB的垂直平分线交AC于G,则△AGB是等腰三角形;⑥作BC的垂直平分线交AB于I,则△BCI和△ACI是等腰三角形.【解析】如图,可以画出7个等腰三角形;故选:D.9.如图,△ABC中,边AB,BC的垂直平分线相交于点P.以下结论:①P A=PC;②∠BPC=90°+1 2∠BAC;③∠ABP+∠BCP+∠CAP=90°;④∠APC=2∠ABC.一定正确的有()A.1个B.2个C.3个D.4个【分析】根据线段的垂直平分线的性质得到P A=PB=PC,根据线段垂直平分线的判定定理、等腰三角形的性质即可.【解析】∵边AB、BC的垂直平分线交于点P,∴P A=PB,PB=PC,∴P A=PC,①正确;∵P A=PB,P A=PC,∴∠P AB=∠PBA,∠P AC=∠PCA,∵∠BPC=∠P AB+∠PBA+∠P AC+∠PCA,∴∠BPC=2∠BAC,故②错误;同理:∠APC=2∠ABC,故④正确;∵PB=PC,∴∠PCB=∠PBC,∵∠BPC+∠PCB+∠PBC=180°,∴2∠BAC+2∠PCB=180°,∴∠ABP+∠BCP+∠CAP=90°;③正确;故选:C.10.如图,Rt△ABC中,∠ACB=90°,∠BAC=30°,∠ACB的平分线与∠ABC的外角平分线交于E点,连接AE,∠AEB的度数是()A.30°B.35°C.45°D.35°【分析】作EF⊥AC交CA的延长线于F,EG⊥AB于G,EH⊥BC交CB的延长线于H,根据角平分线的性质和判定得到AE平分∠F AG,求出∠EAB的度数,根据角平分线的定义求出∠ABE的度数,根据三角形内角和定理计算得到答案.【解析】作EF⊥AC交CA的延长线于F,EG⊥AB于G,EH⊥BC交CB的延长线于H,∵CE平分∠ACB,BE平分∠ABD,∴EF=EH,EG=EH,∴EF=EF,又EF⊥AC,EG⊥AB,∴AE平分∠F AG,∵∠CAB=40°,∴∠BAF=140°,∴∠EAB=70°,∵∠ACB=90°,∠CAB=40°,∴∠ABC=50°,∴∠ABH=130°,又BE平分∠ABD,∴∠ABE=65°,∴∠AEB=180°﹣∠EAB﹣∠ABE=45°,故选:C.二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.把命题“等角的补角相等”改写成“如果…那么…”的形式是 如果两个角是等角的补角,那么它们相等 .【分析】命题中的条件是两个角相等,放在“如果”的后面,结论是这两个角的补角相等,应放在“那么”的后面.【解析】题设为:两个角是等角,结论为:它们的补角相等,故写成“如果…那么…”的形式是:如果两个角是等角的补角,那么它们相等. 故答案为:如果两个角是等角的补角,那么它们相等.12.等腰三角形一腰上的高与另一腰的夹角为30°,腰长为6,则其底边上的高是 3或3√3 . 【分析】分①三角形是钝角三角形时,根据直角三角形30°角所对的直角边等于斜边的一半可得AD =12AB ,再根据等腰三角形两底角相等和三角形的一个外角等于与它不相邻的两个内角的和求出∠ABC =30°,然后根据角平分线上的点到角的两边距离相等解答,②三角形是锐角三角形时,判断出△ABC 是等边三角形,再根据等边三角形的性质解答. 【解析】①三角形是钝角三角形时,如图1, ∵∠ABD =30°, ∴AD =12AB =12×6=3, ∵AB =AC ,∴∠ABC =∠ACB =12∠BAD =12(90°﹣30°)=30°, ∴∠ABD =∠ABC ,∴底边BC 上的高AE =AD =3;②三角形是锐角三角形时,如图2,∵∠ABD =30°, ∴∠A =90°﹣30°=60°, ∴△ABC 是等边三角形, ∴底边上的高为√32×6=3√3, 综上所述,底边上的高是3或3√3. 故答案为:3或3√3.13.如图,在Rt△ABC中,∠C=90°,∠B=30°,AD平分∠BAC,BD=6,则CD的长为3.【分析】由角平分线的定义得到∠BAD=∠CAD=30°,结合已知条件和对角对等边推知AD=BD=6,所以在含有30度角的直角△ACD中来求CD的长度即可.【解析】∵在Rt△ABC中,∠C=90°,∠B=30°,∴∠BAC=60°,又AD平分∠BAC,∴∠BAD=∠CAD=30°,∴∠BAD=∠B=30°,∴AD=BD=6,∴CD=12AD=3,故答案是:3.14.如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为19cm.【分析】由已知条件,利用线段的垂直平分线的性质,得到AD=CD,AC=2AE,结合周长,进行线段的等量代换可得答案.【解析】∵DE是AC的垂直平分线,∴AD=CD,AC=2AE=6cm,又∵△ABD的周长=AB+BD+AD=13cm,∴AB+BD+CD=13cm,即AB+BC=13cm,∴△ABC的周长=AB+BC+AC=13+6=19cm.故答案为19cm.15.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠F AC=65°,则∠B的度数为65°.【分析】根据角平分线的定义得出∠CAD=∠BAD,根据线段垂直平分线的性质得出F A=FD,推出∠FDA=∠F AD,根据三角形的外角性质得出∠FDA=∠B+∠BAD,代入求出即可.【解析】∵AD平分∠CAB,∴∠CAD=∠BAD,设∠CAD=∠BAD=x°,∵EF垂直平分AD,∴F A=FD,∴∠FDA=∠F AD,∵∠F AC=65°,∴∠F AD=∠F AC+∠CAD=65°+x°,∵∠FDA=∠B+∠BAD=∠B+x°,∴65°+x°=∠B+x°,∴∠B=65°,故答案为:65°.16.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ACF=48°,则∠ABC的度数为48°.【分析】根据角平分线的性质可得∠DBC=∠ABD,再根据线段垂直平分线的性质可得BF=CF,进而可得∠FCE=24°,然后可算出∠ABC的度数.【解析】∵BD平分∠ABC,∴∠DBC=∠ABD,∵∠A=60°,∴∠ABC+∠ACB=120°,∵∠ACF=48°,∵BC的中垂线交BC于点E,∴BF=CF,∴∠FCB=∠FBC,∴∠ABC=2∠FCE,∵∠ACF=48°,∴3∠FCE=120°﹣48°=72°,∴∠FCE=24°,∴∠ABC=48°,故答案为:48°17.如图,在△ABC中,∠ACB=90°,AD平分∠CAB,交边BC于点D,过点D作DE⊥AB,垂足为E.若∠CAD=20°,则∠EDB的度数是40°.【分析】根据角平分线的定义得∠CAB=40°,由直角三角形的性质计算即可得解.【解析】∵AD平分∠CAB,∠CAD=20°,∴∠CAB=2∠CAD=40°,∵∠ACB=90°,∴∠B=90°﹣40°=50°,∵DE⊥AB,∴∠DEB=90°,∴∠EDB=90°﹣50°=40°,故答案为:40°.18.如图,MN是△ABC中边AB的垂直平分线,垂足为F,AD是∠CAB的平分线,且MN与AD交于点O.连接BO并延长交AC于点E.某同学分析图形后得出下列结论:①AF=BF;②OE=OF;③OA=OB;④∠CAD=∠ABE.上述结论一定正确的是①③④(填序号).【分析】先根据角平分线的性质判断出A、B的正误;再根据线段垂直平分线的性质判断B、C的正误即可.【解析】∵MN是边AB的垂直平分线,∴AF=BF,OA=OB,∴①③正确;∵AD是∠CAB的平分线,∴∠CAD=∠BAD,∴④正确;∵BE不一定垂直AC,∴无法判断OE、OF是否相等,∴②错误;正确的有①③④,故答案为:①③④.三、解答题(本大题共8小题,共66分.解答时应写出文字说明、证明过程或演算步骤)19.如图,△ABC是等边三角形,AB=2cm,求高AD的长和△ABC的面积.【分析】根据等边三角形三线合一的性质,则D为BC中点,且AD⊥BC,根据勾股定理即可求AD的值,根据AD、BC即可计算△ABC的面积.【解析】∵等边三角形三线合一的性质,∴D为BC中点,BD=DC=1cm,∵AD⊥BC,∴AD=√AB2−BD2=√3cm,∴△ABC的面积为S=12BC•AD=12×2cm×√3cm=√3cm2.答:高AD的长为√3cm,△ABC的面积为√3cm2.20.已知:如图,AB=AC,点D是BC的中点,AB平分∠DAE,AE⊥BE,垂足为E.求证:AD=AE.【分析】求简单的线段相等,可证线段所在的三角形全等,结合本题,证△ADB≌△AEB即可.【解析】证明:∵AB=AC,点D是BC的中点,∴∠ADB=90°,∵AE⊥EB,∴∠E=∠ADB=90°,∵AB平分∠DAE,∴∠1=∠2;在△ADB和△AEB中,{∠E=∠ADB=90°∠1=∠2AB=AB,∴△ADB≌△AEB(AAS),∴AD=AE.21.如图,已知∠AOB及点C、D两点,请利用直尺和圆规作一点P,使得点P到射线OA、OB的距离相等,且P点到点C、D的距离也相等.【分析】利用角平分线的作法作出角平分线,再作出线段CD垂直平分线进而得出P点即可.【解析】如图所示:P点即为所求.22.如图,已知AD为等腰三角形ABC的底角的平分线,∠C=90°,求证:AB=AC+CD.【分析】作DE⊥AB于E,根据等腰三角形的性质证明DE=BE,根据角平分线的性质得到CD=DE,证明△CAD≌△EAD,得到AC=AE,得到答案.【解析】证明:作DE ⊥AB 于E ,∵△ABC 是等腰直角三角形,∴∠B =45°,又DE ⊥AB ,∴DE =BE ,∵AD 为△ABC 的底角的平分线,∠C =90°,DE ⊥AB ,∴DE =DC ,则CD =BE ,在△CAD 和△EAD 中,{∠C =∠AED ∠CAD =∠EAD AD =AD,∴△CAD ≌△EAD ,∴AC =AE ,AB =AE +EB =AC +CD .23.如图,在直角三角形ABC 中,∠BCA =90°,∠A =60°,CD 是角平分线,在CB 上截取CE =CA .(1)求证:DE =BE ;(2)若AC =1,AD =√3−1,试求△ABC 的面积.【分析】(1)证明△ACD ≌△ECD ,可得∠CAD =∠CED =60°,则结论证得;(2)求出BE 的长,则BC 可求出,由三角形的面积公式可求出答案.【解析】证明:(1)已知CD 是角平分线,∴∠ACD =∠ECD在△ACD 和△ECD 中:{∠ACD=∠ECDCD=CD,∴△ACD≌△ECD(SAS),∴∠CAD=∠CED=60°,又∵∠B=90°﹣60°=30°,∴∠EDB=30°,∴DE=BE,(2)解:∵△ACD≌△ECD,∴CE=AC=1,DE=AD=√3−1,又∵DE=BE,∴BE=√3−1,∴BC=CE+BE=√3,∴S△ABC=12AC×BC=12×1×√3=√32.24.如图,点C为线段AB上任意一点(不与点A、B重合),分别以AC、BC为一腰在AB的同侧作等腰三角形ACD和等腰三角形BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角,且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD相交于点P,连接PC.求证:(1)△ACE≌△DCB;(2)∠APC=∠BPC.【分析】(1)由已知可得∠ACE=∠DCB,然后根据SAS即可证明△ACE≌△DCB;(2)由(1)证得的△ACE≌△DCB可知AE=BD,根据全等三角形的面积相等,从而证得AE和BD边上的高相等,即CH=CG,最后根据角的平分线定理的逆定理即可证得∠APC=∠BPC.【解析】(1)证明:∵∠ACD=∠BCE,∴∠ACD+∠DCE=∠DCE+∠BCE,∴∠ACE=∠DCB,在△ACE和△DCB中{∠ACE=∠DCB,CE=CB∴△ACE≌△DCB(SAS),(2)证明:如图,分别过点C作CH⊥AE于H,CG⊥BD于G,∵△ACE≌△DCB,∴AE=BD,S△ACE=S△DCB,∴AE和BD边上的高相等,即CH=CG,∴∠APC=∠BPC;25.如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与P A相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.(1)判断DE与DP的位置关系,并说明理由;(2)若AC=6,BC=8,P A=2,求线段DE的长.【分析】(1)连接OD,根据等腰三角形的性质得到∠A=∠PDA,根据线段垂直平分线的性质得到EB =ED,于是得到结论;(2)连接PE,设DE=x,则EB=ED=x,CE=8﹣x,根据勾股定理即可得到结论.【解析】(1)DE⊥DP,理由如下:∵PD=P A,∴∠A=∠PDA,∵EF是BD的垂直平分线,∴EB=ED,∴∠B=∠EDB,∵∠C=90°,∴∠A+∠B=90°,∴∠PDA+∠EDB=90°,∴∠PDE=180°﹣90°=90°,∴DE⊥DP;(2)连接PE,设DE=x,则EB=ED=x,CE=8﹣x,∵∠C=∠PDE=90°,∴PC2+CE2=PE2=PD2+DE2,∴42+(8﹣x)2=22+x2,解得:x=4.75,则DE=4.75.26.已知:如图,△ABC中,∠ABC=45°,DH垂直平分BC交AB于点D,BE平分∠ABC,且BE⊥AC 于E,与CD相交于点F.(1)求证:BF=AC;(2)求证:CE=12 BF.【分析】(1)由ASA证△BDF≌△CDA,进而可得出第(1)问的结论;(2)在△ABC中由垂直平分线可得AB=BC,即点E是AC的中点,再结合第一问的结论即可求解.【解析】证明:(1)∵DH垂直平分BC,且∠ABC=45°,∴BD=DC,且∠BDC=90°,∵∠A +∠ABF =90°,∠A +∠ACD =90°, ∴∠ABF =∠ACD ,在△BDF 和△CDA 中,{∠BDF =∠CDA DB =DC ∠DBF =∠DCA,∴△BDF ≌△CDA (ASA ),∴BF =AC .(2)由(1)得BF =AC ,∵BE 平分∠ABC ,且BE ⊥AC ,在△ABE 和△CBE 中,{∠ABE =∠CBE BE =BE ∠AEB =∠CEB =90°,∴△ABE ≌△CBE (ASA ),∴CE =AE =12AC =12BF .。
三角形的中位线专项提升训练(重难点培优)-八年级数学下册尖子生培优必刷题(原卷版)【北师大版】
【拔尖特训】2022-2023学年八年级数学下册尖子生培优必刷题【北师大版】专题6.3三角形的中位线专项提升训练(重难点培优)班级:___________________ 姓名:_________________ 得分:_______________注意事项:本试卷满分120分,试题共24题,其中选择10道、填空6道、解答8道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2021秋•岱岳区期末)如图,在△ABC中,点D、E分别是AB、AC边的中点,∠B=60°,则∠ADE 的度数为()A.60°B.70°C.80°D.50°2.(2022秋•长沙期中)如图,在△ABC中,D,E分别是AB,AC的中点,F,G分别是AD,AE的中点,且FG=2cm,则BC的长度是()A.4cm B.6cm C.8cm D.10cm3.(2022秋•射洪市期中)如图,A、B两点被一座山隔开,M、N分别是AC、BC中点,测量MN的长度为30m,那么AB的长度为()A.30m B.60m C.120m D.160m4.(2022春•开福区校级期中)如图,在四边形ABCD中,点E、F分别是AB、AC的中点,连接EF,若EF=4,则BC的长为()A.2B.4C.6D.85.(2022春•南岗区校级期中)如图,在△ABC中,D,E分别是AB,AC的中点,连接ED,F是ED延长线上一点,连接AF、CF,若∠AFC=90°,DF=1,AC=6,则BC的长度为()A.2B.3C.4D.56.(2022春•鹿城区校级期中)如图,在△ABC中,D,E分别是BC,AC的中点,F是AB边上的一个动点,连结DE,EF,FD.若△ABC的面积为20,则△DEF的面积是()A.3B.4C.5D.67.(2021秋•潍坊期末)如图,已知△ABC中,∠BAC=80°,AD平分∠BAC,BD⊥AD,垂足为D,点E 为BC的中点,连结DE.则∠BDE的度数为()A.130°B.125°C.120°D.100°8.(2022春•大足区期末)如图,在Rt△ABC中∠ACB=90°,∠A=30°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=BC,若EF=2,则DE的长为()A.2B.1C.D.9.(2022春•朝天区期末)如图,在△ABC中,AB=BC=10,BD平分∠ABC交AC于点D,点F在BC上,且BF=4,连接AF,E为AF的中点,连接DE,则DE的长为()A.1B.2C.3D.410.(2022春•乐陵市期末)数学课上,大家一起研究三角形中位线定理的证明,小丽和小亮在学习思考后各自尝试作了一种辅助线,如图1,2.其中辅助线作法能够用来证明三角形中位线定理的是()图1为小丽的辅助线作法:延长DE到F,使EF=DE,连接DC、AF、FC.图2为小亮的辅助线作法:过点E作GE∥AB,过点A作AF∥BC,GE与AF交于点F.A.小丽和小亮的辅助线作法都可以B.小丽和小亮的辅助线作法都不可以C.小丽的辅助线作法可以,小亮的不可以D.小亮的辅助线作法可以,小丽的不可以二、填空题(本大题共6小题,每小题3分,共18分)请把答案直接填写在横线上11.(2022秋•思明区校级月考)如图,在△ABC中,BC=4cm,点D是AB的中点,过点D作DE∥BC交AC于点E,则DE=cm.12.(2022秋•普陀区期中)如图,在△ABC中,CD平分∠ACB,且CD⊥AB于点D,DE∥BC交AC于点E,BC=3cm,AB=2cm.那么△ADE的周长为cm.13.(2022秋•思明区校级期中)如图,在△ABC中,AB=8,BC=14,D,E分别是边AB,AC的中点,点F在DE上,且∠AFB=90°,则EF的长是.14.(2021秋•新泰市期末)如图,在△ABC中,CE是中线,CD是角平分线,AF⊥CD交CD延长线于点F,EF=1,BC=4,则AC的长为.15.(2022秋•镇平县期中)在Rt△ABC中,∠C=90°,AC=6,BC=8,点N是BC边上一点,点M为AB边上的动点,点D、E分别为CN,MN的中点,则DE的最小值是.16.(2022秋•南昌期中)如图,在Rt△ABC中,∠C=90°,∠A=60°,D,E分别是AC,AB的中点.将线段DE绕着点E逆时针能转角α(0°<α≤180°)得到线段ED',连接BD′,若△D'BE是直角三角形,则α=°.三、解答题(本大题共8小题,共72分.解答时应写出文字说明、证明过程或演算步骤)17.(2022•扬州模拟)如图,在△ABC中,点D是AC的中点,DE∥BC交AB于点E,DF∥AB交BC于点F,说明△ADE与△DCF全等的理由.18.(2022春•望城区期末)如图,Rt△ABC,∠BAC=90°,D,E分别为AB,BC的中点,点F在CA的延长线上,∠FDA=∠B.(1)求证:AF=DE;(2)若AC=6,BC=10,求四边形AEDF的周长.19.(2017秋•岱岳区期末)如图,在四边形ABCD中,AD=BC,E,F,G,H分别是AB,CD,AC,EF 的中点,求证:GH⊥EF.20.已知如图,在四边形ABCD中,AD∥BC,BC>AD,BD平分∠ABC,E、F分别是BD、AC的中点.求证:(1)AE⊥BD(2)EF=.21.(2022春•东莞市期中)如图,在四边形ABCD中,AD=BC,P是BD的中点,M是DC的中点,N是AB的中点.请判断△PMN的形状,并说明理由.22.(2022春•江油市期中)如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.若∠ACB=90°,AC=12cm,DE=4cm.(1)求证:DE=BF;(2)求四边形DEFB的周长.23.(2022秋•郸城县期中)如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=10,CD=24,∠ABD=30°,∠BDC=120°,求EF的长.(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.24.(2022秋•安溪县期中)在四边形ABCD中,AB=CD,点E,F分别是边AD,BC的中点.(1)如图1,点P为对角线BD的中点,连接PE,PF,若∠PEF=26°,则∠EPF=度;(2)如图2,直线EF分别与BA,CD的延长线交于点M,N.求证:∠BMF=∠CNF.。
2020-2021学年北师大版八年级数学下三角形中位线定理习题含答案
三角形的中位线定理同步练习一.选择题(共7小题)1.如图,在四边形ABCD中,∠A=90°,AB=,AD=1,点M,N分别是边BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别是线段DM,MN的中点,则线段EF长度的最大值为()A.2B.C.1D.【解答】解:∵ED=EM,MF=FN,∴EF=DN,∴DN最大时,EF最大,∵N与B重合时DN最大,此时DN=DB===2,∴EF的最大值为1.故选:C.2.如图,在△ABC中,AB=3,AC=5,AD平分∠BAC,AD⊥BF于点D,点E为BC的中点,连接DE,则DE 的长是()A.0.5B.0.75C.1D.2【解答】解:∵在△ABC中,AD平分∠BAC,AD⊥BF,AB=3,∴点D是BF的中点,且AB=AF=3.∵AC=5,∴FC=AC﹣AF=5﹣3=2.又∵点E为BC的中点,∴DE是△BFC的中位线,∴DE=FC==1.故选:C.3.在Rt△ABC中,∠C=90°,∠A=30°,BC=4,D、E分别为AC、AB边上的中点,连接DE并延长DE到F,使得EF=2ED,连接BF,则BF长为()A.2B.2C.4D.4【解答】解:在Rt△ABC中,∠C=90°,∠A=30°,BC=4,∴AB=2BC=8,∠ABC=60°,∵E为AB边上的中点,∴AE=EB=4,∵D、E分别为AC、AB边上的中点,∴DE∥BC,∴∠AED=∠AED=60°,∴∠BEF=∠ABC=60°,在Rt△AED中,∠A=30°,∴AE=2DE,∵EF=2DE,∴AE=EF,∴△BEF为等边三角形,∴BF=BE=4,故选:C.4.如图,在四边形ABCD中,点P是对角线BD的中点,点E,F分别是AB,CD的中点,AD=BC,∠PEF=23°,则∠PFE的度数为()A.23°B.25°C.30°D.46°【解答】解:在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,∴FP,PE分别是△CDB与△DAB的中位线,∴PF=BC,PE=AD,∵AD=BC,∴PF=PE,故△EPF是等腰三角形.∵∠PEF=23°,∴∠PEF=∠PFE=23°.故选:A.5.如图,已知△ABC中,AB=AC,AD是∠BAC的平分线,AE是∠BAC的外角平分线,ED∥AB交AC于点G,下列结论:①AD⊥BC;②AE∥BC;③AE=AG;④AD2+AE2=4AG2.其中正确结论的个数是()A.1B.2C.3D.4【解答】解:连接EC,∵AB=AC,AD是∠BAC的平分线,∴AD⊥BC,故①正确;∵AB=AC,∴∠B=∠ACB,∵AE平分∠F AC,∴∠F AC=2∠F AE,∵∠F AC=∠B+∠ACB,∴∠F AE=∠B,∴AE∥BC,故②正确;∵AE∥BC,DE∥AB,∴四边形ABDE是平行四边形,∴AE=BD,∵AB=AC,AD⊥BC,∴CD=BD,∴AE=CD,∵AE∥BC,∠ADC=90°,∴四边形ADCE是矩形,∴AC=DE,AG=CG,DG=EG,∴DG=AG=CG=EG,在Rt△AED中,AD2+AE2=DE2=AC2=(2AG)2=4AG2,故④正确;∵AE=BD=BC,AG=AC,∴AG=AE错误(已知没有条件AC=BC),故③错误;即正确的个数是3个,故选:C.6.如图,BD为△ABC的中线,E为BD的中点,连接AE并延长交BC于点F,若BC的长为7,则BF的长为()A.B.C.D.【解答】解:取FC的中点H,连接DH,∵CD=DA,∴DH是△ACF的中位线,∴DH∥AF,∵BE=ED,∴BF=FH,∴BF=FH=HC=BC=,故选:A.7.如图,在△ABC中,D、E、F分别是BC、AC、AD的中点,若△ABC的面积是40,则四边形BDEF的面积是()A.10B.12.5C.15D.20【解答】解:∵D、E、F分别是BC、AC、AD的中点,∴S△ADE=S△ADC,S△ADC=S△ABC,S△DEF=S△ADE,∴S△DEF=S△ABC=×40=5,∵D、E、F分别是BC、AC、AD的中点,∴S△ABD=S△ABC=40=20,∴S△BDF=S△ADB=20=10,∴四边形BDEF的面积=S△BDF+S△DEF=15,故选:C.二.填空题(共7小题)8.已知△ABC中,AB=5,BC=6,AC=7,点D、E、F分别为三边中点,则△DEF的周长为9.【解答】解:∵点D,E分别AB、BC的中点,∴DE=AC=3.5,同理,DF=BC=3,EF=AB=2.5,∴△DEF的周长=DE+EF+DF=9,故答案为:9.9.如图,点A(0,4),点B(3,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P,若△ABP是直角三角形,则点P的坐标是(4,2)或(,2).【解答】解:∵点M、N分别是OA、AB的中点,点A(0,4),∴MN∥OB,MN=OB=1.5,OM=2,①当∠APB=90°时,在Rt△AOB中,AB===5,∵∠APB=90°,点N是AB的中点,∴PN=AB=2.5,则PM=PN+MN=4,∴点P的坐标是(4,2);②当∠ABP=90°时,过P作PE⊥x轴于E,连接AP,设BE=x,则PM=OE=x+3,由勾股定理得,PB=,AP=,在Rt△ABP中,AP==,则=,解得,x=,∴OE=+3=,∴P(,2),故答案为:(4,2)或(,2).10.在Rt△ABC中,∠C=90°,AC=3,BC=4,点N是BC边上一点,点M为AB边上的动点,点D、E分别为CN,MN的中点,则DE的最小值是.【解答】解:连接CM,∵点D、E分别为CN,MN的中点,∴DE=CM,当CM⊥AB时,CM的值最小,此时DE的值也最小,由勾股定理得:AB===5,∵S△ABC==,∴CM=,∴DE==,故答案为:.11.如图,在▱ABCD中,AC,BD交于点O,点E是AB的中点,OE=3cm,则AD的长是6cm.【解答】解:∵四边形ABCD是平行四边形,∴BO=DO,∵点E是AB的中点,∴EO=AD,∵OE=3,∴AD=6cm,故答案为:6.12.如图,在△ABC中,D、E分别是边AB、AC的中点,∠B=50°.先将△ADE沿DE折叠,点A落在三角形所在平面内的点为A1,则∠BDA1的度数为80°.【解答】解:∵D、E分别是边AB、AC的中点,∴DE∥BC,∴∠ADE=∠B=50°(两直线平行,同位角相等);又∵∠ADE=∠A1DE,∴∠A1DA=2∠B,∴∠BDA1=180°﹣2∠B=80°;故答案是:80°.13.如图,△ABC,点D,E在边BC上,∠ABC的平分线垂直AE,垂足为N,∠ACB的平分线垂直AD,垂足为M,若BC=16,MN=3,则△ABC的周长为38.【解答】解:在△BNA和△BNE中,,∴△BNA≌△BNE(ASA),∴BE=BA,AN=NE,同理,CD=CA,AM=MD,∵AM=MD,AN=NE,MN=3,∴DE=2MN=6,∵BE+CD﹣BC=DE,∴AB+AC=BC+DE=22,∴△ABC的周长=AB+AC+BC=22+16=38,故答案为:38.14.如图,在四边形BCDE中,BC⊥CD,DE⊥CD,AB⊥AE,垂足分别为C,D,A,BC≠AC,点M,N,F分别为AB,AE,BE的中点,连接MN,MF,NF.当BC=4,DE=5,∠FMN=45°时,则BE的长为.【解答】解:∵点M,N,F分别为AB,AE,BE的中点,∴MF,MN都是△ABE的中位线,∴MF∥AE,MN∥BE,∴四边形EFMN是平行四边形,∴∠AEB=∠NMF=45°,又∵AB⊥AE,∴∠ABE=45°,∴△ABE是等腰直角三角形,∴AB=AE,∵BC⊥CD,DE⊥CD,又∵∠ABC+∠BAC=90°,∠EAD+∠BAC=90°,∴∠ABC=∠EAD,∵∠C=∠D=90°,∴△ABC≌△EAD(AAS),∴BC=AD=4,CA=DE=5,∴Rt△ABC中,AB==,∴等腰Rt△ABE中,BE==,故答案为:.三.解答题(共10小题)15.如图,在△ABC中,BD、CE是△ABC的中线,BD与CE相交于点O,点F、G分别是BO、CO的中点,连接AO.若AO=6cm,BC=8cm.求四边形DEFG的周长.【解答】解:∵BD,CE是△ABC的中线,∴ED∥BC且ED=BC,∵F是BO的中点,G是CO的中点,∴FG∥BC且FG=BC,∴ED=FG=BC═4cm,同理GD=EF=AO=3cm,∴四边形DEFG的周长为3+4+3+4=14(cm).16.如图,M是△ABC的边BC的中点,AN平分∠BAC,且BN⊥AN,垂足为N,且AB=6,BC=10,MN=1.5,求△ABC的周长.【解答】解:延长线段BN交AC于E.∵AN平分∠BAC,在△ABN和△AEN中,∴△ABN≌△AEN(ASA),∴AE=AB=6,BN=NE,又∵M是△ABC的边BC的中点,∴CE=2MN=2×1.5=3,∴△ABC的周长是AB+BC+AC=6+10+6+3=25.17.如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.(1)求证:四边形ADEF是平行四边形;(2)求证:∠DHF=∠DEF.【解答】证明:(1)∵点D,E,F分别是AB,BC,CA的中点,∴DE、EF都是△ABC的中位线,∴EF∥AB,DE∥AC,∴四边形ADEF是平行四边形;(2)∵四边形ADEF是平行四边形,∴∠DEF=∠BAC,∵D,F分别是AB,CA的中点,AH是边BC上的高,∴DH=AD,FH=AF,∴∠DAH=∠DHA,∠F AH=∠FHA,∵∠DAH+∠F AH=∠BAC,∠DHA+∠FHA=∠DHF,∴∠DHF=∠BAC,∴∠DHF=∠DEF.18.如图,在四边形ABCD中,E,F分别是AD,BC的中点.(1)若AB=6,CD=8,∠ABD=30°,∠BDC=120°,求EF的长;(2)若∠BDC﹣∠ABD=90°,求证:AB2+CD2=4EF2.【解答】(1)解:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,AB=6,CD=8,∴PE∥AB,且PE=AB=3,PF∥CD且PF=CD=4.又∵∠ABD=30°,∠BDC=120°,∴∠EPD=∠ABD=30°,∠DPF=180°﹣∠BDC=60°,∴∠EPF=∠EPD+∠DPF=90°,在直角△EPF中,由勾股定理得到:EF===5,即EF=5;(2)证明:如图,取BD的中点P,连接EP、FP.∵E,F分别是AD、BC的中点,∴PE∥AB,且PE=AB,PF∥CD且PF=CD.∴∠EPD=∠ABD,∠BPF=∠BDC,∴∠DPF=180°﹣∠BPF=180°﹣∠BDC,∵∠BDC﹣∠ABD=90°,∴∠BDC=90°+∠ABD,∴∠EPF=∠EPD+∠DPF=∠ABD+180°﹣∠BDC=∠ABD+180°﹣(90°+∠ABD)=90°,∴PE2+PF2=(AB)2+(CD)2=EF2,∴AB2+CD2=4EF2.19.如图,在四边形ABCD中,AB=CD,E、F分别是BC、AD的中点,连接EF并延长,分别与BA,CD的延长线交于点M、N,证明:∠BME=∠CNE.【解答】证明:连接BD,取BD的中点H,连接HE,HF,∵E、F分别是BC、AD的中点,∴FH∥BM,FH=AB,EH∥CN,EH=CD,∴∠BME=∠HFE,∠CNE=∠HEF,∵AB=CD,∴FH=EH,∴∠HFE=∠HEF,∴∠BME=∠CNE.20.如图,已知四边形ABCD的对角线AC与BD相交于点O,且AC=BD,M、N分别是AB、CD的中点,MN分别交BD、AC于点E、F.你能说出OE与OF的大小关系并加以证明吗?【解答】解:相等.理由如下:取AD的中点G,连接MG,NG,∵G、N分别为AD、CD的中点,∴GN是△ACD的中位线,∴GN=AC,同理可得,GM=BD,∵AC=BD,∴GN=GM=AC=BD.∴∠GMN=∠GNM,又∵MG∥OE,NG∥OF,∴∠OEF=∠GMN=∠GNM=∠OFE,∴OE=OF.21.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,求证:EG、HF互相平分.【解答】证明:连接EH,GH,GF,∵E、F、G、H分别是BD、BC、AC、AD的中点,∴AB∥EH∥GF,GH∥BC,∴GH∥BF.∴四边形EHGF为平行四边形.∵GE,HF分别为其对角线,∴EG、HF互相平分.22.如图,在△ABC中,AB=AC,点D是边AB的中点,DE∥BC交AC于点E,连接BE,点F、G、H分别为BE、DE、BC的中点.(1)求证:FG=FH;(2)当∠A为多少度时,FG⊥FH?并说明理由.【解答】(1)证明:∵AB=AC.∴∠ABC=∠ACB,∵DE∥BC,∴∠ADE=∠ABC,∠AED=∠ACB,∴∠ADE=∠AED,∴AD=AE,∴DB=EC,∵点F、G、H分别为BE、DE、BC的中点,∴FG是△EDB的中位线,FH是△BCE的中位线,∴FG=BD,FH=CE,∴FG=FH;(2)解:延长FG交AC于N,∵FG是△EDB的中位线,FH是△BCE的中位线,∴FH∥AC,FN∥AB,∵FG⊥FH,∴∠A=90°,∴当∠A=90°时,FG⊥FH.23.如图,在△ABC中,AE平分∠BAC,BE⊥AE于点E,点F是BC的中点.(1)如图1,BE的延长线与AC边相交于点D,求证:EF=(AC﹣AB);(2)如图2,△ABC中,AB=9,AC=5,求线段EF的长.【解答】(1)证明:在△AEB和△AED中,,∴△AEB≌△AED(ASA)∴BE=ED,AD=AB,∵BE=ED,BF=FC,∴EF=CD=(AC﹣AD)=(AC﹣AB);(2)解:分别延长BE、AC交于点H,在△AEB和△AEH中,,∴△AEB≌△AEH(ASA)∴BE=EH,AH=AB=9,∵BE=EH,BF=FC,∴EF=CH=(AH﹣AC)=2.24.如图,AD为△ABC的中线,BE为△ABD的中线.(1)在△BED中作BD边上的高,垂足为F;(2)若△ABC的面积为20,BD=5.①△ABD的面积为10,②求△BDE中BD边上的高EF的长;(3)过点E作EG∥BC,交AC于点G,连接EC、DG且相交于点O,若S△ABC=2m,又S△COD=n,求S△GOC.(用含m、n的代数式表示)【解答】解:(1)作EF⊥BD垂足为F,(2)①∵AD为△ABC的中线,∴S△ABD=S△ABC,∵△ABC的面积为20,∴△ABD的面积为10;②∵BE为△ABD的中线,∴S△BDE=S△ABD=5,∵BD=5,∴EF的长=2;③∵EG∥BC,BE为△ABD的中线,∴EG是△ACD的中位线,∴DG是△ACD的中线,∴S△BDE=S△CDG,S△BDE=S△CDG=S△ABD=S△ABC=,∴S△GDC=,又∵S△COD=n,∴S△GOC=S△GDC﹣S△COD=.。
人教版八年级数学下册三角形的中位线练习题(含答案)
三角形的中位线练习题三角形中位线定义: _________________________________符号语言:在△ ABC中,D、E分别是AB、AC的中点, 则:线段DE是厶ABC的_____________ ,三不同点:①三角形中位线的两个端点都是三角形边的中点。
②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点相同点:都是一条线段,都有三条符号语言表述:v DE>^ABC的中位线(或AD=BD,AE=CE)二DE//、BC练习1 •连结三角形__________ 的线段叫做三角形的中位线.2 •三角形的中位线______ 于第三边,并且等于3 •一个三角形的中位线有_________ 条.4. 如图△ ABC中, D E分别是ABAC的中点,则线段CD>^ ABC的_______ ,线段。
丘是厶ABC ___________5、如图,D E、F分别是△ ABC各边的中点(1)如果EF= 4cm,那么BC= cm 如果AB= 10cm,那么DF= __________________________ cm7 .三角形的三边长分别是3cm 5cm, 6cm,则连结三边中点所围成的三角形的周长是 __________________ cm.8.在Rt△ ABC中,/ C=90°, AC=?5 ?BC=?12 ?则连结两条直角边中点的线段长为______________ .9 .若三角形的三条中位线长分别为2cm, 3cm, 4cm,则原三角形的周长为( )A . 4.5cmB . 18cmC . 9cmD . 36cm10•如图2所示,A, B两点分别位于一个池塘的两端,小聪想用绳子测量A, B间的距离,但绳子不够长,一位第1页1共7页(2)中线AD与中位线EF的关系是________6 .如图1所示,EF是厶ABC的中位线,若BC=8cm则AB C同学帮他想了一个主意:先在地上取一个可以直接到达的长为10m则A, B间的距离为()A, B的点C,找到AC, BC的中点D, E,并且测出DEA . 15mB . 25mC . 30mD . 20m11.已知△ ABC的周长为1,连结△ ABC的三边中点构成第二个三角形, 三个三角形,依此类推,第120081200912.如图3所示,已知四边形ABCD R, P分别是DC1~20082BC上的点,从点B向点C移动而点R不动时,A .线段EF的长逐渐增大C .线段EF的长不变D13.如图4,在厶ABC中, E, D,A . 10B . 20 CE,)1、~20092F分别是AP, RP的中点,当点P在BC上那么下列结论成立的是(B .线段EF的长逐渐减少.线段EF的长不能确定F分别是AB, BC CA的中点,AB=6, AC=4,则四边形.30 D . 40AEDF?勺周长是()14.如图所示,口ABCD的对角线AC, BD相交于点O, AE=EB求证:OE// BC.15.已知矩形ABCD中,AB=4cm, AD=10cm,点P在边BC上移动,点分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;E、F、G、H16 .如图所示,在△ ABC中,点D在BC上且CD=CA CF平分/ ACB AE=EB求证:EF=】BD.217.如图所示,已知在口ABCD中, E, F分别是AD, BC的中点,求证:MN/ BC.2010个三角形的周长是?再连结第二个三角形的三边中点构成第18. 已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点. 求证:四边形EFGH是平行四边形.19. 如图,点E, F, G, H分别是CD, BC, AB , DA的中点。
八年级数学下册 4.5 三角形的中位线同步练习题 浙教版(2021学年)
八年级数学下册 4.5三角形的中位线同步练习题(新版)浙教版编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学下册4.5 三角形的中位线同步练习题(新版)浙教版)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学下册4.5 三角形的中位线同步练习题(新版)浙教版的全部内容。
4.5 三角形的中位线1.如果等边三角形的边长为4,那么等边三角形的中位线长为( )A.2B.4 C.6 D.82.已知△ABC的各边长度分别为3cm,4 cm,5 cm,则连结各边中点的三角形的周长为( )A.2cmB.7cm C.5cm D.6 cm3.如图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是( )A.8 B.10 C.12D.144.如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为()A.50° B.60°C.70° D.80°5.如图,在△ABC,点D,E,F分别是边BC,AB,CA的中点,则图中平行四边形的个数为()A.1 B.2 C.3 D.46.如图,小聪与小慧玩跷跷板,跷跷板支架高EF为0。
6米,E是AB的中点,那么小聪能将小慧翘起的最大高度BC等于____米.7.如图,点D,E,F分别是△ABC三边上的中点.若△ABC的面积为12 cm2,则△DEF的面积为____cm2。
8.在▱ABCD中,点O是对角线AC,BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE=____.9.如图,▱ABCD的对角线AC,BD相交于点O,点E,F分别是线段AO,BO的中点,若AC+BD =24厘米,△OAB的周长是18厘米,则EF=____厘米.10.如图,△ABC中,点D,E分别是边BC,AC的中点,连结DE,AD,点F在BA的延长线上,且AF=错误!AB,连结EF,判断四边形ADEF的形状,并加以证明.11.如图,已知四边形ABCD中,点R,P分别是BC,CD上的点,点E,F分别是AP,RP的中点,当点P在CD上从点C向点D移动而点R不动时,那么下列结论成立的是()A.线段EF的长度逐渐增大B.线段EF的长度逐渐减少C.线段EF的长度不变D.线段EF的长与点P的位置有关12.如图,已知△ABC的周长为1,连结△ABC三边的中点构成第二个三角形,再连结第二个三角形三边的中点构成第三个三角形,再连结第三个三角形三边的中点构成第四个三角形,…,依此类推,则第n个三角形的周长为()A.(错误!)n-2 B.(错误!)n-1 C.(错误!)nD.(错误!)n+113.如图,在四边形ABCD中,点E,F,G,H分别是AD,BD,BC,AC上的中点,AB=5,CD=7,则四边形EFGH的周长为____.14.如图,点M是△ABC的边BC的中点,AN平分∠BAC,BN⊥AN于点N,延长BN交AC于点D。
三角形的中位线2021-2022学年八年级数学下学期同步优质讲义(人教版)(解析版)
§18.1.2.2 三角形的中位线一、教学目标1. 理解三角形中位线的概念,掌握三角形的中位线定理;2. 能利用三角形的中位线定理解决有关证明和计算问题.二、教学重难点1. 理解三角形中位线的概念,掌握三角形的中位线定理.(重点)2. 能利用三角形的中位线定理解决有关证明和计算问题.(难点)三、教学过程(一)情景导入1.平行四边形的性质和判定有哪些? 边:①AB ∥CD,AD____BC ②AB=CD,AD____BC 平行四边形ABCD ③AB ∥CD,AB_____CD角:∠BAD____∠BCD ,∠ABC____∠ADC对角线:AO____CO,DO____BO(二)合作探究知识点1 三角形的中位线1. 三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线数学语言:,AD BD AE CE ==,DE ∴是ABC ∆的中位线2. 三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半数学语言:DE 是ABC ∆的中位线,1//,2DE BC DE BC ∴=例1. 如图,点D 、E 分别是ABC 边BA 、BC 的中点,3AC =,则DE 的长为( )A .2B .43C .3D .32【答案】D 【分析】根据三角形中位线定理求DE 的长.【详解】根据三角形中位线定理:三角形的中位线平行于第三边,并且等于它的一半,可求得12DE AC = , 性 质判 定故选D.【点睛】本题考查三角形的中位线定理.(三)题型精讲题型一利用三角形中位线定理求线段长度例2.如图,在△ABC中,D是AB上一点,AD=AC,AE⊥CD,垂足为点E,F是BC的中点,若BD=16,则EF的长为()A.32B.16C.8D.4【答案】C【分析】根据等腰三角形的性质和中位线的性质求解即可.【详解】∵AD=AC,∴ACD△是等腰三角形,∵AE⊥CD,∵CE DE=,∵E是CD的中点,∵F是BC的中点,∵EF是∵BCD的中位线,∴1116822EF BD==⨯=,故答案为:C.【点睛】本题考查了三角形的线段长问题,掌握等腰三角形的性质和中位线的性质是解题的关键.变式2-1已知ABC∆的周长为16,点D,E,F分别为ABC∆三条边的中点,则DEF∆的周长为()A.8B.22C.16D.4【答案】A方法点拨:一个三角形有3条中位线,三角形的中位线平行于第三边,且等于第三边的一半【分析】由D ,E ,F 分别为ABC ∆三条边的中点,可知DE 、EF 、DF 为ABC ∆的中位线,即可得到DEF ∆的周长.【详解】解:如图,∵D ,E ,F 分别为ABC ∆三条边的中点, ∵12DF BC =,12DE AC =,12EF AB =, ∵16BC AC AB ++=, ∵()1116822DF DE EF BC AC AB ++=++=⨯=, 故选:A .【点睛】本题考查了三角形的中位线,熟练掌握三角形的中位线平行于第三边且是第三边的一半是解题的关键.变式2-2 如图:在△ABC 中,AB=13,BC=12,点D ,E 分别是AB ,BC 的中点,连接DE ,CD ,如果DE=2.5,那么△ACD 的周长是_____.【答案】18【分析】根据三角形中位线定理得到AC=2DE=5,AC∵DE ,根据勾股定理的逆定理得到∵ACB=90°,根据线段垂直平分线的性质得到DC=BD ,根据三角形的周长公式计算即可.【详解】∵D ,E 分别是AB ,BC 的中点,∵AC=2DE=5,AC∵DE ,AC 2+BC 2=52+122=169,AB 2=132=169,∵AC 2+BC 2=AB 2,∵∵ACB=90°,∵AC∵DE ,∵∵DEB=90°,又∵E 是BC 的中点,∵直线DE 是线段BC 的垂直平分线,∵DC=BD ,∵∵ACD 的周长=AC+AD+CD=AC+AD+BD=AC+AB=18,故答案为18.【点睛】本题考查的是三角形中位线定理、线段垂直平分线的判定和性质,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.变式2-3 如图,ABCD 的顶点C 在等边BEF 的边BF 上,点E 在AB 的延长线上,G 为DE 的中点,连接CG .若3AD =,2AB CF ==,则CG 的长为_______.【答案】32【分析】延长DC 交EF 于点M (图见详解),根据平行四边形与等边三角形的性质,可证∵CFM 是等边三角形,BF=BE=EF=BC+CF=5,可求出CF=CM=MF=2,可得C 、G 是DM 和DE 的中点,根据中位线的性质,可得出CG=12EM ,代入数值即可得出答案. 【详解】解:如下图所示,延长DC 交EF 于点M ,3AD =,2AB CF ==,平行四边形ABCD 的顶点C 在等边BEF 的边BF 上,//DM AE ∴,CMF ∴是等边三角形,2AB CF CM MF =∴===.在平行四边形ABCD 中,2AB CD ==,3AD BC ==, 又BEF 是等边三角形,325BF BE EF BC CF ===+=+=∴,523EM EF MF =∴=--=.方法点拨:三角形的三条中位线将原三角形分割成四个全等三角形,每个小三角形的周长都是原三角形周长的一半G 为DE 的中点,2CD CM ==,C ∴是DM 的中点,且CG 是DEM △的中位线,1322CG EM =∴=. 故答案为:32.【点睛】本题考查了平行四边形的性质、等边三角形的性质、中位线等知识点,延长DC 交EF 于点M ,利用平行四边形、等边三角形性质求出相应的线段长,证出CG 是DEM △的中位线是解题的关键.题型二 利用三角形中位线定理求面积 例3. 如图,在△ABC 中,点D 、E 、F 分别是各边的中点,若△ABC 的面积为16cm 2,则△DEF 的面积是( )cm 2.A .2B .4C .6D .8【答案】B 【分析】根据三角形中位线定理判定四边形BEFD 是平行四边形,然后可证明∵BDE ∵∵FED ,同理可证:∵DAF ∵∵FED ,∵EFC ∵∵FED ,从而这四个三角形彼此全等,它们的面积也相等,所以可求得△DEF 的面积.【详解】∵点D 、F 分别是AB ,AC 的中点,∵//DF BC ,DF =12BC ,∵//DF BE ,∵E 是BC 的中点,∵BE =12BC ,∵DF =BE ,∵四边形BEFD 是平行四边形,∵BD =EF ,在∵BDE 和∵FED 中,BE DF BD EF DE ED =⎧⎪=⎨⎪=⎩,∵∵BDE ∵∵FED (SSS ),同理可证∵DAF ∵∵FED ,∵EFC ∵∵FED ,即∵BDE ∵∵DAF ∵∵EFC ∵∵FED ,∵S △DEF =14S △ABC =14×16=4(cm 2), 故选:B .【点睛】本题考查了三角形的中位线定理、三角形全等的判定等知识.变式3-1 如图,在∵ABC 中,已知点D,E,F 分别为边BC,AD,CE 的中点, 且∵ABC 的面积是32,则图中阴影部分面积等于 ( )A .16B .8C .4D .2【答案】B 【分析】由点E 为AD 的中点,可得△ABC 与△BCE 的面积之比,同理可得△BCE 和△EFB 的面积之比,即可解答出.【详解】∵E 为AD 的中点,∵S △ABC :S △BCE =2:1,同理可得,S △BCE :S △EFB =2:1,∵S △ABC =32,∵S △EFB =14S △ABC =14×32=8. 故选B .【点睛】本题主要考查了三角形面积及三角形面积的等积变换,三角形的中线将三角形分成面积相等的两部分.变式3-2 如图,在ABC 中,13AB AC ==,10BC =.M ,N 分别是AB ,AC 的中点,D ,E 为BC 上的动点,且5DE =.连接DN ,EM ,则图中阴影部分的面积和为______.【答案】30【分析】连接MN ,根据题意可以得到MN 是三角形ABC 的中位线,过点A 作AF 垂直于BC 与点F ,进而求解面积即可;【详解】连接MN ,∵ M 、N 分别是AB 、AC 的中点,∵ MN 为三角形ABC 的中位线,∵BC=10, ∵ 152MN BC == , 过点A 作AF 垂直于BC 与点F ,∵AB=AC=13,∵点F 为BC 的中点, ∵152BF BC ==, ∵22=135=12AF - ,∵阴影部分的高为12,∵MN=DE=5,∵1=512=302S⨯⨯阴影,故答案为:30.【点睛】本题考查了三角形的面积和中位线的性质,掌握数形结合的方法是解题的关键;题型三利用三角形中位线定理进行证明例4.如图,在Rt∵ABC中,∵ACB=90°,点D,E分别是边AB,AC的中点,延长BC到点F,使CF=12BC.连结CD、EF,那么CD与EF相等吗?请证明你的结论.【分析】根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∵BC且DE12=BC,然后证得四边形DEFC是平行四边形,再根据平行四边形的对边相等即可说明.【详解】解:结论:CD=EF.理由如下:∵D、E分别是边AB、AC的中点,∵DE∵BC,DE12=BC.∵CF12=BC,方法点拨:三角形的三条中位线将原三角形分割成四个全等三角形,每个小三角形的面积都是原三角形面积的14∵DE =CF ,∵四边形DEFC 是平行四边形,∵CD =EF .【点睛】本题主要考查了三角形的中位线和平行四边形的判定与性质,掌握三角形的中位线平行于第三边并且等于第三边的一半成为解答本题的关键.变式4 如图,等边△ABC 的边长是2,D 、E 分别为AB 、AC 的中点,延长BC 至点F ,使12CF BC =,连接CD 和EF .(1)求证:DE =CF ;(2)求EF 的长.【分析】(1)直接利用三角形中位线定理得出12DE BC =,∥DE BC ,进而得出DE =FC ; (2)利用平行四边形的判定与性质得出DC =EF ,进而利用等边三角形的性质以及勾股定理得出EF 的长【详解】(1)证明:∵D 、E 分别为AB 、AC 的中点, ∵12DE BC =,∥DE BC , ∵延长BC 至点F ,使12CF BC =, ∵DE FC =,DE FC ∥;(2)解:∵DE FC =,DE FC ∥,∵四边形DEFC 是平行四边形,∵DC =EF ,∵D 为AB 的中点,等边△ABC 的边长是2,∵AD =BD =1,CD ∵AB ,BC =2, ∵22213DC EF =-.【点睛】本题主要考查了三角形中位线定理;等边三角形的性质;平行四边形的判定与性质(四)板书设计三角形中位线的定义:连接三角形两边中点的线段叫做三角形的中位线数学语言:,AD BD AE CE ==,DE ∴是ABC ∆的中位线三角形的中位线定理:三角形的中位线平行于第三边,且等于第三边的一半数学语言:DE 是ABC ∆的中位线,1//,2DE BC DE BC ∴= 方法点拨:在进行证明中,需要充分利用三角形中位线定理:三角形的中位线平行于第三边,且等于第三边的一半,在必要的时候,可以根据定理构造三角形中位线。
八年级数学下册《三角形的中位线》练习题及答案(北师大版)
八年级数学下册《三角形的中位线》练习题及答案(北师大版)一、单选题 1.如图,在△ABC 中,D ,E 分别是AB ,BC 的中点,AE ,CD 相交于点F ,连接BF ,DE ,下列线段中,是△ABC 的中位线的是( )A .DEB .AEC .CD D .BF2.如图,△ABC 的边AB ,BC ,CA 的中点分别是D ,E ,F ,已知AB =8,AC =10,则四边形ADEF 的周长是( )A .8B .9C .10D .183.如图,A ,B 两地被池塘隔开,小明通过下面的方法估测出了A ,B 间的距离:先在AB 外选一点C ,然后步测出AC ,BC 的中点M ,N ,并步测出MN 的长为12米,由此他就知道A ,B 间的距离是( )A .6米B .12米C .24米D .48米4.如图,等腰梯形ABCD 的对角线长为13,点E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点,则四边形EFGH 的周长是( )A .13B .26C .36D .395.如图,DE 是△ABC 的中位线,ABC ∠的角平分线交DE 于点F ,10AB =,BC=16,则EF 的长为( )A.2 B.3 C.6 D.8.如图,在平行四边形则COE的周长是(A.4 B.6 C.8 D.10.如图,在A.16 B.20 C.18 D.2290,∠ABC=60,BC=2cm, D的方向运动,设E点的运动时间为A.2 B.2.5或3.5 C.2.5或3.5或4.5 D.2或3.5或4.55二、填空题11.如图,梯形ABCD 中,AD∥BC,AD=6 BC=14, P 、Q 分别为BD 、AC 的中点,则PQ= ____.12.如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别是AD ,OD 的中点,若2EF =,则AC 的长是______.14.如图,在△ABC 中,,,D E F 分别是,,AB BC CA 的中点,连接,DE DF ,若12,BC cm AC ==10cm ,则四边形DECF 的周长是_____.15.在平行四边形ABCD 中,点O 是对角线AC 、BD 的交点,点E 是边CD 的中点,且5AB =,BC=6,则OE =______.三、解答题16.在Rt△ABC中,∠ACB=90°,AC=2BC, 将△ABC绕点O按逆时针方向旋转90°得到△DEF,点A,B,C的对应点分别是点D,E,F.请仅用无刻度直尺分别在下面图中按要求画出相应的点(保留画图痕迹).(1).如图1,当点O为AC的中点时,画出BC的中点N;(2).如图2,旋转后点E恰好落在点C,点F落在AC上,点N是BC的中点,画出旋转中心O.17.若D,E分别是AB,AC的中点,则只需测量出DE的长,就可以求出池塘的宽BC.你知道为什么吗?18.已知:如图,在等边三角形ABC中,D,E,F分别为各边的中点.求证:四边形DEFB是平行四边形.19.如图,在Rt△ABC 中,90,6,8,ACB AC BC AE ∠=︒==平分,CAB CE AE ∠⊥于点E ,延长CE 与AB 交于点D .(1)求证:CE DE =;(2)若点F 为BC 的中点,求EF 的长.20.已知:矩形ABCD 中,AB=10,AD=8,点E 是BC 边上一个动点,将△ABE 沿AE 折叠得到△AB′E.(1)如图(1),点G 和点H 分别是AD 和AB′的中点,若点B′在边DC 上.①求GH 的长;②求证:△AGH≌△B′CE;(2)如图(2),若点F 是AE 的中点,连接B′F,B′F∥AD,交DC 于I .①求证:四边形BEB′F 是菱形;②求B′F 的长.参考答案1.A2.D3.C4.B5.B6.C7.C8.A9.D【详解】证明:∵D E、分别为ABC各边的中点为ABC的中位线,DE AB∥BD∥DEFB是平行四边形.)证明:AE平分,CAB,CAE BAE∴∠=∠CD AE⊥AEC∴∠=在AEC△CAEAE AEAEC∠=⎧⎪=⎨⎪∠=⎩AEC AED ASA ∴≌()CE DE ∴=; Rt ABC 中 6,AC BC =2210AB AC BC =+=,AEC AED ≌6,AD AC ∴==4,BD AB AD ∴=-= 点E 为CD 中点,点F 为BC ∴122EF BD ==20. 【详解】(1)①∵将△ABE。
人教版八年级数学下册三角形的中位线练习题(含答案)word版本
人教版八年级数学下册三角形的中位线练习题(含答案)三角形的中位线练习题三角形中位线定义: .符号语言:在△ABC 中,D 、E 分别是AB 、AC 的中点, 则:线段DE 是△ABC 的__ __,三不同点:①三角形中位线的两个端点都是三角形边的中点。
②三角形中线只有一个端点是边的中点,另一端点是三角形一个顶点。
相同点:都是一条线段,都有三条。
三角形中位线定理: .符号语言表述:∵DE 是△ABC 的中位线(或AD=BD,AE=CE) ∴DE //21BC练习1.连结三角形___________的线段叫做三角形的中位线. 2.三角形的中位线______于第三边,并且等于_______. 3.一个三角形的中位线有_________条. 4.如图△ABC 中,D 、E 分别是AB 、 AC 的中点,则线段CD 是△ABC 的___, 线段DE 是△ABC _______5、如图,D 、E 、F 分别是△ABC 各边的中点 (1)如果EF =4cm ,那么BC =__cm 如果AB =10cm ,那么DF =___cmEDBED(2)中线AD 与中位线EF 的关系是___6.如图1所示,EF 是△ABC 的中位线,若BC=8cm ,则EF=_______cm .(1) (2) (3) (4)7.三角形的三边长分别是3cm ,5cm ,6cm ,则连结三边中点所围成的三角形的周长是_________cm .8.在Rt △ABC 中,∠C=90°,AC=•5,•BC=•12,•则连结两条直角边中点的线段长为_______. 9.若三角形的三条中位线长分别为2cm ,3cm ,4cm ,则原三角形的周长为( ) A .4.5cm B .18cm C .9cm D .36cm10.如图2所示,A ,B 两点分别位于一个池塘的两端,小聪想用绳子测量A ,B 间的距离,但绳子不够长,一位同学帮他想了一个主意:先在地上取一个可以直接到达A ,B 的点C ,找到AC ,BC 的中点D ,E ,并且测出DE 的长为10m ,则A ,B 间的距离为( ) A .15m B .25m C .30m D .20m11.已知△ABC 的周长为1,连结△ABC 的三边中点构成第二个三角形,•再连结第二个三角形的三边中点构成第三个三角形,依此类推,第2010个三角形的周长是( ) A 、20081 B 、20091 C 、220081 D 、22009112.如图3所示,已知四边形ABCD ,R ,P 分别是DC ,BC 上的点,E ,F 分别是AP ,RP 的中点,当点P 在BC 上从点B 向点C 移动而点R 不动时, 那么下列结论成立的是( ) A .线段EF 的长逐渐增大 B .线段EF 的长逐渐减少 C .线段EF 的长不变 D .线段EF 的长不能确定13.如图4,在△ABC 中,E ,D ,F 分别是AB ,BC ,CA 的中点,AB=6,AC=4,则四边形AEDF•的周长是( )A.10 B.20 C.30 D.4014.如图所示,□ ABCD的对角线AC,BD相交于点O,AE=EB,求证:OE∥BC.15.已知矩形ABCD中,AB=4cm,AD=10cm,点P在边BC上移动,点E、F、G、H分别是AB、AP、DP、DC的中点.求证:EF+GH=5cm;16.如图所示,在△ABC中,点D在BC上且CD=CA,CF平分∠ACB,AE=EB,求证:EF=12 BD.17.如图所示,已知在□ABCD中,E,F分别是AD,BC的中点,求证:MN∥BC.BGA EF H DC图518.已知:如图,四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.求证:四边形EFGH 是平行四边形.19.如图,点E ,F ,G ,H 分别是CD ,BC ,AB ,DA 的中点。
6.3 三角形的中位线 北师大版数学八年级下册课时作业(含答案)
3 三角形的中位线(打“√”或“×”)1.一个三角形必有三条中位线.(√)2.一个三角形必有三条中线.(√)3.三角形的一条中线分成的两个三角形的面积相等.(√)4.三角形的一条中位线分成的两部分面积相等.(×)·知识点1 三角形的中位线定理1.(2021·三明清流县期末)如图,在△ABC中,点D,E分别是边AB,AC 的中点,AF⊥BC,垂足为点F,∠ADE=30°,DF=3,则BF的长为(C)A.4B.2C.3D.42.如图,平行四边形ABCD中,对角线AC,BD交于点O,点E是BC的中点.若OE=3 cm,则AB的长为(B)A.3 cmB.6 cmC.9 cmD.12 cm3.在△ABC中,D,E分别是BC,AC中点,BF平分∠ABC.交DE于点F.AB=8,BC=6,则EF的长为(A)A.1B.2C.3D.44.(2021·莆田涵江期末)如图,在△ABC中,点D,E分别是边AB,AC的中点,点F是线段DE上的一点,连接AF,BF,∠AFB=90°.已知AB=6,BC=10,则EF的长是 2 .5.如图,D是△ABC的边BC的中点,AE平分∠BAC,BE⊥AE于点E,且AB=10 cm,DE=2 cm,则AC的长为 6 cm.·知识点2 三角形中位线定理的应用6.东东家有一块等腰三角形的空地ABC,如图,已知E,F分别是边AB,AC的中点,量得AB=AC=12米,BC=10米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是(C)A.22米B.24米C.27米D.32米7.如图,顺次连接△ABC三边的中点D,E,F得到的三角形面积为S1,顺次连接△CEF三边的中点M,G,H得到的三角形面积为S2,顺次连接△CGH三边的中点得到的三角形面积为S3,设△ABC的面积为64,则S1+S2+S3=(A)A.21B.24C.27D.328.(2021·龙岩新罗期末)如图,A,B两点被池塘隔开,不能直接测量其距离.于是小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=20 m,则A,B间的距离为 10 m.9.(2021·福州台江期末)如图所示的网格是正方形网格,A,B,C是网格线的交点,D,E分别是AC,BC与网格线的交点,若小正方形的边长为1,则DE的长为 2 .10.如图,点A(0,4),点B(3,0),连接AB,点M,N分别是OA,AB的中点,在射线MN上有一动点P,若△ABP是直角三角形,则点P的坐标是 (4,2)或(,2) .1.(2021·泉州惠安县期末)如图,在△ABC中,点D,E分别是AC,AB的中点,点F是BC延长线上一点,∠A=35°,∠AED=30°,则∠ACF的度数为(B)A.60°B.65°C.70°D.85°2.如图,在△ABC中,D,E,F分别为BC,AC,AB边的中点,AH⊥BC于点H,FD=8,则HE等于(C)A.4B.6C.8D.103.(2021·漳州龙海期末)如图,已知四边形ABCD,R,P分别是DC,BC上的点,E,F分别是AP,RP的中点,当点P在BC上从点B向点C移动而点R不动时,线段EF的长(C)A.逐渐增大B.逐渐减小C.不变D.不能确定4.(2021·南平延平期末)如图,在△ABC中,延长BC至D,使得CD=BC,过AC中点E作EF∥CD(点F位于点E右侧),且EF=2CD,连接DF,若AB=6,则DF的长为3 .5.如图,在边长为6的等边三角形ABC中,点D,E分别是AC,BC的中点,连接AE,BD,点G,H分别是AE,BD的中点,连接GH,则GH的长度为 .6.(2021·三明将乐县质检)在△ABC中,AC=BC,∠ACB=90°,点D为AC的中点.(1)如图1,E为线段DC上任意一点,将线段DE绕点D逆时针旋转90°得到线段DF,连接CF,过点F作FH⊥FC,交直线AB于点H.判断FH与FC的数量关系并加以证明;(2)如图2,若E为线段DC的延长线上任意一点,(1)中的其他条件不变,你在(1)中得出的结论是否发生改变,直接写出你的结论,不必证明.【解析】见全解全析中点四边形模型(2021·三明大田县期末)由四边形各边中点组成的四边形称为“中点四边形”.如图,在四边形ABCD中,已知E,F,G,H分别是边AB,BC,CD,DA各边的中点.观察并猜想中点四边形EFGH的形状?并证明你的结论;【解析】见全解全析3 三角形的中位线必备知识·基础练【易错诊断】1.√2.√3.√4.×【对点达标】1.C 在Rt△ABF中,∵∠AFB=90°,AD=DB,DF=3,∴AB=2DF=6.∵AD=DB,AE=EC,∴DE∥BC,∴∠ADE=∠ABF=30°,∴AF=AB=3,∴BF===3.2.B ∵四边形ABCD是平行四边形,∴OA=OC.又∵点E是BC的中点,∴BE=CE,∴AB=2OE=2×3=6(cm).3.A ∵在△ABC中,D,E分别是BC,AC的中点,AB=8,∴DE∥AB,DE=AB=4.∴∠EDC=∠ABC.∵BF平分∠ABC,∴∠EDC=2∠FBD.∵在△BDF中,∠EDC=∠FBD+∠BFD,∴∠DBF=∠DFB,∴FD=BD=BC=×6=3.∴FE=DE-DF=4-3=1.4.【解析】∵点D,E分别是边AB,AC的中点,BC=10,∴DE=BC=5.在Rt△AFB中,点D是边AB的中点,AB=6,∴DF=AB=3,∴EF=DE-DF=5-3=2.答案:25.【解析】延长AC,BE交于点F,∵AE平分∠BAC,∴∠BAE=∠CAE.在△AEB和△AEF中,∴△AEB≌△AEF(ASA),∴AF=AB=10 cm,BE=EF.∵BD=DC,DE=2 cm,∴CF=2DE=4 cm,∴AC=AF-CF=6 cm.答案:66.C ∵E,F分别是边AB,AC的中点,AB=AC=12米,BC=10米,∴EF=BC=5(米),BE=AB=6(米),CF=AB=6(米),∴需要篱笆的长=5+6+6+10=27(米).7.A ∵点D,E,F分别是△ABC三边的中点,∴AD=DB,DF=BC=BE,DE=AC=AF,在△ADF和△DBE中,,∴△ADF≌△DBE(SSS),同理可证,△ADF≌△DBE≌△EFD≌△FEC(SSS),∴S1=S△FEC=S△ABC=16,同理可得,S2=S1=4,S3=S2=1,∴S1+S2+S3=16+4+1=21.8.【解析】∵AM=AC,BN=BC,∴AB=MN,∵MN=20 m,∴AB=10 m.答案:109.【解析】由网格可知AD=CD,BE=CE,AB=4,∴DE=AB=2.答案:210.【解析】∵点M,N分别是OA,AB的中点,点A(0,4),∴MN∥OB,MN=OB=1.5,OM=2.①当∠APB=90°时,如图①在Rt△AOB中,AB===5.∵∠APB=90°,点N是AB的中点,∴PN=AB=2.5,则PM=PN+MN=4,∴点P的坐标是(4,2);②当∠ABP=90°时,如图②,过P作PE⊥x轴于E,连接AP,设BE=x,则PM=OE=x+3,由勾股定理,得PB=,AP=,在Rt△ABP中,AP==,则=,解得x=,∴OE=+3=,∴P(,2).答案:(4,2)或(,2)关键能力·综合练1.B ∵D,E分别是AC,AB的中点,∴DE为△ACB的中位线,∴DE∥BC,∴∠B=∠AED=30°,∴∠ACF=∠A+∠B=35°+30°=65°.2.C ∵D,F分别是AB,BC的中点,∴DF是△ABC的中位线,∴DF=AC.又∵E是线段AC的中点,AH⊥BC,∴EH=AC,∴EH=DF=8.3.C 连接AR.∵E,F分别是AP,RP的中点,∴EF为△APR的中位线,∴EF=AR,∵AR的长为定值,∴线段EF的长不变.4.【解析】延长FE交AB于H,∵E为AC的中点,EF∥CD,∴H为AB的中点,即AH=BH,EH=BC.∵AB=6,∴BH=3,∵CD=BC,EF=2CD,EH=BC,∴FH=BD.∵FH∥BD,∴四边形BHFD是平行四边形,∴DF=BH=3.答案:35.【解析】∵△ABC是边长为6的等边三角形,∴AC=BC=6,∠ABC=∠BAC=60°.∵点D,E分别是AC,BC的中点,∴AD=BE=3.取AB的中点F,连接GF,HF,∵点G,H分别是AE,BD的中点,∴FG∥BE,FG=BE=,FH∥AD,FH=AD=,∴FG=FH=,∠AFG=∠ABC=60°,∠BFH=∠BAC=60°,∴∠HFG=180°-∠AFG-∠BFH=60°,∴△FGH是等边三角形,∴GH=FG=.方法二:连接DG并延长到AB交AB于M,∵D是AC的中点,G是AE的中点,∴DG∥BC,∴DM∥BC,∴AM=BM=AB=3,∴AM=AD,∴DG=MG.∵H是BD的中点,∴HG=BM=.答案:6.【解析】(1)FH与FC的数量关系是:FH=FC.证明:延长DF交AB于点G,由题意,知∠EDF=∠ACB=90°,DE=DF,∴DG∥CB.∵点D为AC的中点,∴点G为AB的中点,且DC=AC.∴DG为△ABC的中位线,∴DG=BC.∵AC=BC,∴DC=DG,∴DC-DE=DG-DF,即EC=FG.∵∠EDF=90°,FH⊥FC,∴∠1+∠CFD=90°,∠2+∠CFD=90°,∴∠1=∠2.∵△DEF与△ADG都是等腰直角三角形,∴∠DEF=∠DGA=45°,∴∠CEF=∠FGH=135°,∴△CEF≌△FGH(ASA),∴CF=FH.(2)FH与FC仍然相等.理由:由题意可得出:DF=DE,∴∠DFE=∠DEF=45°,∵AC=BC,∴∠A=∠CBA=45°,∵DF∥BC,∴∠CBA=∠FGB=45°,∴∠FGH=∠CEF=45°.∵点D为AC的中点,DF∥BC,∴DG=BC,DC=AC,∴DG=DC,∴EC=GF.∵∠DFC=∠FCB,∴∠GFH=∠FCE.在△FCE和△HFG中,∴△FCE≌△HFG(ASA),∴HF=FC.【解题模型】【解析】观察猜想:四边形EFGH是平行四边形.证明:如图,BD,∵E,F,G,H是四边形ABCD各边中点,∴EH=FG=BD,EH∥FG∥BD,∴四边形EFGH是平行四边形.阶段专项提升练七 平行四边形的性质与判定【典例1】【解析】(1)∵四边形ABCD为平行四边形,∴AB=CD,AD∥BE,∴∠DAE=∠E,∵BE=CD,AB=CD,∴AB=BE,∴∠BAE=∠E,∴∠BAE=∠DAE,∴AE平分∠BAD;(2)由BE=AB,∠BEA=60°,∴△ABE为等边三角形,∴AB=AE=4.又∵BF⊥AE,∴AF=EF=2,∴BF==2.∵∠DAE=∠E,AF=EF,∠AFD=∠CFE,∴△ADF≌△ECF(ASA),∴平行四边形ABCD的面积=△ABE的面积=×4×2=4.【变式】【解析】(1)如图1中,∵四边形ABCD是平行四边形,∴BF∥CG,∴∠BFE=∠G.∵BE=CE,∠BEF=∠GEC,∴△BEF≌△CEG(AAS),∴BF=CG.(2)结论:FG的长度不变.FG=5.理由:如图2中,取BC的中点J,连接AC,AJ.∵AB=BJ=5,∠B=60°,∴△ABJ是等边三角形,∴JA=JB=JC=5,∴∠BAC=90°,AC=AB=5,∵EF⊥AB,∴∠CAB=∠EFB=90°,∴AC∥FG,∵AF∥CG,∴四边形AFCG是平行四边形,∴FG=AC=5.(3)如图3中,当点H在线段AD上时,作HM⊥BC于M.在Rt△EHM中,∵∠HEM=∠ABC=60°,EH=AB=5,∴EM=HE=,HM==,∴BH===.当点H'在DA的延长线上时,同法可得BH'== .综上所述,BH的长为或.【典例2】解析见正文【变式】解析见正文【典例3】解析见正文【变式】【解析】(1)∵四边形ABCD是长方形,∴AD=BC,AD∥CB.∵BF=DE,∴AD-DE=CB-BF,∴AE=FC,∴四边形AFCE是平行四边形;(2)当P点在AF上时,Q点在CD上,此时A,C,P,Q四点不可能构成平行四边形;同理P点在AB上时,Q点在DE或CE上,也不能构成平行四边形.因此只有当P点在BF上,Q点在ED上时,才能构成平行四边形(如图),∴以A,C,P,Q四点为顶点的四边形是平行四边形时,PC=QA.∵AB=4 cm,BF=3 cm,∴AF==5(cm),FC=9-3=6(cm).∵点P的速度为每秒5 cm,点Q的速度为每秒4 cm,运动时间为t秒,∴PC=5t-5+6,QA=13-4t,∴5t-5+6=13-4t,解得t=.∴以A,C,P,Q四点为顶点的四边形是平行四边形时,t=秒.【典例4】【解析】(1)如图,四边形ABCD为平行四边形;∴四边形ABCD为平行四边形.。
18.1.5三角形的中位线-2021春人教版八年级数学下册习题课件
第提5示1课:.时点三击连角形接进的入中三习位题线角形两边中点的线段叫做三角形的_中__位__线___.三角形
提示:点击 进入习题
提第示5课:时点的击三角形中进的入中位习位题线线_平__行__于___三角形的第三边,并且等于第三边的
第5课时 三角形的中位线 提示:点击 进入习题
【答案】B
第5课时 三角形的中位线
提示:点击 进入习题
提提示示1: :2点点.击击 (2进进0入入1习习9题题·湖州)如图,已知在△ABC 中,D,E,F 分别是 AB,
提示:点击 进入习题
BC,AC 第5课时 三角形的中位线
提示:点击 进入习题
的中点,连接
DF,EF,BF.
第5课时 三角形的中位线
证明:如图,取 BE 的中点 H,连接 FH,CH. ∵F 是 AE 的中点,H 是 BE 的中点, ∴FH 是△ABE 的中位线.∴FH∥AB 且 FH=12AB. 在▱ABCD 中,AB∥DC,AB=DC. 又∵点 E 是 DC 的中点,∴EC=12DC=12AB. ∴FH=EC. 又∵AB∥DC,∴FH∥EC. ∴四边形 EFHC 是平行四边形.∴GF=GC.
提示:点击 进入习题
∴四边形 BEFD 第5课时 三角形的中位线
提示:点击 进入习题
是平行四边形.
第5课时 三角形的中位线
第5课时 三角形的中位线
提示:点击 进入习题
第5课时 三角形的中位线
提示:点击 进入习题
第5课时 三角形的中位线
提示:点击 进入习题
提示:点击 进入习题
第 第55课课(2时 时)若三 三角 角∠形 形的 的A中 中位 位F线线B=90°,AB=6,求四边形 BEFD 的周长.
2020年北师大版八年级数学下册单元测试附解答:三角形的中位线
1. 三角形的三条中位线长分别为3cm ,4cm ,6cm ,则原三角形的周长为( )A . 6. 5cmB . 34cmC 26cmD . 52cm【答案】C【解析】∵三角形的三条中位线分别为3cm 、4cm 、6cm ,∴三角形的三边分别为6cm ,8cm ,12cm ,∴这个三角形的周长=6+8+12=26cm.2. 如图是屋架设计图的一部分,D 是斜梁AB 的中点,立柱BC,DE 垂直于横梁AC,AB=4 m,∠A=30°,则DE 等于 ( )A . 1mB . 2mC . 3mD . 4m 【答案】A【解析】∵点D 是斜梁AB 的中点,立柱BC ,DE 垂直于横梁AC ,∴点E 是AC 的中点,∴DE 是直角三角形ABC 的中位线,根据三角形的中位线定理得:DE=12BC , 又∵在Rt △ABC 中,AB=4m ,∠A=30°,∴BC=12AB=2m . 故DE=12BC=1m. 3. 如图,D,E 分别是AB,AC 的中点,BE 是∠ABC 的平分线,对于下列结论:①BC=2DE;②DE ∥BC;③BD=DE;④BE ⊥AC .其中正确的是 ( )专题16 三角形的中位线第六章 平行四边形A.①②B.①②③C.①②④D.①②③④【答案】D【解析】∵点D,E分别是AB,AC的中点,∴DE是△ABC的中位线,∴BC=2DE,DE∥BC,①、②正确;∵DE∥BC,∴∠DEB=∠EBC,∵BE是∠ABC的平分线,∴∠DBE=∠EBC,∴∠DEB=∠EBD,∴BD=DE,③正确;∵点E是AC的中点,BE是∠ABC的平分线,∴BE⊥AC,④正确.4. 如图,已知在△ABC 中,D、E 分别是AB、AC 的中点,BC=6cm,则DE 的长度是_____ cm.【答案】3【解析】∵D、E 分别是AB、AC 的中点,∴DE 是△ABC 的中位线,∴DE=12BC=162=3cm.5. 如图,吴伯伯家有一块等边三角形的空地ABC,已知E,F分别是边AB,AC的中点,量得EF=5米,他想把四边形BCFE用篱笆围成一圈放养小鸡,则需要篱笆的长是__米.【答案】25【解析】∵点E ,F 分别是边AB ,AC 的中点,EF=5米,∴BC=2EF=10米,∵△ABC 是等边三角形,∴AB=BC=AC ,∴BE=CF=12BC=5米, ∴篱笆的长=BE+BC+CF+EF=5+10+5+5=25米.故答案为:25.6. 如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,A′、B′、C′分别为EF 、EG 、GF 的中点,△A′B′C′的周长为_________.如果△ABC 、△EFG 、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n 个三角形的周长是__________________.【答案】 (1). 16 (2). 64×(12)n−1【解析】∵如图,△ABC 的周长为64,E 、F 、G 分别为AB 、AC 、BC 的中点,∴EF 、FG 、EG 为三角形中位线,∴EF=12BC ,EG=12AC ,FG=12AB ,∴EF+FG+EG=12(BC+AC+AB ),即△EFG 的周长是△ABC 周长的一半,同理,△A′B′C′的周长是△EFG 的周长的一半,即△A′B′C′的周长为14×64=16,以此类推,第n 个小三角形的周长是第一个三角形周长的64×(12)n -1.7. 如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD和EF.(1)求证:DE=CF;(2)求EF长.【解析】(1)证明:∵D、E分别为AB、AC的中点,∴DE BC,∵延长BC至点F,使CF=BC,∴DE FC,即DE=CF;(2)解:∵DE FC,∴四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.8. 如图,在平行四边形ABCD中,点E,F分别在BC,AD边上,AF=BE,AE与BF交于点G,ED与CF交于点H.求证:GH∥BC且GH=12 AD.【解析】证明:在平行四边形ABCD中,AD=BC,AD∥BC,∵AF=BE,∴DF=CE,∴四边形ABEF和四边形CDFE都是平行四边形,∴BG=FG,CH=FH,∴GH是△FBC的中位线,∴GH∥BC,GH=12 BC,又∵BC=AD,∴GH=12 AD.的。
2020-2021学年八年级数学下册尖子生同步培优题典 专题1
2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】专题1.4等边三角形的判定姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•南岗区校级月考)下列推理中,不能判断△ABC是等边三角形的是()A.∠A=∠B=∠C B.AB=AC,∠B=60°C.∠A=60°,∠B=60°D.AB=AC,且∠B=∠C2.(2020秋•覃塘区期中)下列条件不能得到等边三角形的是()A.有一个内角是60°的锐角三角形B.有一个内角是60°的等腰三角形C.顶角和底角相等的等腰三角形D.腰和底边相等的等腰三角形3.(2019秋•尚志市期末)若△ABC的三条边长分别是a、b、c,且(a﹣b)2+|b﹣c|=0,则这个三角形是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形4.(2019秋•辛集市期末)如图,在钝角三角形ABC中,∠ABC为钝角,以点B为圆心,AB长为半径画弧;再以点C为圆心,AC长为半径画弧;两弧交于点D,连结AD,CB的延长线交AD于点E.下列结论错误的是()A.CE垂直平分AD B.CE平分∠ACDC.△ABD是等腰三角形D.△ACD是等边三角形5.(2019秋•睢宁县期中)如图,△ABC中,∠B=∠C,BD=CD,则下列判断不一定正确的是()A.AB=AC B.AD⊥BCC.∠BAD=∠CAD D.△ABC是等边三角形6.(2019秋•岳麓区校级月考)下列条件不能得到等边三角形的是()A.有两个内角是60°的三角形B.有一个角是60°的等腰三角形C.腰和底相等的等腰三角形D.有两个角相等的等腰三角形7.(2019春•文登区期末)如图,∠AOB=120°,OP平分∠AOB,且OP=2.若点M,N分别在OA,OB 上,且△PMN为等边三角形,则满足上述条件的△PMN有()A.2个B.3个C.4个D.无数个8.(2019秋•费县期中)已知:在△ABC中,∠A=60°,如要判定△ABC是等边三角形,还需添加一个条件.现有下面三种说法:①如果添加条件“AB=AC”,那么△ABC是等边三角形;②如果添加条件“∠B=∠C”,那么△ABC是等边三角形;③如果添加条件“边AB、BC上的高相等”,那么△ABC是等边三角形.上述说法中,正确的有()A.3个B.2个C.1个D.0个9.(2019春•福山区期末)在下列结论中:(1)有一个外角是120°的等腰三角形是等边三角形;(2)有两个外角相等的等腰三角形是等边三角形;(3)有一边上的高也是这边上的中线的等腰三角形是等边三角形;(4)三个外角都相等的三角形是等边三角形.其中正确的个数是()A.4个B.3个C.2个D.1个10.(2018秋•思明区校级期中)如图1是一张Rt△ABC纸片,如果用两张相同的这种纸片恰好能拼成一个正三角形如图2,那么在Rt△ABC中,若BC=6,则AB=()A.3B.6√3C.12D.9二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2019秋•长春期中)下列三角形中:①有两个角等于60°的三角形;②有一个角等于60°的等腰三角形;③三个角都相等的三角形;④三边都相等的三角形.其中是等边三角形的有(填序号).12.(2019•金山区二模)在△ABC中,AB=AC,请你再添加一个条件使得△ABC成为等边三角形,这个条件可以是(只要写出一个即可).13.(2018秋•襄州区期中)如图,用圆规以直角顶点O为圆心,以适当半径画一条弧交直角两边于A,B 两点,若再以A为圆心,以OA为半径画弧,与弧AB交于点C,则△AOC的形状为.14.(2018秋•确山县期中)在△ABC中,∠A=60°,要使是等边三角形,则需要添加一条件是.15.(2016秋•临城县期末)如图已知OA=a,P是射线ON上一动点,∠AON=60°,当OP=时,△AOP为等边三角形.16.(2020秋•射洪市期中)已知a、b、c是△ABC的三边的长,且满足a2+2b2+c2﹣2b(a+c)=0,则此三角形的形状为.17.(2013秋•船山区校级期末)如图,△ABC中,∠A=60°,分别以A,B为圆心,大于AB长的一半为半径画弧交于两点,过两点的直线交AC于点D,连结BD,则△ABD是三角形.18.(2008秋•江岸区期中)如图,在等边△ABC的边BC上任取一点D,作∠ADE=60°,DE交∠C的外角平分线于E,则△ADE是三角形.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020秋•铁东区期中)已知,如图,∠B=60°,AB∥DE,EC=ED,求证:△DEC为等边三角形.20.(2020秋•惠州期中)已知:如图,在△ABC中,AB=AC,D为AC的中点,DE⊥AB,DF⊥BC,垂足分别为E,F,且DE=DF.求证:(1)∠B=∠C;(2)△ABC是等边三角形.21.(2020秋•赣榆区期中)如图,在△ABC中,AB=AC,∠BAC=120°,点D、E在BC上,且AE=BE.(1)求∠CAE的度数;(2)若点D为线段EC的中点,求证:△ADE是等边三角形.22.(2019秋•越秀区校级期中)如图,在△EBD中,EB=ED,点C在BD上,CE=CD,BE⊥CE,A是CE延长线上一点,EA=EC.(1)求∠EBC的度数;(2)求证△ABC为等边三角形.23.(2018秋•威海期末)如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M,交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.(1)判断直线BE与线段AD之间的关系,并说明理由;(2)若∠C=30°,图中是否存在等边三角形?若存在,请写出来并证明;若不存在,请说明理由.24.(2018秋•越秀区校级期中)如图,已知△ABC是边长为6cm的等边三角形,动点P、Q同时从A,B 两点出发,分别沿AB、BC匀速运动,其中点P运动的速度是1cm/s,点Q运动的速度是2cm/s,当点Q 到达点C时,P、Q两点都停止运动.设运动时间为:t(s),当t=2时,判断△BQP的形状,并说明理由.。
2020-2021学年北师大版八年级数学下册《6.3三角形的中位线》同步优生辅导训练(附答案)
2021年北师大版八年级数学下册《6.3三角形的中位线》同步优生辅导训练(附答案)1.已知三角形的3条中位线分别为3cm、4cm、6cm,则这个三角形的周长是()A.3cm B.26cm C.24cm D.65cm2.如图所示,▱ABCD中,对角线AC,BD交于点O,E是CD中点,连接OE,若OE=3cm,则AD的长为()A.3cm B.6cm C.9cm D.12cm3.如图,△ABC中,D、E分别是BC、AC的中点,BF平分∠ABC,交DE于点F,若AB =10,BC=8,则EF的长是()A.B.1C.D.1.54.已知:如图,AD、BE分别是△ABC的中线和角平分线,AD⊥BE,AD=BE=4,则AC 的长等于()A.7B.C.D.6.55.如图,平地上A、B两点被池塘隔开,测量员在岸边选一点C,并分别找到AC和BC的中点M、N,测量得MN=16米,则A、B两点间的距离为()A.30米B.32米C.36米D.48米6.如图,在△ABC中,点D、E分别是AB、AC的中点,∠C=105°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数为()A.145°B.150°C.155°D.160°7.如图,四边形ABCD中,点E、F、G分别为边AB、BC、CD的中点,若△EFG的面积为4,则四边形ABCD的面积为()A.8B.12C.16D.188.如图,在△ABC中,点D在BC上,BD=AB,BM⊥AD于点M,N是AC的中点.连接MN,若AB=5,BC=8,则MN的长为()A.6B.3C.1.5D.19.直角三角形两条边长分别是6和8,则连接两条直角边中点的线段长是()A.3B.5C.4或5D.5或310.如图,在△ABC中,E、D、F分别是AB、BC、CA的中点,AB=6,AC=4,则四边形AEDF的周长是()A.10B.20C.30D.4011.如图,Rt△ABC中,D、E分别是边AB,AC的中点,DE=3,AB=10,则AC=.12.如图,D、E分别是△ABC的边AB、AC的中点,且BE平分∠ABC,DE=2cm,AE=1.5cm,则△ABC的周长是.13.如图,△ABC中,AE平分∠BAC,CD⊥AE于D,BE⊥AE,F为BC中点,连接DF、EF,若AB=10,AC=6,∠DFE=135°,则△DEF的面积是.14.如图,在▱ABCD中AC、BD相交于点O,点E是AB的中点,OE=6cm,则BC的长是cm.15.如图,在四边形ABCD中,对角线AC、BD相交于点O,且AC=BD,E、F分别是AB、CD的中点,EF分别交BD、AC于点G、H,若∠OBC=55°,∠OCB=45°,则∠OGH =°.16.如图,△ABC边长分别为AB=14,BC=16,AC=26,P为∠A的平分线AD上一点,且BP⊥AD,M为BC的中点,则PM的值是.17.如图,DE为△ABC的中位线,点F在DE上,且∠AFB=90°,若AB=6,BC=8,则EF的长为.18.如图,已知△ABC的周长为1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,…依此类推,则第n个三角形的周长为.19.如图所示,四边形ABCD中,AB=CD,E、F、P分别是BD、AC、BC边的中点,若∠EPF=50°,则∠PEF=.20.如图,BD平分∠ABC,DE∥BC,过E作BD的垂线交BD于O,交BC于F,P是ED 的中点.若OP=15,BF的长为.21.如图,在△ABC中,AB=10,∠BAC的平分线AD交BD于点D,且BD⊥AD,DE∥AC交AB于E,则DE的长是.22.如图,△ABC中,AD平分∠BAC,AD⊥BD,E为BC的中点.(1)求证:DE∥AC;(2)若AB=4,AC=6,求DE的长.23.已知:△ABC中,D是BC上的一点,E、F、G、H分别是BD、BC、AC、AD的中点,求证:EG、HF互相平分.24.如图,在四边形ABCD中,AC⊥BD,BD=12,AC=16,E,F分别为AB,CD的中点,求EF的长.25.如图,AD是△ABC的中线,E是AD的中点,F是BE延长线与AC的交点,求证:AF =CF.26.如图,在四边形ABCD中,AC、BD相交于点O,E、F是AD、BC的中点,EF分别交AC、BD于M、N,且OM=ON.求证:AC=BD.27.【教材呈现】如图是华师版九年级上册数学教材第80页的第3题,请完成这道题的证明.【结论应用】(1)如图②,在上边题目的条件下,延长图①中的线段AD交NM的延长线于点E,延长线段BC交NM的延长线于点F.求证:∠AEN=∠F.(2)若(1)中的∠A+∠ABC=122°,则∠F的大小为.28.如图,点D、E是Rt△ABC两直角边AB、AC上的一点,连接BE,已知点F、G、H 分别是DE、BE、BC的中点.(1)求∠FGH度数;(2)连CD,取CD中点M,连接GM,若BD=8,CE=6,求GM的长.参考答案1.解:∵D,E,F分别是△ABC的三边的中点,∴DE=AC,DF=BC,EF=AB,∴AC+BC+AB=2(DE+DF+EF)=2×(3+4+6)=26(cm).故选:B.2.解:根据平行四边形基本性质:平行四边形的对角线互相平分.可知点O是BD中点,所以OE是△BCD的中位线.根据中位线定理可知AD=2OE=2×3=6(cm).故选:B.3.解:∵D、E分别是BC、AC的中点,∴DE∥AB,DE=AB=5,BD=BC=4,∴∠ABF=∠BFD,∵BF平分∠ABC,∴∠ABF=∠DBF,∴∠DBF=∠BFD,∴DF=DB=4,∴EF=DE﹣DF=1,故选:B.4.解:过D点作DF∥BE,∵AD是△ABC的中线,AD⊥BE,∴F为EC中点,AD⊥DF,∵AD=BE=4,则DF=2,AF==2,∵BE是△ABC的角平分线,AD⊥BE,∴△ABG≌△DBG,∴G为AD中点,∴E为AF中点,∴AC=AF=3.故选:C.5.解:∵点M、N是分别是AC和BC的中点,∴MN是△ABC的中位线,MN=16米,∴MN=AB=16米,∴AB=32米.故选:B.6.解:∵点D、E分别是AB、AC的中点,∴DE∥BC,∴∠AED=∠C=105°,由折叠的性质可知,∠DEA′=∠AED=105°,∴∠AEA′=360°﹣105°﹣105°=150°,故选:B.7.解:记△BEF,△DGH,△CFG,△AEH的面积分别为S1,S2,S3,S4,四边形ABCD 的面积为S.连接AC.∵BF=CF,BE=AE,CG=DG,AH=DH,∴EF∥AC,EF=AC,GH∥AC,GH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∴S平行四边形EFGH=2S△EFG=8,∵△BEF∽△BAC,∴S1=S△ABC,同理可得S2=S△ACD,∴S1+S2=(S△ABC+S△ACD)=S,同法可得S3+S4=S,∴S1+S2+S3+S4=S,∴S四边形EFGH=S,∴S=2S四边形EFGH=16.故选:C.8.解:∵BD=AB,BM⊥AD于点M,∴AM=DM,∵N是AC的中点,∴AN=CN,∴MN是三角形ADC的中位线,∴MN=DC,∵AB=5,BC=8,∴DC=3,∴MN=1.5,故选:C.9.解:分两种情况:①8是直角边,如图:点E、F分别是直角边AC、BC的中点,∴EF是Rt△ABC的中位线,∴EF=AB;在Rt△ABC中,根据勾股定理知,AB==10,∴EF=5;②8是斜边,如图:点D、E分别是直角边BC、AC的中点,∴EF是Rt△ABC的中位线,∴EF=AB=4.综上可知连接两条直角边中点的线段长是5或4.故选:C.10.解:∵在△ABC中,E、D、F分别是AB、BC、CA的中点,∴DE=AF=AC=2,DF=AE=AB=3,∴四边形AEDF的周长是(2+3)×2=10.故选:A.11.解:∵D、E分别是边AB,AC的中点,DE=3,∴DE是△ABC的中位线,∴BC=2DE=6.∵AB=10,∴AC===8.故答案为:8.12.解:∵D、E分别是△ABC的边AB、AC的中点,∴DE∥BC,DE=BC,AB=2AD,AC=2AE.∴∠DEB=∠EBC,∵BE平分∠ABC,∴∠ABE=∠EBC,∴∠ABE=∠DEB,∴BD=DE,∴AB=2DE=4cm,又AC=2AE=3cm,BC=2DE=4cm,∴△ABC的周长=AB+BC+AC=11cm.故答案为11cm.13.解:延长CD交AB于M,延长AC、BE交于点N,作EH⊥DF交DF的延长线于H.∵AD⊥CM,∴∠ADC=∠ADM=90°,∵∠DAM=∠DAC,∠DAM+∠AMC=90°,∠DAC+∠ACM=90°,∴∠AMC=∠ACM,∴AM=AC=6,同理可以证明:AB=AN=10,∴BM=CN=4,∵AD⊥CM,AM=AC,∴DM=DC,同理BE=EN,∵BF=CF,∴FD=BM=2,EF=CN=2,∵∠DFE=135°,∴∠EFH=45°,EH=EF=,∴S△DEF=•DF•HE=,故答案为.14.解:∵四边形ABCD为平行四边形,∴BO=DO,∵点E是AB的中点,∴OE为△ABC的中位线,∴BC=2OE,∵OE=6cm,∴BC=12cm.故答案为:12.15.解:取BC中点M,连接ME、FM,∵E、F分别是AB、CD的中点,∴EM=AC,MF=DB,EM∥AC,MF∥BD,∵AC=BD,∴EM=MF,∴∠MEF=∠MFE,∵EM∥AC,MF∥BD,∴∠OHG=∠MEF,∠OGH=∠MFE,∴∠OHG=∠OGH,∵∠OBC=55°,∠OCB=45°,∴∠BOC=180°﹣55°﹣45°=80°,∴∠HOG=80°,∴∠OGH=(180°﹣80°)÷2=50°,故答案为:50.16.解:延长BP交AC于点E,∵AD为∠BAC的平分线,∴∠BAP=∠EAP,∵BP⊥AD于D,∴∠APB=∠APE=90°,在△APB和△APE中,,∴△APB≌△APE(ASA),∴AB=AE=14,∵AC=26,∴EC=26﹣14=12,∵△APB≌△APE,∴BP=EP,∵M是BC的中点,∴PM=EC=×12=6.故答案为6.17.解:∵DE为△ABC的中位线,∠AFB=90°,∴DE=BC,DF=AB,∵AB=6,BC=8,∴DE=×8=4,DF=×6=3,∴EF=DE﹣DF=4﹣3=1.故答案为:1.18.解:△ABC周长为1,因为每条中位线均为其对应边的长度的,所以:第2个三角形对应周长为;第3个三角形对应的周长为×=;第4个三角形对应的周长为××=;…以此类推,第n个三角形对应的周长为;故答案为:.19.解:∵F、P分别是AC、BC边的中点,∴PF=AB,同理可证PE=CD,∵AB=CD,∴PE=PF,∴∠PEF=(180°﹣∠EPF)=(180°﹣50°)=65°,故答案为:65°.20.解:∵DE∥BC,∴∠D=∠CBD,∵BD平分∠ABC,∴∠EBD=∠CBD,∴∠D=∠EBD,∴EB=ED,∵EF⊥BD,∴BO=DO,∠DOE=∠BOF=90°,∴△DOE≌△BOF,∴BF=DE,∵P是ED的中点,OP=15,∴BE=30,∴BF=30.故答案为30.21.解:∵AD是∠BAC的平分线,∴∠CAD=∠BAD,∵DE∥AC,∴∠CAD=∠ADE,∴∠ADE=∠BAD,∴AE=DE,∵BD⊥AD,∴∠ADE+∠BDE=∠BAD+∠ABD=90°,∴∠ABD=∠BDE,∴DE=BE,∴DE=AB,∵AB=10,∴DE=×10=5.故答案为:5.22.(1)证明:延长BD交AC于H,在△ADB和△ADH中,,∴△ADB≌△ADH,∴BD=HD,又E为BC的中点.∴DE∥AC;(2)解:∵△ADB≌△ADH,∴AH=AB=4,∴CH=AC﹣AH=2,∵BD=HD,又E为BC的中点,∴DE=CH=1.23.证明:连接EH,GH,GF,∵E、F、G、H分别是BD、BC、AC、AD的中点,∴AB∥EH∥GF,GH∥BC,∴GH∥BF.∴四边形EHGF为平行四边形.∵GE,HF分别为其对角线,∴EG、HF互相平分.24.解:如图,取BC边的中点G,连接EG、FG.∵E,F分别为AB,CD的中点,∴EG是△ABC的中位线,FG是△BCD的中位线,∴EG AC,FG BD.又BD=12,AC=16,AC⊥BD,∴EG=8,FG=6,EG⊥FG,∴在直角△EGF中,由用勾股定理,得EF===10,即EF的长度是10.25.证明:如图,过D作DG∥AC,则∠EAF=∠EDG,∵AD是△ABC的中线,∴D为BC中点,∴G为BF中点,∴DG=CF,∵E为AD中点,∴AE=DE,在△AEF和△DEG中,,∴△AEF≌△DEG(ASA),∴DG=AF,∴AF=CF.26.证明:取AB和CD的中点分别为G、H,连接EG、GF、FH、EH,则EH∥AC,EH=AC,HF∥BD,FH=BD,∴∠3=∠2,∠1=∠4,∵OM=ON,∴∠1=∠2,∴∠4=∠3=∠1=∠2,同理∠EFH=∠GFE=∠1=∠2,∴∠4=∠EFH,∴EH=HF,∵EH=AC,FH=BD,∴AC=BD.27.【教材呈现】证明:∵P是BD的中点,M是DC的中点,∴PM=BC,同理,PN=AD,∵AD=BC,∴PM=PN,∴∠PMN=∠PNM,【结论应用】(1)证明:∵P是BD的中点,M是DC的中点,∴PM∥BC,∴∠PMN=∠F,同理,∠PNM=∠AEN,∵∠PMN=∠PNM,∴∠AEN=∠F;(2)解:∵PN∥AD,∴∠PNB=∠A,∵∠DPN是△PNB的一个外角,∴∠DPN=∠PNB+∠ABD=∠A+∠ABD,∵PM∥BC,∴∠MPD=∠DBC,∴∠MPN=∠DPN+∠MPD=∠A+∠ABD+∠DBC=∠A+∠ABC=122°,∵PM=PN,∴∠PMN=×(180°﹣122°)=29°,∴∠F=∠PMN=29°,故答案为:29°.28.解:(1)∵F、G、H分别是DE、BE、BC的中点,∴FG∥DB,GH∥EC.∴∠DBE=∠FGE,∠EGH=∠AEG.∠FGH=∠FGE+∠EGH=∠ABE+∠BEA=180°﹣∠A=180°﹣90°=90°.(2)如图所示:连接FM、HM.∵M、H分别是BC和DC的中点,∴MH∥BD,MH=.同理:GF∥BD,GF=.∴四边形FGHM为平行四边形.∵G、H、M分别是BE、BC、DC的中点,∴GH==3,,由(1)可知:∠FGH=90°,∴四边形FGHM为矩形.∴∠GHM=90°.∴GM==5。
2020—2021年北师大版初中数学八年级下册三角形的中位线同步练习含答案试题(精品试卷).doc
6.3三角形的中位线一、填空题:1.(1)三角形的中位线的定义:连结三角形两边____________叫做三角形的中位线.(2)三角形的中位线定理是三角形的中位线____________第三边,并且等于____________________________________.2.如图,△ABC的周长为64,E、F、G分别为AB、AC、BC的中点,A′、B′、C′分别为EF、EG、GF的中点,△A′B′C′的周长为_________.如果△ABC、△EFG、△A′B′C′分别为第1个、第2个、第3个三角形,按照上述方法继续作三角形,那么第n个三角形的周长是__________________.3.△ABC中,D、E分别为AB、AC的中点,若DE=4,AD=3,AE=2,则△ABC的周长为______.二、解答题4.已知:如图,四边形ABCD中,E、F、G、H分别是AB、BC、CD、DA的中点.求证:四边形EFGH是平行四边形.5.已知:△ABC的中线BD、CE交于点O,F、G分别是OB、OC的中点.求证:四边形DEFG是平行四边形.6.已知:如图,E为□ABCD中DC边的延长线上的一点,且CE =DC,连结AE分别交BC、BD于点F、G,连结AC交BD 于O,连结OF.求证:AB=2OF.7.已知:如图,在□ABCD中,E是CD的中点,F是AE的中点,FC与BE交于G.求证:GF=GC.8.已知:如图,在四边形ABCD中,AD=BC,E、F分别是DC、AB边的中点,FE的延长线分别与AD、BC的延长线交于H、G点.求证:∠AHF=∠BGF.9.已知:如图,△ABC中,D是BC边的中点,AE平分∠BAC,BE⊥AE于E点,若AB=5,AC=7,求ED.10.如图在△ABC中,D、E分别为AB、AC上的点,且BD=CE,M、N分别是BE、CD的中点.过MN的直线交AB于P,交AC于Q,线段AP、AQ相等吗?为什么?6.3 三角形的中位线参考答案。
2020—2021年浙教版八年级数学下册《三角形的中位线》单元考点练习及答案解析二精品试卷.docx
4.5三角形的同步练习中位线同步练习A组1、(2013•昆明)如图,在△ABC中,点D,E分别是AB,AC的中点,∠A=50°,∠ADE=60°,则∠C的度数为( C )A、50°B、60°C、70°D、80°第1题第3题第4题第5题2、(2013•铁岭)如果三角形的两边长分别是方程x2﹣8x+15=0的两个根,那么连接这个三角形三边的中点,得到的三角形的周长可能是( A )A、5.5B、5C、4.5D、43、(2013哈尔滨)如图,在△ABC中,M、N分别是边AB、AC的中点,则△AMN的面积与四边形MBCN的面积比为( B ).版权所有A、12B、13C、14D、234、(2013•烟台)如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为15 .5、(2013•滨州)在平行四边形ABCD中,点O是对角线AC、BD的交点,点E是边CD的中点,且AB=6,BC=10,则OE= 5 .6、已知:如图,Y ABCD的对角线AC,BD相交于点O,AE=EB.求证:OE∥BC.7、已知:如图,在△ABC中,CF平分∠ACB,CA=CD,AE=EB.求证:EF=12 BD.B组8、如图,△ABC中,AB=AC=6,BC=8,AE平分∠BAC交BC于点E,点D为AB的中点,连接DE,则△BDE的周长是()【】A、7+5B、10C、4+25D、12第8题第9题9、将一块直角三角形纸片ABC折叠,使点A与点C重合,展开后平铺在桌面上(如图所示).若∠C=90°,BC=8cm,则折痕DE的长度是cm.10、如图,在△ABC中,已知AB=6,AC=10,AD平分∠BAC,BD⊥AD于点D,E•为BC中点.求DE的长.11、(2013•常德压轴题)已知两个共一个顶点的等腰Rt△ABC,Rt△CEF,∠ABC=∠CEF=90°,连接AF,M是AF的中点,连接MB、ME.(1)如图,当CB与CE在同一直线上时,求证:MB∥CF;(2)如图,若CB=a,CE=2a,求BM,ME的长;参考答案A组1、C2、A3、B4、155、56、提示:•证明OE是△ABC的中位线7、提示:先证明F是AD的中点,再说明EF•是△ABD•的中位线B组8、B9、410、延长BD交AC于点F.∵∠BAD=∠FAD,AD=AD,∠ADB=∠ADF=90°.∴△ABD≌△AFD,∴AB=AF=6,BD=DF.又∵E为BC中点,∴DE=12FC=12(AC-AF)=12(10-6)=2.11、(1)证法一:如图,延长AB交CF于点D,则易知△ABC与△BCD均为等腰直角三角形,∴AB=BC=BD,∴点B为线段AD的中点,又∵点M为线段AF的中点,∴BM为△ADF的中位线,∴BM∥CF.(2)∵CB=a,CE=2a,∴BE=CE﹣CB=2a﹣a=a,∵△ABM≌△FDM,∴BM=DM,又∵△BED是等腰直角三角形,∴△BEM是等腰直角三角形,∴BM=ME=BE=a;。
2020-2021学年八年级数学下册尖子生同步培优题典 专题1
2020-2021学年八年级数学下册尖子生同步培优题典【北师大版】专题1.6线段的垂直平分线姓名:__________________ 班级:______________ 得分:_________________注意事项:本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.1.(2020秋•新宾县期末)如图,DE是△ABC中AC边的垂直平分线,若BC=4cm,AB=5cm,则△EBC 的周长为()A.8cm B.9cm C.10cm D.11cm2.(2020秋•乐亭县期末)如图,△ABC中,DE是AC的垂直平分线,AE=5cm,△ABD的周长为16cm,则△ABC的周长为()A.26cm B.21cm C.28cm D.31cm3.(2020秋•长宁区期末)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E.△ABC的周长为19,△ACE的周长为13,则AB的长为()A.3B.6C.12D.164.(2020秋•铁力市期末)到三角形的三个顶点距离相等的点是()A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三条边的垂直平分线的交点5.如图,在△ABC中,∠A=87°,∠ABC的平分线BD交AC于点D,E是BC中点,且DE⊥BC,那么∠C的度数为()A.16°B.28°C.31°D.62°6.(2020秋•袁州区校级期中)如图是“一带一路”示意图,若记北京为A地,莫斯科为B地,雅典为C 地,分别连接AB、AC、BC,形成了一个三角形.若想建立一个货物中转仓,使其到A、B、C三地的距离相等,则中转仓的位置应选在()A.三边垂直平分线的交点B.三边中线的交点C.三条角平分线的交点D.三边上高的交点7.(2020秋•九龙坡区期中)如图,在△ABC中,AB边的中垂线DE,分别与AB、AC边交于点D、E两点,BC边的中垂线FG,分别与BC、AC边交于点F、G两点,连接BE、BG.若△BEG的周长为16,GE =1.则AC的长为()A.13B.14C.15D.168.(2020秋•天宁区期中)如图,在△ABC中,AB边的垂直平分线DE,分别与AB边和AC边交于点D和点E,BC边的垂直平分线FG,分别与BC边和AC边交于点F和点G,又△BEG的周长为16,且GE=1,则AC 的长为( )A .16B .15C .14D .139.(2020秋•赣榆区期中)如图,在△ABC 中,PM 、QN 分别是线段AB 、AC 的垂直平分线,若∠P AQ =40°,则∠BAC 的度数是( )A .110°B .100°C .120°D .70°10.(2020秋•连山区期中)如图,在△ABC 中,分别以点A 和点B 为圆心,以相同的长(大于12AB )为半径作弧,两弧相交于点M 和点N ,作直线MN 交AB 于点D ,交AC 于点E ,连接CD .已知△CDE 的面积比△CDB 的面积小4,则△ADE 的面积为( )A .4B .3C .2D .1二、填空题(本大题共8小题,每小题3分,共24分)请把答案直接填写在横线上11.(2020秋•定西期末)如图,在△ABC 中,点O 是BC 、AC 的垂直平分线的交点,OB =5cm ,AB =8cm ,则△AOB 的周长是 cm .12.(2020秋•呼和浩特期末)如图,在△ABC中,AB的垂直平分线MN交AC于点D,连接BD.若AC=7,BC=5,则△BDC的周长是.13.(2020秋•镇原县期末)如图,已知O为三边垂直平分线交点,∠BAC=60°,则∠BOC=.14.(2020秋•朝阳县期末)如图:△ABC中,DE是AC的垂直平分线,AE=3cm,△ABD的周长为13cm,则△ABC的周长为.15.(2020秋•鼓楼区校级月考)如图,在△ABC中,AB=6,AC=8,BC=11,AB的垂直平分线分别交AB,BC于点D、E,AC的垂直平分线分别交AC,BC于点F、G,则△AEG的周长为.16.(2020秋•浦东新区月考)如图,在△ABC中,直线l垂直平分BC,射线m平分∠ABC,且l与m相交于点P,若∠A=60°,∠ACP=15°,则∠ABP=°.17.(2020秋•平舆县期中)如图,△ABC中,∠A=68°,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则∠EDF=度.18.(2020秋•莆田期中)如图所示,在△ABC中,∠BAC=130°,AB的垂直平分线ME交BC于点M,交AB于点E,AC的垂直平分线NF交BC于点N,交AC于点F,则∠MAN为.三、解答题(本大题共6小题,共46分.解答时应写出文字说明、证明过程或演算步骤)19.(2020春•英德市期末)如图,A、B表示两个仓库,要在A、B一侧的河岸边建造一个码头,使它到两个仓库的距离相等,码头应建造在什么位置?20.(2020秋•虎林市期末)如图,△ABC中,∠BAC=80°,若MP和NQ分别垂直平分AB和AC.(1)求∠P AQ的度数.(2)若△APQ周长为12,BC长为8,求PQ的长.21.(2020秋•卢龙县期末)如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB,BC于点D和点E.(1)若AB=10,则△CDE的周长是多少?为什么?(2)若∠ACB=125°,求∠DCE的度数.22.(2020秋•诸暨市期中)如图,在△ABC中,∠C=90°,边AB的垂直平分线交AB,AC边分别为点D,点E,连结BE.(1)若∠A=35°,求∠CBE的度数;(2)若AB=10,BC=6,求△BCE的周长.23.(2020秋•芜湖期中)如图所示,在△ABC中,AB,AC的垂直平分线分别交BC于D,E,垂足分别是M,N.(1)若△ADE的周长为6,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.24.(2019秋•烟台期末)如图,四边形ABCD中,∠A=∠B=90°,AB=25cm,DA=15cm,CB=10cm.动点E从A点出发,以2cm/s的速度向B点移动,设移动的时间为x秒.(1)当x为何值时,点E在线段CD的垂直平分线上?(2)在(1)的条件下,判断DE与CE的位置关系,并说明理由.。
63《三角形中位线》习题含解析北师大八年级下初二数学试题试卷.doc
《三角形中位线》习题一、填空题1. 如图,D 、E 、F 分别为AABC 三边上的屮点.① _______________________ 线段AD 叫做AABC 的 ________ ,线段DE 叫做AABC 的 , DE 与AB 的位置和数量关系是② 图中全等三角形有 _________________________ ;③ 图中平行四边形有 _________________________ .2. _______________________________________________________________ 三角形各边长为8、11、15,则连结各边中点所构成的三角形的周长是 __________________________E, F, G H 分别是边AB, BC, CD DA 的中点, 则四边形EFGH 的周长为 ________ ・5.如图,A 、B 两处被池塘隔开,为了测量A 、B 两处的距离,在AB 外选一适当的点C,连接 AC 、BC,并分别取线段AC 、BC 的屮点E 、F,测得EF=22im 则AB 二 ______________ m.二. 选择题 【.△ABC 中,D 、E 分别是AB 、AC 边上的中点,若BC=8,则DE 等于() A.5 B.4 C. 3 D.22. 三角形的三条中位线长分别为3cm, 4cm, 6cm,则原三角形的周长为()A. 6. 5cmB. 34cm C 26cm D. 52cm3. 如图,在四边形 ABCD 中,AB=CD, M, N, P 分另ij AD, BC, BD 的中点,若ZMPN=130°, 则 ZNMP=()A. 25°B. 30°C. 35°D. 50°4•在四边形 ABCD 中,AC=6cm, BD=8cm, 3.顺次连结任意四边形各边中点5题 所得到L TJ r C4•如图所示,己知点E 、F 分别是△ ABC 中AC. AB 边的中点,BE 、CF 相交于点G, FG=3,则 CF 的长为() A. 4 B. 4.5 三、证明题:1. 如图,四边形各边屮点及对角线中点共六个点屮,任取四个点连成四边形屮,最多可以有儿个平 行四边形,证明你的结论.3•如图,△A3C 中,D 是AB ±一点,fl AD=AC, AE 丄CD 于& F 是BC 中点.求证:BD=2EF ・ 厂A4. 如图,AD 是ABAC 的外角平分线,CD 丄AD 于 点、D, E 是8C 的中点.求证:DE=-(AB+AC).C. 6D. 92•如图,在梯形ABCD 中,AD/7BC, E 是DC 的中点,交BC 于F,若EF=4,求AB 的长.C EF/7AB25•如图,在厶ABC中,ADLBC于点D, E, F, G分别是BG AC, AB的中点.若AB=- BC=3DE=i2,3求四边形DEFG的周长.参考答案一、填空题1.答案:①屮线,中位线,DE〃AB, DE=-AB.2②Z\AEF 竺ZXDEF 空△FBD^AEDC.③GFDE, DFBDE, OFDCE.解析:【解答】解:(1) D、E、F分别为AABC三边上的中点,根据中线的定义知,线段AD叫做AABC的中线,根据中位线的定义知,线段DE叫做AABC的中位线,再根据中位线的性质知,中位线的长是第三边的长的一半且平行于第三边,・・・DE〃AB, DE=-AB;2(2) TDE, DF, EF 是三角形的中位线,ADF//AC, DE〃AB, EF〃BC,二四边形AEDF, BFED, CEFD 是平行四边形,・\DE=AF=BF, DF=AE=EC, EF=BD=DC,AAAEF^ADEF^AFBD^AEDC.故答案为:(1)中点,中位线,DE〃AB, DE=-AB; (2)2AAEF^ADEF^AFBD^AEDC; (3) 口AFDE, Z J FBDE, Z3FDCE.【分析】根据三角形的中线、中位线的定义以及中位线的性质可知答案2.答案:17;解析:【解答】丄(8+11 + 15)=17,故答案为17.2【分析】直接运用三角形中位线的性质即可.3.答案:平行四边形;解析:【解答】•・•这个四边形的两组对边分别是原4边形对角线连线构成的三角形的中位线,・••这个四边形两对边相等・•・四边形一定是平行四边形【分析】直接运用三角形中位线的性质即可.4.答案:14cm;解析:【解答】T四边形ABCD中,AC=6cm, BD=8cm, E、F、G、H分别是边AB、BC、CD、DA的中点,1 1EH=FG= - BD, EF=HG=- AC,2 2・•・四边形EFGH 的周氏为:(EH+FG) + (EF+HG) =-x2BD+ 丄x2AC二BD+AC=8+62 2= 14.故答案为14.【分析】直接运用三角形中位线的性质即可.5.答案:44.解析:【解答】TE、F是AC, AB的中点,・・・EF是AABC的屮位线,1・・・EF=-AB2VEF=22cm,,-,AB=44cm.故答案为44.【分析】直接运用三角形屮位线的性质即可.二、选择题1.答案:C解析:【解答】ZkABC中,D、E分别是AB、AC边上的中点,ADE是△ ABC的中位线,又T BC=8, ・・・DE=4,故选C.【分析】直接运用三角形中位线的性质即可.2.答案:C解析:【解答】T三角形的三条中位线分别为4cm、5cm、8cm,•I三角形的三边分别为8cm, 10cm, 16cm,・•・这个三角形的周长二8+10+16=34cm.故选B.【分析】直接运用三角形中位线的性质即可.3.答案:A解析:【解答】•・•在四边形ABCD中,M、N、P分别是AD、BC、BD的屮点,・・・PN, PM分别是ACDB与厶DAB的中位线,1 1・・・PM=-AB, PN二一DC,2 2TAB二CD,・•・ PM=PN,•••△PMN是等腰三角形,VPM//AB, PN〃DC,AZMPD=ZABD=35°, ZBPN=ZBDC=85°,・•・ Z MPN= Z MPD+ ZNPD=35°+95°= 130°,A ZPMN=25°,故选A.【分析】运三角形中位线的性质,先证WAPMN是等腰三角形,然后在求出ZPMN=25唧可.4.答案:D解析:【解答】・・•点E、F分别定ZXABC屮AC、AB边的中点,BE、CF相交于点G,・・・G为AABC的重心,・・・2FG=GC,VFG=3, ・・・GC二6, ACF=9.故选D..【分析】三、证明题1.答案:3个.解析:【解答】在四边形ABCD屮F,G,H,E,M,N分别是AB,BC,CD,DA,BD,AC的中点(1) FG〃AC,EH〃AC; FG = 1/2AC,EH= 1/2AC・・・FG〃EH,FG = EH・•・四边形FGHE是平行四边形⑵MG 〃CD,EN // CD;MG = 1 /2CD,EN = 1 /2CD・・・MG〃EN,MG = EN・•・四边形MGNE是平行四边形⑶ FM〃AD,NH〃AD; FM= 1/2AD,NH= 1/2ADAFM/7NH; FM = NH・•・四边形FMHN是平行四边形・•・最多可以有3个平行四边形【分析】直接运用三角形屮位线性质定理即可.2.答案:8解析:【解答】过D作DG〃AB交BC于G,・.・AD〃BC, AB〃DG,・•・四边形ABGD是平行四边形,・•・AB二DG. gVEF/7AB, AEF/7DG, VDE=CE, A GF=CF.•••EF是MDG的中位线,,.EF石DG.ADG=2EF=8,即AB=8.【分析】过D作DG〃AB交BC于G,利用三角形中位线性质定理即可.3 .答案:证明过程见解析.解析:【解答】证明:VAD=AC, AE丄CD, /.CE=DE.又J F是BC中点,・•・BD=2EF.【分析】要证BD=2EF,由于F是BC的中点,根据三角形的中位线定理只需证E是CD中点即可,这易从己知证得.4.答案:证明过程见解析.解析:【解答】证明:延长CD与BA交于F点.VAD是ZBAC的外角平分线,・•・ZCAD=ZEAD.TCD丄AD, /. ZADC=ZADF=90°, AZACD=ZF,・・・AC=AF,・・・CD=DF.TE 是BC 的中点,ADE二丄BF=丄(AB+AC).2 2【分析】直接证明DE二丄(AB+AC)比较困难,注意到E是BC的屮点,联想到三角形的屮位线定2 *理,于是延长CD与BA交于F点,只需证D是CF的中点及AF=AC即可,这容易从题设证得. 5.答案:252解析:【解答】・・施严沁=2,・・・B5, DE=4.VAD丄BC, G 是AB 的中点,ADG=-AB=6.2VE, F, G分别是BC, AC, AB的中点,AFG二丄BC=9, EF二丄AB=6.2 2•••四边形DEFG的周氏为4+6+9+6=25・【分析】貢接运用三角形中位线性质定理求岀GE和EF的值,利用直角三角形的性质求出DG的值,即可求出周长.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年八年级数学下册尖子生同步培优题典【苏科版】
专题9.10三角形的中位线
姓名:__________________ 班级:______________ 得分:_________________
注意事项:
本试卷满分100分,试题共24题,选择10道、填空8道、解答6道.答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级等信息填写在试卷规定的位置.
一、选择题(本大题共10小题,每小题3分,共30分)在每小题所给出的四个选项中,只有一项是符合题目要求的.
1.(2020春•海陵区期末)如图,在△ABC中,D,E分别为AB,AC的中点,连接DE,若BC=10,则
DE的长为()
A.6B.5C.
10
3
D.
5
2
2.(2020春•无锡期中)如图,在△ABC中,BC=12,D、E分别是AB、AC的中点,F是DE上一点,DF =1,连接AF,CF,若∠AFC=90°,则AC的长度为()
A.10B.12C.13D.14
3.(2020春•古丈县期末)如图,为了测量池塘边A、B两地之间的距离,在线段AB的同侧取一点C,连结CA并延长至点D,连结CB并延长至点E,使得A、B分别是CD、CE的中点,若DE=18m,则线段AB的长度是()
1/ 7。