STM32F103C8T6引脚

合集下载

stm32f103c8t6的数据手册

stm32f103c8t6的数据手册

《STM32F103C8T6的数据手册》一、概述STM32F103C8T6是ST公司生产的32位ARM Cortex-M3内核的微控制器,具有丰富的外设接口和强大的性能,广泛应用于工业控制、自动化设备、消费类电子产品等领域。

本文旨在对STM32F103C8T6的数据手册进行全面的介绍,帮助读者更好地理解和应用这款微控制器。

二、概览1. 器件简介STM32F103C8T6是一款高性能、低功耗的微控制器,拥有72MHz 工作频率,64KB Flash存储器和20KB RAM。

其丰富的外设接口包括多个通用定时器、串行通信接口、模拟-数字转换器等,适用于各种复杂的应用场景。

2. 功能特性STM32F103C8T6的主要功能特性包括:- ARM Cortex-M3内核- 64KB Flash存储器、20KB RAM- 丰富的外设接口:通用定时器、串行通信接口、模拟-数字转换器等- 低功耗模式:多种低功耗模式可选,满足不同需求3. 应用领域STM32F103C8T6广泛应用于工业控制、自动化设备、消费类电子产品等领域,如工业控制器、电源管理系统、医疗设备等。

三、详细规格1. 通用定时器STM32F103C8T6内置了多个通用定时器,可用于生成精准的定时脉冲,计数器和PWM输出等功能。

2. 串行通信接口该微控制器支持多种串行通信接口,包括SPI、I2C和USART,可用于与外部设备进行高速数据传输。

3. 模拟-数字转换器STM32F103C8T6配备了多个模拟-数字转换器,可实现精确的模拟信号采集和处理。

4. 中断控制器中断控制器可实现对各种外部事件的响应,提高系统的实时性和稳定性。

5. 时钟控制时钟控制模块支持多种时钟源和分频设置,可满足不同应用场景的时序要求。

6. 低功耗模式STM32F103C8T6支持多种低功耗模式,包括待机模式、休眠模式和停止模式,有效降低系统功耗,延长电池寿命。

7. 引脚定义STM32F103C8T6具有多种引脚,可供用户定义为输入/输出口,用于连接外部设备和传感器。

STM32F103R8T6数据手册_引脚图_参数

STM32F103R8T6数据手册_引脚图_参数
■ Low power – Sleep, Stop and Standby modes – VBAT supply for RTC and backup registers
■ 2 x 12-bit, 1 µs A/D converters (up to 16 channels) – Conversion range: 0 to 3.6 V – Dual-sample and hold capability – Temperature sensor
2.3.5 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 12
2.3.6 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . 13
■ 7 timers – Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter and quadrature (incremental) encoder input – 16-bit, motor control PWM timer with deadtime generation and emergency stop – 2 watchdog timers (Independent and Window) – SysTick timer: a 24-bit downcounter
■ Up to 9 communication interfaces – Up to 2 x I2C interfaces (SMBus/PMBus) – Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control) – Up to 2 SPIs (18 Mbit/s) – CAN interface (2.0B Active) – USB 2.0 full-speed interface

c8t6引脚定义

c8t6引脚定义

c8t6引脚定义
STM32F103C8T6的引脚定义如下:
•引脚PA0-PA7:GPIO端口A,用于输入输出。

•引脚PB0-PB7:GPIO端口B,用于输入输出。

•引脚PC0-PC7:GPIO端口C,用于输入输出。

•引脚PD0-PD7:GPIO端口D,用于输入输出。

•引脚PE0-PE7:GPIO端口E,用于输入输出。

•引脚PF0-PF7:GPIO端口F,用于输入输出。

•引脚PG0-PG7:GPIO端口G,用于输入输出。

•引脚PH0-PH7:GPIO端口H,用于输入输出。

此外,STM32F103C8T6还具有其他引脚,如BOOT0和BOOT1、JTAG接口、SWD接口等。

具体引脚定义可以通过芯片手册进行查询。

需要注意的是,不同型号的STM32芯片可能具有不同的引脚定义和功能,因此在实际使用中需要参考具体型号的芯片手册进行引脚定义和使用。

STM32F103C8T6脚位分布汇总

STM32F103C8T6脚位分布汇总

行业发展研究系列报告,以行业的发展现状和发展趋势为主要研究内容,是我司发布的针对企业市场研究工作的重点产品,同时也可作为银行、证券、基金、投资公司等进行行业分析时的参考资料。

从研究框架和研究方法来看,我司的行业发展研究系列报告具有以下特色:STM32F103一、内容全面1 VBAT行业发展研究系列报告分专业版和资深版两个版本,专业版共十六个章节,资深版共二十二个章节,研究内容涉及行业的国内外发展概况、政策环境、市场规模、市场集中度、需求和供给、价格、财务指标、竞争格局、用户行为、产业链上下游、渠道、进出口状况、重点企业、重点子行业和细分地区等,并穿插了分析师和相关专家的结论、观点和建议,报告内容全面、翔实、客观、公正。

一个行业不是单独存在的,它的发展受到宏观经济、区域经济、相关产业和社会文化等多种因素的影响。

行业发展研究系列报告以行业本身的运行为研究核心,并结合影响行业运行发展的其他各类因素,形成一个结构严谨的研究体系,采用系统评价的方式,对行业进行综合分析和预测。

2 PC13-ANTI_TAMP三、产业链延伸在对产业链的研究过程中,行业发展研究系列报告除了对关系最为紧密的上下游产业进行深入分析之外,还对替代品、互补品所在的行业进行详细论述,从产业链的纵向和横向两个方面切入,扩大研究范围,以便更好、更准确地对行业发展的环境、成本、市场需求等做出判断。

4 PC15-OSC32_OUT四、区域分析5 PD0 OSC_IN中国地域辽阔,各地之间的地理位置、资源禀赋、经济发展水平、风俗习惯都有很大的差异,而这些差异对于产业的发展又有着至关重要的影响。

所以在研究中国各个行业的发展状况时,如果不对区域特点进行充分考虑,则研究成果的准确性和适用性必定不够。

我司利用长期积累建立的区域经济数据库优势(该数据库内容覆盖全国30多个省、直辖市、自治区,6 PD1 OSC_OUT多个地级市、20008 VSSA 五、全球化视野相比于欧美等国,中国经济起步较晚,很多产业的发展都落后于发达国家,所以,分析行业的国际发展状况,研究国际市场的成熟经验,对于中国企业来说,有着重要的借鉴意义和参考价值。

STM32F103C8T6中文资料_引脚图_最小系统

STM32F103C8T6中文资料_引脚图_最小系统

Contents STM32F103x8,STM32F103xB Contents1Introduction (9)2Description (9)2.1Device overview (10)2.2Full compatibility throughout the family (13)2.3Overview (14)2.3.1ARM®Cortex™-M3core with embedded Flash and SRAM (14)2.3.2Embedded Flash memory (14)2.3.3CRC(cyclic redundancy check)calculation unit (14)2.3.4Embedded SRAM (14)2.3.5Nested vectored interrupt controller(NVIC) (14)2.3.6External interrupt/event controller(EXTI) (15)2.3.7Clocks and startup (15)2.3.8Boot modes (15)2.3.9Power supply schemes (15)2.3.10Power supply supervisor (15)2.3.11Voltage regulator (16)2.3.12Low-power modes (16)2.3.13DMA (17)2.3.14RTC(real-time clock)and backup registers (17)2.3.15Timers and watchdogs (17)2.3.16I²C bus (19)2.3.17Universal synchronous/asynchronous receiver transmitter(USART)..192.3.18Serial peripheral interface(SPI) (19)2.3.19Controller area network(CAN) (19)2.3.20Universal serial bus(USB) (19)2.3.21GPIOs(general-purpose inputs/outputs) (20)2.3.22ADC(analog-to-digital converter) (20)2.3.23T emperature sensor (20)2.3.24Serial wire JTAG debug port(SWJ-DP) (20)3Pinouts and pin description (21)4Memory mapping (34)2/105DocID13587Rev16STM32F103x8,STM32F103xB Contents5Electrical characteristics (35)5.1Parameter conditions (35)5.1.1Minimum and maximum values (35)5.1.2Typical values (35)5.1.3Typical curves (35)5.1.4Loading capacitor (35)5.1.5Pin input voltage (35)5.1.6Power supply scheme (36)5.1.7Current consumption measurement (37)5.2Absolute maximum ratings (37)5.3Operating conditions (38)5.3.1General operating conditions (38)5.3.2Operating conditions at power-up/power-down (39)5.3.3Embedded reset and power control block characteristics (40)5.3.4Embedded reference voltage (41)5.3.5Supply current characteristics (41)5.3.6External clock source characteristics (51)5.3.7Internal clock source characteristics (55)5.3.8PLL characteristics (57)5.3.9Memory characteristics (57)5.3.10EMC characteristics (58)5.3.11Absolute maximum ratings(electrical sensitivity) (60)5.3.12I/O current injection characteristics (61)5.3.13I/O port characteristics (62)5.3.14NRST pin characteristics (68)5.3.15TIM timer characteristics (69)5.3.16Communications interfaces (70)5.3.17CAN(controller area network)interface (75)5.3.1812-bit ADC characteristics (76)5.3.19T emperature sensor characteristics (80)6Package characteristics (81)6.1Package mechanical data (81)6.2Thermal characteristics (93)6.2.1Reference document (93)6.2.2Selecting the product temperature range (94)DocID13587Rev163/105Contents STM32F103x8,STM32F103xB7Ordering information scheme (96)8Revision history (97)4/105DocID13587Rev16STM32F103x8,STM32F103xB List of tables List of tablesT able1.Device summary (1)T able2.STM32F103xx medium-density device features and peripheral counts (10)T able3.STM32F103xx family (13)T able4.Timer feature comparison (17)T able5.Medium-density STM32F103xx pin definitions (28)T able6.Voltage characteristics (37)T able7.Current characteristics (38)T able8.Thermal characteristics (38)T able9.General operating conditions (38)T able10.Operating conditions at power-up/power-down (39)T able11.Embedded reset and power control block characteristics (40)T able12.Embedded internal reference voltage (41)T able13.Maximum current consumption in Run mode,code with data processingrunning from Flash (42)T able14.Maximum current consumption in Run mode,code with data processingrunning from RAM (42)T able15.Maximum current consumption in Sleep mode,code running from Flash or RAM (44)T able16.Typical and maximum current consumptions in Stop and Standby modes (45)T able17.Typical current consumption in Run mode,code with data processingrunning from Flash (48)T able18.Typical current consumption in Sleep mode,code running from Flash orRAM (49)T able19.Peripheral current consumption (50)T able20.High-speed external user clock characteristics (51)T able21.Low-speed external user clock characteristics (51)T able22.HSE4-16MHz oscillator characteristics (53)T able23.LSE oscillator characteristics(f LSE=32.768kHz) (54)T able24.HSI oscillator characteristics (55)T able25.LSI oscillator characteristics (56)T able26.Low-power mode wakeup timings (57)T able27.PLL characteristics (57)T able28.Flash memory characteristics (57)T able29.Flash memory endurance and data retention (58)T able30.EMS characteristics (59)T able31.EMI characteristics (59)T able32.ESD absolute maximum ratings (60)T able33.Electrical sensitivities (60)T able34.I/O current injection susceptibility (61)T able35.I/O static characteristics (62)T able36.Output voltage characteristics (66)T able37.I/O AC characteristics (67)T able38.NRST pin characteristics (68)T able39.TIMx characteristics (69)T able40.I2C characteristics (70)T able41.SCL frequency(f PCLK1=36MHz.,V DD_I2C=3.3V) (71)T able42.SPI characteristics (72)T B startup time (74)T B DC electrical characteristics (75)DocID13587Rev165/105List of tables STM32F103x8,STM32F103xBT B:Full-speed electrical characteristics (75)T able46.ADC characteristics (76)T able47.R AIN max for f ADC=14MHz (77)T able48.ADC accuracy-limited test conditions (77)T able49.ADC accuracy (78)T able50.TS characteristics (80)T able51.VFQFPN366x6mm,0.5mm pitch,package mechanical data (82)T able52.UFQFPN487x7mm,0.5mm pitch,package mechanical data (83)T able53.LFBGA100-10x10mm low profile fine pitch ball grid array packagemechanical data (85)T able54.LQPF100,14x14mm100-pin low-profile quad flat package mechanical data (87)T able55.UFBGA100-ultra fine pitch ball grid array,7x7mm,0.50mm pitch,packagemechanical data (88)T able56.LQFP64,10x10mm,64-pin low-profile quad flat package mechanical data (89)T able57.TFBGA64-8x8active ball array,5x5mm,0.5mm pitch,package mechanical data (90)T able58.LQFP48,7x7mm,48-pin low-profile quad flat package mechanical data (92)T able59.Package thermal characteristics (93)T able60.Ordering information scheme (96)T able61.Document revision history (97)6/105DocID13587Rev16STM32F103x8,STM32F103xB List of figures List of figuresFigure1.STM32F103xx performance line block diagram (11)Figure2.Clock tree (12)Figure3.STM32F103xx performance line LFBGA100ballout (21)Figure4.STM32F103xx performance line LQFP100pinout (22)Figure5.STM32F103xx performance line UFBGA100pinout (23)Figure6.STM32F103xx performance line LQFP64pinout (24)Figure7.STM32F103xx performance line TFBGA64ballout (25)Figure8.STM32F103xx performance line LQFP48pinout (26)Figure9.STM32F103xx performance line UFQFPN48pinout (26)Figure10.STM32F103xx performance line VFQFPN36pinout (27)Figure11.Memory map (34)Figure12.Pin loading conditions (36)Figure13.Pin input voltage (36)Figure14.Power supply scheme (36)Figure15.Current consumption measurement scheme (37)Figure16.Typical current consumption in Run mode versus frequency(at3.6V)-code with data processing running from RAM,peripherals enabled (43)Figure17.Typical current consumption in Run mode versus frequency(at3.6V)-code with data processing running from RAM,peripherals disabled (43)Figure18.Typical current consumption on V BAT with RTC on versus temperature at differentV BAT values (45)Figure19.Typical current consumption in Stop mode with regulator in Run mode versustemperature at V DD=3.3V and3.6V (46)Figure20.Typical current consumption in Stop mode with regulator in Low-power mode versustemperature at V DD=3.3V and3.6V (46)Figure21.Typical current consumption in Standby mode versus temperature atV DD=3.3V and3.6V (47)Figure22.High-speed external clock source AC timing diagram (52)Figure23.Low-speed external clock source AC timing diagram (52)Figure24.Typical application with an8MHz crystal (53)Figure25.Typical application with a32.768kHz crystal (55)Figure26.Standard I/O input characteristics-CMOS port (64)Figure27.Standard I/O input characteristics-TTL port (64)Figure28.5V tolerant I/O input characteristics-CMOS port (65)Figure29.5V tolerant I/O input characteristics-TTL port (65)Figure30.I/O AC characteristics definition (68)Figure31.Recommended NRST pin protection (69)Figure32.I2C bus AC waveforms and measurement circuit (71)Figure33.SPI timing diagram-slave mode and CPHA=0 (73)Figure34.SPI timing diagram-slave mode and CPHA=1(1) (73)Figure35.SPI timing diagram-master mode(1) (74)B timings:definition of data signal rise and fall time (75)Figure37.ADC accuracy characteristics (78)Figure38.Typical connection diagram using the ADC (79)Figure39.Power supply and reference decoupling(V REF+not connected to V DDA) (79)Figure40.Power supply and reference decoupling(V REF+connected to V DDA) (80)Figure41.VFQFPN366x6mm,0.5mm pitch,package outline(1) (82)Figure42.VFQFPN36recommended footprint(dimensions in mm)(1)(2) (82)DocID13587Rev167/105List of figures STM32F103x8,STM32F103xBFigure43.UFQFPN487x7mm,0.5mm pitch,package outline (83)Figure44.UFQFPN48recommended footprint (84)Figure45.LFBGA100-10x10mm low profile fine pitch ball grid array packageoutline (85)Figure46.Recommended PCB design rules(0.80/0.75mm pitch BGA) (86)Figure47.LQFP100,14x14mm100-pin low-profile quad flat package outline (87)Figure48.LQFP100recommended footprint(1) (87)Figure49.UFBGA100-ultra fine pitch ball grid array,7x7mm,0.50mm pitch,package outline (88)Figure50.LQFP64,10x10mm,64-pin low-profile quad flat package outline (89)Figure51.LQFP64recommended footprint(1) (89)Figure52.TFBGA64-8x8active ball array,5x5mm,0.5mm pitch,package outline (90)Figure53.Recommended PCB design rules for pads(0.5mm pitch BGA) (91)Figure54.LQFP48,7x7mm,48-pin low-profile quad flat package outline (92)Figure55.LQFP48recommended footprint(1) (92)Figure56.LQFP100P D max vs.T A (95)8/105DocID13587Rev16STM32F103x8,STM32F103xB Introduction 1IntroductionThis datasheet provides the ordering information and mechanical device characteristics ofthe STM32F103x8and STM32F103xB medium-density performance line microcontrollers.For more details on the whole STMicroelectronics STM32F103xx family,please refer toSection2.2:Full compatibility throughout the family.The medium-density STM32F103xx datasheet should be read in conjunction with the low-,medium-and high-density STM32F10xxx reference manual.The reference and Flash programming manuals are both available from theSTMicroelectronics website .For information on the Cortex™-M3core please refer to the Cortex™-M3T echnicalReference Manual,available from the website at the following address:/help/index.jsp?topic=/com.arm.doc.ddi0337e/2DescriptionThe STM32F103xx medium-density performance line family incorporates the high-performance ARM Cortex™-M332-bit RISC core operating at a72MHz frequency,high-speed embedded memories(Flash memory up to128Kbytes and SRAM up to20Kbytes),and an extensive range of enhanced I/Os and peripherals connected to two APB buses.Alldevices offer two12-bit ADCs,three general purpose16-bit timers plus one PWM timer,aswell as standard and advanced communication interfaces:up to two I2Cs and SPIs,threeUSART s,an USB and a CAN.The devices operate from a2.0to3.6V power supply.They are available in both the–40to+85°C temperature range and the–40to+105°C extended temperature range.Acomprehensive set of power-saving mode allows the design of low-power applications.The STM32F103xx medium-density performance line family includes devices in six differentpackage types:from36pins to100pins.Depending on the device chosen,different sets ofperipherals are included,the description below gives an overview of the complete range ofperipherals proposed in this family.These features make the STM32F103xx medium-density performance line microcontrollerfamily suitable for a wide range of applications such as motor drives,application control,medical and handheld equipment,PC and gaming peripherals,GPS platforms,industrialapplications,PLCs,inverters,printers,scanners,alarm systems,video intercoms,andHVACs.DocID13587Rev169/105TimersCommunicationDescription STM32F103x8,STM32F103xB 2.1Device overviewTable2.STM32F103xx medium-density device features and peripheral1.On the TFBGA64package only15channels are available(one analog input pin has been replaced by‘Vref+’).10/105DocID13587Rev16Peripheral STM32F103Tx STM32F103Cx STM32F103Rx STM32F103Vx Flash-Kbytes64128641286412864128SRAM-Kbytes20202020 General-purpose3333Advanced-control1111SPI12222I C1222USART2333USB1111CAN1111 GPIOs2637518012-bit synchronized ADCNumber of channels210channels210channels2(1)16channels216channels CPU frequency72MHzOperating voltage 2.0to3.6VOperating temperaturesAmbient temperatures:-40to+85°C/-40to+105°C(see Table9)Junction temperature:-40to+125°C(see Table9)Packages VFQFPN36LQFP48,UFQFPN48LQFP64,TFBGA64LQFP100,LFBGA100,UFBGA100f l a s ho b lI n t e r f a c eB u s M a t r i xA HB :F m a x =48/72M H zA PB 2:F m a x =48/72M H zA PB 1:F m a x =24/36M H zpbusPCLK2 HCLK CLOCK RTC AWUTAMPER -RTCSTM32F103x8, STM32F103xBDescriptionFigure 1. STM32F103xx performance line block diagramTRACECLKTRACED[0:3] as ASNJTRSTTRSTJTDIJTCK/SWCLK JTMS/SWDIOJTDO as AFTPIUTrace/trigSW/JTAGCortex -M3 CPUIbusF max : 7 2M Hz DbusTraceControlle rFlash 128 KB64 bitPOWERVOLT. REG. 3.3V TO 1.8V@VDDV DD = 2 to 3.6VV SSNVICSystemSRAM20 KB@VDDGP DMA7 channelsPCLK1 FCLKPLL &MANAGTXTAL OSC4-16 MHzOSC_INOSC_OUTRC 8 MHzNRST @VDDASUPPLYSUPERVISIONRC 40 kHz @VDDA@VBATIWDG Standby interfaceV BATVDDA VSSA 80AF PA[15:0] PB[15:0]POR / PDRPVDEXTIWAKEUPGPIOAGPIOBRstIntAHB2 AHB2APB2 APB1XTAL 32 kHzBackup reg Backu p i nterf ace TIM2 TIM3OSC32_IN OSC32_OUT4 Channels 4 ChannelsPC[15:0]GPIOCTIM 44 ChannelsPD[15:0]GPIOD PE[15:0] GPIOEUSART2USART3RX,TX, CTS, RTS,CK, SmartCard as AFRX,TX, CTS, RTS, CK, SmartCard as AF4 Channels3 compl. ChannelsETR and BKINMOSI,MISO, SCK,NSS as AFRX,TX, CTS, RTS,TIM1SPI12x(8x16bit)SPI2I2C1 I2C2MOSI,MISO,SCK,NSS as AFSCL,SDA,SMBA as AFSCL,SDA as AFSmartCard as AFUSART1@VDDAbxCANUSBDP/CAN_TXUSB 2.0 FSUSBDM/CAN_RX16AF V REF+ V REF -12bit ADC1 IF12bit ADC2 IFSRAM 512BWWDGTemp sensorai14390d1. T A = –40 °C to +105 °C (junction temperature up to 125 °C).2. AF = alternate function on I/O port pin.DocID13587 Rev 1611/105peripheralsIf (APB2 prescaler =1) x1 ADC /2, 4, 6, 8 ADCCLKDescriptionSTM32F103x8, STM32F103xBFigure 2. Clock treeFLITFCLKto Flash programming interface8 MHz HSI RCHSIUSBPrescaler 48 MHzUSBCLKto USB interface/2/1, 1.572 MHz maxClockHCLKto AHB bus, core, memory and DMA PLLSRCSWPLLMUL/8Enable (3 bits)to Cortex System timerFCLK Cortex..., x16 x2, x3, x4 PLLHSIPLLCLK HSESYSCLK72 MHz max AHB Prescaler /1, 2..512 APB1Prescaler/1, 2, 4, 8, 16free running clock36 MHz max PCLK1to APB1Peripheral Clock Enable (13 bits)TIM2,3, 4to TIM2, 3and 4CSSIf (APB1 prescaler =1) x1 TIMXCLKelse x2 Peripheral ClockEnable (3 bits)OSC_OUTOSC_IN4-16 MHzHSE OSCPLLXTPRE/2APB2Prescaler/1, 2, 4, 8, 16TIM1 timer 72 MHz maxPeripheral ClockEnable (11 bits) PCLK2peripherals to APB2to TIM1 TIM1CLK else x2 Peripheral ClockOSC32_INOSC32_OUTLSE OSC32.768 kHz/128LSERTCCLKto RTCPrescaler Enable (1 bit) to ADCRTCSEL[1:0]LSI RCLSIto Independent Watchdog (IWDG)40 kHzIWDGCLKLegend:HSE = high -speed external clock signalHSI = high -speed internal clock signalMCOMainClock Output/2PLLCLKHSI LSI = low -speed internal clock signal LSE = low -speed external clock signalHSESYSCLKMCOai149031. When the HSI is used as a PLL clock input, the maximum system clock frequency that can be achieved is 64 MHz.2. For the USB function to be available, both HSE and PLL must be enabled, with USBCLK running at 48 MHz.3. To have an ADC conversion time of 1 µs, APB2 must be at 14 MHz, 28 MHz or 56 MHz.12/105DocID13587 Rev 16STM32F103x8, STM32F103xBDescription2.2 Full compatibility throughout the familyThe STM32F103xx is a complete family whose members are fully pin -to -pin, software and feature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 are identified as low -density devices, the STM32F103x8 and STM32F103xB are referred to as medium -density devices, and the STM32F103xC, STM32F103xD and STM32F103xE are referred to as high -density devices.Low - and high -density devices are an extension of the STM32F103x8/B devices, they are specified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low - density devices feature lower Flash memory and RAM capacities, less timers and peripherals. High -density devices have higher Flash memory and RAM capacities, and additional peripherals like SDIO, FSMC, I 2S and DAC, while remaining fully compatible with the other members of the STM32F103xx family .The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xE are a drop -in replacement for STM32F103x8/B medium -density devices, allowing the user to try different memory densities and providing a greater degree of freedom during the development cycle.Moreover, the STM32F103xx performance line family is fully compatible with all existing STM32F101xx access line and STM32F102xx USB access line devices.1.For orderable part numbers that do not show the A internal code after the temperature range code (6 or 7),the reference datasheet for electrical characteristics is that of the STM32F103x8/B medium -density devices.DocID13587 Rev 16 13/105PinoutLow -density devicesMedium -density devices High -density devices 16 KB Flash 32 KB Flash (1) 64 KB Flash 128 KB Flash 256 KB Flash 384 KB Flash 512 KB Flash6 KB RAM 10 KB RAM 20 KB RAM 20 KB RAM 48 KB RAM 64 KB RAM 64 KB RAM144 5 × USART s 4 × 16-bit timers, 2 × basic timers2 3 × SPIs, 2 × I Ss, 2 × I2Cs USB, CAN, 2 × PWM timers 3 × ADCs, 2 × DACs, 1 × SDIOFSMC (100 and 144 pins) 100 3 × USART s 3 × 16-bit timers 2 2 × SPIs, 2 × I Cs, USB, CAN, 1 × PWM timer2 × ADCs 64 2 × USART s 2 × 16-bit timers 2 1 × SPI, 1 × I C, USB, CAN, 1 × PWM timer 2 × ADCs 48 36Description STM32F103x8,STM32F103xB 2.3Overview2.3.1ARM®Cortex™-M3core with embedded Flash and SRAMThe ARM Cortex™-M3processor is the latest generation of ARM processors for embeddedsystems.It has been developed to provide a low-cost platform that meets the needs of MCUimplementation,with a reduced pin count and low-power consumption,while deliveringoutstanding computational performance and an advanced system response to interrupts.The ARM Cortex™-M332-bit RISC processor features exceptional code-efficiency,delivering the high-performance expected from an ARM core in the memory size usuallyassociated with8-and16-bit devices.The STM32F103xx performance line family having an embedded ARM core,is thereforecompatible with all ARM tools and software.Figure1shows the general block diagram of the device family.2.3.2Embedded Flash memory64or128Kbytes of embedded Flash is available for storing programs and data.2.3.3CRC(cyclic redundancy check)calculation unitThe CRC(cyclic redundancy check)calculation unit is used to get a CRC code from a32-bitdata word and a fixed generator polynomial.Among other applications,CRC-based techniques are used to verify data transmission orstorage integrity.In the scope of the EN/IEC60335-1standard,they offer a means ofverifying the Flash memory integrity.The CRC calculation unit helps compute a signature ofthe software during runtime,to be compared with a reference signature generated at link-time and stored at a given memory location.2.3.4Embedded SRAMTwenty Kbytes of embedded SRAM accessed(read/write)at CPU clock speed with0waitstates.2.3.5Nested vectored interrupt controller(NVIC)The STM32F103xx performance line embeds a nested vectored interrupt controller able tohandle up to43maskable interrupt channels(not including the16interrupt lines ofCortex™-M3)and16priority levels.•Closely coupled NVIC gives low-latency interrupt processing•Interrupt entry vector table address passed directly to the core•Closely coupled NVIC core interface•Allows early processing of interrupts•Processing of late arriving higher priority interrupts•Support for tail-chaining•Processor state automatically saved•Interrupt entry restored on interrupt exit with no instruction overhead14/105DocID13587Rev16万联芯城专注电子元器件配单服务,只售原装现货库存,万联芯城电子元器件全国供应,专为终端生产,研发企业提供现货物料,价格优势明显,BOM配单采购可节省逐个搜索购买环节,只需提交BOM物料清单,商城即可为您报价,解决客户采购烦恼,为客户节省采购成本,点击进入万联芯城。

stm32f103c8t6外部中断原理

stm32f103c8t6外部中断原理

一、概述在嵌入式系统中,外部中断是一种常见的事件触发机制,它能够使处理器在执行程序的过程中,及时地响应外部事件的发生,从而提高系统的实时性和稳定性。

在基于STM32F103C8T6芯片的嵌入式系统开发中,外部中断的使用具有重要的意义。

本文将介绍STM32F103C8T6外部中断的原理及其应用。

二、STM32F103C8T6外部中断的原理1. 外部中断概述外部中断是指处理器接收到外部输入信号后,及时地中断当前的程序执行,转而执行事先定义好的中断服务程序。

在STM32F103C8T6芯片中,具有多个外部中断引脚以及相关的中断控制寄存器,可以方便地实现外部中断功能。

2. 中断控制器STM32F103C8T6芯片的中断控制器包含若干中断控制寄存器,用于配置外部中断的触发条件、优先级、使能状态等。

通过对中断控制寄存器的配置,可以灵活地控制外部中断的响应行为。

3. NVICSTM32F103C8T6芯片内部集成了Nested Vectored Interrupt Controller(NVIC),负责管理和调度所有的中断源。

在实现外部中断功能时,需要通过NVIC对外部中断源进行优先级和使能的设置。

4. 外部中断触发条件在STM32F103C8T6芯片中,外部中断可以以上升沿、下降沿、上升沿和下降沿、低电平或者高电平触发。

在配置外部中断时,需要根据实际应用需求选择合适的触发条件,并进行相应的配置。

5. 外部中断服务程序一旦外部中断触发条件满足,处理器将立即响应中断,并跳转到预先定义好的外部中断服务程序中执行。

外部中断服务程序通常用于处理外部事件的逻辑,例如状态更新、数据采集、报警处理等。

三、STM32F103C8T6外部中断的应用1. 外部按键控制在很多嵌入式系统中,外部按键常常作为用户与系统交互的途径。

通过STM32F103C8T6的外部中断功能,可以轻松地实现外部按键的检测和响应,从而实现用户界面的交互控制。

stm32f103c8t6 tf卡简单的读写函数

stm32f103c8t6 tf卡简单的读写函数

文章标题:探索STM32F103C8T6与TF卡的简单读写函数在嵌入式系统开发中,TF卡的读写功能一直是一个不可或缺的部分。

而对于如何在STM32F103C8T6芯片上实现简单的TF卡读写函数,也是我们经常需要探讨的一个问题。

在本文中,我们将会从简单到复杂地讨论如何在STM32F103C8T6芯片上实现TF卡的读写功能,以便读者能更深入地理解这一过程。

1. TF卡简介在开始讨论TF卡的读写函数之前,我们先简要介绍一下TF卡的基本知识。

TF卡,全称TransFlash卡,又称MicroSD卡,是一种常见的存储卡,常用于嵌入式系统、手机、相机等设备中。

TF卡具有体积小、读写速度快、存储容量大等优点,因此在嵌入式系统中得到广泛应用。

2. STM32F103C8T6与TF卡的连接在实现TF卡读写功能之前,首先需要将TF卡与STM32F103C8T6芯片进行连接。

一般来说,TF卡的连接方式是通过SPI接口进行。

SPI接口是一种串行外设接口,可以实现与外部设备的高速数据传输。

通过SPI接口连接TF卡,可以在STM32F103C8T6芯片上实现对TF卡的读写操作。

3. TF卡读写函数的实现在STM32F103C8T6芯片上实现TF卡的读写函数,一般需要以下几个步骤:初始化SPI接口、初始化TF卡、读取TF卡数据、写入TF卡数据。

需要初始化SPI接口,设置好SPI的时钟频率、数据传输格式等参数。

通过初始化TF卡,可以对TF卡进行一些基本的设置,比如设置TF卡的工作模式、文件系统类型等。

接下来,可以通过读取TF 卡数据和写入TF卡数据函数,实现对TF卡的读写操作。

4. 个人观点和总结通过深入地探讨STM32F103C8T6与TF卡的简单读写函数,我对于嵌入式系统中TF卡的应用有了更深入的理解。

在实际应用中,我们需要根据具体的需求和硬件评台来选择合适的读写函数,并且需要注意好数据的正确读取和写入,以保证系统的稳定性和可靠性。

STM32引脚使用选择注意

STM32引脚使用选择注意

stm32有些管脚它上电默认的功能不是通用GPIO,比如JTAG与SWJ调试管脚,所以,如果你想使用这几个管脚作为通用IO的话,就必须将JTAG与SWJ功能关闭,以及开启AFIO时钟。

(AFIO 时钟未设置,GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable, ENABLE) 这句不会生效,也就是要先设置时钟,才能配置相应端口,后变换了下顺序,先设RCC_APB2PeriphClockCmd(RCC_APB2Periph_AFIO, ENABLE);再调用GPIO_PinRemapConfig(GPIO_Remap_SWJ_Disable, ENABLE)就完美可以了)最近博主用STM32F103C8T6做了一个温度测控模块,用到PB3,PB4,PA15等引脚控制外设。

发现不管怎么配置,这三个引脚都不能置零。

后来发现是包括这三个引脚在内的PB3,PB4,PA13,PA14,PA15是特殊的IO口,用作JTAG/SWD仿真器的调试接口(不能直接使用)。

其中PA13,PA14分别作为SWD调试的SWIO 和SWCLK;PB3,PB4,PA13,PA14,PA15共同用于JTAG。

这五个引脚的中英文描述如下图所示,图片来源于STM32F1参考手册:这五个IO引脚非常特殊,正常情况下作为SWJ仿真器的调试引脚,如果要作为普通IO口使用需要特别的配置。

以PA13引脚为例,该引脚在STM32F1数据手册中的描述如下图:相较与其他的普通IO,PA13的Main function 为JTMS-SWDIO。

反而普通IO口的功能在Alternate functions中的remap里。

也就是说PA13要想当做普通IO口使用,就必须使用它复用功能中的重映射。

因此就需要这样的两步操作:一.在时钟配置中打开复用时钟:RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Pe riph_AFIO,ENABLE);二.对PA13引脚进行重映射:GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);步骤一比较好理解,这里重点叙述下步骤二的重映射操作。

STM32引脚JTDO、JNTRST与JTDI作为普通IO口使用配置

STM32引脚JTDO、JNTRST与JTDI作为普通IO口使用配置
/* Push-pill output,it can be otheroutput types */
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);
}
GPIO_Remap_SWJ_JTAGDisable已在“stm32f10x_gpio.h”文件中进行了宏定
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_3 | GPIO_Pin_4 |
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_Out_PP;
/* Push-pill output,it can be other output types */
GPIO_ResetBits(GPIOB, GPIO_Pin_4);// PB4 is set to0;
tips:感谢大家的阅读,本文由我司收集整编。仅供参阅!
GPIO_PinRemapConfig(GPIO_Remap_SWJ_JTAGDisable, ENABLE);
/* Disable JLink, enable SW */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA“
RCC_APB2Periph_GPIOB | RCC_APB2Periph_AFIO,ENABLE);
STM32引脚JTDO、JNTRST与JTDI作为普通IO口
使用配置
使用Jlink向STM32烧录程序时,需要使用6个芯片的引脚(以
STM32F103C8T6为例),分别是
PB4/JNTRST、PB3/JTDO、PA13/JTMS、PA14/JTCK、PA15/JTDI、NRST。标

stm32f103c8t6中文手册

stm32f103c8t6中文手册

STM32F103系列微处理器,STM32F103器件* * STM32F103 * * Cortex-M3内核,CPU速度为72 MHz,最大闪存为1 MB。

包括电机控制外设和USB全速接口。

STM32系列臂式Cortex-M3 32位闪存微控制器具有低功耗,低电压,出色的性能和实时功能。

包类型系列适用于您的嵌入式应用程序。

MCU体系结构具有易于使用的STM32平台,适用于包括电机驱动,PC和游戏,HVAC以及工业应用在内的应用。

32位RISC引脚对引脚软件兼容的SRAM 高达96 KB闪存高达1MB电源:2 V至3.6 V温度范围:-40至+ 85°C或-40至+ 105°Cᦇstm32f1系列32位臂?皮质?-M3微控制器,意法半导体的STM32闪存微控制器。

STM32系列是基于ARM cortex Gamma M3的核心突破-嵌入式应用程序特殊开发的核心。

STM32系列受益于对Cortex-M3体系结构的增强,其中包括thumb-2指令集,该指令集提供了更高的性能,更好的编码密度,更快的中断响应以及所有领先的工业功耗。

出色的实时性能,出色的效率和新的外围设备,最大限度地提高了串行引脚,外围设备和软件兼容性之间的集成Stm32f103c8t6是中密度性能线,配备了Arm Cortex-M3 32位微控制器和48通道LQFP 封装。

它结合了高性能RISC内核,72MHz的工作频率,高速嵌入式存储器,增强的I / O范围以及与两条APB总线的外部连接。

Stm32f103c8t6具有12位ADC,计时器,PWM计时器,标准和高级通信接口。

全面的省电模式使设计人员能够设计低功耗应用。

工作电压范围:2V至3.6v.64k字节闪存。

20K字节SRAM.CRC计算单元,96位唯一ID。

两个12位,1μs ADC(最多10个通道)。

7通道DMA控制器,3个通用定时器和1个高级控制定时器。

stm32f103c8t6教程案例

stm32f103c8t6教程案例

stm32f103c8t6教程案例摘要:1.简介2.STM32F103C8T6芯片介绍3.开发环境与工具4.教程案例一:点亮LED5.教程案例二:按键控制LED闪烁6.教程案例三:串口通信7.总结正文:1.简介STM32F103C8T6是一款基于ARM Cortex-M3内核的微控制器,广泛应用于嵌入式系统设计。

本教程将介绍如何使用STM32F103C8T6进行一些基本的实例开发,以帮助初学者快速入门。

2.STM32F103C8T6芯片介绍STM32F103C8T6是一款具有高性能、低功耗、多功能特点的微控制器,最高工作频率可达72MHz。

它内部集成了丰富的外设,如定时器、中断控制器、串口、SPI、I2C等,方便用户进行各种功能开发。

3.开发环境与工具为了开发STM32F103C8T6,我们需要以下工具和环境:- Keil MDK:用于编写和调试程序的集成开发环境(IDE)- STM32F1xx系列参考手册:了解芯片内部结构和寄存器定义- STM32F1xx系列固件库:提供常用外设驱动和功能函数- 烧写工具:如ST-LINK、J-Link等,用于将程序下载到STM32F103C8T6芯片4.教程案例一:点亮LED本案例将介绍如何使用STM32F103C8T6控制一个LED灯点亮。

首先,我们通过GPIO端口配置LED引脚,然后通过编写程序使该引脚输出高电平,从而点亮LED。

5.教程案例二:按键控制LED闪烁在本案例中,我们将添加一个按键,通过按键控制LED的闪烁速率。

通过查询按键的状态,我们可以实现LED的快速闪烁、慢速闪烁和停止闪烁。

6.教程案例三:串口通信串口通信是嵌入式系统中常用的通信方式。

本案例将介绍如何使用STM32F103C8T6的UART外设实现串口通信。

我们将编写一个程序,通过串口发送数据,并在接收端接收数据,实现简单的通信功能。

7.总结本教程通过三个案例,从简单到复杂,介绍了如何使用STM32F103C8T6进行嵌入式系统开发。

STM32F103C8T6, STM32F103CBT6, STM32F103C8U6, STM32F103CBU6 引脚功能定义

STM32F103C8T6, STM32F103CBT6, STM32F103C8U6, STM32F103CBU6 引脚功能定义

PC15OSC32_OUT
PC15/OSC32_OUT
I/O - -220 90 180 Degrees
Pin 5
OSC_IN
OSC_IN/PD0
Input - -220 80OSC_OUT
OSC_OUT/PD1
Output - -220 70 180 Degrees
BOOT0
Input - 220 80 0 Degrees
PB8/TIM4_CH3/I2C1_SCL/CAN_RX
I/O FT 220 90 0 Degrees
PB9/TIM4_CH4/I2C1_SDA/CAN_TX
I/O FT 220 100 0 Degrees
VSS_3
Power - 220 110 0 Degrees
VDD_3
Power - 220 120 0 Degrees
(1)<Name> 表示引脚默认功能定义名称,<Full Name> 表示引脚全功能定义名称,包括引脚默认复用功能定义 和重映射复用功能定义; (2)<I/O Level> 栏中:FT = 可以耐受 5V 电压;5V 电压波纹比较大时,请慎用,具体参数参考数据手册; (3)引脚功能定义参考 2015年8月 STM32F103x8/xB英文数据手册第17版(DocID13587 Rev 17); (4)此引脚功能定义表格旨在用于Altium Designer 原理图库制作的多管脚元件快速画法 Smart STM32F103CBT6, STM32F103C8U6, STM32F103CBU6 引脚功能定义 (LQFP48/UFQFPN48)
Object Pin Kind Num
Name
Full Name

stm32f103c8t6编程

stm32f103c8t6编程

STM32F103C8T6编程简介STM32F103C8T6是一款由STMicroelectronics(意法半导体)开发的32位ARM Cortex-M3微控制器。

它具有丰富的外设和强大的性能,适用于各种嵌入式应用。

本文将介绍STM32F103C8T6的编程方法和相关知识。

开发环境搭建首先,我们需要搭建一个适合STM32F103C8T6编程的开发环境。

以下是一些常用的开发工具和软件:1. Keil MDKKeil MDK是一款集成开发环境(IDE),专门用于ARM微控制器的开发。

它提供了强大的编辑、调试和编译功能,并且与STM32F103C8T6兼容。

2. ST-Link/V2ST-Link/V2是STMicroelectronics提供的一款调试和编程工具。

它可以通过SWD (Serial Wire Debug)接口与STM32F103C8T6进行通信,并支持调试和烧录程序。

3. STM32CubeMXSTM32CubeMX是STMicroelectronics提供的一款图形化配置工具,用于生成初始化代码和配置外设。

它可以帮助我们快速设置引脚映射、时钟配置以及其他外设参数。

安装以上工具后,我们就可以开始进行STM32F103C8T6的编程了。

编程基础在开始编程之前,我们需要了解一些基本概念和知识。

1. 寄存器STM32F103C8T6有许多寄存器,用于配置和控制各种外设。

这些寄存器对应于特定的地址,并且可以通过写入或读取这些地址来设置或获取相应的值。

例如,GPIOA寄存器用于配置和控制A端口的引脚。

2. 外设STM32F103C8T6具有丰富的外设,包括GPIO、USART、SPI、I2C等等。

每个外设都有相应的寄存器用于配置和控制其功能。

3. 中断中断是一种在程序执行期间发生的事件,它会打断正常的程序流程,并执行一个特定的中断处理程序。

STM32F103C8T6支持多种中断,并提供了相应的中断向量表和中断处理函数。

stm32f103c8t6 技术手册

stm32f103c8t6 技术手册

STM32F103C8T6技术手册第一部分:引言1. STM32F103C8T6概述1.1 STM32F103C8T6是STMicroelectronics推出的一款高性能、低功耗的32位MCU。

它基于ARM Cortex-M3内核,最高主频可达72MHz。

1.2 该芯片集成了丰富的外设接口,如通用定时器、串行通信接口、模拟数字转换器等,可满足各种应用需求。

1.3 STM32F103C8T6广泛应用于工业控制、消费类电子、医疗设备等领域,受到广大工程师的青睐。

2. 技术手册的编写目的2.1 本技术手册旨在为工程师提供STM32F103C8T6的详尽资料,帮助其更好地了解和应用该芯片。

2.2 通过介绍芯片的主要特性、功能框图、引脚定义、外设接口等内容,让工程师能够快速上手STM32F103C8T6,加快产品开发进程。

第二部分:主要特性3. STM32F103C8T6主要特性3.1 ARM Cortex-M3内核,最高主频72MHz3.2 64KB Flash存储器,20KB RAM3.3 7个通用定时器,4个串行通信接口3.4 12位模数转换器,多种数字电源控制接口第三部分:功能框图和外设接口4. 功能框图4.1 展示了STM32F103C8T6的内部结构和各个功能模块的连接关系,方便工程师理解芯片的工作原理。

5. 引脚定义5.1 详细介绍了芯片引脚的功能定义和电气特性参数,便于工程师进行外部连接设计。

6. 外设接口6.1 介绍了芯片集成的各种外设接口,包括通用定时器、串行通信接口、模拟数字转换器等,以及它们的应用场景和接口规范。

第四部分:应用范例7. 应用范例7.1 以LED控制、ADC采集、串口通信等典型应用为例,演示了如何在STM32F103C8T6上实现基本的功能,为工程师提供参考和借鉴。

第五部分:附录8. 相关参考资料8.1 提供了关于ARM Cortex-M3内核、STM32F103系列芯片的相关参考资料信息,方便工程师进一步深入学习和研究。

MEMORY存储芯片STM32F103C8T6中文规格书

MEMORY存储芯片STM32F103C8T6中文规格书

Features•ARM® 32-bit Cortex®-M3 CPU Core –72 MHz maximum frequency,1.25 DMIPS/MHz (Dhrystone2.1)performance at 0 wait state memoryaccess–Single-cycle multiplication and hardware division•Memories–64 or 128 Kbytes of Flash memory–20 Kbytes of SRAM•Clock, reset and supply management – 2.0 to 3.6 V application supply and I/Os–POR, PDR, and programmable voltage detector (PVD)–4-to-16 MHz crystal oscillator–Internal 8 MHz factory-trimmed RC–Internal 40 kHz RC–PLL for CPU clock–32 kHz oscillator for RTC with calibration •Low-power–Sleep, Stop and Standby modes–V BAT supply for RTC and backup registers • 2 x 12-bit, 1 µs A/D converters (up to 16channels)–Conversion range: 0 to 3.6 V–Dual-sample and hold capability–Temperature sensor•DMA–7-channel DMA controller–Peripherals supported: timers, ADC, SPIs, I2Cs and USARTs•Up to 80 fast I/O ports–26/37/51/80 I/Os, all mappable on 16 external interrupt vectors and almost all5 V-tolerant •Debug mode–Serial wire debug (SWD) & JTAGinterfaces•7 timers–Three 16-bit timers, each with up to 4 IC/OC/PWM or pulse counter andquadrature (incremental) encoder input –16-bit, motor control PWM timer with dead-time generation and emergency stop – 2 watchdog timers (Independent andWindow)–SysTick timer 24-bit downcounter•Up to 9 communication interfaces–Up to 2 x I2C interfaces (SMBus/PMBus)–Up to 3 USARTs (ISO 7816 interface, LIN, IrDA capability, modem control)–Up to 2 SPIs (18 Mbit/s)–CAN interface (2.0B Active)–USB 2.0 full-speed interface•CRC calculation unit, 96-bit unique ID •Packages are ECOPACK®Table 1. Device summaryReference Part numberSTM32F103x8STM32F103C8, STM32F103R8STM32F103V8, STM32F103T8STM32F103xBSTM32F103RB STM32F103VB,STM32F103CB, STM32F103TB找Memory、FPGA、二三极管、连接器、模块、光耦、电容电阻、单片机、处理器、晶振、传感器、滤波器,上深圳市美光存储技术有限公司August 20152.2 Full compatibility throughout the familyThe STM32F103xx is a complete family whose members are fully pin-to-pin, software andfeature compatible. In the reference manual, the STM32F103x4 and STM32F103x6 areidentified as low-density devices, the STM32F103x8 and STM32F103xB are referred to asmedium-density devices, and the STM32F103xC, STM32F103xD and STM32F103xE arereferred to as high-density devices.Low- and high-density devices are an extension of the STM32F103x8/B devices, they arespecified in the STM32F103x4/6 and STM32F103xC/D/E datasheets, respectively. Low-density devices feature lower Flash memory and RAM capacities, less timers andperipherals. High-density devices have higher Flash memory and RAM capacities, andadditional peripherals like SDIO, FSMC, I2S and DAC, while remaining fully compatible withthe other members of the STM32F103xx family.The STM32F103x4, STM32F103x6, STM32F103xC, STM32F103xD and STM32F103xEare a drop-in replacement for STM32F103x8/B medium-density devices, allowing the userto try different memory densities and providing a greater degree of freedom during thedevelopment cycle.Moreover, the STM32F103xx performance line family is fully compatible with all existingSTM32F101xx access line and STM32F102xx USB access line devices.2.3.13 DMAThe flexible 7-channel general-purpose DMA is able to manage memory-to-memory,peripheral-to-memory and memory-to-peripheral transfers. The DMA controller supportscircular buffer management avoiding the generation of interrupts when the controllerreaches the end of the buffer.Each channel is connected to dedicated hardware DMA requests, with support for softwaretrigger on each channel. Configuration is made by software and transfer sizes betweensource and destination are independent.The DMA can be used with the main peripherals: SPI, I2C, USART, general-purpose andadvanced-control timers TIMx and ADC.Description STM32F103x8, STM32F103xBAdvanced-control timer (TIM1)The advanced-control timer (TIM1) can be seen as a three-phase PWM multiplexed on 6channels. It has complementary PWM outputs with programmable inserted dead-times. Itcan also be seen as a complete general-purpose timer. The 4 independent channels can beused for•Input capture•Output compare•PWM generation (edge- or center-aligned modes)•One-pulse mode outputIf configured as a general-purpose 16-bit timer, it has the same features as the TIMx timer. Ifconfigured as the 16-bit PWM generator, it has full modulation capability (0-100%).In debug mode, the advanced-control timer counter can be frozen and the PWM outputsdisabled to turn off any power switch driven by these outputs.Many features are shared with those of the general-purpose TIM timers which have thesame architecture. The advanced-control timer can therefore work together with the TIMtimers via the Timer Link feature for synchronization or event chaining.General-purpose timers (TIMx)There are up to three synchronizable general-purpose timers embedded in theSTM32F103xx performance line devices. These timers are based on a 16-bit auto-reloadup/down counter, a 16-bit prescaler and feature 4 independent channels each for inputcapture/output compare, PWM or one-pulse mode output. This gives up to 12 inputcaptures/output compares/PWMs on the largest packages.The general-purpose timers can work together with the advanced-control timer via the TimerLink feature for synchronization or event chaining. Their counter can be frozen in debugmode. Any of the general-purpose timers can be used to generate PWM outputs. They allhave independent DMA request generation.These timers are capable of handling quadrature (incremental) encoder signals and thedigital outputs from 1 to 3 hall-effect sensors.Independent watchdogThe independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It isclocked from an independent 40 kHz internal RC and as it operates independently of themain clock, it can operate in Stop and Standby modes. It can be used either as a watchdogto reset the device when a problem occurs, or as a free-running timer for application timeoutmanagement. It is hardware- or software-configurable through the option bytes. The countercan be frozen in debug mode.Window watchdogThe window watchdog is based on a 7-bit downcounter that can be set as free-running. Itcan be used as a watchdog to reset the device when a problem occurs. It is clocked fromthe main clock. It has an early warning interrupt capability and the counter can be frozen indebug mode.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档