大学物理15 量子物理基础1
第15章-量子物理-1
![第15章-量子物理-1](https://img.taocdn.com/s3/m/76c009b46bec0975f465e2a1.png)
0
又
m
1 v2 c2
9
康普顿散射公式:
h 2h 2 1 cos 0 sin m0 c m0 c 2
h 康普顿波长: c 2.426 310 24 10 12 m m0 c
结论: 1. 波长的改变量 与散射角θ有关,散 射角θ 越大, 也越大。 2. 波长的改变量与入射光的波长无关。 问题:为什么在可见光的散射实验中我们没有看到 康普顿效应呢?
10
例5. 波长为 0 = 0.020 nm 的 X 射线与自由电子发生 碰撞,若从与入射角成90°角的方向观察散射线。求: (1)散射线的波长;(2)反冲电子的动能; (3) 反冲电子的动量。
h 解 (1 cos ) m0 c 6.63 10 34 (1 cos 90) 0.0024 nm 31 8 9.110 3 10
o 0.0224 nm
Ek h 0 h hc
0
hc
hc
0
11
6.63 10 3 10 0.024 15 1 . 08 10 J 6800 eV 10 10 0.2 10 0.22 10
8
34
h h pe 0
4
hv
光具有波粒二象性
光子能量: 光子的质量: 光子的动量:
hv
p mc
h
mc
2
hν h m 2 c c
, m0 0
5
§15-3 康普顿效应
康普顿效应:当X射线被物质散射时,散射光中不 仅有与入射光相同的波长成分,更有波长大于入射 光波长的成分。
第十五量子力学基础
![第十五量子力学基础](https://img.taocdn.com/s3/m/e23db8d0551810a6f524866b.png)
15-2 光的量子性
一、光电效应 爱因斯坦方程的实验规律
光电效应 光照射到金属表面时, 有电子从金属表面逸出的现象。
AK
OO
光电子 逸出的电子。
光电子由K飞向A,回路中形成 光电流。
OO
OO
G
V RΒιβλιοθήκη OO应用:有声电影、电视、闪光计数器、光敏电阻、光电池
自动控制中都有着重要应用。
实验规律
光电效应伏安特性曲线
dUa ab 3.87 1015V s
d bc
钠的截止电压与 入射光频关系
普朗克常数 h e dUa 6.2 1034 J s
d
钠的逸出功
A h0 2.721019 J
Ua(V )
2.20
a
0.65 O
c
b (1014 Hz)
4.39 6.0 10
这迫使人们跳出传统的物理学框架,去寻找新的 解决途径,从而导致了量子理论的诞生。
?热辐射的 紫外灾难
跳出传统的物理学框架!
寻找以太的 零结果
相对论
热辐射的紫外灾难
量子论
相对真理
…… 绝对真理
早期量子论 量子力学
相对论量子力学
普朗克能量量子化假说 爱因斯坦光子假说 康普顿效应 玻尔的氢原子理论
德布罗意实物粒子波粒二象性 薛定谔方程 波恩的物质波统计解释 海森伯的测不准关系
射度最大值向短波方向移动。
二、普朗克量子假设
MB ( T )
实验值
紫
外 灾
难
维恩
MB ( T ) C34T
瑞利--金斯
M B
(T
)
第15章 量子物理基础 PPT课件
![第15章 量子物理基础 PPT课件](https://img.taocdn.com/s3/m/304c91aa67ec102de2bd89b5.png)
行
“但是在物理晴朗天空的远处,还有两朵小小令人不安的乌 云”,即运用当时的物理学理论所无法正确解释的两个实验
现象。
厚
其一是否定绝对时空观的迈克尔逊—莫雷实验;
德
其二是热辐射现象中的紫外灾难。 正是这两朵小小的乌云,冲破了经典物理学的束缚,打
弘 消了当时绝大多数物理学家的盲目乐观情绪,为后来建立近
毅
代物理学的理论基础作出了贡献。事实上还有第三朵小小的 乌云,这就是放射性现象的发现,它有力地表明了原子不是
并且应用越来越广泛。
由安培、法拉第和麦克斯韦等人对电磁现象进行的深入
厚 而系统的研究,为电动力学奠定了坚实的基础,特别是由麦
德
克斯韦的电磁场方程组预言了电磁波的存在,随即被赫兹的 实验所证实。后来又把牛顿、惠更斯和菲涅耳所建立的光学
弘 也纳入了电动力学的范畴,更是一项辉煌的成就。因此当时
毅
许多著名的物理学家都认为物理学的基本规律都已被发现, 今后的任务只是把物理学的基本规律应用到各种具体问题上,
笃 和透射的物体。
行
煤烟
厚
约99%
德
弘 黑体辐射的特点 :
毅 • 温度
黑体模型
黑体热辐射
材料性质
• 与同温度其它物体的热辐射相比,黑体热辐射本领最强
11
实验表明 辐射能力越强的物体,其吸收能力也越强.
博 学 黑体 能完全吸收照射到它上面的各种频率的电磁辐射的 笃物体称为黑体 .(黑体是理想模型) 行
学 1.热辐射现象
笃
一切物质中的原子、分子因
行
热激发而向外辐射电磁波的现象。 实验证明不同温度下物体能发出
不同的电磁波,这种能量按频率
厚
的分布随温度而不同的电磁辐射 叫做热辐射。
爱因斯坦光量子理论
![爱因斯坦光量子理论](https://img.taocdn.com/s3/m/298dc510f7ec4afe04a1dfa3.png)
o
U0 ( 一定) U AK
伏安曲线
大学物理 第三次修订本
3
第15章 量子物理基础
(2)截止频率 对一定金属,只有入射光 的频率大于某一频率ν0时, 电子才能从该金属 表面逸出,这个频率叫 (红限)。
如果入射光的频率小于截止频率则无论入 射光强度多大,都没有光电子逸出。
大学物理 第三次修订本
第15章 量子物理基础
15.2 光电效应 爱因斯坦光量子理论
一、光电效应的实验规律
金属及其化合物在光照射下发射电子的现 象称为光电效应。逸出的电子为光电子,所测 电流为光电流。
光电效应现象是德国物理学家赫兹于1887 年研究电磁波的性质时偶然发现的。
当时赫兹只是注意到用紫外线照射在放电 电极上时,放电比较容易发生,却不知道这一 现象产生的原因。
大学物理 第三次修订本
9
第15章 量子物理基础
2.光电效应方程
按照光子假说, 并根据能量守恒定律, 当金 属中一个电子从入射光中吸收一个光子后,获 得能量 hv ,如果hv 大于该金属的电子逸出功 A ,这个电子就能从金属中逸出,并且有
h
A
1 2
mvm 2
—— 爱因斯坦光电效应方程
式中
1 2
大学物理 第三次修订本
13
第15章 量子物理基础
由爱因斯坦方程
h
A
1 2
mvm 2
利用
1 2
mvm 2
eU a
爱因斯坦方程写成 h A eUa
两边取微分,得 Ua h
e
通过计算可得 h 6.191034 J s
此值与公认值 h 6.62607551034 J s 较接近。
大学物理 量子物理
![大学物理 量子物理](https://img.taocdn.com/s3/m/dc610d1dcc7931b765ce1521.png)
o
历史的回顾: • 1894年起,普朗克从热力学研究中转到黑体辐射问题上,他的 目标是追求熵原理与电动力学的协调一致; • 1897~1899年,五篇报告总题目为“不可逆辐射过程”-柏林科学
院;维恩公式,他很快接受,并用更系统的方法推导之;
• 1900年2月得知维恩公式有长波段偏差显著; • 1900.10.7,鲁本斯夫妇(实验物理学家)访问了普朗克,并告知 一重要信息:瑞利公式在长波段与实验符合得很好,普朗克当天 即用内插法获得新的辐射公式,是普朗克为了凑合实验数据而猜
出来的;
• 1900.12.14,普朗克在德国赫姆霍兹研究所召开的德国物理学会 会议上宣读了一篇注定要永载史册的论文:《正常光谱中能量分
布律的理论》;
•鲁本斯当晚进行了实验,证明普朗克的新公式同实验 完全相符;
鲁本斯深信普朗克公式与实验曲线的精确一致绝非
巧 合,在这个公式中一定孕育着一个新的科学真理。
5.72 10 m / s
5
15.2.3、光(电磁辐射)的波粒二象性
光子能量 光子质量 光子动量
E m c 2 h
h h m 2 c c
h h p m c c
粒子性 波动性
光电效应的应用
光电管: 光电开关, 红外成像仪,光电传感器等
光电倍增管: (微光)夜视仪
h
质量
9.95 10 35 kg m 2 8 2 1.11 10 (3 10 ) c
1
在此基础上,普朗克得出了与试验结果相吻合的黑体辐射公式:
2πhc 2 普朗克常数 h = 6.626×10-34 J· s M B (T ) 5 hc kT e 1
意义:不仅成功解释了黑体辐射问题,还提出了全新的物理思想, 打开了人们认识微观世界的大门, 为量子论的诞生奠定了基础。 “量子之父” 获1918年诺贝尔物理学奖。
大学物理讲稿(第15章量子力学基础)
![大学物理讲稿(第15章量子力学基础)](https://img.taocdn.com/s3/m/8a5e344a10661ed9ad51f3e8.png)
第15章 量子力学基础人们用经典物理解释黑体辐射、光电效应、氢原子光谱等实验规律时,遇到了不可克服的困难.经过不断的探索和研究,终于突破了经典物理的传统观念,建立起量子理论.量子理论和相对论是现代物理学的两大支柱.量子理论的诞生,对研究原子、电子、质子、光子等微观粒子的运动规律提供了正确的导向.从此使物理学发生了一次历史性的飞跃,促进了原子能、激光、超导、半导体等众多新技术的生产和发展.本章前部分,分别介绍黑体辐射、光电效应、氢原子光谱等实验规律以及为解释这些实验规律而提出的量子假设,即早期的量子论.本章的后部分简要介绍量子力学的基本概念及原理,并通过几个具体事例的讨论说明量子力学处理问题的一般方法.§15.1 黑体辐射与普朗克的量子假设一、黑体辐射的基本规律1 热辐射组成物体的分子中都包含着带电粒子,当分子作热运动时物体将会向外辐射电磁波,由于这种电磁波辐射与物体的温度有关,故称其为热辐射.实验表明,热辐射能谱是连续谱,发射的能量及其按波长的分布是随物体的温度而变化的.随着温度的升高,不仅辐射能在增大,而且辐射能的波长范围向短波区移动.物体在辐射电磁波的同时,也吸收投射到物体表面的电磁波.理论和实验表明,物体的辐射本领越大,其吸收本领也越大,反之亦然.当辐射和吸收达到平衡时,物体的温度不再变化而处于热平衡状态,这时的热辐射称为平衡热辐射.为描述物体热辐射能按波长的分布规律,引入单色辐射出射度(简称单色辐出度)这一物理量,其定义为:物体单位表面积在单位时间内发射的、波长在λ+λ→λd 范围内的辐射能dM λ与波长间隔d λ的比值,用M λ(T)表示,即λ=λλd dM T M )( (15.1) 而辐出度定义为⎰∞λλ=0d T M T M )()( (15.2) 2 黑体辐射的基本规律投射到物体表面的电磁波,可能被物体吸收,也可能被物体反射和透射.能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为绝对黑体,简称黑体.绝对黑体是一种理想模型,实验室中用不透明材料制成带有小孔的空腔物体可近似看作黑体.图15.1为用实验方法测得的黑体单色辐出度M B λ (T)按波长和温度分布的曲线.关于黑体辐射,有两个基本定律:一个是斯特藩—玻耳兹曼定律(M B (T )=σT 4 ,即黑体的辐出度与其热力学温度的四次方成正比 ,其中σ=5.6705×10-8 W•m -2 • K -4 称为斯特藩—玻耳兹曼常数);另一个是维恩位移定律(λm T=b,即黑体单色辐出度的最大值对应的波长λm 与其绝对温度T 成反比,其中b=2.8978×10-3m •K 为与温度无关的常数).这两个定律在现代科学技术中有广泛的应用.通常用于测量高温物体(如冶炼炉、钢水、太阳或其他发光体等)温度的光测高温法就是在这两个定律的基础上建立起来的,同时,这两个定律也是遥感技术和红外跟踪技术的理论依据.从理论上导出绝对黑体单色辐出度与波长和温度的函数关系,即M Bλ=f(λ, T) ,是19世纪末期理论物理学面临的重大课题.维恩(W.Wien,1864—1928年)假定带电谐振子的能量按频率的分布类似于麦克斯韦速率分布率,然后用经典统计物理学方法导出了黑体辐射的下述公式T c B e c T M λ-λλ=/)(251 (15.3) 其中 和 是两个由实验确定的参数.上式称为维恩公式.维恩公式只是在短波波段与实验曲线相符,而在长波波段明显偏离实验曲线,如图15.2所示.瑞利(J.W.S.Rayleigh,1842—1919年)和金斯(J.H.Jeans,1877—1946年)根据经典电动力学和经典统计物理学导出了另一个力图反映绝对黑体单色辐出度与波长和温度关系的函数 42λπ=λckT T M B )( (15.4) 式中c 是真空中的光速,k 是玻耳兹曼常数.上式称为瑞利—金斯公式.该公式在长波波段与实验相符,但在短波波段与实验曲线有明显差异,如图15.2所示.这在物理学史上曾称为“紫外灾难”.234167895οοοοοοοοοοοοοο瑞利—金斯线 维恩线 普朗克线 能量密度 m/μ波长图15.2二、普朗克的量子假设1900年普朗克(M.Planck,1858—1947年)在综合了维恩公式和瑞利—金斯公式各自的成功之处以后,得到黑体的单色辐出度为)()(/11252-λπ=λλkT hc B e hc T M (15.5) 这就是普朗克公式,式中h 为普朗克常数,1986年的推荐值为 h=6.6260755×10-34 J ·s.普朗克公式与实验结果的惊人符合预示了其中包含着深刻的物理思想.普朗克指出,如果作下述假定,就可以从理论上导出他的黑体辐射公式:物体若发射或吸收频率为ν的电磁辐射,只能以ε=hν为单位进行,这个最小能量单位就是能量子,物体所发射或吸收的电磁辐射能量总是这个能量子的整数倍,即),,,(Λ321=ν=ε=n nh n E (15.6)普朗克的能量子思想是与经典物理学理论不相容的,也正是这一新思想,使物理学发生了划时代的变化,宣告了量子物理的诞生.普朗克也因此荣获1918年的诺贝尔物理学奖.作业(P224):23§15.2 光电效应与爱因斯坦的光量子假设普朗克的量子假设提出后的最初几年中,并未受到人们的重视,甚至普朗克本人也总是试图回到经典物理的轨道上去.最早认识普朗克假设重要意义的是爱因斯坦,他在1905年发展了普朗克的思想,提出了光子假设,成功的解释了光电效应的实验规律.一、光电效应的实验规律金属在光的照射下,有电子从表面逸出,这种现象称为光电效应.光电效应中逸出金属表面的电子称为光电子.光电子在电场的作用下所形成的电流叫光电流.研究光电效应的实验装置如图15.3所示.在一个抽空的玻璃泡内装有金属电极K(阴极)和A(阳极),当用适当频率的光从石英窗口射入照在阴极K 上时,便有光电子自其表面逸出,经电场加速后为阳极A 所吸收,形成光电流.改变电位差U AK ,测得光电流 i ,可得光电效应的伏安特性曲线,如图15.4所示.实验研究表明,光电效应有如下规律:1)阴极K 在单位时间内所发射的光电子数与照射光的强度成正比.从图15.4可以看出,光电流i 开始时随 增大而增大,而后就趋于一个饱和值 ,它与单位时间内从阴极K 发射的光子数成正比.所以单位时间内从阴极K 发射的光电子数与照射光强成正比.2)存在截止频率.实验表明,对一定的金属阴极,当照射光频率小于某个最小值i s 时,不管光强多大,都没有光电子逸出,这个最小频率v 0称为该种金属的光电效应截止频率,也叫红限,对应的波长0λ称为截止波长.每一种金属都有自己的红限.3)光电子的初动能与照射光的强度无关,而与其频率成线性关系.在保持光照射不变的情况下,改变电位差U AK ,发现当U AK =0时,仍有光电流.这显然是因为光电子逸出时就具有一定的初动能.改变电位差极性,使U AK <0 ,当反向电位差增大到一定值时,光电流才降为零,如图15.4所示.此时反向电位差的绝对值称为遏止电压,用U a 表示.不难看出,遏止电压与光电子的初动能间有如下关系a eU m =υ2021 (15.7) 式中m 和e 分别是电子的静质量和电量, 0υ是光电子逸出金属表面的最大速率. 实验还表明,遏止电压U a 与光强I 无关,而与照射光的频率v 成线性关系,即 0V K U a -ν= (15.8)式中K 和V 0都是正值,其中K 为普适恒量,对一切金属材料都是相同的,而V 0=Kv 0对同一种金属为一恒量,但对于不同的金属具有不同的数值.将式(15.8)代入式(15.7)得 )(002021ν-ν=-ν=υeK eV eK m (15.9) 上式表明,光电子的初动能与入射光的频率成线性关系,与入射光强无关.4)光电子是即时发射的,滞后时间不超过10-9s.实验表明,只要入射光的频率大于该金属的红限,当光照射这种金属表面时,几乎立即产生光电子,而无论光强多大.二、爱因斯坦光子假设和光电效应方程对于上述实验事实,经典物理学理论无法解释.按照光的波动理论,光波的能量由光强决定,在光照射下,束缚在金属内的“自由电子”将从入射光波中吸收能量而逸出表面,因而逸出光电子的初动能应由光强决定,但光电效应中光电子的初动能与光强无关;另外,如果光波供给金属中“自由电子”逸出表面所需的足够能量,光电效应对各种频率的光都能发生,不应该存在红限,而且,光电子从光波中吸收能量应有一个积累过程,光强越弱,发射光子所需要的时间就越长,这都与光电效应的实验事实相矛盾.由此可见,光的波动理论无法解释光电效应的实验规律.为了克服光的波动理论所遇到的困难,从理论上解释光电效应,爱因斯坦发展了普朗克能量子的假设,于1905年提出了如下的光子假设:一束光就是一束以光速运动的粒子流,这些粒子称为光量子(简称光子);频率为v 的光子所具有的能量为hv ,它不能再分割,而只能整个的被吸收或产生出来.按照光子理论,当频率为v 的光照射金属表面时,金属中的电子将吸收光子,获得 的能量,此能量的一部分用于电子逸出金属表面所需要的功(此功称为逸出功A);另一部分则转变为逸出电子的初动能.据能量守恒定律有(15.10) 这就是爱因斯坦的光电效应方程.)(002021ν-ν=-ν=υ↓eK eV eK m 比较 00eK νeV A eK,h === (15.11)由实验可测量K 和V 0,算出普朗克常数h 和逸出功A,进而还可求出金属的红限v 0.按照光子理论,照射光的光强就是单位时间到达被照物单位垂直表面积的能量,它是由单位时间到达单位垂直面积的光子数N 决定的.因此光强越大,光子数越多,逸出的光电子数就越多.所以饱和光电流与光强成正比;由于每一个电子从光波中得到的能量只与单个光子的能量hv 有关,所以光电子的初动能与入射光的频率成线性关系,与光强无关.当光子的能量hv 小于逸出功A,即入射光的频率v 小于红限v 0时,电子就不能从金属表面逸出;另外,光子与电子作用时,光子一次性将能量 全部传给电子,因而不需要时间积累,即光电效应是瞬时的.这样光子理论便成功地解释了光电效应的实验规律,爱因斯坦也因此获得1921年的诺贝尔物理学奖.例题15.1 用波长为400nm 的紫光去照射某种金属,观察到光电效应,同时测得遏止电压为1.24V ,试求该金属的红限和逸出功.解:由光电效应方程得逸出功为1.87eV J 102.9919=⨯=-=-=-020eU λc h m υ21h νA 根据红限与逸出功的关系,得红限为Hz 1051410626610992143419⨯=⨯⨯==--...h A ν0 三、光(电磁波)的波粒二象性一个理论若被实验证实,它必定具有一定的正确性.光子论被黑体辐射、光电效应以及其他实验所证实,说明它具有一定的正确性.而早已被大量实验证实了的光的波动论以及其他经典物理理论的正确性,也是无可非议的.因此,在对光的本性的解释上,不应该在光子论和波动论之间进行取舍,而应该把它们同样地看作是光的本性的不同侧面的描述.这就是说,光具有波和粒子这两方面的特性,这称为光的波粒二象性.既是粒子,也是波,这在人们的经典观念中是很难接受的.实际上,光已不是经典意义下的波,也不是经典意义下的粒子,而是波和粒子的统一.光是由具有一定能量、动量和质量的粒子组成的,在它们运动的过程中,在空间某处发现它们的几率却遵从波动的规律.描述光的粒子特征的能量与描述其波动特征的频率之间的关系为(15.12)由狭义相对论能量—动量关系并考虑光子的静质量为零得光子动量与波长的关系为====Ph Pc/h c E/h c νc λ (15.13) 它们通过普朗克常数紧密联系起来.通过质能关系还可得光子的质量为c P ch c E m 22=ν==作业(P224):26§15.3 氢原子光谱与玻尔的量子论经典物理学不仅在说明电磁辐射与物质相互作用方面遇到了如前所述的困难,而且在说明原子光谱的线状结构及原子本身的稳定性方面也遇到了不可克服的困难.丹麦物理学家玻尔发展了普朗克的量子假设和爱因斯坦的光子假设等,创立了关于氢原子结构的半经典量子理论,相当成功的说明了氢原子光谱的实验规律.一、氢原子光谱的实验规律实验发现,各种元素的原子光谱都由分立的谱线所组成,并且谱线的分布具有确定的规律.氢原子是最简单的原子,其光谱也是最简单的.对氢原子光谱的研究是进一步学习原子、分子光谱的基础,而后者在研究原子、分子结构及物质分析等方面有重要的意义.在可见光范围内容易观察到氢原子光谱的四条谱线,这四条谱线分别用H α、H β、H γ和H δ表示,如图15.5所示.1885年巴耳末(J.JBalmer,1825—1898)发现可以用简单的整数关系表示这四条谱线的波长6543,,,=-=n ,2n n B λ222(15.14) 式中B 是常数,其值等于364.57nm.后来实验上还观察到相当于n 为其他正整数的谱线,这些谱线连同上面的四条谱线,统称为氢原子的巴耳末系.光谱学上经常用波数 表示光谱线,它被定义为波长的倒数,即λ=ν1~(15.15) 引入波数后,式(15.14)可改写为Λ,,,),(~54312122=-=n n R ν (15.16) 式中172m 100967761B 2R -⨯==./,称为里德伯(J.R.Rydberg,1854—1919)常数.在氢原子光谱中,除了可见光范围的巴耳末线系以外,在紫外区、红外区和远红外区分别有赖曼(T.Lyman)系、帕邢(F.Paschen)系、布拉开(F.S.Brackett)系和普丰德(A.H.Pfund)系.这些线系中谱线的波数也都可以用与式(15.16)相似的形式表示.将其综合起来可表为)(~2211n k R T(n)T(k)νkn -=-= (15.17) 式中k 和n 取一系列有顺序的正整数,k 取1、2、3、4、5分别对应于赖曼线系、巴耳末线系、帕邢线系、布拉开线系和普丰德线系;一旦k 值取定后,n 将从k+1 开始取k+1, k+2, k+3等分别代表同一线系中的不同谱线. T(n)=R/n 2称为氢的光谱项.式(15.17)称为里德伯—里兹并合原理.实验表明,并合原理不仅适用于氢原子光谱,也适用于其他元素的原子光谱,只是光谱项的表示式要复杂一些.并合原理所表示的原子光谱的规律性,是原子结构性质的反映,但经典物理学理论无法予以解释.按照原子的有核模型,根据经典电磁理论,绕核运动的电子将辐射与其运动频率相同的电磁波,因而原子系统的能量将逐渐减少.随着能量的减少,电子运动轨道半径将不断减小;与此同时,电子运动的频率(因而辐射频率)将连续增大.因此原子光谱应是连续的带状光谱,并且最终电子将落到原子核上,因此不可能存在稳定的原子.这些结论显然与实验事实相矛盾,从而表明依据经典理论无法说明原子光谱规律等.二、玻尔的量子论玻尔(N.H.D.Bohr,1885—1962)把卢瑟福关于原子的有核模型、普朗克量子假设、里德伯—里兹并合原理等结合起来,于1913年创立了氢原子结构的半经典量子理论,使人们对于原子结构的认识向前推进了一大步.玻尔理论的基本假设是1)原子只能处在一系列具有不连续能量的稳定状态,简称定态,相应于定态,核外电子在一系列不连续的稳定圆轨道上运动,但并不辐射电磁波;2)作定态轨道运动的电子的角动量L 的数值只能是)/(π2h η的整数倍,即(15.18)这称为角动量量子化条件,n 称为主量子数,m 是电子的质量;3)当原子从一个能量为E k 的定态跃迁到另一个能量为E n 的定态时,会发射或吸收一个频率为v kn 的光子(15.19) 上式称为辐射频率公式, v kn >0表示向外辐射光子, v kn <0表示吸收光子.玻尔还认为,电子在半径为r 的定态圆轨道上以速率υ绕核作圆周运动时,向心力就是库仑力,因而有2202re πεr υm ⋅=41 (15.20) 由式(15.18)和式(15.20)消去υ,即可得原子处于第n 个定态时电子轨道半径为),,,()Λ321(1===n r n πme h εn r 22202n (15.21)对应于n=1的轨道半径r 1是氢原子的最小轨道半径,称为玻尔半径,常用a 0表示,其值为m 10291772495111-⨯===.2200πme h εr a (15.22) 这个数值与用其他方法得到的数值相符合.氢原子的能量应等于电子的动能与势能之和,即re πεr e πεm υE 20202⋅-=⋅-=814121 处在量子数为n 的定态时,能量为),,,()(Λ321n 81812n n =-=⋅-=220420h εme n r e πεE (15.23)由此可见,由于电子轨道角动量不能连续变化,氢原子的能量也只能取一系列不连续的值,这称为能量量子化,这种量子化的能量值称为原子的能级.式(15.23)是氢原子能级公式.通常氢原子处于能量最低的状态,这个状态称为基态,对应于主量子数n=1, E 1=-13.6 eV . n>1的各个稳定状态的能量均大于基态的能量,称为激发态,或受激态.处于激发态的原子会自动地跃迁到能量较低的激发态或基态,同时释放出一个能量等于两个状态能量差的光子,这就是原子发光的原理.随着量子数n 的增大,能量E n 也增大,能量间隔减小. 当n →∞时,rn →∞, E n →0 ,能级趋于连续,原子趋于电离. E > 0时,原子处于电离状态,能量可连续变化.图15.6和图15.7分别是氢原子处于各定态的电子轨道图和氢原子的能级图.使原子或分子电离所需要的能量称为电离能.根据玻尔理论算出的氢原子基态能量值与实验测得的氢原子基态电离能值13.6eV 相符.下面用玻尔理论来研究氢原子光谱的规律.按照玻尔假设,当原子从较高能态E n 向较低能态E k (n>k)跃迁时,发射一个光子,其频率和波数为1n =2n =3n =4n =1r r =14r r =19r r =116r r =赖曼系巴耳末系帕邢系 图15.6 氢原子定态的轨道图hE E νk n nk -= (15.24) )~k n nk nk nk E E hcc νλν-===(11 (15.25) 将能量表示式(15.23)代入即可得氢原子光谱的波数公式)()(~k n nk c h εme ν0nk >-=22324118 (15.26) 显然式(15.26)与氢原子光谱的经验公式(15.17)是一致的,同时可得里德伯常数的理论值为173204m 10097373118-⨯=ε=.ch me R H 理论 (15.27) 这也与实验值符合得很好.这表示玻尔理论在解释氢原子光谱的规律性方面是十分成功的,同时也说明这个理论在一定程度上反映了原子内部的运动规律.三、玻尔理论的缺陷和意义玻尔的半经典量子理论在说明光谱线规律方面取得了前所未有的成功.但是它也有很大的局限性,如只能计算氢原子和类氢离子的光谱线,对其他稍微复杂的原子就无能为力了;另外,它完全没有涉及谱线强度、宽度及偏振性等.从理论体系上讲,这个理论的根本问题在于它以经典理论为基础,但又生硬的加上与经典理论不相容的若干重要假设,如定态不辐射和量子化条件等,因此它远不是一个完善的理论.但是玻尔的理论第一次使光谱实验得到了理论上的说明,第一次指出经典理论不能完全适用于原子内部运动过程,揭示出微观体系特有的量子化规律.因此它是原子物理发展史上一个重要的里程碑,对于以后建立量子力学理论起到了巨大的推动作用.另外,玻尔理论在一些基本概念上,如“定态”、“能级”、“能级跃迁决定辐射频率”等在量子力学中仍是非常重要的基本概念,虽然另有一些概念,如轨道等已被证实对微观粒子不再适用.作业(P224):27§15.4 微观粒子的波—粒二象性 不确定关系一、微观粒子的波—粒二象性1923~1924年间,德布罗意仔细地分析了光的微粒说和波动说的历史,深入的研究了光子假设.他认为,19世纪以来,在光的研究中人们只重视了光的波动性,而忽视了它的粒子性.但在实物粒子的研究中却又发生了相反的情况,只重视实物粒子的粒子性,而忽略了它的波动性.在这种思想的支配下,德布罗意大胆的提出了物质的波—粒二象性假设.他认为,质量为m,速度为υ的自由粒子,一方面可用能量E 和动量p 来描述它的粒子性;另一方面还可用频率v 和波长λ来描述它的波动性.它们之间的关系与光的波—粒二相性所描述的关系一样,即h/p λE/h,ν== (15.28)式(15.28)叫德布罗意公式.这种和实物粒子相联系的波称为德布罗意波,或叫物质波.德布罗意因这一开创性工作而获得了1929年的诺贝尔物理学奖.由于自由粒子的能量和动量均为常量,所以与自由粒子相联系的波的频率和波长均不变,这说明与自由粒子相联系的德布罗意波可用平面波描述.对于静质量为m 0,速度为υ的实物粒子,其德布罗意波长为220/c υυm h p h λ-==1 (15.30) 德布罗意关于物质波的假设,1927年首先由戴维孙(C.J.Davisson,1881—1958)和革末(L.H.Germer,1896—1971)通过电子衍射实验所证实.戴维孙和革末作电子束在晶体表面散射实验时,观察到了和X 射线在晶体表面衍射相似的电子衍射现象,从而证实了电子具有波动性.当时的实验中,采用50KV 的电压加速电子,波长约为0.005nm.由于波长非常短,实验难度很高,因此这一实验是极其卓越的.后来证实了不仅电子具有波动性,其他微观粒子,如原子、质子和中子等也都具有波动性.微观粒子的波动性在现代科学技术上已得到广泛的应用,利用电子的波动性,已制造出了高分辨率的电子显微镜;利用中子的波动性,制成了中子摄谱仪.既然微观粒子具有波动性,原子中绕核运动的电子无疑也具有波动性.不过处于原子定态中的电子的波动形式,与戴维孙和革末实验中由小孔衍射的电子束的波动形式是不同的,后者可认为是行波,而前者则应看为驻波.处于定态中的电子形成驻波的情形,与端点固定的振动弦线形成驻波的情形是相似的.原子中电子驻波可如图15.8形象地表示.由图可见,当电子波在离开原子核为r 的圆周上形成驻波时,圆周长必定等于电子波长的整数倍,即),,,(Λ3212==n n λπr (15.31)利用德布罗意关系便可得电子的轨道角动量应满足下面的关系),,,(Λη3212====n n λh πλn rP L (15.32) 这正是玻尔作为假设引入的量子化条件,在这里,考虑了微观粒子的波动性就自然的得出了量子化条件.例题15.2 计算经过电势差U=150V 和U=104V 加速的电子的德布罗意波长(在U<104V 时,可不考虑相对论效应).解:忽略相对论效应,经过电势差U 加速后,电子的动能和速率分别为202,21m eU eU υm =υ= 式中m 0为电子的静止质量.利用德布罗意关系可得德布罗意波长nm 11.225m 1102512121000UU U e m h υm h λ=⨯=⋅==-. 式中U 的单位是伏特. 1nm 0150V U 11.=λ→=,0.0123nm V 10U 242=λ→=由此可见,在这样的电压下,电子的德布罗意波长与X 射线的波长相近。
15 量子物理基础—康普顿效应及光子理论的解释
![15 量子物理基础—康普顿效应及光子理论的解释](https://img.taocdn.com/s3/m/60a2ec0376c66137ee061958.png)
4.5 1023 kgms 1
h/
tan (h ) /( h 0 ) 0
0.20 arctan 42.3 0.22
视为黑体,则 1)太阳表面的温度; 2)太阳的辐射功率; 3)由于热辐射而使太阳质量耗损1%经历的时间。 (已知太阳半径 RS=6.96×108m, 质量Ms=2 ×1030kg)
解:
1)根据维恩位移定律 mT b
T
b m
2.897103 m K 49010 9 m
5.9 103 K
大学物理 第三次修订本
15
第15章 量子物理基础
实验规律
(1) 对于原子量较小的散射物质,康普顿散射 较强,反之较弱。 (2)波长的改变量 -0 随散射角θ的增加而增加。
(3)对不同的散射物质,只要在同一个散射角下, 波长的改变量 - 0 都相同。
大学物理 第三次修订本
16
第15章 量子物理基础
(3)电子的初速度
19
第15章 量子物理基础 例2 钾的光电效应红限为0= 6.210-7m。求(1)电子 的逸出功;(2)在波长为3.0 10-7m的紫外线照射下, 遏止电压为多少?(3)电子的初速度为多少? 解 (1)逸出功
2eU a 2 1.6 10 2.14 vm ms 1 8.67 105 ms 1 11 m 9.11031 大学物理 第三次修订本
0.01M s c 11 t 10 年 P
大学物理 第三次修订本
5
2
第15章 量子物理基础 1、光电效应的实验
饱和电流∝光强度I
存在截止频率: > 0
瞬时性
1 2 mVm ekν eU 0 最大初动能与入射频率成线性关系: 2
大学物理15量子力学基础1s
![大学物理15量子力学基础1s](https://img.taocdn.com/s3/m/4dec1be55ef7ba0d4a733b8c.png)
En Ek
3)轨道量子化条件:L n n h (n 1,2, ) 2 3.玻尔的氢原子理论: 4 on22 rn n 1,2,3, rn r 、 r 、 r 1 41 91 2 me
me4 En 2 2 2 8 0 h n
(汤姆逊1927)
(约恩逊1961) 由于电子波长比可见光波长小35个数量级, 从而可大大提高电子显微镜的分辨率。 我国制成的80万倍的电子显微镜,分辨率为14.4nm, 能分辨大个分子,有着广泛的应用前景。 5
二、不确定关系(测不准关系)
经典粒子(质点): 质点在运动时,其坐标和动量是 可以同时被测定的。 微观粒子(如电子): 其坐标和动量不能同时被测定。 (微观粒子的波粒二象性) 1.位置和动量的不确定关系式 量子力学理论证明: 在某确定方向上(如x方向)粒子的位置有不确定 量x,对应动量的不确定量Px,两者有一关系:
1.德布罗意物质波 质量 m 自由粒子具有: 速度 V 它们之间的关系是:
E h P h
能量 E 动量 P 波长入 频率
德布罗意关系
1
E h
P h
德布罗意关系
一般地: h h h 1 (V )2 V ~C P mV moV C 波长与粒子静止 h h 质量成反比 V C P mh oV 2mo Ek 静止质量为mo的实物粒子,以速度V运动时,与该 粒子缔合在一起的平面单色波的波长为,这种波称为 德布罗意波或物质波 例:电子经电场加速,加速电压U=100v、U=10000v, 电子的德布罗意波长=? 1 moV 2 eU h h { 1.23Å 2 2mo Ek 2moeU 0.123Å 可见,电子的德布罗意波长很短!
大学物理量子物理基础(stone)
![大学物理量子物理基础(stone)](https://img.taocdn.com/s3/m/d091f1853b3567ec112d8ab1.png)
金属来说,只有当入射光的
频率大于某一频率υo时,电 子才能从金属表面逸出,电 路中才有光电流,这个频率 υo叫做截止频率——红限.
0
Ua
红限频率
(3).线性关系:用不同频率的光照射金属K的表面时, 只要入射光的频率大于截止频率,遏止电势差与入射 光频率具有线性关系,即最大初动能与入射光的频率 成正比而与入射光的光强无关.
普朗克(Max Karl Ernst Ludwig Planck, 1858―1947)
德国物理学家,量子物理学的开创者 和奠基人。 普朗克的伟大成就,就是创立了量子理论, 1900年12月14日他在德国物理学会上,宣 读了以《关于正常光谱中能量分布定律的 理论》为题的论文,提出了能量的量子化 假设,并导出了黑体辐射的能量分布公式。 这是物理学史上的一次巨大变革。从此结 束了经典物理学一统天下的局面。劳厄称 这一天为“量子论的诞生日”。
1918年普朗克由于创立了量子理论而获 得了诺贝尔奖金。
1.普朗克公式
2hc2 1
M (T) 5
hc
e kT 1
2.普朗克假说
•谐振子的能量可取值只能是某一最小能量单元ε 的整 数倍,即:E=nε , n=1,2,3,....ε叫能量子,n为量子数, 它只取正整数—能量量子化. •对于频率为υ的谐振子,最小能量为:ε=hυ 其中h=6.62610-34 J·s为普朗克常数 结论:谐振子吸收或辐射的能量只能是ε=hυ的整数倍.
里兹组合原理:任一条谱线的波数都等于该元素所固有 的许多光谱项中的两项之差,这是里兹在1908年发现的.
~ 1 T( k ) T( n )
T(k) R k2
T (n)
R n2
R=1.096776 107m1
大学物理下必考15量子物理知识点总结
![大学物理下必考15量子物理知识点总结](https://img.taocdn.com/s3/m/a3aa3fd56429647d27284b73f242336c1fb93050.png)
§15.1 量子物理学的诞生—普朗克量子假设 一、黑体辐射物体由其温度所决定的电磁辐射称为热辐射。
物体辐射的本领越大,吸收的本领也越大,反之亦然。
能够全部吸收各种波长的辐射能而完全不发生反射和透射的物体称为黑体。
二、普朗克的量子假设:1. 组成腔壁的原子、分子可视为带电的一维线性谐振子,谐振子能够与周围的电磁场交换能量。
2. 每个谐振子的能量不是任意的数值, 频率为ν的谐振子,其能量只能为hν, 2 hν, …分立值,其中n = 1,2,3…,h = 6.626×10 –。
3. 当谐振子从一个能量状态变化到另一个状态时, 辐射和吸收的能量是hν的整数倍。
§15.2 光电效应 爱因斯坦光量子理论 一、光电效应的实验规律金属及其化合物在光照射下发射电子的现象称为光电效应。
逸出的电子为光电子,所测电流为光电流。
截止频率:对一定金属,只有入射光的频率大于某一频率ν0时, 电子才能从该金属表面逸出,这个频率叫红限。
遏制电压:当外加电压为零时, 光电流不为零。
因为从阴极发出的光电子具有一定的初动能,它可以克服减速电场而到达阳极。
当外加电压反向并达到一定值时,光电流为零,此时电压称为遏制电压。
212m m eU =v 二、爱因斯坦光子假说和光电效应方程 1. 光子假说一束光是一束以光速运动的粒子流,这些粒子称为光子; 频率为v 的每一个光子所具有的能量为h εν=, 它不能再分割,只能整个地被吸收或产生出来。
2. 光电效应方程根据能量守恒定律, 当金属中一个电子从入射光中吸收一个光子后,获得能量hv ,如果hv 大于该金属的电子逸出功A ,这个电子就能从金属中逸出,并且有上式为爱因斯坦光电效应方程,式中2m 12m v 为光电子的最大初动能。
当h Aν<时,电子无法获得足够能量脱离金属表面,因此存在 三、光(电磁辐射)的波粒二象性光子能量2E mc h ν==光子质量2h hm c c νλ==光子动量h hp mc c νλ===光具有波粒二象性。
大学物理下 第15章 量子力学基础
![大学物理下 第15章 量子力学基础](https://img.taocdn.com/s3/m/cd6940a526fff705cc170aba.png)
将德布罗意关系式:
E h p h/ k
代入上式
得:y
Ae
i
(
Et
px
)
(
x,
t
)
0e
i
(
Et
px)
(r ,
t)
e
i
(
Et
P
r
)
0
——自由粒子德布罗意波的波函数
三、 态叠加原理
用电子双缝衍射说明量子力学中态的叠加导致了在 叠加态下观测结果的不确定性。
几率密度
某时刻、在(x, y, z)附近的体积元 dV 中,出现
粒子的几率为
dP
2 dV
2
dP dV
—几率密度
表示某时刻、在空间某地点附近单位体积内粒子
出现的几率
粒子在整个空间出现的几率
P dP
2 必定
dV 1
这就是波函数 的归一化条件
V
2. 波函数的性质
(1) 单值性 一定时刻,在空间某点附近,单位体积内,粒子
物质波既不是机械波,又不是电磁波,而是几率波!
几率波是描写微观体系的统计行为,而不是单个粒 子的单次过程.
结论
波函数所反映的只是微观粒运动的统计
规律,对微观粒子,讨论其运动轨道及速度
是没有意义的。
宏观物体:讨论它的位置在哪里? 区别
微观粒子:研究它在哪里出现的几率有多大?
1. 波函数具有归一性
粒子在某区域出现的几率正比于该区域的大小
一、单光子干涉实验
让一个光子入射到半透镜1上
大学物理学(下册)第15章 量子物理基础
![大学物理学(下册)第15章 量子物理基础](https://img.taocdn.com/s3/m/012588e28762caaedc33d414.png)
5、爱因斯坦的光子假说和光电效应方程
1).爱因斯坦光子假设 ①.光是一束以光速c运动的粒子流,这些粒子称为光子;
②.光子的能量: h
③.光的强度: SNh
2).爱因斯坦光电效应方程
爱因斯坦认为:在光电效应中,金属中的电子吸收
一个光子的能量h,一部分消耗在使金属中电子挣脱原子
2020/12/10
2. 普朗克理论与经典理论不同
经典理论的基本观点
普朗克能量子假设
(1)电磁波辐射来源于 带电粒子的振动,电磁波 频率与带电粒子振动频率 相同。 (2)振子辐射电磁波含 各种波长,是连续的,辐 射能量也是连续的。
对于频率为的振子,
振子辐射的能量不是 连续的,而是分立的, 它的取值是某一最小 能量 的整数倍
出的、在波长 附近单位波长间隔内的能量。称为单色辐
射出射度或单色辐出度。
M(T)
dM(T)
d
单位: W / m 3
2020/12/10
温度为 T 的物体,在单位时间内,从单位面积上所辐射
出的各种波长的电磁波的能量总和。称为辐射出射度或辐
出度。
M(T) 0M(T)d
单位: W / m 2
太阳和钨丝的单色 辐出度曲线
即:光电子的最大初动能与入射光的强度成正比关系,而 与光的频率无关。与实验结果不符。
2020/12/10
红限问题
按上述理论,无论何种频率的入射光,只要其强 度足够大,就能使电子具有足够的能量逸出金属,不 存在红限问题。与实验结果不符。
驰豫时间
按上述理论,如果入射光强很弱,则电子逸出金 属所需的能量,需要有一定的时间来积累。与实验结 果不符。
光的波动性用光波的波长 和频率 描述,光
大学物理-量子物理
![大学物理-量子物理](https://img.taocdn.com/s3/m/885ea50b011ca300a6c390d5.png)
§2 光电效应和爱因斯坦的光量子论
一. 光电效应的实验规律 1.光电效应
光电效应 光电子
2.实验装置
3. 实验规律
• Uc= K - U0
Uc(V) 2.0
与入射光强无关
Cs Na C a
光电子的最大初动能为 1.0
eUc eK U0
0.0
4.0 6.0 8.0 10.0 (1014Hz)
• 只有当入射光频率 v大于一定的频率v0时, 才会产生光电效应
1.“振子”的概念(1900年以前) • 物体----------振子
• 经典理论:振子的能量取“连续值”
2. 普朗克假定(1900)
能量
物体发射或吸收电磁辐射:
= h
h = 6.6260755×10 -34 J·s
3. 普朗克公式
经典 量子
M T
2 c2h
1
5 e hc / kT
1
在全波段与实验结果惊人符合
物体M 最大且只与温度有关而和材料 及表面状态无关
2. 维恩设计的黑体 3. 斯特藩-玻耳兹曼定律
M(T)=T 4 = 5.6710-8 W/m2K4
4.维恩位移律
m = b/T b = 2.897756×10-3 m·K
5.理论与实验的对比 三. 经典物理学遇到的困难
四. 普朗克的能量子假说和黑体辐射公式
• 光量子具有“整体性”
3. 对光电效应的解释
1 2
m
um2
h
A
当 <A/h时,不发生光电效应。
红限频率
0
A h
四.光电效应的意义
§3 光的波粒二象性 康普顿散射
一.光的波粒二象性
1. 近代认为光具有波粒二象性
第十五章量子力学基础精品PPT课件
![第十五章量子力学基础精品PPT课件](https://img.taocdn.com/s3/m/2a21566349649b6649d7475d.png)
对应原理是将量子体系与经典力学体系联 系的桥梁。
早 普朗克能量量子化假设
期 量 爱因斯坦光子假设
对应原理的 量子力学
子 玻尔的氢原子理论
论
15
3、原子的能级:
Lmvnrn
n h
2
e2
4 0rn2
m vn2 rn
rn
0h2 me2
n2
vn
e2
2 0hn
En
Ek
Ep
12mn2v4e02rn
e2
80rn
=h 。一个电子一次吸收一个光量子。
爱因斯坦光电
h 1m2 A
效应方程:
A=h02——逸出功
Us h eA ek(0)
密立根(1916年) 10
三、光的波粒二象性: 由相对论可知:=mc2=h,则
h
m c2 c2
Pm chh cc
四、康普顿效应(1923年)——光的 波粒二象性的有力证明。
11
原子不向外辐射能量,原子处于稳定的状态 (定态),原子具有确定的能量(En)。 (3)跃迁假设:当原子从定态En跃迁到定态Ek时, 辐射或吸收一个光子,光子的频率由下式决定
hEn Ek
(频率条件) 14
2、对应原理(1920年)
对应原理:在大量子数极限情况下,量子 体系的行为将逐渐地趋于与经典力学体系 相同。
第三节 玻尔的氢原子理论 (§4)
一、卢瑟福的原子结构模型——核式结构模型
1、 1911年卢瑟福,α粒子散射实验
1
铂 膜
8000
粒子
2°~3 °
12
2、卢瑟福的原子核式结构模型
原子(10-10m) 原子核(10-14~10-15m) +Ze
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
m
o
0.1A
(2) 若使其质量为m=0.1g的小球以与粒子相同的 速率运动,求其波长
若 m=0.1g 的小球速率 vm v
vm
v
q BR m
则 :m
h m vm
h m
1 v
h m
m q BR
h q BR
m m
6.64 10 27 0.1 10 3
6.641034
m
px x h
考虑到在两个一级极小值之外还有电子出现,
运动,则其波长为多少? (粒子质量为ma =6.64ⅹ10-27kg)(05.08…)
解:
(1)
求粒子德布罗意波长 h h
p m v
先求:m v ?
而:q vB
m
v2 R
m v q BR
h m v
h q BR
6.63 10 34 1.601019 0.025 0.083102
1.001011
( x,t ) 0 区别于经典波动
(
x,
t)
e i 2
0
(t x
)
自由粒子沿x方向运动时对应的单色平面波波函数
设运动的实物粒子的能量为E、动量为 p,与之相 关联的频率为 、波长为,将德布罗意关系式代入:
考虑到自由粒子沿三维方向的传播
式中的 、E 和 p 体现了微观粒子的波粒二象性
2、概率密度——波函数的统计解释 根据玻恩对德布罗意波的统计解释,物质波波
p mv h
德布罗意公式(或假设)
与实物粒子相联系的波称为德布罗意波(或物质波)
h h h
p mv m0v
1
v2 c2
如果v c,则 h
m0v
例如:电子经加速电势差 U加速后
即 :1 2
m0v 2
eU
2eU v
m0
所以电子的德布罗意波长为:
h 2m0eU
12.3
0
(A)
U
0
当:U 150V 1A
满足哪些条件? ② 波函数的物理意义是什么?
③ 描述微观粒子运动状态的基本 方程——薛定谔方程?
④ 什么是隧道效应?
一、波函数 概率密度
1 、波函数: 描述微观粒子运动状态的函数。
经典单色平面简谐波波动方程:
y( x ,t ) Acos 2 (t x ) y( x, t ) Ae i 2 (t x ) 只 取 实 部
3)波函数是单值的
波函数 的标准条件 :单值、有 限和连续
粒子在空间出现的几率只可能是一个值.
4)满足归一化条件
W dV 1 (归一化条件)
因为粒子在全空间出现是必然事件.
例1:求波函数归一化常数和概率密度。
0
x
Ae
i
Et
sin
a
x
解:利用归一化条件
( x0,xa) (0 xa)
微观粒子遵循的是统计规律,而不是经典的 决定性规律。
牛顿说: 只要给出了初始条件,下一时刻粒子的轨 迹是已知的,决定性的。
量子力学说:波函数不给出粒子在什么时刻一定到达 某点,只给出到达各点的统计分布;即只 知道||2大的地方粒子出现的可能性大, ||2小的地方几率小。一个粒子下一时刻出 现在什么地方,走什么路径是不知道的
E
2c2 pp
c2m vp
2 m02c4 p2c 2
E
vp x p
t
Et xp / 2
即:
Et
能量与时间不确定关系式
2
测不准关系式的讨论
1. 用经典物理学量来描写微观粒子行为时必然会出 现不确定性 。在位置和动量的不确定量中,位置不确 定量越小,则同方向的动量不确定量就越大。反之亦 然。
15-1 德布罗意波 实物粒子的波粒二象性
一、德布罗意波 (物质波) 独创性
1924年,法国物理学家德布罗意提出了物质波的假设: 一切实物粒子(如电子、质子、中子)都与光子一样,
具有波粒二象性。
具有能量为E、动量为p 的实物粒子就有一定频率 和一定波长与之对应。它们之间满足如下关系:
E mc2 h
例 一原静止的电子被电场加速到速度v(vc), 加速电压为100V时,则速度为v的电子的De Bröglie 波波长为多大?
解: h h h p m0v 2em0U
12.3 1010 (m)
U
当U=100伏 12.3 1.23 Å
U
二、物质波的实验验证
1927年戴维孙和革末用加速后的电子投射到晶体 上进行电子衍射实验。
置是完全确定的。其动量是否完全确定呢?
mvx
2 x
1034 106
1028 kg m s1
mvx 2kg m s1
所以宏观粒子的坐标及动量可以同时确定
2. 微观粒子的动量及坐标是否永远不能同时确定?
例1 一电子以 vx 1.0 106 m s1
的速度穿过晶体。晶体常数d~10-10m
K
狭缝 电子射线
器
φ
电 集
U
φ 镍 单晶
电 G流
计
实验发现:保持 角不变,改变电压值,电流并
不随电压单调的改变,而是出现选择性。
I
0
5 10 15 20 25
U
当电压为某一特定值时,电流才有极大值(此规律 与x射线的衍射规律相似 )。
根据衍射理论,衍射最大值应满足布拉格公式:
德布罗意假说,电子的波长为:波
( x ) 2 dx
a A2 sin2 x dx A2a 1
0
a
2
A
2 a
0
w 2
2 a
sin2
x
a
(x 0, x a) (0 x a)
二、薛定谔方程
1、薛定谔方程的引入(并不是理论推导)
一维自由粒子的波函数
( x, t )
Ae
i
(
Et
px
)
2
x 2
p2 2
t
i
E
对于非相对论粒子 E p2 2m
而经典波的波幅如果增加一倍,则相应的波动能量 将为原来的四倍,因此,代表了不同的波动状态。即若:
振幅 A CA 那么 能量 E C 2E
3 、波函数的标准化条件与归一化条件(波函数必须满足的条件)
1)波函数具有有限性 W
(r.t) 在空间是有限的
dV 1
V
2)即波在函r数处是的连几续率的密度w(r)与r dr处 几率密度w(r dr)只差一微量
h
2meU
代入上式得:
若在戴维孙—革末实验中取
根据德布罗意假说,由加速 电势差算得的波长为:
利用布拉格公式球得 波长为:
两者波长值很接近,证明微观粒子具有波粒二象性
思考题: 若一个电子的德布罗意波长和光子的波长相同。
试问:1)它们的动量大小是否相同? 2)它们的总能量是否相同?(05年)
解:1) 由德布罗意关系可知,它们的波长相同.因此, 它们的动量大小相同.
2)但它们的总能量是不相同的。电子的总能量大于
光子的能量。
光子的能量: hv hc pc
Ee
电子的总能量: Ee (cp)2 (m0c2 )2
例1: 、粒子在磁感应强度为B=0.025T的均匀磁场 中沿半径为R=0.83cm的轨道作圆周运动.试求: (1) 粒子德布罗意波长; (2) 若使其质量为m=0.1g的小球以与粒子相同的速率
0
x d 1A
由 于 :xpx
2
vx 2m x
1034 1031 1010
m
s 1
107 m s1 v x v x 106 m s1
所以,电子的动量是不确定的,应该用量子力 学来处理。
例2 电子射线管中的电子束中的电子速度一般为 105m/s,
设测得速度的精度为1/10000,即 vx=10m/s,求电子位
3. 概率密度分布具有起伏性。能级越高,起伏次数 越多。
用驻波思想求解一维无限深势阱中粒子的能量: 用薛定谔方程简单分析得:
因为势阱中 U(x)=0, E = EK
由驻波条件得,
n=1,2,3, …
能量是量子化的。 与求解态薛定谔方程得到的能量公式一致。
例2 一维无限深势阱中粒子现粒子的几率 正比于该地点波函数模的平方和体积元
体积: dW 2 , dV
通常比例系数取1:
dW 2 dV dV
(为共轭复数)
则波函数模的平方表征了t 时刻,在空间(x,y,z)处 出现粒子的概率密度----波函数的物理意义.
w dW 2 (由叫概率分布函数) dV
态---简称定态。
---称为定态薛定谔方程.
薛定谔方程比较(非相对论形式)
1. 一般形式薛定谔方程:
若 U=0(自由粒子)
2 2m
2 ( x, t )
x 2
i
( x, t )
t
一维
2. 定态薛定谔方程:
三维 一维
三维
三、一维无限深势阱(定态薛定谔方程的应
用设) 质量为m的粒子只能在 0<x<a 区域内的外力场中
函数是对微观粒子运动的统计描述,即物质波是概 率波, 概率波只能给出粒子在各处出现的概率。
波函数物理意义 如何描述微观粒子的运动
(r,t)代表什么?看电子的单缝衍射: 1)大量电子的一次性行为:
U
粒子的观点
波动的观点
极大值 较多电子到达 波强度大, 02或 2大 极小值 较少电子到达 波强度小, 02或 2 小
置的不确定量(电子的位置确定在
范围内可
以认为令人满意)
解: xpx / 2 /2
x mv
6.63 1034 / 4