山东省滨州市2021届高三数学三模考试试题
山东省滨州市2021届新高考数学模拟试题(3)含解析
山东省滨州市2021届新高考数学模拟试题(3)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.某几何体的三视图如图所示,则该几何体的体积为()A.83π163+B.4π1633+C.16343π+D.43π163+【答案】D【解析】【分析】结合三视图可知,该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,分别求出体积即可.【详解】由三视图可知该几何体的上半部分是半个圆锥,下半部分是一个底面边长为4,高为4的正三棱柱,则上半部分的半个圆锥的体积11143π4π2323V=⨯⨯⨯=,下半部分的正三棱柱的体积214234 2V=⨯⨯⨯=163,故该几何体的体积1243π163V V V=+=+.故选:D.【点睛】本题考查三视图,考查空间几何体的体积,考查空间想象能力与运算求解能力,属于中档题. 2.设实数满足条件则的最大值为()A.1 B.2 C.3 D.4【答案】C【解析】【分析】画出可行域和目标函数,根据目标函数的几何意义平移得到答案.【详解】如图所示:画出可行域和目标函数,,即,表示直线在轴的截距加上1,根据图像知,当时,且时,有最大值为.故选:.【点睛】本题考查了线性规划问题,画出图像是解题的关键.3.泰山有“五岳之首”“天下第一山”之称,登泰山的路线有四条:红门盘道徒步线路,桃花峪登山线路,天外村汽车登山线路,天烛峰登山线路.甲、乙、丙三人在聊起自己登泰山的线路时,发现三人走的线路均不同,且均没有走天外村汽车登山线路,三人向其他旅友进行如下陈述:甲:我走红门盘道徒步线路,乙走桃花峪登山线路;乙:甲走桃花峪登山线路,丙走红门盘道徒步线路;丙:甲走天烛峰登山线路,乙走红门盘道徒步线路;事实上,甲、乙、丙三人的陈述都只对一半,根据以上信息,可判断下面说法正确的是()A.甲走桃花峪登山线路B.乙走红门盘道徒步线路C.丙走桃花峪登山线路D.甲走天烛峰登山线路【答案】D【解析】【分析】甲乙丙三人陈述中都提到了甲的路线,由题意知这三句中一定有一个是正确另外两个错误的,再分情况讨论即可. 【详解】若甲走的红门盘道徒步线路,则乙,丙描述中的甲的去向均错误,又三人的陈述都只对一半,则乙丙的另外两句话“丙走红门盘道徒步线路”,“乙走红门盘道徒步线路”正确,与“三人走的线路均不同”矛盾.故甲的另一句“乙走桃花峪登山线路”正确,故丙的“乙走红门盘道徒步线路”错误,“甲走天烛峰登山线路”正确.乙的话中“甲走桃花峪登山线路”错误,“丙走红门盘道徒步线路”正确. 综上所述,甲走天烛峰登山线路,乙走桃花峪登山线路, 丙走红门盘道徒步线路 故选:D 【点睛】本题主要考查了判断与推理的问题,重点是找到三人中都提到的内容进行分类讨论,属于基础题型. 4.某几何体的三视图如图所示(单位:cm),则该几何体的体积等于( )cm 3A .243π+B .342π+C .263π+D .362π+【答案】D 【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,结合图中数据,计算它的体积为: V=V 三棱柱+V 半圆柱=×2×2×1+12•π•12×1=(6+1.5π)cm 1. 故答案为6+1.5π.点睛:根据几何体的三视图知该几何体是三棱柱与半圆柱体的组合体,结合图中数据计算它的体积即可. 5.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβB .若m α⊥,m n ⊥,则n α⊥C .若m α⊥,//m n ,则n α⊥D .若αβ⊥,m α⊥,则//m β【答案】C 【解析】 【分析】在A 中,α与β相交或平行;在B 中,//n α或n ⊂α;在C 中,由线面垂直的判定定理得n α⊥;在D 中,m 与β平行或m β⊂. 【详解】设,m n 是两条不同的直线,,αβ是两个不同的平面,则: 在A 中,若//m α,//m β,则α与β相交或平行,故A 错误; 在B 中,若m α⊥,m n ⊥,则//n α或n ⊂α,故B 错误;在C 中,若m α⊥,//m n ,则由线面垂直的判定定理得n α⊥,故C 正确; 在D 中,若αβ⊥,m α⊥,则m 与β平行或m β⊂,故D 错误. 故选C . 【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,是中档题. 6.已知集合{}2,1,0,1,2A =--,2}2{|0B x x x =-+>,则A B =( )A .{}1,0-B .{}0,1C .{}1,0,1-D .{}2,1,0,1,2--【答案】D 【解析】 【分析】先求出集合B ,再与集合A 求交集即可. 【详解】 由已知,22172()024x x x,故B R =,所以A B ={}2,1,0,1,2--. 故选:D. 【点睛】本题考查集合的交集运算,考查学生的基本运算能力,是一道容易题.7.执行如图所示的程序框图,若输出的值为8,则框图中①处可以填( ).A .7?S ≥B .21?S ≥C .28?S ≥D .36?S ≥【答案】C 【解析】 【分析】根据程序框图写出几次循环的结果,直到输出结果是8时. 【详解】第一次循环:0,1S i == 第二次循环:1,2S i == 第三次循环:3,3S i == 第四次循环:6,4S i == 第五次循环:10,5S i == 第六次循环:15,6S i == 第七次循环:21,7S i == 第八次循环:28,8S i ==所以框图中①处填28?S ≥时,满足输出的值为8. 故选:C 【点睛】此题考查算法程序框图,根据循环条件依次写出每次循环结果即可解决,属于简单题目.8.在平面直角坐标系xOy 中,锐角θ顶点在坐标原点,始边为x 轴正半轴,终边与单位圆交于点5P m ⎛⎫ ⎪ ⎪⎝⎭,则sin 24πθ⎛⎫+= ⎪⎝⎭( )A .10B C .10D 【答案】A 【解析】 【分析】根据单位圆以及角度范围,可得m ,然后根据三角函数定义,可得sin ,cos θθ,最后根据两角和的正弦公式,二倍角公式,简单计算,可得结果. 【详解】由题可知:221m +=⎝⎭,又θ为锐角所以0m >,5m =根据三角函数的定义:255sin ,cos 55θθ 所以4sin 22sin cos 5θθθ==223cos 2cos sin 5θθθ=-=-由sin 2sin 2cos cos 2sin 444πππθθθ⎛⎫+=+ ⎪⎝⎭所以43sin 24525210πθ⎛⎫+=⨯-⨯= ⎪⎝⎭ 故选:A 【点睛】本题考查三角函数的定义以及两角和正弦公式,还考查二倍角的正弦、余弦公式,难点在于公式的计算,识记公式,简单计算,属基础题.9.已知m ,n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足l ⊥m ,l ⊥n ,,l α⊄,l β⊄则 ( )A .α∥β且l ∥αB .α⊥β且l ⊥βC .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l【答案】D 【解析】【分析】 【详解】试题分析:由m ⊥平面α,直线l 满足l m ⊥,且l α⊄,所以//l α,又n ⊥平面β,,l n l β⊥⊄,所以l β//,由直线,m n 为异面直线,且m ⊥平面,n α⊥平面β,则α与β相交,否则,若//αβ则推出//m n ,与,m n 异面矛盾,所以,αβ相交,且交线平行于l ,故选D .考点:平面与平面的位置关系,平面的基本性质及其推论.10.在平面直角坐标系xOy 中,已知点()0,2A -,()1,0N ,若动点M满足MA MO= ,则·OM ON 的取值范围是( ) A .[]0,2B.0,⎡⎣ C .[]22-,D.-⎡⎣【答案】D 【解析】 【分析】设出M 的坐标为(,)x y ,依据题目条件,求出点M 的轨迹方程22(2)8x y +-=,写出点M 的参数方程,则·22os OM ON θ=,根据余弦函数自身的范围,可求得·OM ON 结果. 【详解】 设(,)M x y ,则∵MA MO=,()0,2A -=∴2222(2)2()x y x y ++=+∴22(2)8x y +-=为点M 的轨迹方程∴点M的参数方程为2x y θθ⎧=⎪⎨=+⎪⎩(θ为参数)则由向量的坐标表达式有:·22os OM ON θ=又∵cos [1,1]θ∈-∴2·2cos [22,22]OM ON θ=∈- 故选:D 【点睛】考查学生依据条件求解各种轨迹方程的能力,熟练掌握代数式转换,能够利用三角换元的思想处理轨迹中的向量乘积,属于中档题.求解轨迹方程的方法有:①直接法;②定义法;③相关点法;④参数法;⑤待定系数法11.定义在[]22-,上的函数()f x 与其导函数()f x '的图象如图所示,设O 为坐标原点,A 、B 、C 、D 四点的横坐标依次为12-、16-、1、43,则函数()xf x y e =的单调递减区间是( )A .14,63⎛⎫-⎪⎝⎭B .1,12⎛⎫-⎪⎝⎭C .11,26--⎛⎫⎪⎝⎭ D .()1,2【答案】B 【解析】 【分析】先辨别出图象中实线部分为函数()y f x =的图象,虚线部分为其导函数的图象,求出函数()xf x y e =的导数为()()xf x f x y e'='-,由0y '<,得出()()f x f x '<,只需在图中找出满足不等式()()f x f x '<对应的x 的取值范围即可. 【详解】若虚线部分为函数()y f x =的图象,则该函数只有一个极值点,但其导函数图象(实线)与x 轴有三个交点,不合乎题意;若实线部分为函数()y f x =的图象,则该函数有两个极值点,则其导函数图象(虚线)与x 轴恰好也只有两个交点,合乎题意. 对函数()xf x y e=求导得()()xf x f x y e'='-,由0y '<得()()f x f x '<,由图象可知,满足不等式()()f x f x '<的x 的取值范围是1,12⎛⎫-⎪⎝⎭, 因此,函数()xf x y e =的单调递减区间为1,12⎛⎫-⎪⎝⎭. 故选:B. 【点睛】本题考查利用图象求函数的单调区间,同时也考查了利用图象辨别函数与其导函数的图象,考查推理能力,属于中等题.12.在ABC ∆中,点D 是线段BC 上任意一点,2AM AD =,BM AB AC λμ=+,则λμ+=( ) A .12-B .-2C .12D .2【答案】A 【解析】 【分析】设BD k BC =,用,AB AC 表示出BM ,求出,λμ的值即可得出答案. 【详解】设BD k BC k AC k AB ==-由2AM AD =()112222k kBM BA BD AB AC AB ∴=+=-+- 1222k k AB AC ⎛⎫=--+ ⎪⎝⎭,1,222k kλμ∴=--=,12λμ∴+=-.故选:A 【点睛】本题考查了向量加法、减法以及数乘运算,需掌握向量加法的三角形法则以及向量减法的几何意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。
2021年山东省滨州市惠民县胡集镇中学高三数学理模拟试题含解析
2020-2021学年山东省滨州市惠民县胡集镇中学高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若则实数的取值范围是()A.;B. ;C. ;D.参考答案:B2. 设i是虚数单位,复数等于A. B. C. D.1-i参考答案:A3. 命题“若一个数是负数,则它的平方是正数”的否命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”参考答案:C略4. 设全集,则A.B.C.D.参考答案:B5. 设(i是虚数单位),则= ()A.-1-i B.-1+i C.1-i D.1+i参考答案:D6. 已知全集U=N,集合,,则(A)(B)(C)(D)参考答案:D略7. 如图所示程序框图中,输出()A.45 B.-55 C.-66 D.66参考答案:B试题分析:该程序框图所表示的算法功能为:,故选B.考点:程序框图.8. (5分)(2015?嘉兴一模)已知直线ax+y﹣1=0与直线x+ay﹣1=0互相垂直,则a=()A. 1或﹣1 B. 1 C.﹣1 D. 0参考答案:D【考点】:直线的一般式方程与直线的垂直关系.【专题】:直线与圆.【分析】:直接由两直线垂直得到两直线系数间的关系,然后求解关于a的方程得答案.解:∵直线ax+y﹣1=0与直线x+ay﹣1=0互相垂直,∴1×a+1×a=0,即2a=0,解得:a=0.故选:D.【点评】:本题考查了直线的一般式方程与直线垂直的关系,关键是对条件的记忆与运用,是基础题.9. 若A为不等式组表示的平面区域,则当a从﹣2连续变化到1时,动直线x+y=a扫过A 中的那部分区域的面积为( )A.B.1 C.D.2参考答案:C考点:简单线性规划的应用.专题:计算题;压轴题;数形结合.分析:本题主要考查线性规划的基本知识,先画出约束条件的可行域,再分析当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的形状,然后代入相应的公式,求出区域的面积.解答:解析:作出可行域,如图,则直线扫过的面积为故选C.点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解.10. 已知,则的最小值为()A.B. C.D.6参考答案:D【知识点】基本不等式.E6解析:∵,则,故选:D.【思路点拨】利用基本不等式的性质、指数运算性质即可得出.二、填空题:本大题共7小题,每小题4分,共28分11. 一个几何体的三视图如图所示,则这个几何体的体积等于A.12B.4C.D.参考答案:B略12. (15)已知椭圆的左焦点为.参考答案:13. 若点O和点F分别为椭圆的中心和左焦点,点P为椭圆上任意一点,则的最大值为。
山东省滨州市博兴县乔庄中学2021年高三数学理模拟试题含解析
山东省滨州市博兴县乔庄中学2021年高三数学理模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1. 若复数z满足(3+4i)z=5,则z的虚部为()A.﹣4 B.C.D.4参考答案:B【考点】A5:复数代数形式的乘除运算.【分析】由(3+4i)z=5,得,然后利用复数代数形式的乘除运算化简复数z得答案.【解答】解:由(3+4i)z=5,得=,则z的虚部为:.故选:B.【点评】本题考查了复数代数形式的乘除运算,考查了复数的基本概念,是基础题.2. 已知数列{}满足,且,则的值是()A. B. C.5D.参考答案:B 由,得,即,解得,所以数列是公比为3的等比数列。
因为,所以。
所以,选B.3. 已知为边长为2的正方形ABCD及其内部一动点,若面积均不大于,则取值范围是 ( )A. B. C. D.参考答案:D4. 如图,点在以为直径的圆上,其中,过向点处的切线作垂线,垂足为,则的最大值是()A.2 B.1 C.0 D.-1参考答案:B5. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”.已知某“堑堵”的三视图如图所示,俯视图中虚线平分矩形的面积,则该“堑堵”的表面积为()A.14 B.C.D.参考答案:C根据题意知原图是一个直三棱柱,躺在平面上,上下底面是等腰直角三角形,则表面积由五个面构成,表面积为:故答案为:C .6. 如图,F为抛物线的焦点,A、B、C为该抛物线上三点,若,则等于A.6 B.4C.3 D.2参考答案:A7. 已知函数,若函数的所有零点依次记为,且,则=( )A. B. 445πC. 455πD.参考答案:C【分析】求得的对称轴方程为,即可判断在上有31条对称轴,即可求得函数与的交点有31个,且相邻交点都关于对称轴对称,可得:,将以上各式相加,利用等差数列求和公式即可得解。
【详解】函数,令得,即的对称轴方程为.∵的最小正周期为.当时,可得,∴在上有31条对称轴,根据正弦函数的性质可知:函数与的交点有31个,且交点关于对称,关于对称,……,即,将以上各式相加得:则故选C.【点睛】本题主要考查了三角函数的性质及函数零点个数问题,还考查了等差数列的前项和公式,考查了中点坐标公式及计算能力,属于难题。
山东省滨州市2021届新高考数学模拟试题含解析
山东省滨州市2021届新高考数学模拟试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.过抛物线C :y 2=4x 的焦点FC 于点M(M 在x 轴的上方),l 为C 的准线,点N 在l 上且MN ⊥l ,则M 到直线NF 的距离为( ) AB.C.D.【答案】C 【解析】 【分析】联立方程解得M(3,,根据MN ⊥l 得|MN|=|MF|=4,得到△MNF 是边长为4的等边三角形,计算距离得到答案. 【详解】依题意得F(1,0),则直线FM 的方程是y-1).由214y y x⎧=-⎪⎨=⎪⎩得x =13或x =3. 由M 在x 轴的上方得M(3,,由MN ⊥l 得|MN|=|MF|=3+1=4又∠NMF 等于直线FM 的倾斜角,即∠NMF =60°,因此△MNF 是边长为4的等边三角形 点M 到直线NF的距离为4=故选:C. 【点睛】本题考查了直线和抛物线的位置关系,意在考查学生的计算能力和转化能力.2.若,x y 满足320020x y x y x y --≤⎧⎪-≥⎨⎪+≥⎩,且目标函数2(0,0)z ax by a b =+>>的最大值为2,则416a b +的最小值为( ) A .8 B .4C.D .6【答案】A 【解析】 【分析】作出可行域,由2(0,0)z ax by a b =+>>,可得22a z y x b b =-+.当直线22a z y x b b=-+过可行域内的点()1,1B 时,z 最大,可得22a b +=.再由基本不等式可求416a b +的最小值. 【详解】作出可行域,如图所示由2(0,0)z ax by a b =+>>,可得22a z y x b b=-+. 平移直线22a z y x b b =-+,当直线过可行域内的点B 时,2zb最大,即z 最大,最大值为 2. 解方程组3200x y x y --=⎧⎨-=⎩,得()1,1,11x B y =⎧∴⎨=⎩. 22(0,0)a b a b ∴+=>>.22224164424424248a b a b a b a b +∴+=+≥⨯===,当且仅当244a b =,即12,1222a a b a b b =⎧=⎧⎪⎨⎨+==⎩⎪⎩时,等号成立.416a b ∴+的最小值为8.故选:A . 【点睛】本题考查简单的线性规划,考查基本不等式,属于中档题.3.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .【答案】B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为,即命题是错误,则是正确的;在边长为4的正方形内任取一点,若的概率为,即命题是正确的,故由符合命题的真假的判定规则可得答案是正确的,应选答案B 。
2021年山东省滨州市中考数学三模试卷
2021年山东省滨州市中考数学三模试卷一、单选题(共12小题).1.截至2021年5月10日,累计确诊人数超过一亿六千万人,抗击疫情成为全人类共同的战役,需要继续做好疫情防控.将一亿六千万用科学记数法可表示为()A.1.6×108B.0.16×109C.16×107D.1.6×1062.所表示的是()A.9的平方根B.3的平方根C.9的算术平方根D.3的算术平方根3.已知圆锥的三视图如图所示,则这个圆锥的侧面展开图的面积为()A.60πcm2B.65πcm2C.120πcm2D.130πcm24.同学们在物理课上做“小孔成像”实验.如图,蜡烛与光屏之间的距离为l,当蜡烛火焰的高度AB是它在光屏上所成的像A'B'高度的一半时,带“小孔”的纸板距离光屏()A.3l B.2l C.D.5.如图,三角板在灯光照射下形成投影,三角板与其投影的相似比为2:3,且三角板的一边长为8cm.则投影三角板的对应边长为()A.20cm B.12cm C.8cm D.6cm6.四边形ABCD的内角∠A,∠B,∠C,∠D度数之比如下,则四边形是圆内接四边形的是()A.4:2:2:5B.3:1:2:5C.4:1:1:5D.3:1:2:47.两年前,某校七(1)班的学生平均年龄为13岁,方差为2,若学生没有变动,则今年升为九(1)班的学生年龄中()A.平均年龄为13岁,方差改变B.平均年龄为15岁,方差不变C.平均年龄为15岁,方差改变D.平均年龄不变,方差不变8.给出下面四个命题:(1)全等三角形是相似三角形;(2)顶角相等的两个等腰三角形是相似三角形;(3)相等的圆心角所对的弧相等;(4)长度相等的弧是等弧;(5)直径所对的圆周角是直角;(6)相等的圆周角所对的弧相等;(7)平分弦的直径垂直于弦;(8)等弧所对的圆心角相等.其中真命题的个数有()A.3B.4C.5D.69.如图,PA,PB分别切⊙O与点A,B,MN切⊙O于点C,分别交PA,PB于点M,N,若⊙O的半径为,△PMN的周长为6,则扇形AOB的面积是()A.πB.2πC.3πD.4π10.二次函数y=ax2+bx的图象如图所示,若一元二次方程ax2+bx+m=0有实数根,则m 的取值范围是()A.m≤3B.m≥3C.m≤﹣3D.m≥﹣311.新定义:关于x的一元二次方程a1(x﹣m)2+k=0与a2(x﹣m)2+k=0称为“同族二次方程”.如2(x﹣3)2+4=0与3(x﹣3)2+4=0是“同族二次方程”.现有关于x 的一元二次方程2(x﹣1)2+1=0与(a+2)x2+(b﹣4)x+8=0是“同族二次方程”,那么代数式ax2+bx+2026能取的最小值是()A.2020B.2021C.2023D.201812.我国汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”(如图1),图2由弦图变化得到,它是由作个全等的直角三角形拼接而成,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1、S2、S3,若S1+S2+S3=10,则S2的值是()A.5B.C.D.4二、填空题(每题5分,共40分)13.根据函数学习中积累的知识与经验,请你构造一个函数,使其图象与x轴有交点,但与y轴无交点,这个函数表达式可以为.14.计算:=.15.二次函数y=m2x2+(2m+1)x+1与x轴有交点,则m的取值范围.16.程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行如图所示的程序框图:如果第一次输入的数是100,则最后输出的结果为.17.已知a,b,c是等腰三角形ABC的三边,且满足a2+b2﹣10a﹣8b=﹣41,求等腰三角形ABC的周长.18.如图,△ABC中,∠ACB=90°,∠ABC=32°,以点C为旋转中心顺时针旋转后得到△A′B′C,且点A在边A′B′上,则旋转角的度数为.19.鸭梨因其梨梗基部突起状似鸭头而得名,其外型美观,初采为黄绿色,贮藏后通体金黄,鸭梨已成为我市农业特色产业之一,下表是我市某鸭梨种植合作社脱贫攻坚期间梨树种植成活情况统计表:种植梨树棵树3000500080001000020000⋯成活棵树269045077195900317998⋯成活率0.89670.90140.89930.90030.8999⋯根据这个表格,请估计这个合作社梨树种植成活的概率为.(结果保留一位小数)20.我国南宋数学家杨辉用三角形解释二项和的乘方规律,称之为“杨辉三角”这个三角形给出了(a+b)n(n=1,2,3,4,⋯)的展开式的系规律(按a的次数由大到小的顺序):请根据上述规律,写出(x+1)2022的展开式中含x2021项的系数是.三、解答题(共74分)21.计算:(1)已知关于x,y的多项式axy﹣3x2﹣2xy﹣bx2+y中不含二次项,求(a+b)2021的值.(2)若,求的值;(3)解分式方程.22.关于三角函数有如下的公式:①cos(a+β)=cos a cosβ﹣sin a sinβ;sin(a+β)=sin a cosβ+cos a sinβ;②;③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如=.根据上面的知识,你可以选择适当的公式解决下面的实际问题:(1)求tan75°,cos75°的值;(2)如图,直升机在一建筑物CD上方的点A处测得建筑物顶端点D的俯角a为60°,底端点C的俯角为75°,此时直升机与建筑物CD的水平距离BC为30m求建筑物CD 的高.23.如图,⊙O的直径AB=12,AM,BN是⊙O的两条切线,DC切⊙O于E,交BN于C,设AD=x,BC=y.(1)求证:AB2=4DE•CE;(2)求y与x的函数关系式;(3)若x,y是方程2x2﹣30x+a=0的两个根,求△OCD的面积.(已知:如果x1,x2为方程ax2+bx+c=0的两实数根,则)24.2021年5月份,为庆祝中国共产党成立100周年,我市某初中组织全校1500名学生参加线上党史知识竞赛活动.知识竞赛总分100分,成绩取整数,赛后发现所有参赛学生的成绩均不低于50分,为了进一步了解本次知识竞赛的成绩分布情况,随机抽取了部分学生的成绩进行整理,并将结果绘制了如下两幅不完整的统计图表,成绩x(分)频数频率50≤x<60a0.1060≤x<70160.0870≤x<8030b请你根据以上统计图表中信息,回答下列问题:(1)这次随机抽取的部分学生有人;(2)在表格中,a=,b=.(3)请补全频数直方图.(4)如果将得分转化为等级,规定:50≤x<60评为D等级:60≤x<70评为C等级:70≤x<90评为B等级:90≤x≤100评为A等级.请估计全校参赛学生成绩被评为“B”等级的有多少人.25.2021年4月12日,由国药集团中国生物武汉生物制品研究所申报的一类新药——新型冠状病毒灭活疫苗,获得国家药品监督管理局临床试验许可,这是全球首家获得临床试验批件的新冠状病毒灭活疫苗.疫情下的中国在全世界抗疫战斗中全方位领跑.某制药公司生产3支单针疫苗和2支双针疫苗需要19min;生产2支单针疫苗和1支双针疫苗需要11min.(1)制药公司生产1支单针疫苗和1支双针疫苗各需要多少时间?(2)小明选择注射双针疫苗,若注射第一针疫苗后,体内抗体浓度y(单位:miu/ml)与时间x(单位:天)的函数关系如图所示:疫苗注射后体内抗体浓度首先y与x成一次函数关系,体内抗体到达峰值后,y与x成反比例函数关系.若体内抗体浓度不高于50miu/ml时,并且不低于23miu/ml,可以打第二针疫苗,刺激记忆细胞增殖分化,产生大量浆细胞而产生更多的抗体.请问:①请写出两段函数对应的表达式,并指定自变量的取值范围;②小明可以在哪个时间段内打第二针疫苗?请通过计算说明.26.二次函数图象是抛物线,抛物线是指平面内到一个定点F和一条定直线l距离相等的点的轨迹.其中定点F叫抛物线的焦点,定直线l叫抛物线的准线.①抛物线y=ax2(a≠0)的焦点为,准线为,例如,抛物线的焦点是;准线是;抛物线y=﹣3x2的焦点是准线是;②将抛物线y=ax2(a≠0)向右平移h个单位、再向上平移k个单位(h>0,k>0),可得抛物线y=a(x﹣h)2+k (a≠0);因此抛物线y=a(x﹣h)2+k(a≠0)的焦点是,准线为.例如,抛物线的焦点是,准线是;抛物线的焦点是准线为.根据以上材料解决下列问题:(1)完成题中的填空;(2)已知二次函数的解析式为y=x2+2x﹣1;①求其图象的焦点F的坐标以及准线解析式;②求过点F且与x轴平行的直线与二次函数y=x2+2x﹣1图象交点的坐标.③抛物线上一点P,点P与坐标原点O、F点构成三角形,求△POF周长的最小值,以及P点的坐标.。
2021届高考高三模拟考试数学试题
2021届高考高三模拟考试数学试题1、已知集合A={x|-2≤x<4},B={x|-5<x≤3},则A∩B=()A、{x|-5<x<4}B、{x|-5<x≤-2}C、{x|-2≤x≤3}D、{x|3≤x<4}答案:C2、“a>1”是“(a-1)(a-2)<0”的()A、充分不必要条件B、必要不充分条件C、充要条件D、既不充分也不必要条件答案:B3、已知变量x,y之间的一组数据如下表:若y关于x的线性回归方程为ŷ=ax+b,则a=()x。
y3.2.54.35.46.4.5A、0.1B、0.2C、0.35D、0.45答案:D4、已知a,b为不同直线,α,β为不同平面,则下列结论正确的是()A、XXX⊥α,b⊥a,则b//αB、若a,b∥α,a//β,b//β,则α//βC、若a//α,b⊥β,a//b,则α⊥βD、若α∩β=b,XXXα,a⊥b,则α⊥β答案:C5、高一某班有5名同学报名参加学校组织的三个不同社区服务小组,每个小组至多可接收该班2名同学,每名同学只能报一个小组,则报名方案有()A、15种B、90种C、120种D、180种答案:B6、已知α∈(π,π),tanα=-3,则sin(α-π/4)等于()A、-5/24πB、-3/5C、3/5D、5/24π答案:B7、随着科学技术的发展,放射性同位素技术已经广泛应用于医学、航天等众多领域,并取得了显著经济效益。
假设某放射性同位素的衰变过程中,其含量N(单位:XXX)与时间t(单位:天)满足函数关系N(t)=P(t)P,其中P为t=0时该放射性同位素的含量。
已知t=15时,该放射性同位素的瞬时变化率为-10ln2,则该放射性同位素含量为4.5贝克时衰变所需时间为()A、20天B、30天C、45天D、60天答案:C8、定义运算⊕:①对∀m∈R,m⊕m=m;②对∀m,n,p∈R,(m⊕n)⊕p=p⊕(mn)+m⊕p+n⊕p。
山东省滨州市2021届高三数学三模考试试题(含解析)
山东省滨州市2021届高三数学三模考试试题(含解析)本试卷共6页,共22小题,满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}41,M x x n n Z ==+∈,{}21,N x x n n Z ==+∈,则( ) A. M N ⊆B. N M ⊆C. M N ∈D.N M ∈【答案】A 【解析】 【分析】将集合M 改写为{}221,M x x n n Z ==⨯+∈,由2n 是偶数可得出集合M 与N 的包含关系. 【详解】{}{}41,221,M x x n n Z x x n n Z ==+∈==⨯+∈,当n 为整数时,2n 为偶数, 又{}21,N x x n n Z ==+∈,因此,M N ⊆.故选:A.【点睛】本题考查两个集合间包含关系的判断,考查推理能力,属于基础题. 2.函数ln y x =的图象在点x e = (e 为自然对数的底数)处的切线方程为( ) A. 10x ey e +-+= B. 10x ey e -+-= C. 0x ey +=D. 0x ey -=【解析】 【分析】首先求出函数的导函数,即可求出函数在x e =处的切线的斜率,再用点斜式求出切线方程; 【详解】解:因为ln y x =,所以1y x '=,所以1|x e y e='= 又当x e =时,ln 1y e == 所以切线方程为()11y x e e-=-整理得0x ey -= 故选:D【点睛】本题考查导数的几何意义的应用,属于基础题.3.已知x ∈R ,当复数()3z x i =+-的模长最小时,z 的虚部为( )B. 2C. 2-D. 2i -【答案】C 【解析】 【分析】求得复数z 的模的表达式,结合二次函数的性质求得x 为何值时模最小,进而求得z 的虚部.【详解】依题意z ===.故当1x =时,z 取得最小值.此时2z i =-,所以z 的虚部为2-.故选:C【点睛】本小题主要考查复数的模的运算,考查复数虚部的求法,属于基础题.4.已知m ,n 为两条不同的直线,α,β,γ为三个不同的平面,则下列命题正确的是( )A. 若//m α,//n α,则//m nB. 若αβ⊥,γβ⊥且m αγ⋂=,则m β⊥C. 若m α⊂,n ⊂α,//m β,//n β,则//αβD. 若m α⊥,//n β,αβ⊥,则m n ⊥ 【答案】B 【解析】根据线线平行,线线垂直,线面垂直,面面垂直的判定,对选项进行逐一分析即可. 【详解】对A :若//m α,//n α,则//m n ,或m 与n 是异面直线,或m 与n 相交,故A 错误;对B :若αβ⊥,γβ⊥且m αγ⋂=,不妨取交线m 上一点P ,作平面γ的垂线为l , 因为,l γαγ⊥⊥,且点P α∈,故l α⊂; 同理可得l β⊂,故l 与m 是同一条直线, 因为l γ⊥,故m γ⊥. 故B 选项正确.对C :只有当m 与n 是相交直线时,若m α⊂,n ⊂α,//m β,//n β,才会有//αβ.故C 错误;对D :若m α⊥,//n β,αβ⊥,则m 与n 的关系不确定,故D 错误. 故选:B.【点睛】本题考查线线平行,面面平行,面面垂直的判定,属综合基础题.5.已知随机变量ξ服从正态分布(0,1)N ,如果(1)0.8413P ξ≤=,则(10)P ξ-<≤=( ) A. 0.3413 B. 0.6826 C. 0.1587 D. 0.0794【答案】A 【解析】依题意得:()10.1587P ξ>=,()10.15872100.34132P ξ-⨯-<≤==.故选A .6.分形理论是当今世界十分风靡和活跃的新理论、新学科.其中把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象.图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已.谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,其构造方法如下:取一个实心的等边三角形(如图1),沿三边的中点连线,将它分成四个小三角形,挖去中间的那一个小三角形(如图2),对其余三个小三角形重复上述过程(如图3).若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为( )A.916B.419C.2764D.827【答案】C 【解析】 【分析】通过合情推理判断出所求阴影部分的面积.【详解】由于图1阴影部分的面积为1,图2的阴影部分的面积为33144⨯=, 图3的阴影部分面积为3344⨯,所以图4的阴影部分的面积为3332744464⨯⨯=.故选:C.【点睛】本小题主要考查合情推理与演绎推理,属于基础题.7.已知抛物线24C y x =:与圆()2219:-+=E x y 相交于A ,B 两点,点M 为劣弧AB 上不同A ,B 的一个动点,平行于x 轴的直线MN 交抛物线于点N ,则MNE 的周长的取值范围为( ) A. (3,5) B. (5,7)C. (6,8)D. (6,8]【答案】C 【解析】 【分析】求得,A B 两点的坐标,根据抛物线的定义转换MNE 周长的表达式,由此求得MNE 的周长的取值范围.【详解】画出图象如下图所示.圆E 的圆心为()1,0,半径为3,抛物线的焦点为()1,0,准线为1x =-.由()222419y x x y ⎧=⎪⎨-+=⎪⎩解得()()2,22,2,22A B -,所以24m x <<. 设平行于x 轴的直线MN 交抛物线的准线1x =-于D ,根据抛物线的定义可知NE ND =, 所以MNE 的周长为33ME NE MN ND MN MD ++=++=+. 而()13,5m MD x =+∈,所以()36,8MD +∈. 也即MNE 周长的取值范围是()6,8. 故选:C【点睛】本小题主要考查抛物线的定义,考查圆的标准方程,考查数形结合的数学思想方法,考查化归与转化的数学思想方法,属于中档题.8.已知点O 是ABC ∆内一点,且满足420,7AOB ABC S OA OB mOC S ∆∆++==,则实数m 的值为( ) A. 4- B. 2- C. 2 D. 4【答案】D 【解析】【分析】将已知向量关系变为:12333m OA OB OC +=-,可设3mOC OD-=,且,,A B D共线;由AOBABCOSSDCD∆∆=和,OC OD反向共线,可构造关于m的方程,求解得到结果.【详解】由2OA OB mOC+=-得:12333mOA OB OC+=-设3mOC OD-=,则1233OA OB OD+=,,A B D∴三点共线如下图所示:OC与OD反向共线,0m>,3OD mOC∴=3313mOD mm mCD∴==++734AOBABC DS ODmSmC∆∆∴+===4m⇒=故选:D.【点睛】本题考查向量的线性运算性质及向量的几何意义,关键是通过向量线性运算关系得到三点共线的结果,从而得到向量模长之间的关系.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分.部分选对的得3分,有选错的得0分.9.2020年3月12日,国务院新闻办公室发布会重点介绍了改革开放40年,特别是党的十八大以来我国脱贫攻坚、精准扶贫取得的显著成绩,这些成绩为全面脱贫初步建成小康社会奠定了坚实的基础.下图是统计局公布的2010年~2021年年底的贫困人口和贫困发生率统计表.则下面结论正确的是()【年底贫困人口的线性回归方程为1609.915768y x=-+(其中x=年份-2021),贫困发生率的线性回归方程为 1.672916.348y x=-+(其中x=年份-2009)】A. 2010年~2021年十年间脱贫人口逐年减少,贫困发生率逐年下降B 2012年~2021年连续八年每年减贫超过1000万,且2021年贫困发生率最低C. 2010年~2021年十年间超过1.65亿人脱贫,其中202X年贫困发生率低于6%D. 根据图中趋势线可以预测,到2021年底我国将实现全面脱贫【答案】BD【解析】【分析】根据统计表计算出每年脱贫的人口,由此判断出正确选项.【详解】每年脱贫的人口如下表所示:期初期末脱贫人口2009年底至2010年年底165662010年底至2011年年底16566 12238 43282011年底至2012年年底12238 9899 23392012年底至2013年年底9899 8249 16502013年底至202X年年底8249 7017 1232202X年底至202X年年底7017 5575 1442202X年底至202X年年底5575 4335 1240202X年底至2021年年底4335 3046 12892021年底至2021年年底3046 1660 13862021年底至2021年年底1660 551 1109由于缺少2009年年底数据,故无法统计十年间脱贫人口的数据,故AC 选项错误. 根据上表可知:2012年~2019年连续八年每年减贫超过1000万,且2019年贫困发生率最低,故B 选项正确.根据上表可知,2012年~2019年连续八年每年减贫超过1000万,2019年年底,贫困人口551万,故预计到2020年底我国将实现全面脱贫,故D 选项正确.综上所述,正确的选项为BD. 故选:BD【点睛】本小题主要考查统计表分析和数据处理,属于中档题. 10.已知曲线12:3sin ,:3sin 24C y x C y x π⎛⎫==+ ⎪⎝⎭,则下面结论正确的是( ) A. 把1C 上各点的横坐标变为原来的12倍,纵坐标不变,再把得到的曲线向左平移8π个单位长度,得到曲线2CB. 把1C 上各点的横坐标变为原来的12倍,纵坐标不变,再把得到的曲线向左平移4π个单位长度,得到曲线2C C. 把1C 向左平移4π个单位长度,再把得到的曲线上各点的横坐标变为原来的12倍.纵坐标不变,得到曲线2C D. 把1C 向左平移8π个单位长度,再把得到的曲线上各点的横坐标变为原来的12倍,纵坐标不变,得到曲线2C 【答案】AC 【解析】 【分析】通过三角函数图象变换的知识,判断出正确选项.【详解】由1:3sin C y x =变换到2:3sin 24C y x π⎛⎫=+ ⎪⎝⎭,若先伸缩后平移,则把1C 上各点的横坐标变为原来的12倍,纵坐标不变,再把得到的曲线向左平移8π个单位长度,得到曲线2C . 若先平移后伸缩,则把1C 向左平移4π个单位长度,再把得到的曲线上各点的横坐标变为原来的12倍.纵坐标不变,得到曲线2C . 所以正确的选项为AC 故选:AC【点睛】本小题主要考查三角函数图象变换,属于基础题.11.已知曲线22:22C x y x y +=+,则曲线C 的图形满足( ) A. 关于x 轴对称 B. 关于y 轴对称C. 关于原点对称D. 所围成图形的面积为84π+【答案】ABCD 【解析】 【分析】根据点()()()(),,,,,,,x y x y x y x y ----满足曲线方程,判断出ABC 选项正确.画出曲线C 在第一象限内的图形,并计算出其面积.根据对称性,计算出曲线C 所围成图形的面积. 【详解】设(),x y 是曲线上任意一点,由于曲线方程为2222x y x y +=+,所以()()()(),,,,,,,x y x y x y x y ----都满足曲线方程,所以曲线C 的图形满足关于x 轴对称、关于y 轴对称、关于原点对称,故ABC 选项正确.当0,0x y >>时,曲线方程为2222x y x y +=+,即()()22112x y -+-=,是圆心为()1,1的圆在第一象限的部分,如下图阴影部分所示. 阴影部分是由一个等腰直角三角形和一个半圆组合而成,其面积为21122222ππ⨯⨯+⨯⨯=+,根据对称性可知,曲线C 所围成图形的面积为()2484ππ+⨯=+.故D 选项正确. 故选:ABCD【点睛】本小题主要考查曲线与方程,考查数形结合的数学思想方法,属于中档题. 12.已知函数()xxf x e ex -=++.则下面结论正确的是( )A. ()f x 是奇函数B. ()f x 在[)0,+∞上为增函数C. 若0x ≠,则212f x e x ⎛⎫+>+ ⎪⎝⎭D. 若()()11f x f -<-,则02x <<【答案】BCD 【解析】 【分析】利用函数奇偶性的定义可判断A 选项的正误;利用导数可判断函数()y f x =在区间[)0,+∞上的单调性,可判断B 选项的正误;求得当0x >时,1f x x ⎛⎫+⎪⎝⎭的取值范围,结合偶函数的性质可判断C 选项的正误;利用偶函数和单调性解不等式()()11f x f -<-,可判断D 选项的正误.综合可得出结论.【详解】对于A 选项,函数()xxf x e ex -=++的定义域为R ,()()x x x x f x e e x e e x f x ---=++-=++=,则函数()y f x =为偶函数,A 选项错误;对于B 选项,当0x ≥时,()xxf x e ex -=++,则()11x x f x e e -'=-+≥,所以,函数()y f x =在[)0,+∞上为增函数,B 选项正确;对于C 选项,当0x >时,由基本不等式可得12x x +≥=, 由于函数()y f x =在[)0,+∞上为增函数,此时()2221222f x f e e e x -⎛⎫+≥=++>+ ⎪⎝⎭,由于函数1y x x =+为奇函数,当0x <时,12x x --≥=,2112f x f x e x x ⎛⎫⎛⎫+=-->+ ⎪ ⎪⎝⎭⎝⎭.综上所述,当0x ≠时,212f x e x ⎛⎫+>+ ⎪⎝⎭,C 选项正确; 对于D 选项,由于函数()y f x =为偶函数,由()()11f x f -<-得()()11fx f -<,由于函数()y f x =在[)0,+∞上为增函数,则11x -<,解得02x <<,D 选项正确. 故选:BCD.【点睛】本题考查函数的奇偶性、单调性的判断,同时也考查了函数不等式的求解,考查计算能力与推理能力,属于中等题.三、填空题:本题共4小题,每小题5分,共20分.13.()10212x x x ⎛⎫+- ⎪⎝⎭的展开式中,6x 的系数为__________. 【答案】30- 【解析】 【分析】先求得101x x ⎛⎫- ⎪⎝⎭展开式的通项公式,再根据乘法分配律,求得6x 的系数. 【详解】101x x ⎛⎫- ⎪⎝⎭展开式的通项公式为()()10110210101r r r r rr C x x C x ---⋅⋅-=-⋅⋅.10243r r -=⇒=,10262r r -=⇒=,根据乘法分配律可知,()10212x x x ⎛⎫+- ⎪⎝⎭的展开式中,含6x 的项为()()()32234266610101211209030x C x C x x x ⋅-⋅⋅+⋅-⋅⋅=-+⋅=-.所以6x 的系数为30-. 故答案为:30-【点睛】本小题主要考查二项式展开式的通项公式的运用,属于基础题. 14.已知,,0,,sin sin sin ,cos cos cos 2,παβγαγββγα⎛⎫∈+=+= ⎪⎝⎭则()cos αβ-=________,αβ-=________.【答案】 (1). 12 (2). 3π- 【解析】 【分析】将条件变形sin sin sin ,cos cos cos γβαγαβ=-=-,然后两式平方相加即可得到()cos αβ-,再通过条件推出αβ-所以在范围,即可得αβ-.【详解】解:由已知得sin sin sin ,cos cos cos γβαγαβ=-=-, 将上述两式两边同时平方后相加可得222222sin cos sin 2sin sin sin cos 2cos cos cos γγββααααββ+=-++-+,整理得()()122sin sin cos cos 22cos βααβαβ=-+=--, 即()1cos 2αβ-=, 又由已知0,,,022ππαβ⎛⎫⎛⎫∈-∈- ⎪ ⎪⎝⎭⎝⎭, 则,22ππαβ⎛⎫-∈-⎪⎝⎭, 又sin sin sin sin βαγα=+>,,则,02παβ⎛⎫-∈-⎪⎝⎭, 3παβ∴-=-.故答案为:12;3π-. 【点睛】本题考查两角和与差的余弦公式,考查同角三角函数的平方关系,注意求角一定要确定角所在范围,是中档题.15.已知P ,A ,B ,C 是球O 的球面上的四个点,PA ⊥平面,26,ABC PA BC ==AB AC ⊥,则球O 的表面积为__________. 【答案】45π 【解析】 【分析】画出图象,利用补形的方法求得球的半径,进而求得球的表面积.【详解】由于PA ⊥平面ABC ,所以,PA AB PA AC ⊥⊥,而AB AC ⊥,故可将P ABC -补形为长方体,如图所示,长方体的外接球,也即三棱锥P ABC -的外接球,也即球O . 由于26,3PA BC BC ===,设,AB a AC b ==,则2229a b BC +==,所以长方体的对==设球O 的半径为R ,则2R =所以球O 的表面积为2445R ππ=. 故答案为:45π【点睛】本小题主要考查几何体外接球表面积的计算,属于基础题.16.已知函数()()()221,412x x x f x h x a a x -+==->-.若[)123,,x x ∀∈+∞∃∈[)3,+∞,使得()()12f x h x =,则实数a 的最大值为__________. 【答案】2 【解析】 【分析】由题意可知,函数()f x 在[)3,+∞的值域是函数()h x 在[)3,+∞上值域的子集,所以分别求两个函数的值域,利用子集关系求实数a 的取值范围.【详解】由题意可知,函数()f x 在[)3,+∞的值域是函数()h x 在[)3,+∞上值域的子集,()()()2222212122x x x x f x x x -+-+-+==--,3x ≥()112222422x x x x =-++≥-⨯=--, 等号成立的条件是122x x -=-,即3x =,成立,即函数()f x 在[)3,+∞的值域是[)4,+∞ ()()41x h x a a =->,是增函数,当[)3,x ∈+∞时,函数()h x 的值域是)34,a ⎡-+∞⎣,所以344a -≤,解得:12a <≤, 所以实数a 的最大值是2. 故答案为:2【点睛】本题考查双变量的函数关系求参数的取值范围,重点考查函数的值域,子集关系,属于基础题型.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.如图,半圆O 的直径AB =2,点C 在AB 的延长线上,BC =1,点P 为半圆上异于A ,B 两点的一个动点,以点P 为直角顶点作等腰直角PCD ,且点D 与圆心O 分布在PC 的两侧,设PAC θ∠=.(1)把线段PC 的长表示为θ的函数; (2)求四边形ACDP 面积的最大值.【答案】(1)298cos PC θ=- 02πθθ⎧⎫<<⎨⎬⎩⎭; (2)5【解析】 【分析】(1)根据图形,解三角形,利用余弦定理,将线段PC 的长表示为θ的函数; (2)将四边形ACDP 面积表示为角θ的函数,再利用三角函数求最值. 【详解】解:(1)依题设易知APB △是以APB ∠为直角的直角三角形, 又2,AB PAB θ=∠=,所以2cos PA θ=.在3,△中,PAC AC PAC θ=∠=,由余弦定理得,2222cos PC PA AC PA AC θ=+-⋅ 2224cos 912cos 98cos θθθ=+-=-.所以298cos PC θ=- 定义域为02πθθ⎧⎫<<⎨⎬⎩⎭. (2)四边形ACDP 面积为S , 则211=sin 22△△APC PCD S S S AP AC PC θ+=⋅⋅+ ()2112cos 3sin 98cos 22θθθ=⋅⋅⋅+⋅-()31sin 254cos 222θθ=+⋅- 35sin 22cos 222θθ=-+()954242θϕ=+-+ ()55sin 2,22θϕ=-+ 其中34cos ,sin ,55ϕϕϕ==为锐角. 因为43sin 52ϕ=<所以03πϕ<<. 又因为02πθ<<,所以23πθϕπ-<-<,所以当2=2πθϕ-时,S 取得最大值55=522+. 所以四边形ACDP 面积的最大值为5 .【点睛】本题通过引进角,利用余弦定理求边长,再将所求面积表示为角θ的函数,从而构建函数,再求函数的最值,还考查了学生的分析能力,运算能力,属于中档题.18.在下面数表中,各行中的致从左到右依次成公差为正数的等差数列,各列中的数从上到下依次成公比为正数的等比数列,且公比都相等,(),n m a 表示第n 行,第m 列的数.已知()()()1,12,23,31,4,12a a a ===.(1)求数列(){},2n a 的通项公式;(2)设()()2,2,211log ,n n n n n n b a c a b b +==+,求数列{}n c 的前n 项和n S .【答案】(1)(),22=nn a (2)122.1++=-+n n n S n 【解析】 【分析】(1)设第一行中的数从左到右组成的等差数列的公差是()0d d >,各列中的数从上到下组成的等比数列的公比是()0q q >,则()()1,21,31,12a d a d =+=+,()()2.21a q d =+,()()23.312a q d =+即可得到方程组,解得即可;(2)由(1)可得n b n =,1121n n c n n =+-+,再利用分组求和与裂项相消法求和即可; 【详解】解:(1)设第一行中的数从左到右组成的等差数列的公差是()0d d >,各列中的数从上到下组成的等比数列的公比是()0q q >, 则()()1,21,31,12a d a d =+=+,()()()2.2 1.21a qa q d ==+,从而()14q d +=.① ()()()223.3 1.312a q a q d ==+,从而()21212q d +=②联立①②解得,1,2,d q =⎧⎨=⎩或1,36.d q ⎧=-⎪⎨⎪=⎩(舍去)从而()1.22a =, 所以()()11,2 1.2222n n n n a a q--=⋅=⨯=.(2)由(1)知,(),22=nn a . 所以()22,2log log 2nn n b a n ===,所以()1112211nn n c n n n n =+=+-++,所以1231n n n S c c c c c -=+++⋅⋅⋅++23111111111112222212233411n n n n n n -⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+-++-++-+⋅⋅⋅++-++- ⎪ ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭()23111111111222221223341n n n n -⎛⎫⎛⎫⎛⎫⎛⎫=+++⋅⋅⋅+++-+-+-+⋅⋅⋅+- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭11122111121n n n n +-⎛⎫+-=+- ⎪+-+⎝⎭ 1112212.11n n n n n +++=--=-++ 【点睛】本题考查等差等比数列的综合应用,分组求和法以及裂项相消法求和,属于中档题. 19.在如图所示的圆柱12O O 中,AB 为圆1O 的直径,,C D 是AB 的两个三等分点,EA ,FC ,GB 都是圆柱12O O 的母线.(1)求证:1//FO 平面ADE ;(2)设BC =1,已知直线AF 与平面ACB 所成的角为30°,求二面角A —FB —C 的余弦值. 【答案】(1)见解析(2)77. 【解析】 【分析】(1)由//FC EA ,另易证得1//O C AD ,即可证得面//EAD 面1FCO ,由面面平行,从而证得线面平行,即1//O F 面EAD .(2)连接AC ,易证AC ⊥面FBC ,可过C 作CH BF ⊥交BF 于H ,连接AH ,则AHC ∠即为二面角A —FB —C 的平面角,求出其余弦值即得.【详解】解:(1)连接11,O C O D ,因为C ,D 是半圆AB 的两个三等分点,所以11160AO D DO C CO B ∠=∠=∠=, 又1111O A O B O C O D ===,所以111,,AO D CO D BO C ∆∆∆均为等边三角形. 所以11O A AD DC CO ===,所以四边形1ADCO 是平行四边形,所以1//CO AD ,又因为1CO ⊄平面ADE ,AD ⊂平面ADE ,所以1//CO 平面ADE . 因为EA ,FC 都是圆柱12O O 的母线,所以EA //FC . 又因为⊄FC 平面ADE ,EA ⊂平面ADE ,所以//FC 平面ADE . 又1,CO FC ⊂平面11FCO CO FC C ⋂=,且, 所以平面1//FCO 平面ADE ,又1FO ⊂平面1FCO ,所以1//FO 平面ADE . (2)连接AC ,因为FC 是圆柱12O O 的母线,所以FC ⊥圆柱12O O 的底面, 所以FAC ∠即为直线AF 与平面ACB 所成的角,即30FAC ∠= 因为AB 为圆1O 的直径,所以90ACB ∠=, 在601Rt ABC ABC BC ∆∠==中,,,所以tan 603AC BC =⋅=,所以在tan301Rt FAC FC AC ∆==中, 因为AC BC ⊥,又因为AC FC ⊥,所以AC ⊥平面FBC , 又FB ⊂平面FBC ,所以AC FB ⊥. 在FBC ∆内,作CH FB ⊥于点H ,连接AH .因为,,AC CH C AC CH ⋂=⊂平面ACH ,所以FB ⊥平面ACH , 又AH ⊂平面ACH ,所以FB AH ⊥, 所以AHC ∠就是二面角A FB C --的平面角. 在2FC BC Rt FBC CH FB ⋅∆=中,90Rt ACH ACH ∆∠=中,,所以22142AH AC CH =+=,所以7cos CH AHC AH ∠==所以二面角A FB C --7. 【点睛】本题考查了线面平行的判定,线面角的应用,求二面角,考查了学生的分析观察能力,逻辑推理能力,空间想象能力,学生的运算能力,属于中档题. 20.在平面直角坐标系xOy 中,①已知点)3,0Q,直线:3l x =P 满足到点Q的距离与到直线l 2.②已知点()3,0,H G -是圆22:3210E x y x +--=上一个动点,线段HG 的垂直平分线交GE 于P .③点,S T 分别在x 轴,y 轴上运动,且3ST =,动点P 满足63OP OS OT =+. (1)在①,②,③这三个条件中任选一个,求动点P 的轨迹C 的方程; (注:如果选择多个条件分别解答,按第一个解答计分)(2)设圆22:2O x y +=上任意一点A 处的切线交轨迹C 于M ,N 两点,试判断以MN 为直径的圆是否过定点?若过定点,求出该定点坐标.若不过定点,请说明理由.【答案】(1)不管选条件几,22163x y +=;(2)以MN 为直径的圆过定点()0,0. 【解析】 【分析】(1)若选①,则可设(),P x y ,根据距离之比可得,x y 满足的方程,化简后可得所求的方程.若选①,根据题设条件可得PH PE +=.若选③,,设()()(),,,0,0,P x y S x T y '',则根据新老坐标的关系可求曲线的方程. (2)当过点A 且与圆O 相切的切线斜率存在时,设切线方程为y kx m =+,根据它与圆相切可得()2221m k =+,再设()()1122,,,M x y N x y ,可用,M N 的横坐标表示以·OM ON为直径的圆,再联立直线方程和椭圆方程,消去y 后利用韦达定理和前述等式化简·OM ON 得到0OM ON =,从而可得以MN 为直径的圆过原点O .注意讨论斜率不存在的情况. 【详解】解:(1)若选①,设(),P x y2=, 整理得22163x y +=. 所以动点P 的轨迹C 的方程为22163x y +=.若选②,由22:210E x y +--=得(2224x y +=,由题意得PH PG =,所以PH PE PG PE EG HE +=+==>= 所以点P的轨迹C 是以H ,E为焦点的椭圆,且a c ==b =所以动点P 的轨迹C 的方程为22163x y +=.若选③,设()()(),,,0,0,P x y S x T y '',故()229,x y ''+=*因为6333OP OS OT=+,所以3,x x y y ''⎧=⎪⎪⎨⎪=⎪⎩即x x y ⎧=⎪⎨⎪='⎩', 将其代入()*得22163x y +=,所以动点P 的轨迹C 的方程为22163x y +=.(2)当过点A 且与圆O相切的切线斜率不存在时,切线方程为xx ==当切线方程为x =时,,MN以MN 为直径的圆的方程为(222x y -+=.①当切线方程为x =((,M N, 以MN 为直径的圆的方程为(222x y ++=.②由①②联立,可解得交点为()0,0.当过点A 且与圆O 相切的切线斜率存在时,设切线方程为y kx m =+,=()2221m k =+.联立切线与椭圆C 的方程22,1,63y kx m x y =+⎧⎪⎨+=⎪⎩并消去y ,得()222124260k xkmx m +++-=.因为()()()2222221641226863k m kmm k ∆=-+-=---()()222822638410k k k =-+--=+>,所以切线与椭圆C 恒有两个交点.设()()1122,,,M x y N x y ,则2121222426,1212km m x x x x k k-+=-=++, 因为()()1122,,,OM x y ON x y ==,所以()()12121212OM ON x x y y x x kx m kx m ⋅=+=+++()()2212121k x x km x x m =++++()2222226411212m kmk km m k k--=+⋅+⋅+++ ()222222321663601212k k m k k k⨯+----===++. 所以OM ON ⊥.所以以MN 为直径的圆过原点()0,0. 综上所述,以MN 为直径的圆过定点()0,0.【点睛】本题考查椭圆方程的求法以及直线与椭圆位置关系中的定点定值问题.前者可利用椭圆的定义(第一定义、圆锥曲线的统一定义)来求标准方程,也可利用动点转移来求标准方程.而直线与椭圆位置关系中的定点定值问题,一般要联立直线方程和椭圆方程,消元后利用韦达定理化简目标代数式,从而得到定点定值.21.近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y 与行驶时问x (单位:小时)的测试数据如下表:(1)根据电池放电的特点,剩余电量y 与行驶时间x 之间满足经验关系式:bxy ae =,通过散点图可以发现y 与x 之间具有相关性.设ln y ω=,利用表格中的前8组数据求相关系数r ,并判断是否有99%的把握认为x 与ω之间具有线性相关关系;(当相关系数r 满足0.789r >时,则认为有99%的把握认为两个变量具有线性相关关系)(2)利用x 与ω的相关性及表格中前8组数据求出y 与x 之间的回归方程;(结果保留两位小数)(3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X 表示需要充电的数据组数,求X 的分布列及数学期望.1.1742 6.4862.45 1.70 1.303.22e ≈≈≈≈,,,. 表格中前8组数据的一些相关量:()()88888221111136,11.68, 2.18,42, 3.61ii i i i i i i i i xy x xy yω========-=-=∑∑∑∑∑,()()()()()88821111.70,11.83,8.35ii iiii i i x xy y x x ωωωω===-=--=---=-∑∑∑,相关公式:对于样本()(),1,2,3,,i i u i n υ=⋅⋅⋅,其回归直线u b a υ=+的斜率和戗距的最小二乘估计公式分别为:()()()121,nii i nii u ub a u b υυυυυ==--==--∑∑,相关系数()()niiu u r υυ--=∑【答案】(1)0.99r ≈-;有99%的把握认为x 与ω之间具有线性相关关系(2)0.203.22x y e -=(3)见解析,3.2 【解析】 【分析】(1)先求出相关系数0.99r ≈-,即得有99%的把握认为x ω与之间具有线性相关关系; (2)先求出0.20 1.17x ω=-+,再求出所求的回归方程为0.20 1.170.203.22x x y e y e -+-==,即;(3)由题得X 的所有可能取值为2,3,4,再求出对应的概率,即得X 的分布列及数学期望..【详解】解:(1)由题意知,()()80.99iix x r ωω--==≈-∑.因为0.990.789r ≈>,所以有99%的把握认为x ω与之间具有线性相关关系. (2)对bxy ae =两边取对数得ln ln y a bx =+, 设ln ,=ln =a y bx μωωμ=+又,则,()()()818218.350.2042iii i i x x b x xωω==---==≈--∑∑,易知2.184.5,0.278xω==≈.()0.270.20 4.5 1.17bxμω=-=--⨯=所以0.20 1.17xω=-+.所以所求的回归方程为0.20 1.170.203.22x xy e y e-+-==,即.(3)10组数据中需要充电的数据组数为4组,X的所有可能取值为2,3,4.()()()2635444646468881010102812,3,415153C C C C C CP X P X P XC C C=========.所以X的分布列如下:所以X的数学期望为()28116234 3.2151535E X=⨯+⨯+⨯==.【点睛】本题主要考查相关系数的应用,考查回归方程的求法,考查分布列和期望的计算,意在考查学生对这些知识点理解掌握水平和分析推理能力.22.已知函数()()xf x e x a=+,其中e是自然对数的底数,a R∈.(1)求函数()f x的单调区间;(2)设()()2g x f x a x=--,讨论函数()g x零点的个数,并说明理由.【答案】(1)增区间是()1,a--+∞,减区间是(),1a-∞--.(2)见解析【解析】【分析】(1)求导函数()f x',分别令()0,()0f x f x''><,解出不等式,即可得到函数()f x的单调区间;(2)由2()(),0g x f x a x=--=得方程()0x ax e x--=,显然0x=为此方程的一个实数解.当0x≠时, 方程可化简为0x ae x--=,设函数(),x ah x e x-=-利用导数得到()h x的最小值, 因为min()()1h x h a a==-,再对a讨论,得到函数()g x的零点个数.【详解】解:(1)因为()()xf x ex a =+,所以()()1x f x e x a '=++.由()0f x '>,得1x a >--;由()0f x '<,得1x a <--. 所以由()f x 的增区间是()1a --+∞,,减区间是(),1a -∞--. (2)因为()()()22x ax a g x f x a x xex x e x --=--=-=-.由()0g x =,得0x =或0x a e x --=. 设()x ah x ex -=-,又()00a h e -=≠,即0x =不是()h x 的零点,故只需再讨论函数()h x 零点的个数. 因为()1x ah x e-'=-,所以当(),x a ∈-∞时,()()0,h x h x '<单调递减; 当(),x a ∈+∞时,()()0,h x h x '>单调递增. 所以当x a =时,()h x 取得最小值()1h a a =-. ①当()0h a >,即1a <时,无零点;②当()0h a =,即1a =时, ()()0,h x h x >有唯一零点; ③当()0h a <,即1a >时,因为()00ah e-=>,所以()h x 在()a -∞,上有且只有一个零点. 令2x a =,则()22ah a e a =-.设()()()()22120aaa h a e a a a e ϕϕ'==->=->,则,所以()a ϕ在()1+∞,上单调递增, 所以,()1,a ∀∈+∞,都有()()120a e ϕϕ≥=->. 所以()()2ah a a e a ϕ==-2>0.所以()h x 在(),a +∞上有且只有一个零点. 所以当1a >时,()h x 有两个零点综上所述,当1a <时,()g x 有一个零点; 当1a =时,()g x 有两个零点; 当1a >时,()g x 有三个零点.【点睛】本题考查了利用函数确定函数的单调区间,利用导数判断函数零点的个数,考查了逻辑思维能力,运算能力,分类讨论的思想,属于中档题.。
2021届山东省滨州市博兴县第三中学高三7月模拟考试数学试题(解析版)
2021届山东省滨州市博兴县第三中学高三7月模拟考试数学试题一、单选题1.已知集合A ={x |x =2k ,k ∈Z ),B ={x ∈N |x <4),那么集合A ∩B =( ) A .(1,4) B .{2} C .{1,2} D .{1,2,4}【答案】C【解析】确定出集合B 中的元素,然后根据交集定义求解. 【详解】由题意{0,1,2,3}B =,∴{1,2}A B =.故选:C . 【点睛】本题考查集合的交集运算,确定集合中的元素是解题关键. 2.若()22z i i -=-(i 是虚数单位),则复数z 的模为( ) A .12B .13C .14D .15【答案】D【解析】利用复数的乘法、除法法则将复数表示为一般形式,然后利用复数的求模公式计算出复数z 的模. 【详解】因为()22z i i -=-,所以()()()()2234434434343425252i i ii i z i i i i i i i -+---=====--+--+-,所以15z ==,故选D. 【点睛】本题考查复数的乘法、除法法则以及复数模的计算,对于复数相关问题,常利用复数的四则运算法则将复数表示为一般形式进行求解,考查计算能力,属于基础题. 3.已知sin cos 33ππαα⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,则cos2=α( )A .0B .1C .2D 【答案】A【解析】本题首先可根据两角和的正弦公式以及两角差的余弦公式对sin cos 33ππαα⎛⎫⎛⎫+=- ⎪ ⎪⎝⎭⎝⎭进行化简,得出cos sin αα=,然后根据22cos 2cos sin =-ααα即可得出结果.【详解】 因为sin cos 33ππαα⎛⎫⎛⎫+=-⎪ ⎪⎝⎭⎝⎭,所以11cos sin cos 2222αααα+=+,即cos sin αα=, 则22cos2cos sin 0ααα=-=, 故选:A. 【点睛】本题考查两角和的正弦公式、两角差的余弦公式以及二倍角公式,考查计算能力,考查转化与化归思想,是简单题.4.已知平面向量a ,b 满足()·2a b b +=,且1a =,2b =,则a b +=( )A B C .1D .【答案】C【解析】由已知数量积求得a b ⋅,再利用22()a b a b +=+计算后可得结论. 【详解】()242a b b a b b a b +⋅=⋅+=⋅+=,∴2a b ⋅=-,∴22222()212(2)21a b a b a a b b +=+=+⋅+=+⨯-+=, ∴1a b +=. 故选:C. 【点睛】本题考查平面向量的数量积运算,掌握模与数量积的关系是解题关键. 5.己知()f x 是定义域为R 的奇函数,若(5)f x +为偶函数,(1)1f =,则(2019)(2020)f f +=( )A .2-B .1-C .0D .1【答案】B【解析】根据函数的奇偶性,即可求得函数的周期,利用函数的周期性,即可求得函数值. 【详解】(5)f x +为偶函数,且(5)f x +可由()f x 向左平移5个单位得到,()f x ∴关于5x =轴对称,即(5)(5)f x f x +=-,又()f x 为R 上的奇函数,(5)(5)f x f x ∴+=--,且(0)0f =,(20)(10)[()]()f x f x f x f x ∴+=-+=--=,()f x ∴是一个周期为20的周期函数,(2019)(201011)(1)(1)1f f f f ∴=⨯-=-=-=-,(2020)(20101)(0)0f f f =⨯==,(2019)(2020)1f f ∴+=-.故选:B . 【点睛】本题考查利用函数的周期性求函数值,属基础题.6.已知点()13,0F -,()23,0F 分别是双曲线C :22221x y a b-= (0a >,0b >)的左、右焦点,M 是C 右支上的一点,1MF 与y 轴交于点P , 2MPF 的内切圆在边2PF 上的切点为Q ,若2PQ =,则C 的离心率为( ) A .53B .3C .32D .52【答案】C【解析】由双曲线的定义、对称性和内切圆的切线性质,结合离心率公式即可得到所求值. 【详解】设2MPF ∆的内切圆在边2MF 上的切点为K ,在MP 上的切点为N , 如图所示:则12PF PF = ,222,PQ PN QFKF ===, 由双曲线的对称性可得12222PF PF PQ QF QF ==+=+, 由双曲线的定义可得1212MF MF PM PF MK KF -=+--222242QF MP MK KF MP MN a =++--=+-==,解得2a =,又126F F =,即有3c =, 离心率32c e a ==. 故选:C . 【点睛】本题考查双曲线的离心率的求法,考查内切圆的切线性质,注意运用双曲线的定义是解题的关键,属于中档题. 7.在二项式(nx x+的展开式中,各项系数的和为128,把展开式中各项重新排列,则有理项都互不相邻的概率为( ) A .435B .34C .314D .114【答案】D【解析】由系数和为128可得2128n =即可求出7n =,由二项式定理写出展开式的通项,即可求出有理项、无理项数,结合排列中的插空法可求出有理项都互不相邻的的概率. 【详解】解:二项式(n x x +的展开式中第1k +项为321kn kk n k kk n n T C x C x x --+==, 则01...2128n nn n n C C C +++==,则7n =,则展开式中有8项,当0,2,4,6k k k k ====时,372k N ⎛⎫-∈⎪⎝⎭,即有理项有4项,无理项有4项, 8项重新排列共88A 种排列数,先排列无理项共44A 种排列数,要使得有理项不相邻,则4项有理项的排列数为45A ,所以有理项都互不相邻的概率为445488114A A A =, 故选: D. 【点睛】本题考查了二项式定理,考查了排列数的计算,考查了插空法.本题的关键是求出n 的值. 8.已知函数2()ln f x ax x x =--有两个零点,则实数a 的取值范围是( ) A .1,1e ⎛⎫⎪⎝⎭B .()0,1C .21,e e +⎛⎫-∞ ⎪⎝⎭D .210,e e +⎛⎫⎪⎝⎭【答案】B【解析】函数()2()ln 0f x ax x x x =-->有两个零点,即方程2ln x xa x+=有两个根,设()2ln x xg x x+=,求出()g x ',研究出函数()g x 的单调性,由()g x 的图象与y a =有两个交点,得出a 参数的范围,得到答案.【详解】函数()2()ln 0f x ax x x x =-->有两个零点由题意得方程2ln x xa x +=有两个根. 设()2ln x x g x x+=,则()2431(1)(ln (2)12ln )x x x x x x x g x x x +-+--'== 设()12ln h x x x =--,则()210h x x'=--<所以()12ln h x x x =--在()0,∞+上单调递减,又(1)0h = 当()()(0,1),0,0x h x g x '∈>>,所以()g x 在(0,1)上单调递增, 当()()(1,),0,0x h x g x '∈+∞<<,所以()g x 在(1,)+∞上单调递减,又(1)1g=,22111()01eg e eee-==-<⎛⎫⎪⎝⎭,当(1,)x∈+∞时,ln0x x+>,则()0g x>所以存在0(0,1)x∈,()0g x=,即在()00,x上()0g x<,又当x→+∞时,幂函数、对数函数的增加速度的快慢,可知x→+∞时,()0g x→作出函数()g x的大致图象如下.所以方程2ln x xax+=有两个根,即()g x的图象与y a=有两个交点,所以实数a的取值范围是()0,1,故选:B【点睛】本题考查已知函数的零点个数求参数取值范围的问题,考查分离参数的方法,考查利用导数研究函数的单调性,属于难题题.二、多选题9.CPI是居民消费价格指数的简称,是一个反映居民家庭一般所购买的消费品和服务项目价格水平变动情况的宏观经济指标.同比一般情况下是今年第n月与去年第n月比;环比,表示连续2个统计周期(比如连续两月)内的量的变化比.如图是根据国家统计局发布的2019年4月—2020年4月我国CPI涨跌幅数据绘制的折线图,根据该折线图,则下列说法正确的是()A .2020年1月CPI 同比涨幅最大B .2019年4月与同年12月相比较,4月CPI 环比更大C .2019年7月至12月,CPI 一直增长D .2020年1月至4月CPI 只跌不涨 【答案】AB【解析】根据折线图数形结合,逐一分析即可; 【详解】解:对于A ,由同比折线可发现2020年1月CPI 同比涨幅最大,故A 正确; 对于B ,由图可知2019年4月环比涨幅为0.1%,2019年12月为0%,故B 正确; 对于C ,由环比定义可知,2019年10月至12月间,下跌,故C 错误; 对于D ,由环比定义可知,2020年1月至4月间,3月到4月增涨,故D 错误; 故选:AB . 【点睛】本题考查折线统计图的识别,考查学生合情推理的能力以及阅读理解能力,属于中档题. 10.记数列{a n }的前n 项和为S n ,若存在实数H ,使得对任意的n ∈N +,都有n S <H ,则称数列{a n }为“和有界数列”.下列说法正确的是( ) A .若{a n }是等差数列,且公差d =0,则{a n }是“和有界数列” B .若{a n }是等差数列,且{a n }是“和有界数列”,则公差d =0 C .若{a n }是等比数列,且公比q <l ,则{a n }是“和有界数列” D .若{a n }是等比数列,且{a n }是“和有界数列”,则{a n }的公比q <l 【答案】BC【解析】求出等差数列和等比数列的前n 项和,然后根据定义判断. 【详解】{}n a 是等差数列,公差为d ,则1(1)2n n n S na d -=+,A .0d =,则1n S na =,若10a ≠,则n →+∞时,n S →+∞,{a n }不是“和有界数列”,A 错;B .若{a n }是“和有界数列”,则由21()22n d d S n a n H =+-<知10,022d da =-=,即10a d ==,B 正确;C .{a n }是等比数列,公比是q ,则1(1)1-=-n n a q S q ,若1q <,则n →+∞时,11n a S q→-,根据极限的定义,一定存在0H >,使得n S H <,对于任意*n N ∈成立,C 正确;D .若1q =-,10a ≠,则1,21,(*)0,2n a n k S k N n k =-⎧=∈⎨=⎩,∴12n S a <,{a n }是“和有界数列”,D 错. 故选:BC . 【点睛】本题考查数列新定义,考查等差数列和等比数列的前n 项和公式及数列的极限,解题关键是正确理解新定义“和有界数列”,把问题转化为转化,考查了学生的转化与化归能力,逻辑思维能力.11.《九章算术》中将底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”;底面为矩形,一条侧棱垂直于底面的四棱锥称之为“阳马”;四个面均为直角三角形的四面体称为“鳖膈”.如图在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,且AA 1=AB=2.下列说法正确的是( )A .四棱锥B -A 1ACC 1为“阳马” B .四面体A 1C 1CB 为“鳖膈” C .四棱锥B -A 1ACC 1体积最大为23D .过A 点分别作AE ⊥A 1B 于点E ,AF ⊥A 1C 于点F ,则EF ⊥A 1B【答案】ABD【解析】根据新定义结合线面垂直的证明,对选项进行逐一判断,可得出答案. 【详解】底面为直角三角形且侧棱垂直于底面的三棱柱称为“堑堵”. 所以在堑堵ABC -A 1B 1C 1中,AC ⊥BC ,侧棱1AA ⊥平面ABC . 在选项A 中. 所以1AA BC ⊥,又AC ⊥BC ,且1AA AC A =,则BC ⊥平面11AAC C .所以四棱锥B -A 1ACC 1为“阳马”,故A 正确.在选项B 中. 由AC ⊥BC ,即11AC BC ⊥,又111AC C C ⊥且1C C BC C =,所以11A C ⊥平面11BB C C .所以111AC BC ⊥,则11A BC 为直角三角形. 又由BC ⊥平面11AAC C ,得1A BC 为直角三角形.由“堑堵”的定义可得11AC C 为直角三角形,1CC B 为直角三角形 . 所以四面体A 1C 1CB 为“鳖膈”,故B 正确.在选项C 中. 在底面有2242AC BC AC BC =+≥⋅,即2AC BC ⋅≤当且仅当AC BC =时取等号.1111111243333B A ACC A ACC V S BC AA AC BC AC BC -=⨯=⨯⨯=⨯≤,所以C 不正确.在选项D 中.由上面有BC ⊥平面11AAC C ,则BC AF ⊥,AF ⊥A 1C 且1AC BC C =,则AF ⊥平面1A BC所以1AF A B ⊥,AE ⊥A 1B 且AF AE A ⋂=,则1A B ⊥平面AEF ,则1A B EF ⊥,所以D 正确. 故选:ABD. 【点睛】本题考查立体几何中的新定义问题,考查线线垂直,线面垂直的证明,考查四棱锥的体积的最值,属于中档题. 12.已知2()12cos ()(0)3f x x πωω=-+>,下面结论正确的是( )A .若f (x 1)=1,f (x 2)=1-,且12x x -的最小值为π,则ω=2B .存在ω∈(1,3),使得f (x )的图象向右平移6π个单位长度后得到的图象关于y 轴对称C .若f (x )在[0,2π]上恰有7个零点,则ω的取值范围是4147[,)2424D .若f (x )在[,]64ππ-上单调递增,则ω的取值范围是(0,23]【答案】BCD【解析】由二倍角公式和诱导公式化简函数式,然后根据正弦定理的性质周期性、奇偶性、零点、单调性分别判断各选项. 【详解】由题意2()cos 2sin 236f x x x ππωω⎛⎫⎛⎫=-+=+ ⎪ ⎪⎝⎭⎝⎭,A .题意说明函数相邻两个最值的横坐标之差为π,周期为2π,2212πωπ==,12ω=,A 错;B .f (x )的图象向右平移6π个单位长度后得到的图象解析式是(12)()sin 2sin 2666g x x x ππωπωω⎛⎫-⎛⎫⎡⎤=-+=+ ⎪ ⎪⎢⎥⎝⎭⎣⎦⎝⎭,2ω=时,()sin 4cos 42g x x x π⎛⎫=-=- ⎪⎝⎭,是偶函数,图象关于y 轴对称,B 正确;C .[0,2]x π时,2,4666x πππωωπ⎡⎤+∈+⎢⎥⎣⎦,()f x 在[0,2]π上有7个零点,则7486ππωππ≤+<,解得41472424ω≤<,C 正确; D .f (x )在[,]64ππ-上单调递增,则26622462πππωπππω⎧⎛⎫⨯-+≥- ⎪⎪⎪⎝⎭⎨⎪⨯+≤⎪⎩,又0>ω,故解得203ω<≤,D 正确. 故选:BCD . 【点睛】本题考查三角函数的图象与性质,考查正弦型函数的周期性、奇偶性、零点、单调性,考查二倍角公式、诱导公式等,考查了学生的逻辑推理能力,运算求解能力.三、填空题13.以抛物线22y x =的焦点为圆心,且与抛物线的准线相切的圆的方程为______________. 【答案】22112x y ⎛⎫-+= ⎪⎝⎭ 【解析】求得抛物线焦点坐标和准线方程,得到圆的圆心和半径,由此求得圆的方程.【详解】 抛物线22y x =的焦点为1,02⎛⎫ ⎪⎝⎭,准线为12x =-,焦点到准线的距离为1, 所以圆的圆心为1,02⎛⎫ ⎪⎝⎭,半径为1,故圆的标准方程为22112x y ⎛⎫-+= ⎪⎝⎭. 故答案为:22112x y ⎛⎫-+= ⎪⎝⎭ 【点睛】本小题主要考查抛物线性质,考查圆的方程的求法,属于中档题.14.我国有“三山五岳”之说,其中五岳是指:东岳泰山,南岳衡山,西岳华山,北岳恒山,中岳嵩山.某位老师在课堂中拿出这五岳的图片,打乱顺序后在图片上标出数字1—5,他让甲、乙、丙、丁、戊这五位学生来辨别,每人说出两个,学生回答如下: 甲:2是泰山,3是华山;乙:4是衡山,2是嵩山;丙:1是衡山,5是恒山;丁:4是恒山,3是嵩山;戊:2是华山,5是泰山.老师提示这五个学生都只说对了一半,那么五岳之尊泰山图片上标的数字是__________.【答案】5【解析】先分析甲、戊两个学生,可知甲回答的3是华山是正确的,然后依次判断丙、丁、乙即可.【详解】若甲:2是泰山是正确的,则戊:2是华山,5是泰山都是错的,故甲:3是华山是正确的;戊:5是泰山是正确的;丙:1是衡山是正确的;丁:4是恒山是正确的;乙: 2是嵩山是正确的,故五岳之尊泰山图片上标的数字是5.故答案为:5【点睛】本题主要考查逻辑推理能力,属于能力提升题.15.己知函数f (x )= ln x ,若0<a<b ,且f (a )=f (b ),则a+4b 的取值范围是____________.【答案】()5,+∞ 【解析】结合函数f (x )= ln x 的图象可判断,a b 的位置,即可得到,a b 的关系,将双变量a+4b 转化为单变量,结合函数单调性即可求解.【详解】如图,作出函数f (x )= ln x 的图象,由f (a )=f (b )得,()ln ()ln ,ln ln ln 0,1,01,1,f a a f b b a b ab ab a b =-==∴+===<<>所以44a b a a+=+,由对勾函数的单调性可知,函数4y x x =+ 在()0,1上单调递减,故445a b a a +=+>,即a+4b 的取值范围是()5,+∞.故答案为:()5,+∞【点睛】本题主要考查对数函数的图象翻折、对数运算及利用函数单调性求值域,属于基础题.四、双空题16.已知水平地面上有一半径为4的球,球心为O ',在平行光线的照射下,其投影的边缘轨迹为椭圆C .如图椭圆中心为O ,球与地面的接触点为E ,OE=3.若光线与地面所成角为θ,则sin θ=______________,椭圆的离心率e=___________.【答案】45 35【解析】连接OO ',由锐角三角函数可得4sin 5O E OO θ'==',在平行光线照射过程中,椭圆的短半轴长是圆的半径,如图,椭圆的长半轴长是AC ,过A 向BC 做垂线,垂足是B ,得到一个直角三角形,得到AC 的长,从而得出要求的结果.【详解】解:连接OO ',则O OE θ'∠=,因为4O E '=,3OE =,所以2222345OO O E OE ''=+=+=所以4sin 5O E OO θ'==' 在照射过程中,椭圆的短半轴长b 是圆的半径R ,4b ∴=,如图.椭圆的长轴长2a 是AC ,过A 向BC 做垂线,垂足是B ,由题意得:28AB R ==,4sin sin 5ACB θ∠==, 又4sin 5AB θAC == 所以10AC =即210a =,5a =,∴椭圆的离心率为22255316c a b e a --====故答案为:45;35.【点睛】本题考查圆锥曲线的实际背景及作用,解决本题的关键是看清楚在平行光线的照射下,投影时球的有关量中,变与不变的量,属于中档题.五、解答题17.已知a ,b ,c 分别为△ABC 内角A ,B ,C 的对边,a =2.设F 为线段AC 上一点,CF 2.有下列条件:①c =2;②b =32223a b ab c +=.请从这三个条件中任选两个,求∠CBF 的大小和△ABF 的面积.【答案】条件选择见解析,4CBF π∠=,1ABF S =.【解析】选①②,由余弦定理求得ABC ∠,得另两个角,BCF △中,由正弦定理得CBF ∠,由面积公式计算面积;选②③,由余弦定理求得C ,再得另两个角,BCF △中,由正弦定理得CBF ∠,由面积公式计算面积;选①③,与选②③,方法类似. 【详解】选①②,则2,3a c b ===由余弦定理可得2221cos 22a cb ABC ac +-∠==- 又()0,ABC π∠∈,所以23ABC π∠=所以6A C π==在BCF △中,由正弦定理sin sin CF BF CBF C=∠,及2CF BF = 可得2sin CBF ∠= 又23CBF CBA π∠<∠=,所以4CBF π∠=所以512ABF AFB π∠=∠=,所以2AF AB == 所以122sin 126ABF S π=⨯⨯=△选②③,因为2222,a b a b c ==+=,所以2c =.由余弦定理可得222cos 2a b c C ab +-∠== 又()0,C π∈,所以6C π=所以2,63A C ABC A C πππ==∠=--=在BCF △中,由正弦定理sin sin CF BF CBF C =∠,及CF =可得sin 2CBF ∠=, 又23CBF CBA π∠<∠=,所以4CBF π∠=, 所以512ABF AFB π∠=∠=,所以2AF AB == 所以122sin 126ABF S π=⨯⨯=△选①③,由余弦定理可得222cos 2a b c C ab +-== ()0,C π∈,所以6C π=因为,a c =所以6A C π== 所以23ABC A C ππ∠=--=在BCF ∆中,由正弦定理sin sin CF BF CBF C =∠,及CF =可得sin 2CBF ∠=, 又23CBF CBA π∠<=,,所以4CBF π∠=, 所以512ABF AFB π∠=∠=,所以2AF AB == 所以122sin 126ABF S π=⨯⨯=△ 【点睛】本题考查正弦定理和余弦定理的解三角形,考查三角形面积公式,考查了学生的运算求解能力,属于中档题.18.已知S n 是等比数列{a n }的前n 项和,S 4,S 2,S 3成等差数列,且4118S a -=-. (1)求数列{a n }的通项公式;(2)是否存在正整数n ,使得2020n S ≥?若存在,求出符合条件的n 的最小值;若不存在,说明理由.【答案】(1)()132n n a -=⨯-.(2)存在,最小值为11【解析】(1)根据条件列关于首项与公比的方程组,解得首项与公比,代入等比数列通项公式即可;(2)先求和项,再根据奇偶讨论化简不等式,即得结果.【详解】(1)设等比数列{}n a 的公比为q ,则10,0a q ≠≠.由题意得2432234,18,S S S S a a a -=-⎧⎨++=-⎩ 即2321112311118a q a q a q a q a q a q ⎧--=⎨++=-⎩ 解得13,2.a q =⎧⎨=-⎩故数列{}n a 的通项公式为()132n n a -=⨯-.(2)由(1)有()()()3121212n n n S ⎡⎤--⎣⎦==----. 假设存在n ,使得2020n S ≥,则()122020n --≥即()22019n -≤-当n 为偶数时,()20n->,上式不成立;当n 为奇数时,()22019n n -=-2≤-,即22019n ≥解得11n ≥综上,存在符合条件的正整数n ,最小值为11.【点睛】本题考查等比数列通项公式、等比数列求和公式、解数列不等式,考查基本分析求解能力,属基础题.19.四棱锥P ABCD -中,PC ⊥面ABCD ,直角梯形ABCD 中,∠B=∠C=90°,AB=4,CD=1,PC=2,点M 在PB 上且PB=4PM ,PB 与平面PCD 所成角为60°.(1)求证://CM 面PAD :(2)求二面角B MC A --的余弦值. 【答案】(1)证明见解析.(2)35【解析】(1)在线段AB 上取一点N ,使1AN CD ==,可证//CN 平面PAD ,由14MP AN PB AB ==,可得//MN AP ,得到//MN 平面PAD ,从而可证面面平行,再根据面面平行得结果;(2)以C 为原点,CB ,CD ,CP 所在直线为x 轴,y 轴,z 轴,建立空间坐标系,用向量法求解二面角.【详解】(1)在线段AB 上取一点N ,使1AN CD ==,因为//CD AB ,所以//CD AN 且CD AN =,所以ANCD 为平行四边形,所以//CN AD , CN ⊄平面PAD ,AD ⊂平面PAD ,则//CN 平面PAD 在三角形ABP 中,14MP AN PB AB ==,所以//MN AP , MN ⊄平面PAD ,AP ⊂平面PAD ,则//MN 平面PADMN CN N ⋂=所以平面MNC //平面P AD ,又CM ⊂平面MNC ,所以CM //平面P AD(2)以C 为原点,CB ,CD ,CP 所在直线为x 轴,y 轴,z 轴,建立空间坐标系.PC ⊥面ABCD ,所以PC CB ⊥,又因为BC CD ⊥,所以BC ⊥面PCD ,所以PB 在面PCD 的射影为PC ,所以BPC PB ∠为与平面PCD 所成角,所以60,3BPC BC ∠==所以()()()()3323,0,0,0,0,2,,23,4,0,0,1,02B P M A D ⎫⎪⎪⎝⎭, 33333,0,,4,22CM AM ⎛⎫⎛⎫==-- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. 面BMC 法向量()10,1,0n =,面AMC 法向量()2,,n x y z =2200n AM n CM ⎧⋅=⎪⎨⋅=⎪⎩,所以()223,3,2n =--, 所以123cos ,5n n =-, 所以二面角B MC A --所成角的余弦值为35 【点睛】本题考查证明面面平行和求二面角,求二面角可用定义法和向量法,一般在较复杂的二面角选择向量法求解,属于中档题.20.某公司为研究某种图书每册的成本费y (单位:元)与印刷数量x (单位:千册)的关系,收集了一些数据并进行了初步处理,得到了下面的散点图及一些统计量的值.x y u 821()i i x x =-∑ 81()()i i i x x y y =-⋅-∑ 821()i i u u =-∑ 81()()i ii u u y y =-⋅-∑ 15.25 3.63 0.269 2085.5 230.3- 0.787 7.049表中1i i u x =,8118i i u u ==∑ (1)根据散点图判断:y a bx =+与d y c x=+哪一个模型更适合作为该图书每册的成本费y 与印刷数量x 的回归方程?(只要求给出判断,不必说明理由)(2)根据(1)的判断结果及表中数据,建立y 关于x 的回归方程(结果精确到0.01); (3)若该图书每册的定价为9.22元,则至少应该印刷多少册才能使销售利润不低于80000元?(假设能够全部售出,结果精确到1)附:对于一组数据(ω1,v 1),(ω2,v 2),…,(ωn ,v n ),其回归直线v αβω=+的斜率和截距的最小二乘估计分别为121()()()ni ii n ii v v ωωβωω==--=-∑∑,v αβω=-.【答案】(1)d y c x=+更适合.(2)8.961.22y x =+.(3)至少印刷11120册. 【解析】(1)由散点图判断,d y c x=+更适合. (2)令1u x =,先建立y 关于u 的线性回归方程,根据公式可得 1.228.96y u =+,再得到答案.(3)假设印刷x 千册,依题意得8.969.22 1.2280x x x ⎛⎫-+≥ ⎪⎝⎭,解出不等式得到答案. 【详解】(1)由散点图判断,d y c x=+更适合作为该图书每册的成本费y (单位:元)与印刷数量x (单位:千册)的回归方程.(2)令1u x=,先建立y 关于u 的线性回归方程, 由于7.0498.9578.960.787d =≈≈, 所以 3.638.9570.269 1.22c y d u =-⋅=-⨯≈,所以y 关于u 的线性回归方程为 1.228.96y u =+,所以y 关于x 的回归方程为8.961.22y x=+ (3)假设印刷x 千册,依题意得8.969.22 1.2280x x x ⎛⎫-+≥ ⎪⎝⎭, 解得11.12x ≥, 所以至少印刷11120册才能使销售利润不低于80000元. 【点睛】本题考查非线性回归方程及其应用,考查将非线性回归问题转化为线性回归问题求解,考查运算能力,属于中档题.21.已知椭圆C :22221x y a b+=(a >b >0)的左右焦点分别为F 1,F 2点.M 为椭圆上的一动点, MF 1F 2面积的最大值为4.过点F 2的直线l 被椭圆截得的线段为PQ ,当l⊥x 轴时,PQ =.(1)求椭圆C 的方程;(2)过点F 1作与x 轴不重合的直线l ,l 与椭圆交于A ,B 两点,点A 在直线4x =-上的投影N 与点B 的连线交x 轴于D 点,D 点的横坐标x 0是否为定值?若是,求出定值;若不是,请说明理由.【答案】(1)22184x y +=;(2)是定值,定值为3-. 【解析】(1)根据已知条件有224,b bc a==,结合222a b c =+即可求出参数,,a b c ,即可得椭圆C 的方程;(2)由直线:2AB x my =-与椭圆的交点关系联立方程并整理,结合根与系数关系得到1212y y m y y +=-,进而由已知条件写出BN 的方程,并确定与x 轴交点是否为定点即可.【详解】(1)由题意:12MF F的最大面积224,b S bc PQ a====,又222a b c =+,联立方程,解得2a b ==,所以椭圆的方程为22184x y +=; (2)D 的横坐标为定值3-,理由如下:已知直线斜率不为零,:2AB x my =-代入22184x y +=,即()222280my y -+-=,整理得()222440m y my +--=,设()()1122,,,A x y B x y 且12,y y 均不为零,12242m y y m +=+①,12242y y m -=+②,两式相除得1212y y m y y +=-③ ()14,N y -,设BN 的方程()211244y y y y x x --=++,令0y =, ()12212112212120212121212444244y my y y x y y x y my y y y x y y y y y y y y --------+-∴=-===----④ 将③代入④1212120212124333y y y y y y x y y y y ++--===---, ∴D 点的横坐标为定值3-【点睛】本题考查了利用已知条件找到椭圆参数的关系求椭圆方程,根据直线与椭圆的位置关系判断是否为定值的问题.22.已知函数f (x )=ln x -x +1.(1)求f (x )的最大值;(2)设函数g (x )=f (x )+a (x -1)2,若对任意实数b ∈(2,3),当x ∈(0,b ]时,函数g (x )的最大值为g (b ),求a 的取值范围;(3)若数列{a n }的各项均为正数,a 1=1,a n +1=f (a n )+2a n +1(n ∈N +).求证:a n ≤2n -1.【答案】(1)0;(2)[)1ln 2,-+∞;(3)证明见解析.【解析】(1)求出导函数()'f x ,由导函数确定单调性,最大值.(2)求出()'g x ,若0a ≤,由函数在(0,)+∞上的单调性知不合题意.在0a >时,得出()0g x '=的解,1和12a ,分类讨论,112a=,1012a <<和112a >,确定单调性和最值,得出不等关系后可得所求结论;(3)数列递推是1ln 2n n n a a a +=++,利用(1)中函数的单调性得()ln 10x x x ≤-> 这样数列的递推等式关系变为递推()10,ln 21221n n n n n n n a a a a a a a +>=++≤-++=+故()1121n n a a ++≤+,利用此不等式让n 逐步缩小到1可证明结论成立.【详解】(1)()f x 的定义域为()()110,,1x f x x x-'+∞=-=, 当()0,1x ∈时()()0,f x f x '>单调递增;当()1,x ∈+∞时()()0,f x f x '<单调递减,所以()()max 10f x f ==(2)由题意()()()()221ln 11g x f x a x x x a x =+-=-++- ()()()()()()2221112111210ax a x x ax g x a x x x x x-++--'=-+-==> ①当0a ≤时,函数()()01g x 在,上单调递增,在()1+∞,上单调递减,此时,不存在实数()2,3b ∈,使得当(]0,x b ∈时,函数()g x 的最大值为()g b .②当0a >时,令()0g x '=,有1211,2x x a ==, (i )当12a =时,函数()g x 在()0,∞+上单调递增,显然符合题意. (ii )当112a >,即102a <<时,函数()g x 在(0,1)和1,2a ⎛⎫+∞ ⎪⎝⎭上单调递增,在11,2a ⎛⎫ ⎪⎝⎭上单调递减,()g x 在1x =处取得极大值,且()1=0g ,要使对任意实数()2,3b ∈,当(]0,x b ∈时,函数()g x 的最大值为()g b ,只需()20g ≥,解得1ln 2a ≥-,又102a <<,所以此时实数a 的取值范围是11ln 22a -≤<. (iii )当112a <,即12a >时,函数()g x 在10,2a ⎛⎫ ⎪⎝⎭和()1+∞,上单调递增,在1,12a ⎛⎫ ⎪⎝⎭上单调递减,要对任意实数()2,3b ∈,当(]0,x b ∈时,函数()g x 的最大值为()g b 需()122g g a ⎛⎫≤ ⎪⎝⎭代入化简得1ln 2ln 2104a a ++-≥,① 令()11ln 2ln 2142h a a a a ⎛⎫=++-> ⎪⎝⎭, 因为()11104h a a a ⎛⎫'=-> ⎪⎝⎭恒成立, 故恒有()11ln 2022h a h ⎛⎫>=->⎪⎝⎭,所以12a >时,①式恒成立, 综上,实数a 的取值范围是[)1ln 2,-+∞.(3)由题意,正项数列{}n a 满足:111,ln 2n n n a a a a +==++由(1)知:()()ln 110f x x x f =-+≤=,即有不等式()ln 10x x x ≤-> 由已知条件知()10,ln 21221n n n n n n n a a a a a a a +>=++≤-++=+故()1121n n a a ++≤+从而当2n ≥时,()()()2112112121212n n n n n a a a a ---+≤+≤+≤⋅⋅⋅≤+=所以有21n n a ≤-,对1n =也成立, 所以有()21n n a n N*≤-∈.【点睛】 本题考查用导数求函数的最值,证明不等式成立,考查数列的递推关系.解题关键是用导数确定函数的单调性,得极值,再由最值定义确定最值.而不等式的证明的关键是利用题中函数不等式进行放缩,化简递推关系.。
2023届山东省高考模拟练习(三)数学试题
2023届山东省高考模拟练习(三)数学试题一、单选题:本题共8小题 每小题5分 共40分。
在每小题给出的四个选项中 只有一项是符合题目要求的.1.设1i2i 1i z -=++ 则||z =A .0B .12 C .1 D 22.已知全集为R 集合A ={x|x ≥0} B ={x|x2-6x +8≤0} 则A ∩(∁RB)=( )A .{x|x ≤0}B .{x|2≤x ≤4}C .{x|0≤x <2或x >4}D .{x|0<x ≤2或x ≥4} 3.(2020·全国高三月考(文))已知向量()2,1m =-(),2n λ= 若()2m n m -⊥ 则λ=( )A .94 B .94-C .7-D .74.(2020·河南郑州市·高二期中(理))如图1是第七届国际数学教育大会(简称ICME -7)的会徽图案 会徽的主体图案是由如图2的一连串直角三角形演化而成的 其中11223781OA A A A A A A ===⋯== 如果把图2中的直角三角形继续作下去 记12,,,,n OA OA OA 的长度构成数列{}n a 则此数列的通项公式为( )A .n a n = *n N ∈ B .1n a n =+*n N ∈C .n a n = *n N ∈D .2n a n = *n N ∈5.(2020·全国高三月考(理))已知正实数a b 满足1a b += 则1231⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭a b 的最小值为( ) A .146+B .25C .24D .1236.(2020·河南高二月考(理))在ABC 中 内角A 、B 、C 的对边分别为a 、b 、c 已知()2sin 232BA C +=.2a = 3c = 则sin 2A 的值为( ) A .277-B .3314C .37D .4321-7.(2020·全国高三月考(理))已知a 、b 满足0a b e <<< 则ln +b a a a 与ln +a bb b 的大小关系为( )A .ln ln +>+a b a b a b a b B .ln ln +=+a b a ba b a b C .ln ln +<+a b a b a b a b D .不能确定8.(2020·小店区·山西大附中高二月考)在正方体1AC 中 E 是棱1CC 的中点 F 是侧面11BCC B 内的动点 且1A F与平面1D AE的垂线垂直 如图所示 下列说法不正确的是( )A .点F 的轨迹是一条线段B .1A F与BE 是异面直线C .1A F与1D E不可能平行 D .三棱锥1F ABD -的体积为定值多项选择题(本大题共4小题 每小题5分 共20分.全部选对的得5分 部分选对的得3分 有选错的得0分)9.(2020·重庆市万州第二高级中学高一期中)德国数学家狄里克雷()18051859-在1837年时提出:“如果对于x 的每一个值 y 总有一个完全确定的值与之对应 那么y 是x 的函数.”这个定义较清楚的说明了函数的内涵 只要有一个法则 使得取值范围内的每一个x 都有一个确定的y 和它对应就行了 不管这个法则是用公式还是用图象、表格等形式表示.他还发现了狄里克雷函数()D x 即:当自变量x 取有理数时 函数值为1 当自变量x 取无理数时 函数值为0.狄里克雷函数的发现改变了数学家们对“函数是连续的”的认识 也使数学家们更加认可函数的对应说定义 下列关于狄里克雷函数()D x 的性质表述正确的是( )A .()0D π= B .()D x 是奇函数C .()D x 的值域是{}0,1D .()()1D x D x +=10.(2020·江苏海安市·高三期中)若2nx x ⎛⎝的展开式中第6项的二项式系数最大 则n 的可能值为( )A .9B .10C .11D .1211.(2020·烟台市福山区教育局高三期中)已知函数()sin xf x x =(]0,x π∈ 则下列结论正确的有( ) A .()f x 在区间(]0,π上单调递减B .若120x x π<<≤ 则1221sin sin x x x x ⋅>⋅C .()f x 在区间(]0,π上的值域为[)0,1D .若函数()()cos g x xg x x'=+ 且()1g π=-()g x 在(]0,π上单调递减12.(2021·福建省福州第一中学高三期中)如图 正方体1111ABCD A B C D -的棱长为3 线段11B D 上有两个动点,E F 且1EF = 以下结论正确的有( )A .AC BE ⊥B .异面直线,AE BF 所成的角为定值C .点A 到平面BEF 的距离为定值D .三棱锥A BEF -的体积是定值第Ⅱ卷 非选择题三、填空题:本题共4小题 每小题5分 共20分. 13.二项式()nx x 2+的二项式系数之和为64 则展开式中的6x 的系数是 (填数字)14.己知βα,为锐角 211)tan(-=+βα 54cos =β 则=αsin 15.已知点P 是椭圆14:22=+y x C 上一点 椭圆C 在点P 处的切线l 与圆4:22=+y x O交于A B 两点 当三角形AOB 的面积取最大值时 切线l 的斜率等于 16.已知四边形ABCD 为平行四边形 4=AB 3=AD 3π=∠BAD 现将ABD ∆沿直线BD 翻折 得到三棱锥BCD A -' 若13='C A 则三棱锥BCD A -'的内切球与外接球表面积的比值为 .四、解答题:本题共6小题 共70分。
山东省滨州市惠民李庄中学2021年高三数学文模拟试题含解析
山东省滨州市惠民李庄中学2021年高三数学文模拟试题含解析一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有是一个符合题目要求的1.一对共轭双曲线的离心率分别是e1和e2,则e1+e2的最小值为A. B.2 C.2 D.4参考答案:答案:C解析:设双曲线=1的离心率e1=,则共轭双曲线=1的离心率e2=.e1+e2=≥2· (a=b时取等号)=2·≥2· (a=b时取等号).∴e1+e2的最小值为2,选C.2. 某项测试成绩满分为10分,先随机抽取30名学生参加测试,得分如图所示,假设得分值的中位数为m e ,平均值为,众数为m o ,则A.m e=m o= B.m e=m o<C.m e<m o< D.m o < m e <参考答案:D3. 如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,则该几何体的体积为()A.8 B.16 C.24 D.48参考答案:B如图所示,在棱长为4的正方体中,题中的三视图对应的几何体为四棱锥,四棱锥的底面积,该几何体的体积.本题选择B选项.4. 平面上的点使关于t的二次方程的根都是绝对值不超过1的实数,那么这样的点的集合在平面内的区域的形状是()参考答案:D5. 抛物线和圆,直线l经过C1的焦点F,依次交C1,C2于四点,则的值为()A.B.1 C. 2 D.4参考答案:B6. 设等比数列中,前n项和为,已知,则A. B. C. D.参考答案:A 因为,在等比数列中也成等比,即成等比,所以有,即,选A.7. 函数的图象可能是参考答案:A略8. 已知定义域为R的偶函数f(x)在(﹣∞,0]上是减函数,且f(1)=2,则不等式f(log2x)>2的解集为()A.(2,+∞)B.C.D.参考答案:B【考点】奇偶性与单调性的综合.【分析】根据题意,结合函数的奇偶性、单调性分析可得f(log2x)>2?|log2x|>1;化简可得log2x >1或log2x<﹣1,解可得x的取值范围,即可得答案.【解答】解:f(x)是R的偶函数,在(﹣∞,0]上是减函数,所以f(x)在[0,+∞)上是增函数,所以f(log2x)>2=f(1)?f(|log2x|)>f(1)?|log2x|>1;即log2x>1或log2x<﹣1;解可得x>2或.故选:B.【点评】本题考查函数奇偶性与单调性的综合应用,关键是通过对函数奇偶性、单调性的分析,得到关于x 的方程. 9. 已知定义在上的函数是单调函数,其部分图象如图所示,那么不等式的解集为A .(0,+∞)B .(-∞,0)C .(-2, +∞)D .(-∞,-2)参考答案:A10. 若复数(i 是虚数单位)在复平面内对应的点在第一象限,则实数a 的取值范围是( )A .(-∞,-1)B .(1,+∞)C .(-1,1)D .(-∞,-1)∪(1,+∞)参考答案:C分析:先化简复数z ,再根据z 在复平面内对应的点在第一象限得到a 的不等式,解不等式即得a 的取值范围. 详解:由题得,因为z 在复平面内对应的点在第一象限, 所以故答案为:C二、 填空题:本大题共7小题,每小题4分,共28分11. 已知集合的子集只有两个,则的值为.参考答案:略 12. (选修:坐标系与参数方程)在直角坐标系中,曲线的参数方程是,以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程是,则两曲线交点间的距离是 .参考答案:13. 若函数f (x )=x 2﹣e x ﹣ax 在R 上存在单调递增区间,则实数a 的最大值为 .参考答案:2ln2﹣2 考点: 利用导数研究函数的单调性. 专题: 函数的性质及应用.分析: 根据题意可得a <2x ﹣e x有解,转化为g (x )=2x ﹣e x,a <g (x )max ,利用导数求出最值即可.解答: 解:∵函数f (x )=x 2﹣e x ﹣ax ,∴f′(x )=2x ﹣e x ﹣a ,∵函数f (x )=x 2﹣e x ﹣ax 在R 上存在单调递增区间, ∴f′(x )=2x ﹣e x ﹣a >0, 即a <2x ﹣e x 有解, 令g′(x )=2﹣e x, g′(x )=2﹣e x =0,x=ln2, g′(x )=2﹣e x >0,x <ln2, g′(x )=2﹣e x<0,x >ln2∴当x=ln2时,g (x )max =2ln2﹣2, ∴a<2ln2﹣2即可. 故答案为:2ln2﹣2.点评: 本题考察了导数在解决函数最值,单调性,不等式成立问题中的应用,属于难题. 14. 用数字“1,2”组成一个四位数,则数字“1,2”都出现的四位数有 个.参考答案:14考点:计数原理的应用.专题:排列组合.分析:本题需要分三类第一类,3个1,1个2,第二类,3个2,1个1,第三类,2个1,2个2,根据分类计数原理可得,或者利用列举法.解答:解:方法一:1,2”组成一个四位数,数字“1,2”都出现的共3类,第一类,3个1,1个2,有3个1的排列顺序只有1种,把2插入到3个1所形成的4个间隔中,故有=4种,第二类,3个2,1个1,有3个2的排列顺序只有1种,把1插入到3个2所形成的4个间隔中,故有=4种,第三类,2个1,2个2,先排2个1只有一种,再把其中一个2插入到2个1只形成的3个间隔中,再把另一个2插入所形成的四个间隔中,2个2一样,故=6,根据分类计数原理,数字“1,2”都出现的四位数有4+4+6=14个方法二,列举即可,1112,1121,1211,2111,1122,1212,1221,2121,2112,2211,2221,2212,2122,1222,共14种故答案为14点评:本题主要考查了分类计数原理,如何分类是关键,属于基础题15.已知函数满足条件,则正数= 。
2016届山东省滨州市高三3月模拟考试数学(理)试题
2021届XX省滨州市高三3月模拟考试数学〔理〕试题2021.3 本试卷分第一卷和第二卷两局部,共4页,总分值150分.考试时间120分钟.考试完毕后,将答题卡交回.第一卷〔选择题共50分〕一、选择题:本大题共10小题,每题5分,共计50分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的.〔1〕设全集UxR|x0,函数fx11ln x的定义域为A,那么CA为U〔A〕e,〔B〕e,〔C〕0,e〔D〕0,e〔2〕假设复数z22ii〔i为虚数单位〕,那么z〔A〕25〔B〕41〔C〕5〔D〕5〔3〕函数x1 ylogx的零点个数是22〔A〕0〔B〕1〔C〕2〔D〕3〔4〕,是两个不同的平面,m,n是两条不同的直线,给出了以下命题:①假设m,m,那么;②假设mn,m,那么n//;③假设m//,,那么m;④假设m,n//m且,n,n,那么n//n,//.〔A〕②④〔B〕①②④〔C〕①④〔D〕①③〔5〕函数fxx x52,0,fx5,x0,那么f2021〔A〕12〔B〕1〔C〕16〔D〕32〔6〕随机变量X服从正态分布2N3,2,那么2 PX13aPXa7成立的一个必要不充分条件是22页1第x2,〔7〕变量x,y满足约束条件假设zaxbya0,b0的最小值为2,那么ab的最大值3xy1,yx1,为〔A〕1〔B〕12〔C〕14〔D〕16〔8〕某校选定甲、乙、丙、丁、戊共5名教师到3个遥远地区支教,每地至少1人,其中甲和乙一定不去同一地区,甲和丙必须去同一地区,那么不同的选派方案共有〔A〕27种〔B〕30种〔C〕33种〔D〕36种〔9〕已知ABC的外接圆圆心为O,AB23,AC22,A为钝角,M是线段BC的中点,那么AMAO〔A〕3〔B〕4〔C〕5〔D〕6〔10〕椭圆22xyC1:221ab0ab与双曲线2y2C:x1C4以C1的长轴为直径的圆相交于A,B两点,假设C1恰好将线段AB三等分,那么〔A〕213a〔B〕2213a〔C〕21b〔D〕222b第二卷〔非选择题共100分〕二、填空题:本大题共5分,每题5分,共25分 . 〔11〕执行如下列图的程序框图,那么输出的k的值为.〔12〕不等式x1x42的解集为.〔13〕在ABC中,角A,B,C的对边分别是a,b,c,且a2,b3,c4,那么s in2CsinA.〔14〕在平面直角坐标系xOy中,以点2,1为圆心且与直线mxy2m0mR相切的所有圆中,半径最大的圆的标准方程为.页2第〔15〕设函数1fxlogx112x21,那么使得fxf2x1成立的x取值X围是.三、解答题:本小题共6小题,共75分. 〔16〕〔本小题总分值12分〕函数2xfx3sinx2s i nm的最0小正周期为3,且当x,时,函24数fx的最大值为1.〔Ⅰ〕求函数fx的表达式;〔Ⅱ〕在ABC中,假设fC1,且22sinBcosBcosAC,求sinA的值.〔17〕〔本小题总分值12分〕如图,在四棱柱ABCD1A1B1C中1D,AB//CD,ABBCCC12CD,E为线段AB的中点,F是线段D D上的动点.1〔Ⅰ〕求证:EF//平面BCC1B1;〔Ⅱ〕假设B CDC1CD60,且平面DCCD平面ABCD,求平面BCC1B1与11DCB平面所成的角〔锐角〕的余弦值.11〔18〕〔本小题总分值12分〕根据某水文观测点的历史统计数据,得到某河流每年最高水位X〔单位:米〕的频率分布直方图如下:将河流最高水位落入各组的频率作为概率,并假设每年河流最高水位相互独立.〔Ⅰ〕求在未来3年里,至多有1年河流最高水位X27,31的概率〔结果用分数表示〕;〔Ⅱ〕该河流对沿河A企业影响如下:当X23,27时,不会造成影响;当X27,31时,损失10000元;当X31,35时,损失60000元.为减少损失,现有三种应对方案:方案二:防御31米的最高水位,每年需要工程费用2000元;方案三:不采取措施;页3第试比较上述三种方案,哪种方案好,并请说明情况.〔19〕〔本小题总分值12分〕设数列a n的前n项和为S n,且S n2a n2.〔Ⅰ〕求数列a n的通项公式;〔Ⅱ〕令bloga,cn2nn2bnan,求数列c n的前项和T n.〔20〕〔本小题总分值13分〕动圆M过定点F0,1,且与直线y1相切,圆心M的轨迹为曲线C,设P为直线l:xy20上的点,过点P作曲线C的两条切线PA,PB,其中A,B为切点.〔Ⅰ〕求曲线C的方程;〔Ⅱ〕当点P x0,y0为直线l上的定点时,求直线AB的方程;〔Ⅲ〕当点P在直线l上移动时,求AFBF的最小值.〔21〕〔本小题总分值14分〕设函数221ln,fxaxax,x其中aR.〔Ⅰ〕当a0时,求函数fx的单调递增区间;〔Ⅱ〕当a0时,求函数fx在区间12,1上的最小值;〔Ⅲ〕记函数yfx的图象为曲线C,设点A xyBxy是曲线C上不同的两点,点M1,1,2,2为线段AB的中点,过点M作x轴的垂线交曲线C于点N,试判断曲线C在N处的切线是否平行于直线AB?并说明理由.页4第。
山东省滨州市2021届新高考第三次适应性考试数学试题含解析
山东省滨州市2021届新高考第三次适应性考试数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数21,0()ln ,0x x f x x x +≤⎧=⎨>⎩,则方程[]()3f f x =的实数根的个数是( ) A .6 B .3C .4D .5【答案】D 【解析】 【分析】 画出函数21,0()ln ,0x x f x x x +≤⎧=⎨>⎩,将方程[]()3f f x =看作()(),3t f x f t ==交点个数,运用图象判断根的个数. 【详解】画出函数21,0()ln ,0x x f x x x +≤⎧=⎨>⎩令()(),3t f x f t =∴=有两解()()120,1,1,+t t ∈∈∞ ,则()()12,t f x f x t ==分别有3个,2个解,故方程[]()3f f x =的实数根的个数是3+2=5个 故选:D【点睛】本题综合考查了函数的图象的运用,分类思想的运用,数学结合的思想判断方程的根,难度较大,属于中档题.2.已知等差数列{}n a 的前n 项和为n S ,37a =,39S =,则10a =( ) A .25 B .32C .35D .40【解析】 【分析】设出等差数列{}n a 的首项和公差,即可根据题意列出两个方程,求出通项公式,从而求得10a . 【详解】设等差数列{}n a 的首项为1a ,公差为d ,则313127339a a d S a d =+=⎧⎨=+=⎩,解得11,4a d =-=,∴45n a n =-,即有10410535a =⨯-=. 故选:C . 【点睛】本题主要考查等差数列的通项公式的求法和应用,涉及等差数列的前n 项和公式的应用,属于容易题. 3.已知集合{|24}A x x =-<<,集合2560{|}B x x x =-->,则A B =A .{|34}x x <<B .{|4x x <或6}x >C .{|21}x x -<<-D .{|14}x x -<<【答案】C 【解析】 【分析】 【详解】由2560x x -->可得1)60()(x x -+>,解得1x <-或6x >,所以B ={|1x x <-或6}x >, 又{|24}A x x =-<<,所以{|21}A B x x ⋂=-<<-,故选C .4.已知椭圆2222:19x y C a a+=+,直线1:30l mx y m ++=与直线2:30l x my --=相交于点P ,且P 点在椭圆内恒成立,则椭圆C 的离心率取值范围为( )A.0,2⎛ ⎝⎭B.,02⎛⎫⎪ ⎪⎝⎭C .10,2⎛⎫ ⎪⎝⎭D .1,12⎛⎫ ⎪⎝⎭【答案】A 【解析】 【分析】先求得椭圆焦点坐标,判断出直线12,l l 过椭圆的焦点.然后判断出12l l ⊥,判断出P 点的轨迹方程,根据P 恒在椭圆内列不等式,化简后求得离心率e 的取值范围. 【详解】设()(),0,,0F c F c -是椭圆的焦点,所以22299,3c a a c =+-==.直线l 过点()3,0F -,直线l 过点()23,0F ,由于()110m m ⨯+⨯-=,所以12l l ⊥,所以P 点的轨迹是以12,F F 为直径的圆229x y +=.由于P 点在椭圆内恒成立,所以椭圆的短轴大于3,即2239a >=,所以2918a +>,所以双曲线的离心率22910,92e a ⎛⎫=∈ ⎪+⎝⎭,所以20,2e ⎛⎫ ⎪ ⎪⎝⎭∈. 故选:A 【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.5.如图是一个算法流程图,则输出的结果是( )A .3B .4C .5D .6【答案】A 【解析】 【分析】执行程序框图,逐次计算,根据判断条件终止循环,即可求解,得到答案. 【详解】由题意,执行上述的程序框图:第1次循环:满足判断条件,2,1x y ==; 第2次循环:满足判断条件,4,2x y ==; 第3次循环:满足判断条件,8,3x y ==; 不满足判断条件,输出计算结果3y =, 故选A . 【点睛】本题主要考查了循环结构的程序框图的结果的计算与输出,其中解答中执行程序框图,逐次计算,根据判断条件终止循环是解答的关键,着重考查了运算与求解能力,属于基础题.6.已知甲盒子中有m 个红球,n 个蓝球,乙盒子中有1m -个红球,+1n 个蓝球(3,3)m n ≥≥,同时从甲乙两个盒子中取出(1,2)i i =个球进行交换,(a )交换后,从甲盒子中取1个球是红球的概率记为(1,2)i p i =.(b )交换后,乙盒子中含有红球的个数记为(1,2)i i ξ=.则( )A .1212,()()p p E E ξξ><B .1212,()()p p E E ξξC .1212,()()p p E E ξξ>>D .1212,()()p pE E ξξ<<【答案】A 【解析】分析:首先需要去分析交换后甲盒中的红球的个数,对应的事件有哪些结果,从而得到对应的概率的大小,再者就是对随机变量的值要分清,对应的概率要算对,利用公式求得其期望. 详解:根据题意有,如果交换一个球,有交换的都是红球、交换的都是蓝球、甲盒的红球换的乙盒的蓝球、甲盒的蓝球交换的乙盒的红球, 红球的个数就会出现,1,1m m m -+三种情况;如果交换的是两个球,有红球换红球、蓝球换蓝球、一蓝一红换一蓝一红、红换蓝、蓝换红、一蓝一红换两红、一蓝一红换亮蓝,对应的红球的个数就是2,1,,1,2m m m m m --++五种情况,所以分析可以求得1212,()()p p E E ξξ><,故选A.点睛:该题考查的是有关随机事件的概率以及对应的期望的问题,在解题的过程中,需要对其对应的事件弄明白,对应的概率会算,以及变量的可取值会分析是多少,利用期望公式求得结果. 7.某学校组织学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100],若低于60分的人数是18人,则该班的学生人数是( )A .45B .50C .55D .60【答案】D 【解析】根据频率分布直方图中频率=小矩形的高×组距计算成绩低于60分的频率,再根据样本容量=频数频率求出班级人数. 【详解】根据频率分布直方图,得:低于60分的频率是(0.005+0.010)×20=0.30, ∴样本容量(即该班的学生人数)是180.30=60(人). 故选:D. 【点睛】本题考查了频率分布直方图的应用问题,也考查了频率=频数样本容量的应用问题,属于基础题8.已知函数()sin3cos3f x x x =-,给出下列四个结论:①函数()f x 的值域是⎡⎣;②函数4f x π⎛⎫+ ⎪⎝⎭为奇函数;③函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦单调递减;④若对任意x ∈R ,都有()()()12f x f x f x ≤≤成立,则12x x -的最小值为3π;其中正确结论的个数是( )A .1B .2C .3D .4【答案】C 【解析】 【分析】化()f x )4x π-可判断①,求出4f x π⎛⎫+ ⎪⎝⎭的解析式可判断②,由,32x ππ⎡⎤∈⎢⎥⎣⎦得353[,]444x πππ-∈,结合正弦函数得图象即可判断③,由()()()12f x f x f x ≤≤得12min 2Tx x -=可判断④.【详解】由题意,())4f x x π=-,所以()f x ∈⎡⎣,故①正确;4f x π⎛⎫+= ⎪⎝⎭)]44x ππ+-=)2x π+=x 为偶函数,故②错误;当,32x ππ⎡⎤∈⎢⎥⎣⎦时,353[,]444x πππ-∈,()f x 单调递减,故③正确;若对任意x ∈R ,都有 ()()()12f x f x f x ≤≤成立,则1x 为最小值点,2x 为最大值点,则12x x -的最小值为23T π=,故④正确.【点睛】本题考查三角函数的综合运用,涉及到函数的值域、函数单调性、函数奇偶性及函数最值等内容,是一道较为综合的问题. 9.设1tan 2α=,4cos()((0,))5πββπ+=-∈,则tan 2()αβ-的值为( )A .724-B .524-C .524D .724【答案】D 【解析】 【分析】利用倍角公式求得tan2α的值,利用诱导公式求得cos β的值,利用同角三角函数关系式求得sin β的值,进而求得tan β的值,最后利用正切差角公式求得结果. 【详解】1tan 2α=,22tan 4tan21tan 3ααα==-, ()4cos cos 5πββ+=-=-,()(0,βπ∈,4cos 5β∴=,3sin 5β=,3tan 4β=,()43tan2tan 734tan 2431tan2tan 24134αβαβαβ---===++⨯, 故选:D. 【点睛】该题考查的是有关三角函数求值问题,涉及到的知识点有诱导公式,正切倍角公式,同角三角函数关系式,正切差角公式,属于基础题目. 10.已知a =1b e -=,3ln 28c =,则a ,b ,c 的大小关系为( ) A .a b c >> B .a c b >>C .b c a >>D .b a c >>【答案】D 【解析】 【分析】 构造函数()ln xf x x=,利用导数求得()f x 的单调区间,由此判断出,,a b c 的大小关系. 【详解】依题意,得3ln 3ln 33a ==,1ln e b e e -==,3ln 2ln888c ==.令ln ()x f x x=,所以21ln '()x f x x -=.所以函数()f x 在(0,)e 上单调递增,在(,)e +∞上单调递减.所以max 1[()]()f x f e b e===,且(3)(8)f f >,即a c >,所以b a c >>.故选:D.【点睛】本小题主要考查利用导数求函数的单调区间,考查化归与转化的数学思想方法,考查对数式比较大小,属于中档题.11.蒙特卡洛算法是以概率和统计的理论、方法为基础的一种计算方法,将所求解的问题同一定的概率模型相联系;用均匀投点实现统计模拟和抽样,以获得问题的近似解,故又称统计模拟法或统计实验法.现向一边长为2a 的正方形模型内均匀投点,落入阴影部分的概率为p ,则圆周率π≈( )A .42p +B .41p +C .64p -D .43p +【答案】A 【解析】 【分析】计算出黑色部分的面积与总面积的比,即可得解. 【详解】由2222244S a a p S a ππ--===阴正,∴42p π=+. 故选:A 【点睛】本题考查了面积型几何概型的概率的计算,属于基础题.12.框图与程序是解决数学问题的重要手段,实际生活中的一些问题在抽象为数学模型之后,可以制作框图,编写程序,得到解决,例如,为了计算一组数据的方差,设计了如图所示的程序框图,其中输入115x =,216x =,318x =,420x =,522x =,624x =,725x =,则图中空白框中应填入( )A .6i >,7S S = B .6i 7S S =C .6i >,7S S =D .6i ,7S S =【答案】A 【解析】 【分析】依题意问题是()()()22212712020207S x x x ⎡⎤=-+-+⋯+-⎣⎦,然后按直到型验证即可. 【详解】根据题意为了计算7个数的方差,即输出的()()()22212712020207S x x x ⎡⎤=-+-+⋯+-⎣⎦, 观察程序框图可知,应填入6i >,7SS =, 故选:A. 【点睛】本题考查算法与程序框图,考查推理论证能力以及转化与化归思想,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
山东省滨州市2021届高三数学三模考试试题2021.6本试卷共6页,共22小题,满分150分,考试用时120分钟。
注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上,并将考生号条形码粘贴在答题卡上的指定位置。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}41,,21,M x x n n Z N x x n n Z ==+∈==+∈,则 A .M N ⊆C. N M ⊆C .M ∈ND .N ∈M2.函数ln y x =的图象在点x e = (e 为自然对数的底数)处的切线方程为 A .10x ey e +-+= B. 10x ey e -+-= C .0x ey +=D .0x ey -=3.已知x R ∈,当复数()3z x i =+-的模长最小时,z 的虚部为AB .2C .2-D. 2i -4.已知,m n 为两条不同的直线,,,αβγ为三个不同的平面,则下列命题正确的是 A.若//,//,//m n m n αα则B..若,=m m αβγβαγβ⊥⊥⋂⊥,且,则C.若,,//,//,//m n m n ααββαβ⊂⊂则D. 若,//,m n m n αβαβ⊥⊥⊥,则 5.已知随机变量X 服从正态分布N(0,1),如果P(X ≤1)=0.8413,则()10P X -<≤= A .0.3413B .0.6826C .0.1587D .0.07946.分形理论是当今世界十分风靡和活跃的新理论、新学科.其中.把部分与整体以某种方式相似的形体称为分形.分形是一种具有自相似特性的现象.图象或者物理过程.标准的自相似分形是数学上的抽象,迭代生成无限精细的结构.也就是说,在分形中,每一组成部分都在特征上和整体相似,只仅仅是变小了一些而已.谢尔宾斯基三角形就是一种典型的分形,是由波兰数学家谢尔宾斯基在1915年提出的,其构造方法如下:取一个实心的等边三角形(如图1),沿三边的中点连线,将它分成四个小三角形,挖去中间的那一个小三角形(如图2),对其余三个小三角形重复上述过程(如图3).若图1(阴影部分)的面积为1,则图4(阴影部分)的面积为A.9 16B.419C.2764D.8277.已知抛物线()222419C y x E x y=-+=:与圆:相交于A,B两点,点M为劣弧AB上不同A,B的一个动点,平行于x轴的直线MN交抛物线于点N,则MNE∆的周长的取值范围为A.(3,5) B.(5,7) C.(6,8) D.(6,8]8.已知点O是ABC∆内一点,且满足420,7AOBABCSOA OB mOCS∆∆++==,则实数m的值为A.4-B.2- C. 2 D.4二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分.部分选对的得3分,有选错的得0分.9.2021年3月12日,国务院新闻办公室发布会重点介绍了改革开放40年,特别是党的十八大以来我国脱贫攻坚、精准扶贫取得的显著成绩,这些成绩为全面脱贫初步建成小康社会奠定了坚实的基础.下图是统计局公布的2010年~2021年年底的贫困人口和贫困发生率统计表.则下面结论正确的是A. 2010年~2021年十年间脱贫人口逐年减少,贫困发生率逐年下降B.2012年~2021年连续八年每年减贫超过1000万,且2021年贫困发生率最低C .2010年~2021年十年间超过1.65亿人脱贫,其中202X 年贫困发生率低于6%D .根据图中趋势线可以预测,到2021年底我国将实现全面脱贫【年底贫困人口的线性回归方程为1609.915768y x =-+(其中2009x =-年份),贫困发生率的线性回归方程为 1.672916.348y x =-+(其中2009x =-年份)】 10.已知曲线123sin ,:3sin 24C y x C y x π⎛⎫==+ ⎪⎝⎭:,则下面结论正确的是 A .把1C 上各点的横坐标变为原来的12倍,纵坐标不变,再把得到的曲线向左平移8π个单位长度,得到曲线2CB .把1C 上各点的横坐标变为原来的12倍,纵坐标不变,再把得到的曲线向左平移4π个单位长度,得到曲线2C C .把1C 向左平移4π个单位长度,再把得到的曲线上各点的横坐标变为原来的12倍.纵坐标不变,得到曲线2C D.把1C 向左平移8π个单位长度,再把得到的曲线上各点的横坐标变为原来的12倍,纵坐标不变,得到曲线2C11.已知曲线22:22C x y x y +=+,则曲线C A .关于x 轴对称 B .关于y 轴对称C .关于原点对称D.所围成图形的面积为84π+12.已知函数()x xf x e e x -=++.则下面结论正确的是A .()f x 是奇函数B .()f x 在[)0,+∞上为增函数C .若0x ≠,则212f x e x ⎛⎫+>+ ⎪⎝⎭D .若()()11f x f -<-,则0x <<2三、填空题:本题共4小题,每小题5分,共20分.13.()10212x x x ⎛⎫+- ⎪⎝⎭的展开式中,6x 的系数为__________.14.已知(),,0,,sin sin sin ,cos cos cos cos 2παβγαγββγααβ⎛⎫∈+=+=-= ⎪⎝⎭,则 ________,αβ-=________.(本小题第一空2分,第二空3分)15.已知P ,A ,B ,C 是球O 的球面上的四个点,PA ⊥平面,26,ABC PA BC ==AB AC ⊥,则球O 的表面积为__________.16.已知函数()()()221,412x x x f x h x a a x -+==->-.若[)123,,x x ∀∈+∞∃∈[)3,+∞,使得()()12f x h x =,则实数a 的最大值为__________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)如图,半圆O 的直径AB=2,点C 在AB 的延长线上,BC=1,点P 为半圆上异于A ,B 两点的一个动点,以点P 为直角顶点作等腰直角△PCD ,且点D 与圆心O 分布在PC 的两侧,设PAC θ∠=.(1)把线段PC 的长表示为θ的函数; (2)求四边形ACDP 面积的最大值. 18.(12分)在下面的数表中,各行中的致从左到右依次成公差为正数的等差数列,各列中的数从上到下依次成公比为正数的等比数列,且公比都相等,(),n m a 表示第n 行,第m 列的数.已知()()()1,12,23,31,4,12a a a ===.(1)求数列(){},2n a 的通项公式;(2)设()()2,2,211log ,n n n n n n ba c ab b +==+,求数列{}nc 的前n 项和n S .19.(12分)在如图所示的圆柱12O O 中,AB 为圆1O 的直径,,C D AB 是的两个三等分点,EA ,FC ,GB 都是圆柱12O O 的母线. (1)求证:1//FO 平面ADE ;(2)设BC=1,已知直线AF 与平面ACB 所成的角为30°,求二面角A —FB —C 的余弦值. 20.(12分)在平面直角坐标系xOy 中, ①已知点()3,0Q,直线:23l x =,动点P 满足到点Q 的距离与到直线l 的距离之比为22. ②已知点()3,0,H G -是圆22:23210E x y x +--=上一个动点,线段HG 的垂直平分线交GE 于P .③点,S T 分别在x 轴,y 轴上运动,且3ST =,动点P 满足6333OP OS OT =+. (1)在①,②,③这三个条件中任选一个,求动点P 的轨迹C 的方程; (注:如果选择多个条件分别解答,按第一个解答计分)(2)设圆22:2O x y +=上任意一点A 处的切线交轨迹C 于M ,N 两点,试判断以MN 为直径的圆是否过定点?若过定点,求出该定点坐标.若不过定点,请说明理由. 21.(12分)近年来,我国大力发展新能源汽车工业,新能源汽车(含电动汽车)销量已跃居全球首位.某电动汽车厂新开发了一款电动汽车.并对该电动汽车的电池使用情况进行了测试,其中剩余电量y 与行驶时问x (单位:小时)的测试数据如下表:(1)根据电池放电的特点,剩余电量y 与行驶时间x 之间满足经验关系式:bxy ae =,通过散点图可以发现y 与x 之间具有相关性.设ln y ω=,利用表格中的前8组数据求相关系数r ,并判断是否有99%的把握认为x 与ω之间具有线性相关关系;(当相关系数r 满足0.789r >时,则认为有99%的把握认为两个变量具有线性相关关系)(2)利用x ω与的相关性及表格中前8组数据求出y x 与之间的回归方程;(结果保留两位小数) (3)如果剩余电量不足0.8,电池就需要充电.从表格中的10组数据中随机选出8组,设X 表示需要充电的数据组数,求X 的分布列及数学期望. 附:1.176.48 2.45 1.30 3.22e ≈≈≈≈,.表格中前8组数据的一些相关量:()()88888221111136,11.68, 2.18,42, 3.61ii i i i i i i i i xy x xy yω========-=-=∑∑∑∑∑,()()()()()88821111.70,11.83,8.35ii iiii i i x xy y x x ωωωω===-=--=---=-∑∑∑,相关公式:对于样本()(),1,2,3,,i i u i n υ=⋅⋅⋅,其回归直线u b a υ=+的斜率和戗距的最小二乘估计公式分别为:()()()121,nii i nii u ub a u bυυυυυ==--==--∑∑,相关系数()()niiu u r υυ--=∑22.(12分) 已知函数()()xf x ex a =+,其中e 是自然对数的底数,a R ∈.(1)求函数()f x 的单调区间;(2)设()()2g x f x a x =--,讨论函数()g x 零点的个数,并说明理由.高三数学试题参考答案2021.6一、单项选择题:本题共8小题,每小题5分,共40分. 1.A 2.D 3.C 4.B 5.A 6.C 7.C 8.D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求。