关于油气烃类相态课件
第二讲 烃类流体相态(相态特征和数学模型)
yiV xi L zi
yi yiV (1 V ) zi Ki
对此方程进行整理
气相组成方程:
zi ki yi 1 k i 1 V
气相物料方程:
(3-11)
y
i 1
n
i
i 1
n
zi ki 1 1 ki 1 V
(3-12)
2、液相物料方程
液相组成方程: x
温度T
多组分体系P-T相图 特点:蒸汽压 曲线分别为两 条曲线,泡点 线 AC 和 露 点 线 BC , 在 泡 点 线 和露点线之间 的区域形成气、 液两相共存状 态。
Pm
C
液
气
气液两相区
Tm
A
B
温度T
Ⅰ. 单组分体系的临界点表示体系气液两相共存的最高点 ;而对于烃类多组分体系,临界点在相图形态上则表现为 泡点线和露点线的交点。 临界凝析温度(Tm)代替了单组分体系的临界温度而 成了两相共存的最高温度 临界凝析压力(Pm)代替了单组分体系的临界压力而
yi Ki xi
ቤተ መጻሕፍቲ ባይዱ
f il il p f il 1 xi xi Ki Ki f ig 1 yi yi
Ki
ig p
f ig
(3-18)
逸度、逸度系数的确定 气相逸度:
p RT RT ln( ) dVg RT ln Z g Vg Z yi P ig Vg ,T , Zig Vg fig
两相区 D
F
Pc: 临界温度下气体 液化 所需的最小压 力。 特点:等温相变发生 在恒定压力状态
T<Tc
体积V
多组分体系P-V关系
油层物理1-3第三节油气藏烃类的相态课件
v 露点压力(dew point pressure) . 在温度一定的情况下,开始从气相中凝结出第一滴液滴的压力。
v 临界点(critical point) . 在临界状态下,共存的气、液相所有内涵性质相等。
v 内涵性质(intensive property) . 与物质的数量无关的性质,如粘度、密度、压缩性等等。
8
8
一、油藏烃类的相态表示方法
(2)相态的表示方法 v相态——相平衡态(phase equilibrium state); v相态研究——指体系相平衡状态随组成、温度、压力
等状态变量的改变而发生变化的有关研究。
→直观的相态研究和表示方法:相图。 v相图(phase diagram):表示相平衡态与 Nhomakorabea系组成、温
12
12
一、油藏烃类的相态表示方法
(3)三角相图 (三元或拟三元相图) (triangular/ternary/ pseudo-ternary)
主要用于研究地层条件下注气混相 驱和非混相驱提高原油采收率。
(gas injection注气)
(miscible flooding混相驱) (immiscible flooding非混相驱)
(正常相变) ; 液相:40→30→20→10→0%。 ➢ E→F降压:单一气相
27
27
三、单、双、多组分体系相态特征
结果:气相体系等温降压穿过反凝析区时,体系中液相含量 ↑
u 等温反凝析(isothermal retrograde condensation) 等温反凝析:在温度不变的条件下,随压力降低而从气相中凝析出液体 的现象。
油气的相态
AC线,液相区与两相区的分界线 BC线,气相区与两相区的分界线 虚线,线上的液量的含量相等
AC线以上 BC线右下方 油藏 气藏
四区
气液两相区 ACB线包围的区域 反常凝析区 PCT线包围的阴影部分
泡点
油气藏 凝析气藏
AC线上的点,也称饱和压力点
五点
露点 BC线上的点 临界点 C点,泡点线与露点线的交点 临界凝析压力点 P点,两相共存的最高压力点 临界凝析温度点 T点,两相共存的最高温度点
油气的相态
相: 某一体系或系统中具有相同成分,相同物理、
化学性质的均匀物质部分。
油藏烃类一般有气、液、固三种相态
相态:物质在一定条件(温度和压力)下所处的
状态。
相图
油藏烃类的相态通常用P-T图研究。
◆ ◆ ◆ ◆
三线 四区 五点
各类 油气藏 的开发 特点多组分烃类系统相图线泡点线 露点线 等液相线
各类油气藏的开发特点
1点-油藏 压力下降 液态 2点-饱和油藏 3点-气藏 4点-凝析气藏 气态 压力下降 气液两相 压力下降 气态
压力下降 泡点线(饱和压力) 液态 气态 压力下降 压力稍微下降 气液两相 气态 气液两相
油藏烃类一般有气液固三种相态相图多组分烃类系统相图四区五点各类油气藏的开发特点三线四区液相区气相区反常凝析区泡点露点临界点临界凝析压力点临界凝析温度点气液两相区pct线包围的阴影部分ac线上的点也称饱和压力点bc线上的点c点泡点线与露点线的交点p点两相共存的最高压力点t点两相共存的最高温度点三线泡点线露点线等液相线ac线液相区与两相区的分界线bc线气相区与两相区的分界线虚线线上的液量的含量相等ac线以上bc线右下方acb线包围的区域五点油藏气藏油气藏凝析气藏各类油气藏的开发特点1点油藏液态压力下降泡点线饱和压力压力稍微下降压力下降气液两相4点凝析气藏压力下降气态气液两相压力下降气态2点饱和油藏液态气液两相气态3点气藏气态压力下降
油层物理第3章油气藏烃类的相态和汽液平衡
(3)两组分中只要有一个组分 占绝对优势,相图的两相区域就 变得越窄。
双组分体系的P-V相图
1.3 多组分系统的相态特征
1、多组分烃类相图
相包络线aCpCCTb把两
相区和单相区分开, 气相区
包络线内是两相区,
包络线外所有流体都
(2)可以划分为C1,C2~6,C7+三个组分,其中将C2H6至C6H14之间所 有分子视为一个中间组分C2~6,而将C7Hl6以上的所有成分视为液烃组分 C7+——混相驱
拟组分划分的原则:
(1)是根据成分的含量,含量高的成分可单独列为一个组分,而若干 个微量成分合并为一个组分。
(2)是根据研究的目的和需要划分。
变化过程: 从地下到地面的采出过程中,状态变化也很复杂,例如
原油中溶解的天然气会从原油中分离,而凝析气则会发生由气 态转变为液态的反凝析现象。
油藏开发前烃类混合物究竟处于什么相态?为什么开采 过程中会发生一系列相态的变化呢?烃类的相态变化的规律是 什么?
内因是事物变化的根据:油藏烃类的化学组成的复杂 性是相态转化的内因。
由D至E随压力降低体系液相 蒸发是正常现象,而由B到D随 压力降低凝析量增加则为反常 凝析现象(也称为逆行凝析现 象)。
B点称为上露点(又称为第 二露点),E点称为下露点(又 称为第一露点),压力低于E时, 凝析液将全部蒸发为汽相。
同理可得出不同温度下的 最大凝析液量点,将此连接为 CDCTBC区即为反凝析区。
(气相区)
-100
Tc
-50
0
50
温度,C
100
150
图3—3 乙烷的P-T 相图
油气的相态
相: 某一体系或系统中具有相同成分,相同物理、
化学性质的均匀物质部分。
油藏烃类一般有气、液、固三种相态
相态:物质在一定条件(温度和压力)下所处的
状态。
相图
油藏烃类的相态通常用P-T图研究。
◆ ◆ ◆ ◆
三线 四区 五点
各类 油气藏 的开发 特点
多组分烃类系统相图
三线
泡点线 露点线 等液相线
液相区 气相区
AC线,液相区与两相区的分界线 BC线,气相区与两相区的分界线 虚线,线上的液量的含量相等
AC线以上 BC线右下方 油藏 气藏
四区
气液两相区 ACB线包围的区域 反常凝析区 PCT线包围的阴影部分
Hale Waihona Puke 泡点油气藏 凝析气藏AC线上的点,也称饱和压力点
五点
露点 BC线上的点 临界点 C点,泡点线与露点线的交点 临界凝析压力点 P点,两相共存的最高压力点 临界凝析温度点 T点,两相共存的最高温度点
各类油气藏的开发特点
1点-油藏 压力下降 液态 2点-饱和油藏 3点-气藏 4点-凝析气藏 气态 压力下降 气液两相 压力下降 气态
压力下降 泡点线(饱和压力) 液态 气态 压力下降 压力稍微下降 气液两相 气态 气液两相
第03章-油气烃类的相态和气液平衡
油层物理学Petrophysics第三章油气藏烃类的相态和气液平衡第三章油气藏烃类的相态和气液平衡优点:详细直观缺点:绘制和应用不方便p-V 相图单组分体系的等温相变发生在恒定压力状态;油气烃类多组分体系的等温相变则伴随着压力的改变。
凝析过程(D—>B )压力增加,而蒸发过程(减小。
气一、相态及其表示法p-T 相图✓p—T 压曲线构成✓体系的泡点线和露点线相重合✓在一定温度条件下(T ≤Tc 转变是在等压下完成的。
-100-50050100150温度,C液相区蒸汽区。
A超临界区(气相区)C TcPc 。
B ED 。
F 。
乙烷的p -T 相图一、相态及其表示法位置 组分1 % 组分2 % 组分3 % M 点 M 点 M 点0 70 20100 0 500 30 30露点线临界点露点1、单组分体系开始从液相中分离出第一批气泡时的压力、温度开始从气相中凝结出第一批液滴时的压力、温度泡点露点临界点气液两相共存的最高压力、最高温度点三点液相中分离出气泡时压力、温度点组成的线气相中凝结出液珠时压力、温度点组成的线泡点线露点线饱和蒸汽压线气液两相共存的压力、温度点组成的线一线液相区气液两相区气相区AC 线以上AC 线右下方AC 线上的点三区一、相态及其表示法一、相态及其表示法2、双组分体系的相态特征临界凝析压力点泡点线地下油气藏是复杂的多组分烃类体系,在压力、温度一定时,它的相态特征取决于系统的组成和每一组分的性质。
因此,对不同油气藏不同烃类体系,其相图也各不相同。
已知油气藏温度及压力时,就可用相图临界点与油气藏原始条件点的相对位置关系来判断油气藏类型。
三、油气藏(多组分体系)的相态特征未饱和油藏饱和油藏凝析气藏过饱和油藏反常凝析区等液量aC线,液相区与两相区的分界线bC线,气相区与两相区的分界线虚线,线上的液相含量相等泡点线露点线等液量线CDTBC线包围的阴影部分aC线以上bC线右下方aCb线包围的区域液相区反常凝析区气液两相区气相区bC线上的点C点,泡点线与露点线的交点P点,两相共存的最高压力点T点,两相共存的最高温度点泡点露点临界点临界凝析压力点临界凝析温度点第二露点气体在等温降压过程中出现的露点当油藏压力降低至泡点压力之后,有大量气体从油中分离出来;分离器条件,气油比小于1800m 3/m 3,原油相对密度小于0.78,产出的油呈深色; 等液量线较稀疏。
第2章:1 储层流体的物理特性(油气藏烃类的相态特征)共32页
形态越细长, 两相区越小
组分性质相差越大 (如分子大小)
两相区越大
临界点位置越 高
4.多组分烃类系统的相图
实际地下油气藏是复杂的多组分烃类体系。
拟组分:为了便于研究,
常把几种化学成分合并为 一种拟组分。例如C2-6视为 轻烃组分(或中间组分) , C7+视为液烃组分。
泡点线(饱和压力线);
湿气相态图
干气相态图
湿气:井口流出物中,在标准状态下C5以上重烃液体含量超过 13.5cm3/m3。
3)凝析气藏相图
反凝析气的相态图
C点位于临界凝析压 力点的左下侧,更加靠 近临界凝析压力点。
环形区较窄;等液量 线较密集。
气藏地层温度(A点) 介于临界温度与临界凝 析温度之间。从B点到 D点随着气藏压力降低, 液态烃析出达到最大 (反凝析过程)。
4)轻质油藏(高收缩油藏)相图
就油气藏烃类 而言,一般是 烷烃、环烷烃 和芳香烃。
各相态的化学组成(常温、常压)
相态
化学组成 主要成分
气态 液态 固态
烷烃C1~C4 烷烃C5~C16 烷烃C16以上
天然气 石油 石腊
实际上,石油、天然气、石蜡的化学组成,要找出明确 的界线很困难。
2)油气藏烃类体系相态的控制因素
内因:烃类体系的化学组成 外因:烃类体系所处的温度、压力环境
3)相图
相(phase):某一体系中的均质部分。一个相中可以 含有多种组分。(如:地层油和气为不同的两相)
相态方程:对于一个组成固定的体系,压力、温度和 比容(P.T.V)都是该体系相状态的函数。特定体系的 状态方程为 F(P.V.T)=0
相图:将状态方程以图示法表示就是相图。
第三章 烃类流体相态
盐 水
8、逸度
●校正了的压力,它是人们在实现由热力学变量(化学位)向物理测量变量转换的一种概念工具。 它直接将数学上的抽象量与实际的可以测量的普通强度量相联系起来。
F等温化学位 F
fi = φi yiP
o µi − µi = RTℓn( fi fio )
盐 水
F逸度系数 φ i可由状态方程计算(对理想气体混合物其值位1.0)
2、相平衡常数(平衡分配比)
K
i
=
yi xi
= f
(P, T ,
zi
)
定义:平衡时,组分i在气相和液相中的摩尔分数之比。 公式: 计算方法: 收敛压力法 状态方程法
F等温化学位 F
液/xi
3、相平衡计算模型的原理
相平衡
相平衡时,某组分在各相中的化学位相等 组分i的气相逸度应与液相逸度相等
fi = φi yiP
‹#›
P-T相
1
3
的
P Pm C 2
两 相 共 两相共存的最高压力 存 的 最 高 压 力
压 压 的
3
相 压
的 压 的 的
4 5 Tm T
的
气藏类型-相图法: 干气藏: TReseroir> Tm 湿气藏: TReservoir > Tm ,但地面分离条件落在 两相区 凝析气藏: Tc<TReservoir<Tm, ‹#›
第三章 烃类流体相态 (概论)
PHB4 P -T图
气藏类型:
干气藏 湿气藏 凝析气藏
P(MPa)
ห้องสมุดไป่ตู้
35 30 25 20 15 10 5 0 100 200 300 T(K) 400 500 600
重要性:
油气烃类相态
第一节 油气藏烃类的相态特征
原油和天然气都是由多种烃类和非烃类物质 组成的混合物,但二者所存在的状态不同
本节的主要内容
一、相态及其表示法 二、单、双组分体系的相态特征 三、多组分系统的相态特征 四、典型的油气藏相图特征
本节内容要解决的三个问题
相态到底是什么? 油气藏相态到底怎么样变化?
油气藏工程中如何应用?
一、相态及其表示法
u露点压力(dew point pressure)
在温度一定的情况下,开始从气相中凝结出第 一滴液滴的压力
u临界点(critical point)
在临界状态下,共存的气、液相所有内涵性质
相等
u内涵性质(intensive property)
与物质的数量无关的性质,如粘度、密度、压 缩性等等
二、单、双组分体系的相态特征
(2)相态特征
静态特征
临界点C
两相共存的最高T、P
气、液相无分界面
气、液性质差别消失
二、单、双组分体系的相态特征
饱和蒸汽压曲线 由不同温度下组分的饱和 蒸汽压连成的曲线
体系的相分界线 气液两相共存线
二、单、双组分体系的相态特征
动态特征
u 图中任一点代表单组分体系的一 个相平衡状态(相态) u 改变体系T或P,相态改变
临界点 临界凝析温度点 泡点线 露点线 等液量线 气相区
液相区 两相共存区
二、单、双组分体系的相态特征
双组分体系的相态特点 1) 相图是一开口的
环形曲线
2) 临界点不再是两 相 共存的最高压力 和温度点, 而是泡点
线和露点线的交汇点 3) 两组分的分配比例 越接近,两相区面 积越大 4) 任一双组分混合物的两相区都位于两纯组分的饱 和蒸气压曲线之间
油层物理1-3 第三节 油气藏烃类的相态
20
任何两组分烃体系相图的特点
①临界点: a.②两相区: 混合物的临界压力都高于各组分的临界压力,混合物的临界温
b.随着混合物中较重组分比例的增加,临界点向右迁移(即向 度介于两纯组分的临界温度之间。 c. 混合物中哪一组分的含量占优势,泡点线或露点线就靠近 d. 两组分性质差别越大,则两相区面积越大。 两组分的分配比例愈接近,两相区的面积愈大;两组分中 重组分饱和蒸汽压方向偏移)。 a.b. 所有混合物的两相区都位于两纯组分的饱和蒸汽压线之间; 哪一组分的饱和蒸汽压线; 只要有一个组分占绝对优势,相图的面积就变得狭窄;
两相区 泡点线与露点线所行区(pC≤p≤pCp) CPCHCP炼油中发生 等温逆行区★ (TC≤T≤TCT)。 CTCDCT油田开发中发生
B
25
三、单、双、多组分体系相态特征
(2)相态特征 基本特征
与双组分体系同。
等温反凝析相变特征★ (isothermal retrograde condensation) 设体系原始态为A; 对其等温降压A→F A→B(上露点)降压: 相变:气相→开始出现液相;
27
三、单、双、多组分体系相态特征
结果:气相体系等温降压穿过反凝析区时,体系中液相含量↑
等温反凝析(isothermal retrograde condensation) 等温反凝析:在温度不变的条件下,随压力降低而从气相中凝析出液体 的现象。 油气藏开发——等温反凝析——凝析气藏;
研究意义:指导凝析气藏开发,减少凝析油在地层中的损失。
体系中构成某物质各组分所占的比例。 油
C3、C7、C20 10%、20%、70%
定量表示体系或某一相中的组分构成
情况。 相平衡(phase equilibrium)
第二讲 烃类流体相态(相态特征和数学模型)
F
Pc: 临界温度下气体 液化 所需的最小压 力。 特点:等温相变发生 在恒定压力状态
T<Tc
体积V
多组分体系P-V关系
特点:等温相变伴随着压力的改变
凝析过程(D→B)压力增加,蒸发 过程(B→D)压力减小 原因:混合体系中各纯物质的蒸气 压大小及凝析和蒸发难易程度不同。 从D到B气液两相的组成不断变化, 液相中易挥发组分愈来愈多。在露 点D,气相几乎占了体系的全组成, 只有极少的液滴,主要是难挥发的 组分;而在泡点B,液体几乎占了体 系的全组成,只有极少气泡,是易 挥发的组分。因此,在D→B的气相 转成液相过程中,要使更多的气相 转换成液相,就需提高压力。
一、 有关的物理化学概念
1、体系
体系是指一定范围内一种或几种定量物质构成的整 体。体系可分为单组分和多组分体系。
油
C3、C7、C20
水
H2O
水
H2O
多组分体系
单组分体系
2、相: 体系内部物理性质和化学性质完全均匀的一部分称为“相”
通常有气、液、固三相。相与相之间有明显的界面。对一 个相不要求每一部分都必须连续存在。
成了两相共存的最高压力。
Ⅱ.在TC≤T≤Tm或PA≤P≤Pm范围内存在着逆行凝析和逆行蒸发 现象。归纳起来有四种逆行现象。
液
3
Pm
1.等温逆行凝析 1 C
气
4
2.等温逆行蒸发 3.等压逆行凝析
气液两相区 2 A B 温度T
Tm
4.等压逆行蒸发
凝析气藏的开发过程(等温逆行凝析)
液
Pf 气
C
1 2
1、单相开采 2-3、两相区 2、 反凝析区(凝析)
流体相平衡模型主要由三部分构成:
第2章:1储层流体的物理特性油气藏烃类的相态特征ppt课件
2〕油气藏烃类体系相态的控制因素
内因:烃类体系的化学组成 外因:烃类体系所处的温度、压力环境
3〕相图
相〔phase):某一体系中的均质部分。一个相中可以 含有多种组分。(如:地层油和气为不同的两相)
相态方程:对于一个组成固定的体系,压力、温度和 比容〔P.T.V〕都是该体系相状态的函数。特定体系的 状态方程为
等温逆行区〔等温反凝析区)
逆行就是逆道而行,与正常相反。
两个逆行区: CBCTDC为 等温逆行区,
CGCpHC为 等压逆行区。
?
A B D 从B到D,随压力降低,体 系中液量含量由0%增加 到40%。反常现象〔逆行 现象)
D E F
从D到E,随压力降低,体 系中液量含量由40% 降低 到0% 。正常现象
3
组分烃所处的相态
3. 双组分烃类体系的相图
/MPa
P-V相图:戊烷-正庚烷(占52%)
3 2 1
某一温度下,较缓段 为汽相区,较陡段为液 相区,二者之间为两相 共同区。 在P—V图中,两相共 存区为 一条斜线。 Pa ≠ Pb某一温度下的露 点压力不等于泡点压力 。
双〔多〕组分烃类体系 P—T相图及测定原理
大致 相同
正中间 两相区最大
相差 越大
与含量高的组 分的饱和蒸汽
线越靠近
形态越细长, 两相区越小
组分性质相差越大 (如分子大小)
两相区越大
临界点位置越 高
4.多组分烃类系统的相图
实际地下油气藏是复杂的多组分烃类体系。
拟组分:为了便于研究 ,常把几种化学成分合 并为一种拟组分。例如 C2-6视为轻烃组分〔或 中间组分), C7+视为 液烃组分。 泡点线〔饱和压力线) ;aCpC,液相区和两相 区的分界线。 露点线;CCTb,气相区 和两相区的分界线。 临界点: C点,泡点线和
第三章 油气烃类相态
二、单、双组分体系的相态特征
(2)相态特征 静态特征
临界点C 两相共存的最高T、P 气、液相无分界面 气、液性质差别消失
二、单、双组分体系的相态特征
饱和蒸汽压曲线 由不同温度下组分的饱和
蒸汽压连成的曲线
体系的相分界线 气液两相共存线
二、单、双组分体系的相态特征
动态特征
u图中任一点代表单组分体系的一 个相平衡状态(相态)
第一节 油气藏烃类的相态特征
原油和天然气都是由多种烃类和非烃类物质 组成的混合物,但二者所存在的状态不同
本节的主要内容 一、相态及其表示法 二、单、双组分体系的相态特征 三、多组分系统的相态特征 四、典型的油气藏相图特征
本节内容要解决的三个问题
相态到底是什么? 油气藏相态到底怎么样变化? 油气藏工程中如何应用?
2. 液体的等液量线比较 稀疏,且靠近泡点线 地靠近露点线。
特征:高收缩原油的地面气油比相对较高,一般在 90m3/m3~1500m3/m3。地面原油相对密度一般小于0.87
四、典型的油气藏相图特征
(3) 湿气相图
定义:指标准状态下1m3井口流出物中,C5以上重烃含量 高于13.5cm3的天然气
气相区 两相区
一、相态及其表示法
2. 体系相态的表示方法
• 对于一个组成不变的体系,状态参数压力、温度 和比容之间的关系用状态方程表示 F(P, V, T)=0
• 状态方程是体系相态的数学描述方法 • 将状态方程用图示法表示就是相态图,简称相图
3. 相图类型
立体相图:三维相图 平面相图:二维相图 三角相图:三元相图
甲烷与其它烷烃混合物的临界点轨 迹曲线
三、多组分体系的相态特征★
多组分体系烃类相图测定原理图
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、相态及其表示法
2. 体系相态的表示方法
• 对于一个组成不变的体系,状态参数压力、温度 和比容之间的关系用状态方程表示 F(P, V, T)=0
• 状态方程是体系相态的数学描述方法 • 将状态方程用图示法表示就是相态图,简称相图
3. 相图类型
立体相图:三维相图 平面相图:二维相图 三角相图:三元相图
关于油气烃类相态
第三章 油气藏烃类的相态和汽液平衡
气-水两相的相态变化(PVT筒中)
第三章 油气藏烃类的相态和汽液平衡
气-油-水三相的相态变化(PVT筒中)
第三章 油气藏烃类的相态和汽液平衡
凝析气的相态变化(PVT筒中)
第三章 油气藏烃类的相态和汽液平衡
第一节 油气藏烃类的相态特征 第二节 汽-液相平衡 第三节 油气体系中气体的溶解与分离
泡点(bubble point): 是指温度(或压力) 一定时,开始从液相 中分离出第一批气泡 时的压力
P2
P2=P泡 P3(液)
等压汽化
二、单、双组分体系的相态特征
(1) P-T相图特征
① 一线:饱和蒸气压线(由单组分物 质的泡点和露点共同构成的轨迹线) ② 三区:液相区,气相区,两相区 ③ 临界点:单组分物质体系的临界点, 该体系两相共存的最高压力和最高温 度点。
二、单、双组分体系的相态特征
双组分体系的相态特点
5)双组分混合物的 临界压力一般都高 于各组分的临界压 力;混合物的临界 温度都居于两纯组 分的临界温度之间
6)两相区、临界点向占优势的组分的饱和蒸气压曲线迁移
பைடு நூலகம்
二、单、双组分体系的相态特征
双组分体系的相态特点
7) 两组分的分子量差别 越大, 临界点轨迹线所包 面积越大, 两相区最高 压力越高
一、相态及其表示法
3) 三角相图(三元或拟三元相图)
研究P、T一定,组成变化的体系相态变化
二、单、双组分体系的相态特征
1、单组分体系的相态特征 一个独立组分构成的物系或系统
封闭体系,内有气体
露点(dew point):是指温 度一定时,开始从气相中凝 结出第一批液滴时的压力
P1(气) P2=P露 P2 等压液化
2. 双组分体系的相态特征
临界点 临界凝析温度点
泡点线 露点线 等液量线 气相区 液相区 两相共存区
二、单、双组分体系的相态特征
双组分体系的相态特点
1) 相图是一开口的 环形曲线
2) 临界点不再是两 相 共存的最高压力 和温度点, 而是泡点 线和露点线的交汇点 3) 两组分的分配比例
越接近,两相区面 积越大 4) 任一双组分混合物的两相区都位于两纯组分的饱 和蒸气压曲线之间
第一节 油气藏烃类的相态特征
原油和天然气都是由多种烃类和非烃类物质 组成的混合物,但二者所存在的状态不同
本节的主要内容 一、相态及其表示法 二、单、双组分体系的相态特征 三、多组分系统的相态特征 四、典型的油气藏相图特征
本节内容要解决的三个问题
相态到底是什么? 油气藏相态到底怎么样变化? 油气藏工程中如何应用?
一个气泡的压力
一、相态及其表示法
u露点压力(dew point pressure)
在温度一定的情况下,开始从气相中凝结出第 一滴液滴的压力
u临界点(critical point)
在临界状态下,共存的气、液相所有内涵性质 相等
u内涵性质(intensive property)
与物质的数量无关的性质,如粘度、密度、压 缩性等等
一、相态及其表示法
1. 基本概念
(1) 体系 人为划分出来用来研究的对象 (2) 相 指体系中具有相同成分,相同物理、化 学性质的均匀物质部分,相与相之间有 明显的界面 (3) 组分 指混合物体系中的各个成分
气 液
油 C3、C7、C20
10%、20%、70%
一、相态及其表示法
(4) 组成:
体系中所含组分以及各组分在总体 系中所占比例用来定量表示体系或 某一相中的组分构成情况
第一节 油气藏烃类的相态特征
本节目的 u明确烃类体系的相态表示方法 u单、双、多组分烃类体系的相图特征 u明确典型油气藏的相图变化趋势
第一节 油气藏烃类的相态特征
本节重点 u与相态相关的基本概念的理解 u单、双、多组分烃类体系相图的基本 特征及变化规律 u典型油气藏相图的变化趋势
本节难点 u凝析气藏反凝析现象的理解和分析
一、相态及其表示法
1) 立体相图
三维空间中描述P、V、T三个状态变量与相态变化关系的图形
描述油气藏平面区域上和纵 向上流体相态变化特征的分 布规律
详尽地表征各参数间的变化 关系
一、相态及其表示法
2) 平面相图
不同的平面相图用于描述不同的相态参数和相态特征
P—V关系图
P—T关系图
★P-T相图是油气相态研究中最常用的相图
(5)相平衡 P、T一定时,多相体系中任一组分
的A相分子进入B相的速度与B相 分子进入A相的速度相等时的状态
油 C3、C7、C20
10%、20%、70%
一、相态及其表示法
(6)饱和蒸汽压(vapor pressure)
P 蒸汽
在一个密闭抽空的容器里, 部分充有液体,容器温度 保持一定,处于气液相平
二、单、双组分体系的相态特征
(2)相态特征 静态特征
临界点C 两相共存的最高T、P 气、液相无分界面 气、液性质差别消失
二、单、双组分体系的相态特征
饱和蒸汽压曲线 由不同温度下组分的饱和
蒸汽压连成的曲线
体系的相分界线 气液两相共存线
二、单、双组分体系的相态特征
动态特征
u图中任一点代表单组分体系的一 个相平衡状态(相态)
液体
衡时气相所产生的压力称 为饱和蒸气压,体现为气
相分子对器壁的压力
一、相态及其表示法
u泡点(bubble point) 开始从液相中分离出第一个气泡的气液共存态 u露点(dew point) 开始从气相中凝结出第一滴液滴的气液共存态 u泡点压力(bubble point pressure) 在温度一定的情况下,开始从液相中分离出第
u改变体系T或P,相态改变 如T、P 变化穿越了相分界线, 则体系的相和相数将发生改变: 从单相→两相共存→另一种单相
二、单、双组分体系的相态特征
几种常见物质的饱和蒸气压线
分子越大,分子间作用力越强,其相同饱和蒸汽压下温度越高
随分子量的增加,曲线向右下方偏移
混相驱提高采收率常用:CO2和丙烷
二、单、双组分体系的相态特征