4.4桩基础沉降计算解析
桩筏基础沉降计算算例
桩筏基础沉降计算算例假设有一座桥梁需要建设,我们需要设计桥梁的基础沉降计算,以确保桥梁的稳定性和安全性。
首先,我们需要进行现场勘察和土壤试验,以获取有关该区域土壤的相关参数。
根据土壤参数的不同,可以选择不同的基础类型,如桩基础或桩筏基础。
在这个算例中,我们将使用桩筏基础。
假设该区域土壤为粉土。
根据土壤试验结果,我们得到土壤的重度γ=18kN/m³,饱和度S=70%。
此外,根据地质调查,我们发现该地区地下水位高度为1.5m。
在进行桩筏基础设计时,首先需要确定桩的长度和直径。
根据桥梁荷载和土壤参数,我们估计桩的长度为30m,直径为1m。
接下来,我们需要计算桩的侧阻力。
根据经验公式,侧阻力可以通过以下公式计算:Rs=ΣCi*Ai其中,Rs表示侧阻力,Ci表示桩身周围单位长度土壤对桩侧面的侧阻力系数,Ai表示单根桩身周围单位长度土壤对桩侧面的面积。
假设该区域土壤的侧阻力系数为60kPa,根据桩的直径,可以计算出桩侧面的面积为3.14平方米。
那么,侧阻力Rs=3.14*60=188.4kN/m。
接下来,我们需要计算桩的端承力。
根据经验公式,端承力可以通过以下公式计算:Rp = Ap * (Nc * qn + Ng * qg + Nd * γd * d)其中,Rp表示桩的端承力,Ap表示桩顶面积,Nc表示土壤的内摩擦角,qn表示正常压力,Ng表示水平压力系数,qg表示地下水压力,Nd表示地震作用系数,γd表示地震作用时的土壤重度,d表示桩的埋深。
最后,我们可以计算桩的总荷载,并通过以下公式计算基础的沉降量:P=Rp+Rsδ=P/(E*A)其中,P表示桩的总荷载,E表示土壤的弹性模量,A表示基础的截面面积,δ表示基础的沉降量。
根据上述算例,我们完成了桩筏基础的沉降计算。
通过设计合适的桩长度和直径,并计算出桩的侧阻力和端承力,我们可以预测基础的沉降量,以确保桥梁的稳定性和安全性。
这些计算结果可以为工程师和设计师提供有关桥梁基础设计的重要参考。
桥梁工程设计中桩基沉降问题解析
桥梁工程设计中桩基沉降问题解析摘要:近年来,我国的交通行业有了很大进展,桥梁工程建设越来越多。
为了方便运输的便利,很多地方都设建了公路桥梁,公路桥梁多处于无法进行普通构建的额路段上,是使运输化繁为简的建筑手段。
因此,如何保证公路桥梁的质量成为相关人员最关注的问题,而在公路桥梁施工过程中,桩基设计尤为重要,会影响到桥梁的整体质量。
本文就桥梁工程设计中桩基沉降问题进行研究,以供参考。
关键词:桥梁设计;桩基沉降;处理措施引言随着居民生活水平的日益提升与科技水平的不断进步,人们的出行方式发生了巨大变化,对道路桥梁要求明显提升。
我国需要注重公路桥梁等基础设施的建设工作,同时也对道路桥梁建设质量提出了更高的要求。
在公路桥梁建筑工程施工建设中,最常见的就是桩基施工技术。
桥梁桩基施工时,其受土质等因素的影响,如果应用浅基施工技术,则无法满足工程结构对地基强度与稳定性方面的需求,须考虑应用桩基施工技术来进行施工建设。
不同的工程有着不同的特征,不同项目桩基施工的作用也是不同的。
为显著提升公路桥梁的整体施工质量,要重点做好桥梁桩基础施工工作。
1桥梁工程桩基施工的概述桩基施工是桥梁工程中的基础,同时也是桥梁发挥自身功能的必备条件,因此,建设桩基往往是桥梁工程中的必备环节,但由于桩基的使用环境相对复杂,施工流程也呈现出专业化的特征,在施工建设的过程中常出现质量问题与安全问题,不利于保障桥梁的行驶安全。
近年来,随着我国产业经济的转型与发展,建筑产业的市场环境也出现了新的变化,大量建筑企业的出现使得现场竞争愈发激烈,而当前迅速增长基建需求也为建筑领域的发展带来了新的机遇。
通常来说,由于桥梁工程中桩基环节的施工建设难度相对较大,在进行合同签订时大多采用了工程承包合同的形式,由具备能力和资质的企业单独负责桩基施工,确保桩基施工的质量能够达到桥梁建设的需求。
在工程合同中,各方需明确标注出工程的开工日期、竣工期限、工程总量、工程造价以及工程进度等详细信息,为后续的施工建设活动和相关问题的处理提供参考。
浅谈桩基础沉降计算方法
浅谈桩基础沉降计算方法摘要:桩基础工程应用广泛,对桩基础的沉降计算研究一直是热点问题,本文介绍了常见的几种群桩沉降计算方法,弹性理论法、等代墩基法和等效分层总和法,就几种方法的计算原理和计算步骤做出简要介绍,希望对工程师有所借鉴。
桩基础一般是由桩和承台组成的基础形式,因具有较高的承载力,较好的抗震性能和稳定性,同时能够适应各种地质条件而在工业与民用建筑、桥梁工程、港口工程、船坞工程、边坡工程以及抗震工程中被广泛应用[1]。
1.群桩沉降计算方法桩基础的应用大都是以群桩的形式出现,例如独立建筑物的基础下面的桩以及墩基础等,通常都为群桩。
群桩与单桩的在竖向荷载的作用下的工作性能是有所区别的。
群桩效应在群桩沉降问题上表现得非常突出且相当重要,对于高承台的群桩而言,桩间应力之间的重叠效应改变了桩土之间的受力状态,虽然桩侧摩阻力会随着荷载的增大从桩顶开始逐渐向下发挥,但是群桩的沉降量要比单桩大得多,甚至有些群桩的沉降量是单桩的几十倍,而对于低承台型群桩而言,除了应力重叠的影响之外,承台与地基土之间的相互作用也使得群桩沉降的计算趋于复杂。
群桩沉降的计算方法有很多,根据他们的适用范围,可以归纳为以下几大类:弹性理论法、等代墩基法、等效作用分层总和法、原位测试估算法与经验法以及有限元法等。
1.1弹性理论法群桩沉降弹性理论分析与单桩沉降弹性理论分析的假定是基本相同的,弹性理论简化方法,即叠加法,叠加法[2]、[3]、[4]的主要内容:图1摩擦群桩的工作原理叠加法的计算原理可见图1,与摩擦单桩类似,对于有同样的m根桩的群桩,将每根单桩分成n个单元,每根桩每个单元的土位移方程为:(1-1)同样,桩端土的位移方程为:(1-2)式中:Iij,Iib分别为单元j 上的单位剪应力(τj)时以及桩端单位竖向应力(qb=1)基于每根单桩的荷载为未知量,所以求解上述m(n+1)个方程时还需假定与群桩性状有关的特殊条件。
一般情况下,最简单的两种情况为:(1)各单桩所承担得荷载相等,即为柔性承台桩基。
桩沉降计算(新桩基规范法)
桩基沉降计算
桩形状:圆形
桩直径d或边长b:0.70m
桩面积Ap:0.385m2
下承台底的平均附加压力F:270450KN
天然地基平均附加应力P0:601Kpa
地上层数32地下层数1
实际承台长度Lc:30m
实际承台宽度Bc:15m
承台总面积A:450.00m2
基础长宽比Lc/Bc: 2.00
总桩数n:70
桩长L:50m
桩距Sa: 3.00m
是否规则布桩?是附加应力σz:距径比Sa/d: 4.3自重应力0.2σc:
长径比L/d:71.4沉降计算长度Zn判断:短边布桩数nb:6
C0:0.063
C1: 1.811
C2:10.381
桩基等效沉降系数ψe:0.320
平均压缩模量Es:25.2Mpa
桩基沉降计算经验系数ψ:0.598
桩基中心点沉降量S:35.93mm
注:1、对于采用后注浆施工工艺的灌注桩,桩基沉降计算经验系数
应根据桩端持力土层类别,乘以0.7(砂、砾、卵石)~0.8(黏性土、粉土)折减系数;
2、饱和土中采用预制桩(不含复打、复压、引孔沉桩)时,
应根据桩距、土质、沉桩速率和顺序等因素,乘以1.3~1.8 挤土效应系数,
土的渗透性低,桩距小,桩数多,沉降速率快时取大值。
土层沉降计算表格
162.75Mpa
162.83Mpa
OK
(z。
桩基础沉降计算计算书
桩基础沉降计算书计算依据:1、《建筑地基处理技术规范》JGJ79-20122、《建筑地基基础设计规范》GB50007-20113、《建筑桩基技术规范》JGJ94-20084、《建筑施工计算手册》江正荣编著一、基本参数基础剖面图三、沉降计算1、基础底面附加应力计算考虑土的内摩擦角,基底截面计算长度:l= A0+2L×tanφ=4.2+2×1.2×tan(45)°=6.6m考虑土的内摩擦角,基底截面计算长度:b= B0+2L×tanφ=3.4+2×1.2×tan(45)°=5.8mP0=F/A+(γ0-γ)(d+L)=4500/(6.6×5.8)+(18.4-19.66)×(1.1 + 1.2)= 114.657 kN/m32、分层变形量计算z i(m) 基础中心处平均附加应力系数αi相邻基础影响αi总附加应力系数αi总z i×αi总z i×αi总-z i-1×αi-1总土的压缩模量E si(MPa)A iΔs iΣΔs i土的自重应力σc附加应力系数a附加应力σz0.4 4×0.2498 2×3×(0.20.9998 0.3999 0.3999 5.6 0.4 8.188 8.188 52.618 0.249 114.198σz /σc=32.104/182.818=0.176≤ 0.2满足要求。
4、地基最终变形量计算∑A i=6.552,得Es=5.727Mpa距径比:s a/d=(A/n)0.5/b=(L c×B c/n)0.5/b=(4.6×3.8/4)0.5/0.6=3.484长径比:L/b=1.2/0.6=2基础长宽比:L c/B c=4.6/3.8=1.211查《规范》JGJ94-2008附录表E得:C0=0.230941464,C1=1.525562524,C2=3.273900372ψe=C0+(n b-1)/(C1(n b-1)+C2)= 0.230941464+(2-1)/ (1.525562524×(2-1)+3.273900372)=0.439=ψ×ψe×∑△s=0.6×0.439×116.007=30.556mm。
第六节桩基础沉降的计算
第六节桩基础沉降的计算 Esi──桩端平面以下第i层土的压缩模量 z z、──桩端平面第 j 块荷载至第 i 层土、第 i-1层土底面的距离; 、──桩端平面第 j 块荷载至第 i 层土、 第i-1层土底面深度范围内的平均附加应
ij ( i 1) j ij ( i 1) j
力系数,可按《建筑地基基础设计规范》 (GB2002-50007)附录十采用。
桩基的变形允许值如无当地经 验可按表4-15采用。
第六节桩基础沉降的计算 建筑物桩基的变形允许值
变形特征 容许值
砌体承重结构基础的局部倾斜 各类建筑相邻柱(墙)基的沉降 差 1. 框架、框剪、框筒结构 2. 砌体墙填充的边排柱 3. 当基础不均匀沉降时不产生附 加应力的结构 单层排架结构(柱距为6m)柱基 的沉降量(mm)
E s(MPa)
小于等于10
15 0.9
20 0.65
35 0.50
大于等于40
1.2
0.40
第六节桩基础沉降的计算 当桩基为矩形布置时,桩基础中点沉降可 按下列简化公式计算:
Z i i Z i 1 i 1 S=4 e p 0 i 1 E si
n
第六节桩基础沉降的计算
0.002
0.002l0 0.0007 l0 0.005 l0 120
桥式吊车轨面的倾斜(按不调整轨道考虑) 纵向 横向 多层和高层建筑基础的倾斜 Hg≤24 24<Hg≤60 60<Hg≤100 Hg>100
0.004 0.003
0.004 0.003 0.0025 0.002 200
0.008 0.006 0.005 0.004 0.003 0.002 350 250 150
第六节桩基础沉降的计算
附录R:桩基础最终沉降量计算
附录R 桩基础最终沉降量计算R.0.1 桩基础最终沉降量的计算采用单向压缩分层总和法:∑∑==∆=mj n i isj ij i j p jE h s 11,,,σψ (R.0.1)式中:s ——桩基最终计算沉降量(mm);m ——桩端平面以下压缩层范围内土层总数;E sj,i ——桩端平面下第j 层土第i 个分层在自重应力至自重应力加附加应力作用段的压缩模量(MPa);n j ——桩端平面下第j 层土的计算分层数;Δh j,i ——桩端平面下第j 层土的第i 个分层厚度(m);σj,i ——桩端平面下第j 层土第i 个分层的竖向附加应力(kPa),可分别按本附录第R.0.2条或第R.0.4条的规定计算;ψp ——桩基沉降计算经验系数,各地区应根据当地的工程实测资料统计对比确定。
R.0.2 采用实体深基础计算桩基础最终沉降量时,采用单向压缩分层总和法按本规范第5.3.5条~第5.3.8条的有关公式计算。
R.0.3 本规范公式(5.3.5)中附加压力计算,应为桩底平面处的附加压力。
实体基础的支承面积可按图R.0.3采用。
实体深基础桩基沉降计算经验系数ψps 应根据地区桩基础沉降观测资料及经验统计确定。
在不具备条件时,ψps 值可按表R.0.3选用。
注:表内数值可以内插。
图R.0.3 实体深基础的底面积R.0.4 采用明德林应力公式方法进行桩基础沉降计算时,应符合下列规定:1,采用明德林应力公式计算地基中的某点的竖向附加应力值时,可将各根桩在该点所产生的附加应力,逐根叠加按下式计算:()∑=+=nk k zs k zp i j 1,,,σσσ (R.0.4-1)式中:σzp,k ——第k 根桩的端阻力在深度z 处产生的应力(kPa):σzs,k ——第k 根桩的侧摩阻力在深度z 处产生的应力(kPa)。
2,第k 根桩的端阻力在深度z 处产生的应力可按下式计算;k p k zp I l Q,2,ασ=(R.0.4-2)式中:Q ——相应于作用的准永久组合时,轴心竖向力作用下单桩的附加荷载(kN);由桩端阻力Q p 和桩侧摩阻力Q s 共同承担,且Q p =αQ ,α是桩端阻力比;桩的端阻力假定为集中力,桩侧摩阻力可假定为沿桩身均匀分布和沿桩身线性增长分布两种形式组成,其值分别为βQ 和(1-α-β)Q ,如图R.0.4所示; l ——桩长(m);I p,k ——应力影响系数,可用对明德林应力公式进行积分的方式推导得出。
建筑岩土工程师考试专业案例(习题卷3)
建筑岩土工程师考试专业案例(习题卷3)第1部分:单项选择题,共100题,每题只有一个正确答案,多选或少选均不得分。
1.[单选题]采用水泥土搅拌桩加固地基,桩径取d=0.5m,等边三角形布置,复合地基置换率m=0.18。
桩间土承载力特征值fsk=70KPa,桩间土承载力折减系数β=0.50,单桩承载力系数,现要求复合地基承载力特征值达到160KPa,问水泥土抗压强度平均值fcu(90天龄期的折减系数η=0.3)达到( )MPa才能满足要求。
A)2.03B)2.23C)2.43D)2.63答案:C解析:2.[单选题]高速公路在桥头段软土地基上采用高填方路基,路基平均宽度30m,路基自重及路面荷载传至路基底面的均布荷载为120kPa,地基土均匀,平均Es=6MPa,沉降计算压缩层厚度按24m考虑,沉降计算修正系数取1.2,桥头路基的最终沉降量最接近? ( )A)124mmB)248mmC)206mmD)495mm答案:B解析:路基沉降按条形基础计算。
根据《建筑地基基础设计规范》(GB 50007 - 2002)第5. 3. 5条,3.[单选题]某采用筏基的高层建筑,地下室2层,按分层总合法计算出的地基变形量为160mm, 沉降计算经验系数取1.2,计算的地基回弹变形量为18mm,地基变形允许值为 200mm,则地基变形计算值为( )mm。
A)178B)192解析:根据《高层建筑箱形与筏形基础技术规范》(JGJ 6-1999)第4. 0. 6条可得:4.[单选题]某公路工程位于河流一级阶地上,阶地由第四系全新统冲积层组成,表层0~5 m为亚黏土,下部为亚砂土,亚砂土中黏粒含量为14%,场地位于8度烈度区,地下水位为3.0 m,该场地按《公路工程抗震设计规范3(JTJ 004-1989)有关要求,对该场地进行地震液化初步判定的结果应为( )。
A)液化B)不液化C)需考虑液化影响D)不确定答案:B解析:亚砂土黏粒含量百分率为14%,而8度烈度区亚砂土不发生液化的黏粒含量为13%,该亚砂土层可判为不液化。
桩基沉降计算
(3)等效矩形
实际工程的建筑平面十分复杂,完全矩形截面 很难遇到。下图为工程中的几个实际平面: 从计算上看,换算截面的长宽比对计算结果影响 较大。 德州A区1l1号,形状如图1。 基础尺寸44 x l5m,面积换算正方形Bc=25.4。 按照矩形L/B=3,l/d=78,Sa/d=3.8,nb=8.5 计算, ψe=0.38,沉降S=146mm; 按照正方形形L/B=1,l/d=78,Sa/d=3.8, nb=8.5计算,
(4)计算沉降点 JGJ94—94给出了桩基础角点和中心点计 算沉降方法。本次工程统计资料98%均为 桩箱、桩筏基础,且未标明是中心还是角 点沉降,因此根据对规范的理解,本次计 算,所有结果均为矩形基础中点最终沉降 量,资料与之对应的是,总沉降量或者是 实测沉降的最大值。
4 桩基沉降经验系数ψ说明 (1)回弹再压缩与桩身压缩 桩基沉降计算经验系数是大量实测数据统 计的结果,在沉降观测资料里,已经包含 了回弹再压缩与桩身压缩因素,因此,不 再单独列出二者对桩基沉降计算的影响结 果。
1 等效系数ψe 运用弹性半无限体内作用力的Mindlin位移解, 基于桩、土位移协调条件,略去桩身弹性压缩, 给出匀质土中不同距径比、长径比、桩数、基础 长宽比条件下刚性承台群桩的沉降数值解:
Q一群桩中各桩的平均荷载; Es一均质土的压缩模量; d一桩径; wM_一Mindlin解群桩沉降系数,随群桩的距径比、 长径比、桩数、基础长宽比而变。
(2) 运用弹性半无限体表面均布荷载下的 Boussinesq解,不计实体深基础侧阻力和应 力扩散,求得实体深基础的沉降:
m一矩形基础的长宽比;m=a/b; P一矩形基础上的均布荷载之和。
基础工程第四章桩基础(1)
方法1. 静载荷试验(实图) 静载荷试验是评价单桩
承载力诸法中可靠性较高的 一种方法。
缺点: 时间长;费用高。 广东最大可加载3000t。
主梁
次梁
加压
千斤顶 沉降 观测点
试验桩
(a)
锚桩 (4根)
重物
支墩
千斤顶 加压
沉降 观测点
试验桩
(b)
图4-11 单桩静载荷试验的加荷装置
(a)锚桩横梁反力装置;(b)压重平台反力装置
甲级、丙级以外的建筑;
丙级 场地和地基条件简单、荷载分布均匀的七层及七层以的一般建筑 。
功能重要、荷载大、重心高、风载和地震作用效应大 荷载和刚场度地分、布环极境为条不件均特,殊对差异沉降适应能力差
第4章 桩基础
(三)桩基计算规定 1、应根据桩基的使用功能和受力特征分别进行桩基的
竖向承载力和水平承载力计算; 2、桩身(含桩身压曲、钢管桩局部压曲)和承台结构
二、桩基设计原则 (一)桩基的极限状态
1.承载能力极限状态 :对应于桩基达到最大承载力导致整体 失稳或发生不适于继续承载的变形。
2.正常使用极限状态:对应于桩基达到建筑物正常使用所规定 的变形限值或达到耐久性要求的某项 限值。
第 4章 桩 基 础
(二)建筑桩基设计等级划分
设计
建筑类型
等级
甲级 乙级
承载力计算; 3、软弱下卧层验算; 4、坡地、岸边桩基整体稳定性验算;
5、抗浮、抗拔桩基的抗拔承载力(基桩和群桩)验算;
6、抗震设防区抗震承载力验算。
第4章 桩基础
(四)应计算沉降的桩基 1、设计等级为甲级的非嵌岩桩和非深厚坚硬持力层
的建筑桩基 ; 2、设计等级为乙级的体型复杂、荷载分布显著不均匀
桩基沉降计算例题
桩基沉降计算例题假设需要计算一个桥梁的单桩基础沉降,其桥墩直径为2m,桥墩高度为20m,桩长为30m,桩径为0.5m。
已知桩侧土壤的面积重为18kN/m,桩端土壤的面积重为19kN/m,黏聚力为15kPa,内摩擦角为28°。
该桩基础的承载力为5000kN,同时考虑桩身侧阻和底部端阻的影响。
解题步骤如下:1. 计算桩顶荷载:单桩基础的承载力为5000kN,由于桥墩直径为2m,因此桩顶荷载可以通过荷载面积计算得出:A = πd/4 = 3.14 × 2/4 = 3.14mq = 5000kN / 3.14m = 1592.36kN/m2. 计算桩身侧阻力和底部端阻力:桩身侧阻力可通过以下公式计算:Rf = Ks × Ap ×σv其中,Ks为侧阻系数,Ap为桩身侧面积,σv为有效应力桩底端阻力可通过以下公式计算:Rb = Kp × Ab ×σp其中,Kp为桩底阻力系数,Ab为桩底面积,σp为桩端土壤的有效应力根据国标规定,该桥梁的侧阻系数Ks为0.6,底部阻力系数Kp 为9.5。
同时考虑到桩身直径较小,因此可以假设桩顶承受的荷载全部由桩身侧阻和底部端阻共同承担,则有:Rf + Rb = qA将Rf和Rb代入上述公式可得:Rf = (qA - KpAbσp) / (1 + KsAp/Ab)3. 计算桩身平均侧阻力:桩身平均侧阻力可通过下式计算:fa = Rf / Lp其中,Lp为桩长4. 计算桩端沉降:桩端沉降可通过以下公式计算:Δs = Q / Es + ∑faAi / Es + qbAh / Eh其中,Q为桩顶荷载,Es为桩的弹性模量,∑faAi为桩身平均侧阻力的合力乘以桩身长度,qbAh为桩底端阻力乘以底部面积并除以底部土壤的弹性模量Eh。
将已知参数代入上述公式计算得:Δs = 1592.36kN/m / 10000MPa + (0.6 ×π× 30m × 15kPa) / 10000MPa + (9.5 ×π/4 × 0.5 × 19kN/m) / 3000MPa= 0.159m5. 校核桩身侧阻和底部端阻是否满足要求:桩身侧阻力和底部端阻力应该满足以下公式:Rf <= Ksf ×σv × ApRb <= Kpb ×σp × Ab根据国标规定,侧阻安全系数Ksf取1.5,底部阻力安全系数Kpb取2。
第4章__桩基础-3(4-7)
预制桩、钢桩
灌注桩
序 号
地基土类别
m (MN/m 4 )
相应单桩在地 面 处水平位移 (mm)
m (MN/m 4 )
相应单桩在 地 面处水平 位移 (mm)
1
淤泥、淤泥质土,饱和湿陷性黄土
2-4.5
10
2.5-6
6-12
流塑 (I L > 1) 、软塑 (0.75 < I L ≤
4.5-6.0
10
2 1) 状粘性土, e > 0.9 粉土,松散粉细 砂,松散填土
身不发生破坏。
24
(2)弹性桩
2.5< h <4时为半刚性桩。h ≥ 4 时为柔性桩。半刚性桩
和柔性桩统称为弹性桩。
• 在水平荷载作用下桩身发生挠曲变形, 桩的下段可视为嵌固于土中而不能转 动,随着水平荷载的增大,桩周土的 屈服区逐步向下扩展,桩身最大弯矩 截面也因上部土抗力减小而向下部转 移,
• 半刚性桩的桩身Байду номын сангаас移曲线只出现一个 位移零点
8
4.5 桩的负摩擦问题
一、 产生负摩擦的条件和原因
在桩顶竖向荷载作用下,当桩相对于桩侧 土体向下位移时,土对桩产生的向上作用 的摩阻力,称为正摩阻力。
当桩侧土体因某种原因而下沉,且其下 沉量大于桩的沉降(即桩侧土体相对于桩 向下位移)时,土对桩产生的向下作用 的摩阻力,称为负摩阻力。
9
产生负摩阻力的情况
• 为了简化,可根据桩顶荷载H0、M0及桩的变形
系数a计算如下系数:
• 由得系相数应的CI从换表算4深—度7查
h z
• 则桩身最大变 弯矩的深度为:
zmax
h
37
建筑讲座讲义桩基础沉降的计算
建筑讲座讲义桩基础沉降的计算一、引言桩基础是建筑工程中常用的一种基础形式,其作用是将建筑物的荷载传递到地下深处的稳定土层。
在桩基础设计中,沉降是一个重要的考虑因素。
桩基础的沉降计算可以帮助工程师判断基础的稳定性和安全性。
本次讲座将对桩基础沉降的计算方法进行详细介绍。
二、桩基础沉降的原因1.建筑物荷载建筑物的自重和附加荷载都会施加到桩身上,产生沉降。
自重荷载主要包括结构本身的负荷,如墙体、楼板等。
附加荷载包括人员、家具、机械设备等。
2.桩基础本身的沉降桩基础本身的沉降是由桩身的变形引起的。
桩身材料的松动、变形都会导致沉降的发生。
3.地基土的沉降地基土的沉降是因为桩基础在地下深处受到地基土的影响,土体的挤压、挪移等现象会导致地基土的沉降。
三、桩基础沉降的计算方法1.弹性计算方法弹性计算方法是最常用的桩基础沉降计算方法。
其基本原理是桩基础沉降是由荷载引起的桩身变形所致,根据弹性力学原理进行计算。
根据不同的桩身形状和荷载情况,可以选择合适的计算公式进行计算。
2.半经验公式法半经验公式法是通过统计大量实测资料得出的经验公式,适用于一定范围内的桩基础沉降估计。
这些经验公式可以根据工程经验和地质条件进行修正,并结合实际工程情况进行计算。
3.数值模拟方法数值模拟方法是利用计算机模拟地基土与桩基础相互作用的过程,通过有限元法或边界元法进行计算。
这种方法可以模拟不同地基土和桩身形状下的沉降情况,具有较高的准确性和可靠性。
四、桩基础沉降计算的参数1.桩身形状桩身形状是桩基础沉降计算中重要的参数之一、常见的桩身形状有圆形、方形、六边形等,不同形状的桩身受力和沉降特性不同。
2.桩身材料桩身材料的刚度和强度会影响桩基础的沉降情况。
通常情况下,桩身材料的刚度越大,沉降越小。
3.地基土性质地基土的性质直接关系到桩基础的沉降。
土壤的可压缩性、孔隙比、黏聚力等参数会影响沉降的大小。
4.荷载情况荷载情况是计算桩基础沉降的重要依据。
荷载包括建筑本身的荷载以及引起的地震、风荷载等外部荷载。
桩基沉降计算方法的分析及评价总结
桩基沉降计算方法的分析及评价总结引言桩基的沉降变形主要包括桩基自身弹性压缩引起的沉降量和桩端以下地基土的沉降量。
而后者主要是由土体中的竖向应力、压缩层厚度、及土的压缩模量决定的。
已有计算方法存在着诸多的假设与简化,从而导致计算方法不能很好地应用于工程实践,但是我们可以使计算方法中的关键因素尽可能的贴近实际。
一、单桩沉降计算方法分析及评价(一)荷载传递法1、荷载传递法的原理荷载传递分析法是指,承受竖向压力的单桩通过桩侧摩阻力和端摩阻力将荷载传递扩散到地基土中,根据桩侧摩阻力和端阻力分布函数求解单桩沉降。
因此,确定荷载传递函数就成为此法的关键步骤,即确定桩侧摩阻力q与桩侧移S的函数,称作荷载传递函数。
根据确定的桩侧和桩底荷载的传递函数,得出荷载传递法的函数方程:(1)其中:U——单桩截面周长;Ap、Ep——单桩截面面积和弹性模量;——桩侧摩阻力。
2、分析评价及改进荷载传递法概念清晰,适用范广,计算简单方便,担它不能计算土体由桩侧荷载在桩端平面以下产生的压缩量,因而无法确定由于土体压缩而产生的桩端沉降S1 ,阳吉宝在[文献1]中提出了一种改进方法,按照该方法,即可弥补现有荷载传递法考虑桩侧摩阻力对桩端沉降的贡献的不足。
该法计算简单方便,相互之间有可比性,降低了因土体参数选取不同所产生的人为误差。
(二)弹性理论法1、弹性理论法基本原理弹性理论法假设地基土是均匀、连续、各向同性的线弹性半空间体,根据弹性理论方法来研究单桩在竖向荷载作用下桩土之间的作用力与移之间的关系,进而得到桩对土,土对桩的共同作用模式。
2、分析评价及改进弹性理论法认为桩身移等于毗邻土体移,桩--土之间不存在相对移。
但大量工程实践表明,单桩在外荷载作用下,由于桩侧摩阻力和桩端摩阻力对半无限空间土体的作用使土体产生了弹性压缩,从而使桩伴随着周土体产生了共同的弹性压缩变形,当荷载达到使桩侧土体处于塑性变形的临界值时,桩端阻力发挥作用并产生桩端刺入沉降。
桥梁桩基础沉降分析
桥梁桩基础沉降分析引言桥梁建设是现代交通建设的重要组成部分,而桥梁的安全性和稳定性对于交通的安全和效率具有重要意义。
桥梁桩基础是桥梁受力的重要部分,而桥梁桩基础的沉降问题在桥梁建设和维护中也是经常遇到的问题。
本文就桥梁桩基础沉降分析进行探讨。
桥梁桩基础沉降的原因桥梁桩基础沉降是指在桥梁运行过程中,由于地基不稳定、地下水位变化、长期荷载作用等原因导致桥梁桩基础沉降,进而影响桥梁的稳定性。
桥梁桩基础沉降的原因主要有以下几点:地下水位变化地下水位的变化是桥梁桩基础沉降的主要原因之一。
当地下水位升高时,桥梁桩基础会受到水压力的影响,导致桩基础沉降。
特别是在河流、湖泊、海岸等地,地下水位会随季节、天气等因素变化较大。
土壤的特性桥梁桩基础的稳定性与土壤的特性密切相关。
不同类型的土壤对桥梁桩基础沉降的影响不同。
例如,软土地区桥梁的桩基础容易受到土壤的新旧变化影响而出现沉降,而岩石地区则由于土壤较硬导致桥梁对荷载反应较大。
外力的作用桥梁桩基础的沉降还与外力的作用有关。
例如运输工具运输、风力、地震等都会对桥梁桩基础产生影响,进而导致桥梁桩基础沉降。
桥梁桩基础沉降的影响桥梁桩基础沉降对于桥梁的安全和稳定性都有很大的影响。
主要表现在以下几个方面:桥梁的安全桥梁桩基础沉降会降低桥梁的承载能力和稳定性,进而对桥梁的安全产生威胁。
如果桥梁的沉降量达到一定程度,还可能对交通运输带来影响。
桥梁的使用寿命桥梁桩基础沉降会对桥梁的使用寿命造成影响。
当桥梁桩基础沉降到达一定程度后,桥梁的使用寿命将会缩短。
修建和维护的成本桥梁桩基础沉降会对修建和维护的成本造成影响。
如果桥梁桩基础出现沉降问题,就需要对桥梁进行修建和维护,这将会耗费大量的时间和物力成本。
桥梁桩基础沉降的分析方法针对桥梁桩基础沉降问题,我们需要进行详细的分析和研究。
主要的分析方法有以下几种:现场勘察法现场勘察法是针对桥梁桩基础沉降问题的一种常用分析方法。
通过现场实地勘察,对桥梁桩基础的情况进行评估和分析,确定桩基础沉降的状况和原因。
4.4、4.5、4.6桩基沉降、负摩阻力、水平承载力
p0 k = pk − σ c =
Fk + G K − 2(a 0 + b0 )∑ q sia l i A
淮海工学院土木工程系 (/jiangong/index.htm)
Huaihai Institute of Technology
淮海工学院土木工程系 (/jiangong/index.htm)
Huaihai Institute of Technology
4.4.1 单桩沉降的计算
在竖向荷载作用下单桩沉降由三部分组成: 在竖向荷载作用下单桩沉降由三部分组成: (1)桩身弹性压缩引起的桩顶沉降; 桩身弹性压缩引起的桩顶沉降; (2)桩侧阻力引起的桩周土中的附加应力以 压力扩散角, 压力扩散角,致使桩端下土体压缩而产生的 桩端沉降; 桩端沉降; (3)桩端荷载引起桩端下土体压缩所产生的 桩端沉降。 桩端沉降。
F
B0 l α A’ G α
淮海工学院土木工程系 (/jiangong/index.htm)
Huaihai Institute of Technology
(1)实体深基础(s≤6d) )实体深基础( ) 沉降计算方法同前基础
s = ψ p s'
淮海工学院土木工程系 (/jiangong/index.htm)
明德林应力( 明德林应力(Mindlin)公式 )
单桩荷载分担 地基应力: 地基应力: σ j ,i = ∑ (σ zp ,k + σ zs ,k )
n k =1
淮海工学院土木工程系 (/jiangong/index.htm)
Huaihai Institute of Technology
淮海工学院土木工程系 (/jiangong/index.htm)
土力学地基的沉降计算
土力学地基的沉降计算
其中,ΔH是地基沉降的总值,ΔHe是有效应力引起的沉降,ΔHw
是孔隙水压引起的沉降。
ΔHe的计算可以使用弹性理论和位移法来求解。
首先,需要确定地
基承载力与应力之间的关系,通常使用地基计算中的标准试验来获取地基
的参数,如剪切模量、泊松比等。
然后根据载荷的大小和地基的参数,可
以计算出地基的应力分布。
根据应力和土壤的力学性质,可以计算出地基
的应力引起的沉降。
ΔHw的计算是根据孔隙水压力引起的沉降来求解的。
孔隙水在土体
中的运动是一个复杂的过程,需要考虑渗流速度、土体的渗透系数等因素。
根据达西定律和修正哥白尼公式,可以得到孔隙水压力的计算公式。
然后
根据渗流速度和孔隙水压力的变化,可以计算出孔隙水压引起的沉降。
经验法是根据多年的实践经验总结出的经验公式进行计算。
这些公式
通常是将地基沉降与土体的物理性质和承载力相关联的经验关系。
但是这
种方法的精度有限,只适用于特定条件下的特定土壤。
分析法是基于理论计算的方法,能够更准确地计算地基沉降。
分析法
通常使用数值模拟技术,如有限元法、有限差分法等,将土体和孔隙水分
别划分为多个小单元,然后计算每个单元的位移和应力,并根据位移和应
力的变化来求解总沉降。
分析法需要进行较多的计算,但是能够更全面地
考虑土体的复杂性和多样性。
综上所述,土力学地基沉降计算是一个涉及到土力学、排水理论和弹
性理论的复杂问题。
通过合理选择计算方法和准确获取土体参数,可以进
行准确的地基沉降计算,为工程设计和施工提供可靠的依据。
桩基沉降计算
(3)等效矩形 实际工程的建筑平面十分复杂,完全矩形截面很难遇到。下图为工程中的几个实际平面: 从计算上看,换算截面的长宽比对计算结果影响较大。 德州A区1l1号,形状如图1。 基础尺寸44 x l5m,面积换算正方形Bc=25.4。 按照矩形L/B=3,l/d=78,Sa/d=3.8,nb=8.5计算, ψe=0.38,沉降S=146mm; 按照正方形形L/B=1,l/d=78,Sa/d=3.8,nb=8.5计算, ψe=0.29,沉降S=120mm; 实测沉降143mm。 本次计算中,均按照建筑平面外沿取长宽比,以得到与实际符合的经验系数。
等效系数ψe 运用弹性半无限体内作用力的Mindlin位移解,基于桩、土位移协调条件,略去桩身弹性压缩,给出匀质土中不同距径比、长径比、桩数、基础长宽比条件下刚性承台群桩的沉降数值解: Q一群桩中各桩的平均荷载; Es一均质土的压缩模量; d一桩径; wM_一Mindlin解群桩沉降系数,随群桩的距径比、长径比、桩数、基础长宽比而变。
等效果作用分层总和法桩基一点最终沉降量计算式
01
02
其中zi、z(i-1)为有效作用面至i、i一1层层底的深度;αj、α(i-1)为按计算分块长宽比a/b及深宽比Zi 、z(i-1)/b、 由附录 D 确定。 p0为承台底面一载效应准永久组合附加压力,将其用于桩端等效作用面。
3桩基沉降经验系数ψ统计 本次规范修编时,收集了软土地区上海、天津,一般第四纪土地区北京、沈阳,黄土地区西安共计1 5 0份已建桩基工程的沉降观测资料,由实测沉降与计算沉降之比ψ与沉降计算深度范围内压缩模量当量值Es的关系如图5.5.1,同时给出ψ值列于规范表5.5.1 0。详细分析过程如下:
短边布桩数nb
(2)短边布桩数nb 对于规则桩承台,nb总为整数:但是在实际工程计算中,nb总为小数,本次计算所有短边计算桩数,均是计算值,没有取整。当桩数比较少时,nb对φe的计算结果影响较大,但是桩数较多时,影响较小。 银河宾馆,L/B=1,l/d=9 8,Sa/d=3.2 nb=1 6.4时,ψe=0.3 nb=1 6.0时,ψe=0.2 9 8 nb=1 7.0时,ψe=0.3 0 5 小北门高层工房,L/B=2.8,l/d=67.5,Sa/d=5.3 nb=8.2时,ψe=0.442 nb=8.0时,ψe=O.438 nb=9.0时,ψe=O.455 可见,其误差<3%,可以接受。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018/10/12
3
4.桩基础
4.4 桩基础沉降计算
4.4.1 单桩沉降计算
单桩沉降计算方法主要有: ①荷载传递分析法; ②弹性理论法; ③剪切变形传递法;
④有限单元分析法;
⑤各种简化分析法。
2018/10/12
4
4.桩基础
4.4.1 单桩沉降计算
单桩沉降的影响因素 单桩沉降组成不仅同桩的长度、桩与土的相
2018/10/12
7
4.桩基础
4.4.2 群桩沉降计算
s p
j 1 i 1 m nj
桩基础最终沉降量的计算采用单向压缩分层总和法:
j ,i h j ,i
Esj ,i
式中: s—桩基最终计算沉降量(mm) ; m—桩端平面以下压缩层范围内土层总数; Esj i —桩端平面下第 j 层土第 i 个分层在自重应力至自重应力加附加 应力作用段的压缩模量(MPa) nj —桩端平面下第 j层土的计算分层数; hj,i —桩端平面下第 j层土的第 i个分层厚度(m);
σj i —桩端平面下第 j 层土第 i 个分层的竖向附加应力(kPa);
ψp—桩基沉降计算经验系数,各地区应根据当地的工程实测资料统计 对比确定。
2018/10/12 8
4.桩基础
4.4.2 群桩沉降计算
2018/10/12
9
4.桩基础
4.4.2群桩沉降计算
Fk Fk
实体深基础(s≤6d) 实体深基础桩底平面处的基底 附加压力p0k按下列方法考虑: 1)考虑扩散作用时:
j 1 i 1
m
nj
j ,i h j ,i
E sj ,i
可得单向压缩分层总和法沉降计算公式
对压缩性、土层剖面及性质有关,还与荷载水平、
荷载持续时间有关。
2018/10/12
5
4.桩基础
4.4.2 群桩沉降计算
桩基一般只按承载能力进行计算,但当桩端持力层为 软弱土,或建筑物重要性大,对桩基沉降的要求高时, 尚应对桩基进行沉降验算。 目前在工程中应用较广泛的桩基沉降计算方法,仍 是把群桩作为假想的实体深基础。计算出作用在桩端平
19kN / cm3
2018/10/12
图4-17
实体深基础的底面积
10
(a)考虑扩散作用;(b)不考虑扩散作用
a0
' GK Ad l
l
d
4.桩基础
2)不考虑扩散作用时:
Fk
Fk
Gk—桩基承台及承台上土自重; Gfk—实体深基础的桩基、桩间土自重;
d
Gk
γm—实体深基础底面以上各层土的加 权平均重度。
αQ 2 I k λ
Q 2 βI s1,k 1 α β I s2,k l
第k根桩的侧摩阻力在深度z处产生的应力:
σ sp,k
对于一般摩擦型桩,可假定桩侧摩阻力全部是沿桩身线形 增长的(β=0),则:
σ sp,k
2018/10/12
Q 2 1 α I s2,k l
不需沉降计算的情况
丙级建筑物桩基 桩距大于6倍桩径(s>6d) 不超过2排的条形基础 某些单层工业厂房桩基
2018/10/12 2
4.桩基础
4.4 桩基础沉降计算
4.4.1 单桩沉降计算
单桩受到荷载作用其沉降量由下述三个部分组成: ①桩本身的弹性压缩量;
按材料力学公式计算
②由于桩侧摩阻力向下传递,引起桩端下土体压缩所产 生的桩端沉降; ③由于桩端荷载引起桩端下土体压缩所产生的桩端沉降。
4.桩基础
请回答问题
1、初步设计时单桩承载力如何估算的? 2、什么是群桩效应? 3、群桩效应系数? 4、影响群桩效应的因素有哪些?
2018/10/12
1
4.桩基础
4.4 桩基础沉降计算
4.4.1 单桩沉降计算
需要进行沉降计算 :
甲级建筑物的建筑物桩基。
对沉降有严格要求的建筑物桩基;体型复杂或桩端以下 存在软弱土层的乙级建筑物桩基。
p0 k
' Fk G K pk c c A
Gk φ α =4 Gk
dqsiaqsi来自 Gfklb0+2ltan φ 4
a0+2ltan φ 4
a0
A a 0 2l tan b0 2l tan 4 4
b0 b0 (a) (b)
2018/10/12
13
4.桩基础
Q
=
+
+
σ sp,k
集中力
Q β I-s2,k )Q Q2 βI s1,k Q1 α (1l 沿桩身 沿桩身线
均匀分布 性增长
单桩荷载分担
2018/10/12
14
4.桩基础
第k根桩的端阻力在深度z 处产生的应力:
σ ζπ, κ
地基应力:
j ,i zp ,k zs ,k
n k 1
2018/10/12
12
4.桩基础
4.4.2群桩沉降计算
明德林应力(Mindlin)公式
单桩荷载分担:Q为单桩在竖向荷载的准永久组合作用下的附 加荷载,由桩端阻力Qp和桩侧摩阻力Qs共同承担,且:Qp=αQ, α是桩端阻力比。桩的端阻力假定为集中力,桩侧摩阻力可假 定为沿桩身均匀分布和沿桩身线性增长分布两种形式组成, 其值分别为βQ和(1-α-β)Q,如图所示。
l
φ α =4 Gk
qsia
qsia Gfk
G fk ml
b0+2ltan φ 4
a0+2ltan φ 4
a0
b0 b0
2018/10/12
(a)
a0
(b)
l
11
d
4.桩基础
4.4.2群桩沉降计算
明德林应力(Mindlin)公式
采用明德林应力公式计算地基中的某点的 竖向附加应力值时 可将各根桩在该点所产生的 附加应力 逐根叠加按下式计算 :
面处的压力p后.即可按土力学课中所述的分层总和法
计算桩端下土的压缩层厚度内的变形值,即作为桩基的
沉降量,其计算步骤与浅基础的沉降计算相同。
2018/10/12 6
4.桩基础
4.4.2 群桩沉降计算
地基基础规范GB50007推荐的群桩沉降的计算
不计桩身压缩量及桩与土间的相对位移,以假想基础为刚
性整体,验算桩端以下土沉降。
15
4.桩基础
l为桩长,Ip、Is1、Is2分别为为桩端集中力、桩侧摩阻力沿桩 身均匀分布和沿桩身线性增长分布情况下对应力计算点的应 力影响系数,按规范GB5007附录R计算。对明德林应力公 式进行积分的方式推导得出:
zs ,k
Q l2
(1 ) I s 2,k
s p
将上式代入