流电路图和工作原理,相敏检波电路图...)

合集下载

《传感器原理及工程应用》课后答案

《传感器原理及工程应用》课后答案

第1章传感器概述1.什么是传感器?(传感器定义)2.传感器由哪几个部分组成?分别起到什么作用?3. 传感器特性在检测系统中起到什么作用?4.解释下列名词术语: 1)敏感元件;2)传感器; 3)信号调理器;4)变送器。

第1章传感器答案:3.答:传感器处于研究对象与测试系统的接口位置,即检测与控制之首。

传感器是感知、获取与检测信息的窗口,一切科学研究与自动化生产过程要获取的信息都要通过传感器获取并通过它转换成容易传输与处理的电信号,其作用与地位特别重要。

4.答:①敏感元件:指传感器中直接感受被测量的部分。

②传感器:能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置,通常由敏感元件和转换元件组成。

③信号调理器:对于输入和输出信号进行转换的装置。

④变送器:能输出标准信号的传感器第2章传感器特性1.传感器的性能参数反映了传感器的什么关系?静态参数有哪些?各种参数代表什么意义?动态参数有那些?应如何选择?2.某传感器精度为2%FS ,满度值50mv ,求出现的最大误差。

当传感器使用在满刻度值1/2和1/8 时计算可能产生的百分误差,并说出结论。

3.一只传感器作二阶振荡系统处理,固有频率f0=800Hz,阻尼比ε=0.14,用它测量频率为400的正弦外力,幅植比,相角各为多少?ε=0.7时,,又为多少?4.某二阶传感器固有频率f0=10KHz,阻尼比ε=0.1若幅度误差小于3%,试求:决定此传感器的工作频率。

5. 某位移传感器,在输入量变化5 mm时,输出电压变化为300 mV,求其灵敏度。

6. 某测量系统由传感器、放大器和记录仪组成,各环节的灵敏度为:S1=0.2mV/℃、S2=2.0V/mV、S3=5.0mm/V,求系统的总的灵敏度。

7.测得某检测装置的一组输入输出数据如下:a)试用最小二乘法拟合直线,求其线性度和灵敏度;b)用C语言编制程序在微机上实现。

8.某温度传感器为时间常数 T=3s 的一阶系统,当传感器受突变温度作用后,试求传感器指示出温差的1/3和1/2所需的时间。

相电流检测电路原理

相电流检测电路原理

相电流检测电路原理相电流检测电路是一种常见的电路设计,用于检测电路中的相电流。

相电流是指通过电路中的导线所流动的电流,它是电路中的重要参数之一。

相电流检测电路的原理是基于法拉第电磁感应定律,通过检测电路中的磁场变化来间接测量相电流的大小。

相电流检测电路通常由电流传感器、信号调理电路和输出显示电路组成。

电流传感器是电路中最关键的部分,它能够将电流信号转换为电压信号。

常见的电流传感器包括互感式电流传感器和霍尔效应传感器。

互感式电流传感器利用电流通过线圈产生的磁场来感应电流大小,而霍尔效应传感器则利用霍尔元件感应电流的磁场变化。

这些传感器能够将电流信号转换为电压信号,从而方便后续的信号处理。

信号调理电路是相电流检测电路中的重要部分,它能够对传感器输出的电压信号进行放大、滤波和线性化处理。

放大电路能够将传感器输出的微弱电压信号放大到适合后续处理的范围,滤波电路则能够去除传感器输出信号中的噪声和干扰,以确保测量结果的准确性。

线性化处理电路则能够将非线性的传感器输出信号转换为线性的电流信号,以便进一步的分析和显示。

输出显示电路是相电流检测电路中的最后一环,它能够将处理后的电流信号转换为人们可以直观理解的形式。

常见的输出显示方式包括模拟显示和数字显示。

模拟显示电路通常采用指针表或电压表来显示电流信号的大小,而数字显示电路则通过数码管或液晶显示屏来显示电流的数值。

输出显示电路的设计需要考虑显示精度、稳定性和可靠性等因素,以满足实际应用的需求。

相电流检测电路通过电流传感器将电流信号转换为电压信号,经过信号调理电路的处理后,最终通过输出显示电路显示出来。

这种电路设计可以广泛应用于电力系统、工业自动化、电动机控制等领域,能够实时监测电路中的相电流,为电路的安全运行提供保障。

相敏检波电路

相敏检波电路

电子与信息工程学院控制科学与工程系 在理想情况下(忽略线圈寄生电容及衔 铁损耗),差动变压器的等效电路如图。 初级线圈的复数电流值为
R21
R1 e M1 ~ 21 L21 L1 L22 M2 ~ e22 R22 e2
I 1
e1 R1 jL1
I1
e1

ω—激励电压的角频率; e1—激励电压的复数值; 由于Il的存在,在次级线圈中产 生磁通
e1 e2 e21 e22 j M1 M1 R1 jL1
其幅数 输出阻抗 或
M 1 M 2 e1 e2 2 2 R1 L1
R R j L L Z 21 22 21 22
Z
R21 R22 2 L21 L22 2
2.选用合适的测量线路
采用相敏检波电路不仅可鉴别衔铁移动 方向,而且把衔铁在中间位置时,因高 次谐波引起的零点残余电压消除掉。如 图,采用相敏检波后衔铁反行程时的特 性曲线由1变到2,从而消除了零点残余 电压。
1 -x 2 +x 0
相敏检波后的输出特性
电子与信息工程学院控制科学与工程系
3.采用补偿线路
N1I 1 21 Rm1
22
N1 I 1 Rm 2
e1初级线圈激励电压 L1,R1初级线圈电感和电阻 M1,M1 分别为初级与次级线圈 1,2 间的互感 L21,L22两个次级线圈的电感 R21,R22两个次级线圈的电阻
Rm1及Rm2分别为磁通通过初级线圈及两个次级线圈的磁阻, N1为初级线圈匝数。
~220V 稳压电源
振荡器 V
差动变压器
相敏检波电路
这种变送器可分档测量(–5×105~6×105)N/m2压力,输出信号电 压为(0~50)mV,精度为1.5级。

相敏检波电路工作原理

相敏检波电路工作原理

相敏检波电路工作原理
相敏检波电路是一种用于检测并提取调制信号的电路。

它的工作原理如下:
1. 输入信号:相敏检波电路的输入通常是一个高频载波信号和一个调制信号。

2. 相移:通过一个相移电路将输入的高频信号相位进行调整,使得它与调制信号的相位保持一致。

3. 相乘:将相位调整后的高频信号与原始的高频信号进行相乘。

这样做的目的是通过相乘操作将高频信号中的频率成分与调制信号的频率成分相乘,并将其他频率成分滤除。

4. 低通滤波:通过一个低通滤波器将相乘后的信号中的高频成分滤除,只保留与调制信号频率相近的低频成分。

5. 输出信号:经过滤波后,只剩下调制信号的低频成分,即提取出了调制信号。

这个输出信号可以用于后续的处理或者直接作为调制信号的提取结果。

相敏检波电路的工作原理依赖于相位调整、相乘和滤波等基本操作,通过这些操作可以有效提取出调制信号。

流电路图和工作原理,相敏检波电路图...)

流电路图和工作原理,相敏检波电路图...)

关键词语:差动变压器式传感器工作原理,螺线管式差动变压器结构图,差动变压器等效电路图,差动变压器基本特性,差动变压器式传感器测量电路,差动整流工作原理,差动整流电路,相敏检波电路图,差动变压器式加速度传感器原理图,差动变压式传感器的应用差动变压器式传感器把被测的非电量变化转换为线圈互感量变化的传感器称为互感式传感器。

这种传感器是根据变压器的基本原理制成的, 并且次级绕组都用差动形式连接, 故称差动变压器式传感器。

差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。

非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。

差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。

非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。

一、工作原理螺线管式差动变压器结构如图 4 -10 所示, 它由初级线圈#, 两个次级线圈和插入线圈中央的圆柱形铁芯等组成。

螺线管式差动变压器按线圈绕组排列的方式不同可分为一节、二节、三节、四节和五节式等类型, 如图 4 - 11 所示。

一节式灵敏度高, 三节式零点残余电压较小, 通常采用的是二节式和三节式两类。

图4-11 螺线管式差动变压器结构图差动变压器式传感器中两个次级线圈反向串联, 并且在忽略铁损、 导磁体磁阻和线圈分布电容的理想条件下, 其等效电路如图 4 - 12所示。

当初级绕组w1加以激励电压1⋅U 时, 根据变压器的工作原理, 在两个次级绕组w2a 和w2b 中便会产生感应电势a E 2⋅和b E 2⋅。

如果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平衡位置时, 必然会使两互感系数M1=M2。

根据电磁感应原理, 将有⋅⋅=b a E E 22。

相敏检波电路简介

相敏检波电路简介

相 敏 检 波 电 路
将调制信号ux乘以幅值为1的载波信 号就可以得到双边带调幅信号us,将 双边带调幅信号us再乘以载波信号, 经低通滤波后就可以得到调制信号ux。 这就是相敏检波电路在结构上与调制 电路相似的原因。二者主要区别是调 幅电路实现低频调制信号与高频载波 信号相乘,输出为高频调幅信号;而 相敏检波器实现高频调幅信号与高频 载波信号相乘,经滤波后输出低频解 调信号。这使它们的输入、输出耦合 回路与滤波器的结构和参数不同。
相敏检波电路的应用
大气电场中
其他领域中
在电场仪设计中,电 压信号的极性与被测 电场的极性相反。全 波检波后为单一正方 向脉动直流电压信号 ,即保证了微弱感应 电压信号与同步脉冲 信号的同相。因此, 经低通滤波器后输出 一负极性直流电压信 号,即可判断出被测 电场为负电场,从而 实现了被测电场极性 的准确鉴别。
Hale Waihona Puke 数字相敏检波器以及其他多种 测量器具中,相敏检波因其独 特的精确性和稳定性而被广泛 应用于这些器具的制作和使用 中,根据相敏检波的原理,在 LabVIEW环境实现了数字相敏 检波算法,并分析了算法性能。 实验结果表明,整周期采样时, 信噪比低至-20dB时的幅度误 差小于0.2%,相位误差小于 0.7%。为进一步验证,还利用 NI公司的波形生成卡和数据采 集卡模拟了数字相敏检波在实 际中的应用效果。
调 幅 电 路
常用的导磁材料检测方法
磁粉检测
优点:灵敏度高 缺点:不易实现检 测自动化 优点:探头上无零 电势 缺点:灵敏度不够 精准
涡流检测
g
A D2 Xm(t)
e
c
uf
b
D1
a
Rf
D3
d
D4

相敏检波器实验

相敏检波器实验

实验八相敏检波器实验一、实验目的:了解相敏检波器的原理及工作情况。

二、基本原理:相敏检波器模块示意图如下所示,图中Vi为输入信号端,Vo为输出端,AC为交流参考电压输入端,DC为直流参考电压输入。

当有脉冲符号的两个端子为附加观察端。

三、需用器件与单元:移相器/相敏检波器/低通滤波器模块、音频振荡器、双踪示波器(自备)、直流稳压电源±15V、±2V、转速/频率表、数显电压表。

四、旋钮初始位置:转速/频率表置频率档,音频振荡器频率为4KHz左右,幅度置最小(逆时针到底),直流稳压电源输出置于±2V档。

五、实验步骤:1、了解移相器/相敏检波器/低通滤波器模块面板上的符号布局,接入电源±15V及地线。

2、根据如下的电路进行接线,将音频振荡器的信号0˚输出端和移相器及相敏检波器输入端Vi相接,把示波器两根输入线分别接至相敏检波器的输入端Vi和输出端Vo组成一个测量线路。

3、将主控台电压选择拨段开关拨至+2V档位,改变参考电压的极性(通过DC端输入+2V或者-2V),观察输入和输出波形的相位和幅值关系。

由此可得出结论,当参考电压为正时,输入和输出同相;当参考电压为负时,输入和输出反相。

4、调整好示波器,调整音频振荡器的幅度旋钮,示波器输出电压为峰-峰值4V,通过调节移相器和相敏检波器的电位器,使相敏检波器的输出Vo为全波整流波形。

六、思考题:根据实验结果,可以知道相敏检波器的作用是什么?移相器在实验线路中的作用是什么?(即参考端输入波形相位的作用)。

实验九交流全桥的应用——振动测量实验一、实验目的:了解利用交流电桥测量动态应变参数的原理与方法。

二、基本原理:对于交流应变信号用交流电桥测量时,桥路输出的波形为一调制波,不能直接显示其应变值,只有通过移相检波和滤波电路后才能得到变化的应变信号,此信号可以从示波器读得。

三、需用器件与单元:音频振荡器、低频振荡器、万用表(自备)、应变式传感器实验模块、移相/相敏检波/低通滤波器模块、振动源模块、示波器(自备)。

相敏检波器实验报告

相敏检波器实验报告

相敏检波器实验报告实验报告:相敏检波器一、实验目的1. 掌握相敏检波器的基本原理和使用方法;2. 学习建立电路和测量电压;3. 熟悉实验现象和结论。

二、实验原理相敏检波器又称同步检波器,是一种基于同步检测原理的电路。

它是通过对两个信号进行相位比较,然后将相位差信号转换成幅度差信号,并进行信号放大,最终在负载上输出较大的直流电压或直流电流。

相敏检波器的基本原理如下:1. 将低频信号(载波)和高频信号(调制信号)分别输入两端口;2. 经过相敏放大器以及相位比较器获取到相位差信号,该信号是一个低频信号;3. 再经过信号放大器将低频信号放大转换为幅度差信号;4. 最终在负载上输出较大的直流电压或直流电流。

三、实验步骤1. 搭建相敏检波器电路,接通电源;2. 调节模拟信号发生器发生载波和调制信号;3. 用示波器观测相敏检波器输出波形,记录幅值和频率;4. 调节相位比较器直流偏置量,观察输出波形的变化并记录;5. 对不同频率和幅值组合的信号进行测量,记录实验数据;四、实验结果我们在实验中测得的相敏检波器输出波形如图所示:(插入实验结果图片)我们可以通过示波器观察到,输出的波形是载波信号和调制信号同步后的直流电压信号,其幅值可通过操作相偏电阻来调节。

同时,我们也发现,当载波和调制信号的频率相同时,输出波形的幅值最大,而当频率相差较大时,输出信号几乎为零。

五、实验结论通过本次实验,我们了解了相敏检波器的基本原理,学习了如何建立电路以及如何测量电压,最终得出了相敏检波器的实验结果。

我们还发现,由于相敏检波器的输出幅值是由相位差信号转化而来,因此在实验中我们需要保证载波和调制信号的相位同步,否则输出的幅值会受到较大的影响。

六、实验感想本次实验让我们深入了解了相敏检波器的原理和用法,在实验过程中我们还学到了多种电路的搭建方法,锻炼了我们的实践操作技能。

同时,我们也意识到实验结果的精确性需要多次测量和数据对比,也体现了实验科研的谨慎和认真。

开关式全波相敏检波电路

开关式全波相敏检波电路

实验1 开关式全波相敏检波电路一、实验目的1.熟悉和掌握相敏检波器的工作原理。

2.验证相敏检波器的检幅特性和鉴相特性。

二、实验设备及参考电路图1.实验台中部件:相敏检波器、音频振荡器、移相器、直流稳压电源、低通滤波器、电压表(毫伏表)2.双踪示波器3.实验参考电路图三、实验步骤将音频振荡器的输出信号(00 )接至相敏检波器的输入端(1)。

1.参考信号为直流电压⑴将直流稳压电源+2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。

⑵将直流稳压电源-2V接入相敏检波器参考信号输入端(4),用双踪示波器测试相敏检波器输入端(1)和输出端(3)的波形。

2.参考信号为交流电压⑴将音频信号00接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。

⑵将音频信号1800 接入相敏检波器参考信号输入端(2),用双踪示波器观察(1) ~ (6)端波形。

3.相敏检波器检幅特性将相敏检波器的输出端(3)接低通滤波器的输入端,将低通滤波器的输出端接数字电压表。

⑴相敏检波器的输入信号(接(1))和参考信号(接(2))同相,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。

⑵相敏检波器的输入信号(接(1))与参考信号(接(2))反相时,改变音频信号的输入幅值Vp-p,分别读出电压表显示的数值填入下表。

4.相敏检波器的鉴相特性将音频信号接移相器的输入端,移相器电路输出接相敏检波器参考输入端(2),旋转移相器的电位器旋钮,改变参考电压的相位,音频振荡器输出幅值不变,用示波器观察(1) ~(6)波形,并读出对应的电压表值。

四、实验报告要求1.画出该相敏检波器的电路图,并说明该电路的工作原理。

2.画出该实验第三步骤和第四步骤的原理框图。

3.分别画出参考电压与相敏检波器的输入信号同相、反相时(1) ~ (6)点的波形图及低通滤波器的输出波形。

4.画出参考电压通过移相器后(差900 时),相敏检波器(1) ~ (6)点及低通滤波器的输出波形。

相敏检波电路工作原理及工作过程

相敏检波电路工作原理及工作过程

相敏检波电路工作原理及工作过程相敏检波器有两种:一种由变压器和二极管桥组成,这种电路体积大,稳定性差;另一种则由模拟乘法器构成,性能上得到了很大提高,但价格高,调试麻烦。

为此,在研制大气电场仪的过程中,根据大气电场仪探头的结构特点和大气电场测试中对检波器的要求,利用光电开关、四通道模拟开关和运放组合设计一种结构简单,性能稳定的相敏检波器。

同时,为了对电场信号的极性进行有效可靠的鉴别,根据相敏检波理论,将通过调整光电开关的设置位置,保证感应电压信号与同步脉冲信号同相,以获得最大整流输出,从而准确辨别被测电场极性。

1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。

2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。

第二,包络检波电路本身不具有区分不同载波频率的信号的能力。

对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。

为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。

3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。

从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。

有了参考信号就可以用它来鉴别输入信号的相位和频率。

4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。

这就是相敏检波电路在结构上与调制电路相似的原因。

二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。

紫金学院传感器原理设计与应用考试内容完整版

紫金学院传感器原理设计与应用考试内容完整版

传感器原理设计与应用考试内容第一课后作业类型题要会做!(斜体笔迹部份未给出答案)第一章:传感器概论传感器的概念;能感受规定的被测量并依照必然的规律转换成可用信号的器件或装置传感器的组成,各组成部份的作用;传感器=灵敏元件+转换元件(+信号调剂电路)灵敏元件:传感器中能直接感受被测量的部份。

转换元件:传感器中能将灵敏元件输出量转换为适于传输和测量的电信号部份。

信号调剂与转换电路:能把传感元件输出的电信号转换为便于显示、记录、处置、和操纵的有效电信号的电路。

经常使用的电路有电桥、放大器、变阻器、振荡器等。

辅助电路通常包括电源等。

传感器分类:有源、无源⑴有源传感器(能量转换型传感器)——能将非电量直接转换成电信号,因此有时被称为“换能器”。

如压电式,热电式,磁电式等。

有源⑵无源传感器(能量操纵型传感器)——自身无能量转换装置,被测量仅能在传感器中起能量操纵作用,必需有辅助电源供给电能。

无源式传感器经常使用电桥和谐振电路等电路来测量。

如电阻式,电容式,和电感式等。

无源第二章:传感器的一样特性分析传感器的一样特性包括哪两种?各自的含义是什么(什么是静态特性,什么是动态特性)? 对应的特性指标有哪些?两种特性:静态特性、动态特性静态特性:指在静态信号的作用下,描述传感器的输入、输出之间的一种关系。

静态特性指标:迟滞(关于同一大小的输入信号x ,在x 持续增大的行程中,对应于某一输出量为yi ,在x 持续减小的进程中,对应于输出量为yd ,yi 和yd 二者不相等,这种现象称为迟滞现象。

迟滞特性能说明传感器在正向输入量增大行程和反向输入量减小行程期间,输入输出特性曲线不重合的程度)、线性度(传感器实际的输出—输入关系曲线偏离拟合直线的程度,称为传感器的线性度或非线性误差)、灵敏度(Sn=输出转变量/输入转变量,注意单位)、重复性、分辨力、精度、稳固性、漂移、阈值静态特性的各指标【重点把握迟滞,线性度(非线性误差),灵敏度】的概念;动态特性:输入量随时刻转变时传感器的响应特性。

《传感器与检测技术(第2版)》综合试题(4套)

《传感器与检测技术(第2版)》综合试题(4套)

综合测试题及参考答案(4套)综合试题一一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个选项中只有一个选项是符合题目要求的,请将正确选项前的字母填在题后的括号内。

错选、多选和未选均不得分。

1、传感器的主要功能是()。

A. 检测和转换B. 滤波和放大C. 调制和解调D. 传输和显示2、在直流电路中使用电流表和电压表测量负载功率的测量方法属于()。

A. 直接测量B. 间接测量C. 组合测量D. 等精度测量3、电阻应变片配用的测量电路中,为了克服分布电容的影响,多采用( )。

A.直流平衡电桥 B.直流不平衡电桥C.交流平衡电桥 D.交流不平衡电桥4、差动螺线管式电感传感器配用的测量电路有( )。

A.直流电桥 B.变压器式交流电桥C.相敏检波电路 D.运算放大电路5、实用热电偶的热电极材料中,用的较多的是()。

A.纯金属 B.非金属C.半导体 D.合金6、光电管和光电倍增管的特性主要取决于()。

A.阴极材料 B.阳极材料C.纯金属阴极材料 D.玻璃壳材料7、用光敏二极管或三级管测量某光源的光通量时,是根据它们的什么特性实现的( )。

A.光谱特性 B.伏安特性C.频率特性 D.光电特性8、超声波测量物位是根据超声波在两种介质的分界面上的什么特性而工作的()。

A. 反射B. 折射C. 衍射D. 散射9、下列关于微波传感器的说法中错误的是()。

A. 可用普通电子管与晶体管构成微波振荡器B. 天线具有特殊结构使发射的微波具有尖锐的方向性C. 用电流—电压特性呈非线性的电子元件做探测微波的敏感探头D. 可分为反射式和遮断式两类10、用N 型材料SnO 2制成的气敏电阻在空气中经加热处于稳定状态后,与NO 2接触后( )。

A .电阻值变小B .电阻值变大C .电阻值不变D .不确定二、简答题(本大题共5小题,每小题6分,共30分)1、什么是传感器动态特性和静态特性?简述在什么条件下只研究静态特就能够满足通常的需要,而在什么条件下一般要研究传感器的动态特性?实现不失真测量的条件是什么?2、分析如图6.1所示自感式传感器当动铁心左右移动时自感L 变化情况(已知空气隙的长度为x1和x2,空气隙的面积为S ,磁导率为μ,线圈匝数W 不变)。

相敏检波器电路工作原理

相敏检波器电路工作原理

相敏检波器电路工作原理相敏检波器电路工作原理相敏检波器(Phase Sensitive Detector,简称PSD)是一种能够从输入信号中提取出与参考信号相位相关的信息的电子器件。

它在通信、雷达、声纳、测量、生物医学等领域有着广泛的应用。

本文将从以下几个方面详细介绍相敏检波器的工作原理。

一、基本组成和工作原理相敏检波器通常由乘法器、低通滤波器和参考信号源组成。

乘法器是相敏检波器的核心部件,它将输入信号和参考信号相乘,产生一个与两个信号相位差相关的输出信号。

低通滤波器用于滤除乘法器输出中的高频分量,提取出所需的直流或低频信号。

参考信号源用于产生与输入信号具有相同频率和一定相位差的参考信号。

相敏检波器的工作过程可以分为以下几步:1.输入信号与参考信号相乘:乘法器的输出信号是与输入信号和参考信号的乘积成正比的,即:Vo = Vin × Vref其中,Vo为乘法器的输出信号,Vin为输入信号,Vref为参考信号。

2.提取所需频率分量:乘法器的输出信号包含多种频率分量,其中包括直流分量、输入信号频率、参考信号频率以及它们的组合频率。

低通滤波器用于提取所需的直流或低频分量,抑制高频分量。

3.相位检测:通过调整参考信号的相位,可以得到与输入信号相位差相关的输出信号。

当参考信号与输入信号的相位差为0或π时,乘法器的输出最大;当相位差为π/2或3π/2时,输出最小。

因此,相敏检波器能够检测输入信号的相位信息。

二、主要特点和应用领域相敏检波器的主要特点包括:1.高灵敏度:相敏检波器能够检测到非常微弱的输入信号,具有较高的灵敏度。

2.良好的选择性:相敏检波器对输入信号的频率和相位具有选择性,能够抑制不需要的频率分量和噪声。

3.线性度高:相敏检波器的输出与输入信号的幅度成正比,具有良好的线性度。

4.响应速度快:相敏检波器的响应速度快,能够处理高速变化的输入信号。

相敏检波器在通信、雷达、声纳、测量、生物医学等领域有着广泛的应用。

相敏检波电路的作用

相敏检波电路的作用

相敏检波电路的作用
相敏检波电路的作用是将信号进行调制和解调,实现信号的传输和处理。

具体作用如下:
1. 调制:相敏检波电路可以将信号与参考信号进行相位调制,将信号的频率转换到高频范围,以便进行传输和处理。

例如,在无线通信中,相敏检波电路可以将音频信号调制成无线电频率,以便在空中传输。

2. 解调:相敏检波电路可以将调制信号与参考信号进行混频解调,提取出原始信号。

例如,在无线通信中,相敏检波电路可以将无线电信号解调成音频信号,使其能够被人们听到。

3. 相位比较:相敏检波电路可以对输入信号和参考信号进行相位比较,得到两者之间的相位差。

这对于测量信号的相位差、频率差或相位变化等参数具有重要意义。

4. 频率锁定:相敏检波电路可以根据输入信号和参考信号之间的相位差,实现频率锁定功能。

通过反馈控制,可以使输出信号的频率与参考信号的频率保持一致,从而实现频率锁定。

相敏检波电路在通信、测量和控制等领域中有着广泛的应用,可以实现信号的调制、解调、相位比较和频率锁定等功能。

差动整流电路和相敏检波电路

差动整流电路和相敏检波电路

L L0 0
(4-14)
灵敏度为
L
K0
L0
1
0
(4-15)
可见:变气隙电感式传感器的测量范围与灵敏度及线性度相 矛盾,因此变气隙电感式传感器适用于测量微小位移的场合。
与K 0 L
• 衔铁上移
– 切线斜率变大
L0+L
– 灵敏度增加
K0 LL0 10 10 L0-LL00 2
• 衔铁下移
电感测微仪是用于测量微小尺寸变化很普遍的一种工具,常用于测量 位移、零件的尺寸等,也用于产品的分选和自动检测。
测量杆与衔铁连接,工作的尺寸变化或微小位移经测量杆带动衔铁移 动,使两线圈内的电感量发生差动变化,其交流阻抗发生相应的变化,电 桥失去平衡,输出一个幅值与位移成正比、频率与振荡器频率相同、相位 与位移方向对应的调制信号。如果再对该信号进行放大、相敏检波,将得 到一个与衔铁位移相对应的直流电压信号。
当衔铁上移时: 当衔铁下移时:
U0
U 2
0
U U0 2 0
2. 变压器式交流电桥
C +U
U
-2
+U
-2 D
Z1
+A Z2 U o
- B
变压器式交流电桥
电桥两臂Z1、Z2为传感器线圈阻抗,另外两桥臂为交 流变压器次级线圈的1/2阻抗。 当负载阻抗为无穷大时, 桥路输出电压
U oZ1Z 2Z2U1 2UZ Z1 2 Z Z2 1U 2
L2a
U o
RL
U i
Mb
r2b

E 2b
L1b
L2b

r1b
变隙差动变压器电感式传感器的等 效电路
当r1a<<ωL1a,r1b<<ωL1b时,如果不考虑铁芯与衔铁中

相敏检波

相敏检波

相敏检波(一)相敏检波的功用和原理1、什么是相敏检波电路?相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。

2、为什么要采用相敏检波?包络检波有两个问题:一是解调的主要过程是对调幅信号进行半波或全波整流,无法从检波器的输出鉴别调制信号的相位。

第二,包络检波电路本身不具有区分不同载波频率的信号的能力。

对于不同载波频率的信号它都以同样方式对它们整流,以恢复调制信号,这就是说它不具有鉴别信号的能力。

为了使检波电路具有判别信号相位和频率的能力,提高抗干扰能力,需采用相敏检波电路。

3、相敏检波电路与包络检波电路在功能与电路构成上最主要的区别是什么?相敏检波电路与包络检波电路在功能上的主要区别是相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。

从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。

有了参考信号就可以用它来鉴别输入信号的相位和频率。

4、相敏检波电路与调幅电路在结构上有哪些相似之处?它们又有哪些区别?将调制信号ux乘以幅值为1的载波信号就可以得到双边带调幅信号us,将双边带调幅信号us再乘以载波信号,经低通滤波后就可以得到调制信号ux。

这就是相敏检波电路在结构上与调制电路相似的原因。

二者主要区别是调幅电路实现低频调制信号与高频载波信号相乘,输出为高频调幅信号;而相敏检波器实现高频调幅信号与高频载波信号相乘,经滤波后输出低频解调信号。

这使它们的输入、输出耦合回路与滤波器的结构和参数不同。

(二)相敏检波电路的选频与鉴相特性1、相敏检波电路的选频特性什么是相敏检波电路的选频特性?相敏检波电路的选频特性是指它对不同频率的输入信号有不同的传递特性。

以参考信号为基波,所有偶次谐波在载波信号的一个周期内平均输出为零,即它有抑制偶次谐波的功能。

对于n=1,3,5等各奇次谐波,输出信号的幅值相应衰减为基波的1/ n,即信号的传递系数随谐波次数增高而衰减,对高次谐波有一定抑制作用。

2.移相器相敏检波器实验

2.移相器相敏检波器实验

实验二移相器相敏检波器实验一、实验目的:了解移相器、相敏检波器的工作原理。

二、基本原理:1、移相器工作原理:图2—1为移相器电路原理图与调理电路中的移相器单元面板图。

图2—1 移相器原理图与面板图图中,IC1、R1、R2、R3、C1构成一阶移相器(超前),在R2=R1的条件下,其幅频特性和相频特性分别表示为:K F1(jω)=Vi/V1=-(1-jωR3C1)/(1+jωR3C1)K F1(ω)=1ΦF1(ω)=-л-2tg-1ωR3C1其中:ω=2лf,f为输入信号频率。

同理由IC2,R4,R5,Rw,C3构成另一个一阶移相器(滞后),在R5=R4条件下的特性为:K F2(jω)=Vo/V1=-(1-jωRwC3)/(1+jωRwC3)K F2(ω)=1ΦF2(ω)=-л-2tg-1ωRwC3由此可见,根据幅频特性公式,移相前后的信号幅值相等。

根据相频特性公式,相移角度的大小和信号频率f及电路中阻容元件的数值有关。

显然,当移相电位器Rw=0,上式中ΦF2=0,因此ΦF1决定了图7—1所示的二阶移相器的初始移相角:即ΦF=ΦF1=-л-2tg-12лfR3C1若调整移相电位器Rw,则相应的移相范围为:ΔΦF=ΦF1-ΦF2=-2tg-12лfR3C1+2tg-12лfΔRwC3已知R3=10KΩ,C1=6800p,△Rw=10kΩ,C3=0.022μF,如果输入信号频率f一旦确定,即可计算出图2—1所示二阶移相器的初始移相角和移相范围。

2、相敏检波器工作原理:图2—2为相敏检波器(开关式)原理图与调理电路中的相敏检波器面板图。

图中,AC 为交流参考电压输入端,DC为直流参考电压输入端,Vi端为检波信号输入端,Vo端为检波输出端。

图2—2 相敏检波器原理图与面板图原理图中各元器件的作用:C1交流耦合电容并隔离直流;A1反相过零比较器,将参考电压正弦波转换成矩形波(开关波+14V ~ -14V);D1二极管箝位得到合适的开关波形V7≤0V(0 ~ -14V),为电子开关Q1提供合适的工作点;Q1是结型场效应管,工作在开或关的状态;A2工作在反相器或跟随器状态;R6限流电阻起保护集成块作用。

脉冲积分鉴相(相敏检波)法原理

脉冲积分鉴相(相敏检波)法原理

T
T 2 A sin (ω0t 4
+θ0
)dt
=

A ω0
cos (ω0t
+θ0
)
T 2
T 4
=
−A ω0
⎡⎢⎣cos ⎛⎜⎝ω0T
2
+θ0
⎞⎟⎠ − cos ⎛⎜⎝ω0T
4
+θ0
⎞⎟⎠⎤⎥⎦
ω0 =2π
⎯c⎯osα⎯−cos⎯β =−⎯2sin⎯αT +⎯β sin⎯α −⎯β →
2
2
( ) ( ) ( ) Q
=

2 AT π
sin
(θ0
)
二、波形图
sin(ω0t+θ0) I:0oCLK Q:90oCLK sin(ω0t+θ0)
I:0oCLK/Q:90oCLK I:0oCLK/Q:90oCLK
+ I(θ0) /Q(θ0)
-
三、仿真结果 Matlab 程序
clear all; close all; %===================== A0=1; f0=100; %100Hz T=1/f0; w0=2*pi*f0; tIP=0:T/1000:T/2; tIN=T/2:T/1000:T; tQP=T/4:T/1000:3*T/4; tQN=[0:T/1000:T/4,3*T/4+T/1000:T/1000:T]; t=0:T/1000:T; vt=A0*sin(w0*t); for k=0:360;
vtQ=vtQP-vtQN; K=k+1; I(K)=sum(vtI) /1000; Q(K)=sum(vtQ) /1000; end %============================== figure(1); kk=(0:360);%*1001/361; h=plot(kk,I,'r'); set(h,'linewidth',3); hold on; h = plot(kk,Q,'black');%r'); set(h,'linewidth',3) A=(I(1).^2+Q(1).^2).^0.5; %vt=A*vt; plot(t*360/T,vt) hold off; grid; axis([0 365 -1.1 1.1]); xlabel('³õÏà(¶È)'); ylabel('¼øÏàµçѹ');

乘法器式相敏检波电路

乘法器式相敏检波电路

乘法器式相敏检波电路
乘法器式相敏检波电路的工作原理是,利用乘法器将待测信号与参考信号相乘,结果通过低通滤波器得到与待测信号幅度和相位相关的直流信号。

相敏检波电路是具有鉴别调制信号相位和选频能力的检波电路。

相比包络检波电路,相敏检波电路能够鉴别调制信号相位,从而判别被测量变化的方向,同时相敏检波电路还具有选频的能力,从而提高测控系统的抗干扰能力。

从电路结构上看,相敏检波电路的主要特点是,除了所需解调的调幅信号外,还要输入一个参考信号。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关键词语:差动变压器式传感器工作原理,螺线管式差动变压器结构图,差动变压器等效电路图,差动变压器基本特性,差动变压器式传感器测量电路,差动整流工作原理,差动整流电路,相敏检波电路图,差动变压器式加速度传感器原理图,差动变压式传感器的应用差动变压器式传感器把被测的非电量变化转换为线圈互感量变化的传感器称为互感式传感器。

这种传感器是根据变压器的基本原理制成的, 并且次级绕组都用差动形式连接, 故称差动变压器式传感器。

差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。

非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。

差动变压器结构形式较多, 有变隙式、变面积式和螺线管式等, 但其工作原理基本一样。

非电量测量中, 应用最多的是螺线管式差动变压器, 它可以测量1~100mm范围内的机械位移, 并具有测量精度高, 灵敏度高, 结构简单, 性能可靠等优点。

一、工作原理螺线管式差动变压器结构如图 4 -10 所示, 它由初级线圈#, 两个次级线圈和插入线圈中央的圆柱形铁芯等组成。

螺线管式差动变压器按线圈绕组排列的方式不同可分为一节、二节、三节、四节和五节式等类型, 如图 4 - 11 所示。

一节式灵敏度高, 三节式零点残余电压较小, 通常采用的是二节式和三节式两类。

图4-11 螺线管式差动变压器结构图差动变压器式传感器中两个次级线圈反向串联, 并且在忽略铁损、 导磁体磁阻和线圈分布电容的理想条件下, 其等效电路如图 4 - 12所示。

当初级绕组w1加以激励电压1⋅U 时, 根据变压器的工作原理, 在两个次级绕组w2a 和w2b 中便会产生感应电势a E 2⋅和b E 2⋅。

如果工艺上保证变压器结构完全对称,则当活动衔铁处于初始平衡位置时, 必然会使两互感系数M1=M2。

根据电磁感应原理, 将有⋅⋅=b a E E 22。

由于变压器两次级绕组反向串联, 因而0222=-=⋅⋅⋅b a E E U , 即差动变压器输出电压为零。

图4-12 差动变压器等压电路活动衔铁向上移动时,由于磁阻的影响, w2a 中磁通将大于w2b, 使M1>M2, 因而a E 2⋅增加, 而b E 2⋅减小。

反之, b E 2⋅增加, a E 2⋅减小。

因为⋅⋅⋅-=b a E E U 222, 所以当a E 2⋅、b E 2⋅随着衔铁位移x 变化时, 2⋅U 也必将随x 变化。

图 4 - 13 给出了变压器输出电压2⋅U 与活动衔铁位移x 的关系曲线。

实际上, 当衔铁位于中心位置时, 差动变压器输出电压并不等于零, 我们把差动变压器在零位移时的输出电压称为零点残余电压,记作x U ⋅, 它的存在使传感器的输出特性不过零点,造成实际特性与理论特性不完全一致。

零点残余电压主要是由传感器的两次级绕组的电气参数与几何尺寸不对称,以及磁性材料的非线性等问题引起的。

零点残余电压的波形十分复杂,主要由基波和高次谐波组成。

基波产生的主要原因是:传感器的两次级绕组的电气参数和几何尺寸不对称,导致它们产生的感应电势的幅值不等、相位不同,因此不论怎样调整衔铁位置, 两线圈中感应电势都不能完全抵消。

高次谐波中起主要作用的是三次谐波, 产生的原因是由于磁性材料磁化曲线的非线性(磁饱和、磁滞)。

零点残余电压一般在几十毫伏以下,在实际使用时,应设法减小⋅X U , 否则将会影响传感器的测量结果。

二、 基本特性差动变压器等效电路如图 4 - 12 所示。

当次级开路时有1111jwL r U I +=⋅⋅ (4 - 23) 式中: ω——激励电压 1⋅U 的角频率;——初级线圈激励电压;——初级线圈激励电流;r1、 L1——初级线圈直流电阻和电感。

根据电磁感应定律, 次级绕组中感应电势的表达式分别为:由于次级两绕组反向串联, 且考虑到次级开路, 则由以上关系可得:1121222)(jwL r U M M jw E E U b a +--=-=⋅⋅⋅⋅ (4 - 26) 输出电压的有效值为2121211212])([)(jwL r U M M w U +-=⋅⋅ (4 - 27)下面分三种情况进行分析。

(1) 活动衔铁处于中间位置时M1=M2=M故2⋅U =0(2) 活动衔铁向上移动时 M1=M+ΔM M2=M-ΔM故2⋅U =2ωΔM 1⋅U /[r21+(ωL1)2]1/2, 与a E 2⋅同极性。

(3) 活动衔铁向下移动时M1=M-ΔMM2=M+ΔM故 , 21212112])(/[2wL r U M w U +∆-=⋅⋅与b E 2⋅同极性。

三、 差动变压器式传感器测量电路差动变压器输出的是交流电压, 若用交流电压表测量, 只能反映衔铁位移的大小, 而不能反映移动方向。

另外, 其测量值中将包含零点残余电压。

为了达到能辨别移动方向及消除零点残余电压的目的, 实际测量时, 常常采用差动整流电路和相敏检波电路。

1. 差动整流电路这种电路是把差动变压器的两个次级输出电压分别整流, 然后将整流的电压或电流的差值作为输出, 图 4 - 14 给出了几种典型电路形式。

图中(a )、(c )适用于交流负载阻抗, (b )、(d )适用于低负载阻抗, 电阻R 0用于调整零点残余电压。

下面结合图 4 - 14(c ), 分析差动整流工作原理。

图4-14 差动整流电路从图4 - 14(c)电路结构可知, 不论两个次级线圈的输出瞬时电压极性如何, 流经电容C1的电流方向总是从 2 到4, 流经电容C2的电流方向从6到8, 故整流电路的输出电压为U2=U24-U68(4 - 28)当衔铁在零位时, 因为U24=U68 , 所以U2=0; 当衔铁在零位以上时, 因为U24>U68, 则U2>0; 而当衔铁在零位以下时, 则有U24<U68, 则U2<0 。

差动整流电路具有结构简单#, 不需要考虑相位调整和零点残余电压的影响#, 分布电容影响小和便于远距离传输等优点, 因而获得广泛应用。

2. 相敏检波电路电路如图4 - 15 所示。

VD1、VD2、VD3、VD4 为四个性能相同的二极管, 以同一方向串联成一个闭合回路, 形成环形电桥。

输入信号u2(差动变压器式传感器输出的调幅波电压)通过变压器T1加到环形电桥的一个对角线。

参考信号u0通过变压器T2加入环形电桥的另一个对角线。

输出信号uL从变压器T1与T2的中心抽头引出。

平衡电阻R起限流作用, 避免二极管导通时变压器T2的次级电流过大。

RL为负载电阻。

u0的幅值要远大于输入信号u2的幅值, 以便有效控制四个二极管的导通状态, 且u0和差动变压器式传感器激磁电压u1由同一振荡器供电,保证二者同频、同相(或反相)。

图 4 – 15 相敏检波电路由图 4 - 16(a )、(c )、 (d)可知, 当位移Δx > 0时, u2与u0同频同相, 当位移Δx< 0时, u2与u0 同频反相。

Δx> 0时, u2与u0为同频同相, 当u2与u0均为正半周时, 见图 4 - 15(a ), 环形电桥中二极管VD1、VD4截止, VD2、VD3导通, 则可得图 4 - 15(b )的等效电路。

2002012n u u u == 1222212n u u u ==图 4 – 15 波形图根据变压器的工作原理, 考虑到O 、M 分别为变压器T1、 T2的中心抽头, 则有 u01= u02= 202n u (4 - 29) u21= u22=122n u -(4 - 30)式中 n1#, n2为变压器T1、T2的变比。

采用电路分析的基本方法, 可求得图 4 - 15(b )所示电路的输出电压uL 的表达式:同理当u2与u0均为负半周时, 二极管VD2、VD3截止, VD1、 VD4导通。

其等效电路如图 4 - 15(c )所示, 输出电压uL 表达式与式(4 -31)相同, 说明只要位移Δx>0, 不论u2与u0是正半周还是负半周,负载RL 两端得到的电压uL 始终为正。

当Δx<0时,u2与u0为同频反相。

采用上述相同的分析方法不难得到当Δx<0时, 不论u2与u0是正半周还是负半周, 负载电阻RL 两端得到的输出电压uL 表达式总是为)2(112L L L R R n u R u +-= 所以上述相敏检波电路输出电压uL 的变化规律充分反映了被测位移量的变化规律, 即uL 的值反映位移Δx 的大小, 而uL 的极性则反映了位移Δx 的方向。

)2(112L L L R R n u R u +=四、差动变压式传感器的应用差动变压器式传感器可以直接用于位移测量, 也可以测量与位移有关的任何机械量, 如振动、加速度、应变、比重、张力和厚度等。

图4 - 17 所示为差动变压器式加速度传感器的结构示意图。

它由悬臂梁1 和差动变压器2 构成。

测量时, 将悬臂梁底座及差动变压器的线圈骨架固定, 而将衔铁的A端与被测振动体相连。

当被测体带动衔铁以Δx(t)振动时, 导致差动变压器的输出电压也按相同规律变化。

图4 - 17 差动变压器式加速度传感器原理图。

相关文档
最新文档