第8章交通量分配一
8交通分配方法分配要点
交通分配方法 平衡分配法 如果分配模型满足WARDROP第一、 第二原理,则该方法为平衡分配法。
非平衡分配法 如果采用模拟方法进行分配称之为非
平衡分配法。
1、平衡分配法
固定需求分配法
在分配模型中,出行OD矩阵T(i,j)固定不变。 Beckmann提出固定需求的用户优化平衡模型:
min
Va 0
• P(k)—第k条出行路线上的分配率;
• t(k)—第k条出行线路的路权;t—各出行路线的平均路权, θ—参数。
四、多路径交通分配方法
2、分配模型的改进
• 最短路因素-出行者希望最短、最快、最方便
• 随机性因素-交通网络复杂性、交通状况的随机性、出行 者出行的不确定性
• Logit方法设某OD点对(r, s)之间每个出行者总是选择他 认为阻抗最小的路径k(称出行者主观判断的阻抗值为 “感知阻抗”)。各出行线路被选用的概率可用LOGIT路 径选择模型计算。
步 1、初始化。将 PA 分布矩阵分解成若干份(N 份)。令 k=1,
x
0 a
(0 路段a)。
步
2、计算各路段阻抗:
t
k a
ta
(
x
k a
1
)
a
步 3、按全有全无分配法将各 PA 点对(i. j)的第 k 份出行分布量分配到它们之间的最
短路径上;并累加各路段从该步分配新得到的交通量,设为 wak ,
40+20
A
20
30+10
10
40 10
20+10
分配次数K与每次的OD量分配率(%)
分配次序 1
2
3 4 5 6 7 8 9 10
第八章 交通流分配(Wardrop平衡原理)
第八章 交通流分配
Wardrop平衡原理
交通平衡
【思考】Q小——车辆沿最短路径——随着Q增加——拥
堵——车辆选择最短、次短——Q继续增加——所有路径 都有被选择的可能。
考虑拥挤对路网的影响 能够解决一些实际分配问题
Wardrop平衡原理也存在缺陷
用户很难确切知道路网的交通状态 用户通过估计时间选择最短路径 某些用户在路径选择上存在偏好
思考习题
Braess悖论
1
qod 6
o 1 : t1(x1) 50 x1
o
2 d : t2(x2 ) 50 x2
Wardrop第一平衡原理
Wardrop第一平衡原理
如果道路使用者都确切知道网络的交通状态并试图选 择最短路径时,网络将会达到平衡状态。
用户均衡(User Equilibrium, UE)
所有被使用的道路的行驶时间相等且等于最小行驶时间 其他未被使用的道路的行驶时间大于或等于最小行驶时间
(2)求解用户均衡条件下的各路段流量及出行成本, 并与(1)的结果进行比较并试说明之。
2.Braess 奇论(Paradox) 奇论:为提高路网的服务水平而制定的交通政策,在用
户均衡状态下反而导致服务水平的下降。
2
1
2
1 3
3 4
4
OD交通量:t13 600 辆
路阻函数:
t1 ( x1 ) 50 0.01x1 (分) t2 ( x2 ) 0.1x2 (分)
第八章 交通流分配(Wardrop平衡原理)
思考习题
Braess悖论
1
qod=6
o 1 : t1 ( x1 ) 50 x1
o d
2 d : t2 ( x2 ) 50 x2 o 2 : t3 ( x3 ) 10 x3 1 d : t 4 ( x 4 ) 10 x 4
2
2 1 : t 5 ( x 5 ) 10 x 5
t 3 ( x3 ) 50 0.01x3
t 4 ( x 4 ) 0.1x 4
解:利用用户均衡分配法和系统均衡分配法得, 径路1(路段1+路段2) ,径路2(路段3+路段4) 的交通量:
h1 300 , h2 300 (辆)
径路1(路段1+路段2) ,径路2(路段3+路段4) 的旅行时间:
1
qod 6 o 1 : t1 ( x1 ) 50 x1 2 d : t2 ( x2 ) 50 x2
d
o
o 2 : t3 ( x3 ) 10 x3 1 d : t4 ( x4 ) 10 x4 co1d co2d 83
2
(1)求解用户均衡条件下的各路段流量及出行成本
反映内容不一样
一般情况下,平衡结果不一样
小结
Wardrop第一、第二平衡原理
考虑拥挤对路网的影响 能够解决一些实际分配问题 用户很难确切知道路网的交通状态 用户通过估计时间选择最短路径 某些用户在路径选择上存在偏好
Wardrop平衡原理也存在缺陷
思考习题
Braess悖论
堵——车辆选择最短、次短——Q继续增加——所有路径 都有被选择的可能。
交通平衡
交通运输规划第八章交通分配
交通运输规划第八章:交通分配1. 引言交通分配是交通运输规划中的重要环节之一,旨在合理分配交通资源,提高交通效率,减少交通拥堵,并确保交通运输系统的可持续发展。
本章将介绍交通分配的背景、目标、原则以及具体实施方法。
2. 背景随着城市化进程的加快,交通需求急剧增加,交通拥堵问题日益突出。
为了解决这一问题,交通分配成为必不可少的环节。
通过合理分配交通资源,可以提高交通的运行效率,减少交通堵塞,促进城市发展和居民生活质量的提高。
3. 目标交通分配的目标是实现交通资源的合理配置,优化交通运输系统的运行效率,并确保交通系统的可持续发展。
具体目标如下:•提高交通运输系统的运行效率;•减少交通拥堵,缓解交通压力;•优化交通分配方案,提高交通服务水平;•降低交通事故发生率,提高道路安全性;•保护环境,减少交通对环境的影响。
4. 原则在进行交通分配时,应遵循以下原则:•公平原则:确保交通资源的公平分配,不偏袒任何一方利益。
•高效原则:提高交通运输系统的运行效率,尽可能减少通行时间。
•可持续发展原则:坚持可持续交通发展的理念,注重环境保护和资源的合理利用。
•综合考虑原则:在交通分配时,要综合考虑各种因素,包括道路容量、交通需求、路段状况等。
5. 实施方法在实施交通分配时,可以采用以下方法:5.1 交通流分配交通流分配是指根据交通需求和道路容量,将交通流量按照一定的规则分配到各个路段或交叉口。
可以采用的方法包括:交通矩阵分配、交通模型分配等。
5.2 车辆限制措施为了缓解交通拥堵,可以采取车辆限制措施,如限制高峰时段车辆通行、实施交通限行等。
5.3 公共交通优先通过优化公共交通线路、提高公共交通的服务质量,鼓励居民使用公共交通,减少私家车的使用,从而减少交通堵塞。
5.4 道路改建与建设根据交通需求和道路容量,合理规划道路改建与建设,提高道路通行能力,减少拥堵。
5.5 交通信号控制通过优化交通信号控制系统,合理控制交通流量,提高交通信号的配时方案,从而提高交通运行效率。
交通流分配
对于公路行驶时间函数的研究,被广泛应用的是由美国 道路局(Bureau of Public Road,BPR)开发的函数,被称 为BPR函数,形式为: q β
t a = t 0 [1 + α (
a
ca
) ]
式中:ta:路段a上的阻抗; t0 :零流阻抗,即路段上为空静状态时车辆自由行驶所 需要的时间; qa :路段a上的交通量; ca :路段a的实际通过能力,即单位时间内路段实际可通 过的车辆数; a、b :阻滞系数,在美国公路局交通流分配程序中,a 、b 参数的取值分别为a=0.15、b=4。也可由实际数据用 回归分析求得。
【例题8-1】计算下图 8-2 所示路网从节点1到节 点9的最短径路。
1 2 4 2 1 2 2 2 5 1 2 2 2 2 6 3
7
2
8
2
9
从图上可以看出,从节点1到节点9的最短径路 为:1—4—5—6—9;最短路权为6。
四、交通平衡问题 (一)Wardrop平衡原理 如果两点之间有很多条道路而这两点之间的交通量 又很少的话,行驶车辆显然会沿着最短的道路行走。 随着交通量的增加,最短径路上的交通流量也会随之 增加。增加到一定程度之后,这条最短径路的行驶时 间会因为拥挤或堵塞而变长,最短径路发生变化,这 一部分行驶车辆将会选择新的行驶时间次短的道路。 随着两点之间的交通量继续增加。两点之间的所有道 路都有可能被利用。
二、交通阻抗 交通阻抗(或者称为路阻)是交通流分配中经常提 到的概念,也是一项重要指标,它直接影响到交通流 径路的选择和流量的分配。 道路阻抗在交通流分配中可以通过路阻函数来描述 ,所谓路阻函数是指路段行驶时间与路段交通负荷, 交叉口延误与交叉口负荷之间的关系。在具体分配过 程中,由路段行驶时间及交叉口延误共同组成出行交 通阻抗。
pA第8章交通量分配一
❖ 2、1952 年,著名交通问题专家 Wardrop 提 出了网络平衡分配的第一、第二定理,人们 开始采用系统分析方法和平衡分析方法来研 究交通拥挤时的交通流分配,带来了交通流 分配理论的一次大的飞跃。
❖ 例题
四 、交通平衡问题
❖ (一) Wardrop平衡原理 ❖ 如果所有的道路利用者(即驾驶员)都准确知道
各条道路所需的 行驶时间 行走时间 并选择 走行时间 行驶时间 最短的道路,最终两点之 间被利用的各条道路的 走行时间 行驶时间 会相等。没有被利用的道路的 走行时间 行驶 时间 更长。这种状态被称之为道路网的平衡 状态。
❖ 确定性分配能够较好的反映网络的拥挤性, 随机性分配能够较好地反映出行选择行为的 随机性,但是要真正地符合路网实际情况, 还有更重要更基本的交通需求的时变性需要 反映出来。
❖ 也就是说,需要一种交通流分配方法能够将 路网上交通流的拥挤性、路径选择的随机性、 交通需求的时变性综合集成地刻画反映出来, 这正是研究交通问题的人们一直积极探索的 领域。
❖ 首先,人们进行了确定性的分配研究,其前 提是假设出行者能够精确计算出每条 路 径 路 的阻抗,从而能作出完全正确的选择决定,
且每个出行者的计算能力和水平是相同的。 可见确定性分配反映了网络的拥挤特性,反 映了路阻随流量变化的实际,该方法是一次 理论的进步。
❖ 但是,进一步研究实际网络中出行者的出行 行为发现,现实中出行者对路段阻抗的掌握 只能是估计而得。因为出行者的计算能力和 水平是各异的,对同一路段不同出行者的估 计值不会完全相同。
(二)最短径路算法
交通规划 第八章分配交通量
5
一、基本概念
交通阻抗 阻抗:路段上或节点处的运行时间或广义费用 路阻函数:交通阻抗与交通量的关系 路段上:流量与行驶时间的关系 节点处:交叉口的负荷与延误的关系 路段阻抗: 轨道交通:阻抗与客流量无关 (flow independent) 道路:阻抗与交通量曲线关系 (flow dependent) Q-V特性 或 路阻函数
q1
0
t1 ( )d t2 ( )d min
0
q2
E
s. t. q1 q2 q, q1 0, q2 0
q1
q2
21
三、平衡分配方法
Beckmann交通平衡模型:
min Z ( x) t a ( )d
xa a 0
各路段阻抗函数积分和最小化 交通流守恒:
19
三、平衡分配方法
c1 min(c1 , c2 ) c1 min(c1 , c2 )
if f1 0 if f1 0
c2 min(c1 , c2 ) c2 min(c1 , c2 )
if f k 0 if f k 0
if f 2 0 if f 2 0
f 2 100 f1
解联立方程 c1 c2 5 0.1 f1 (10 0.025f 2 ) 5 0.1 f1 [10 0.025(100 f1 )] 0.125f1 7.5 因为 c1 c2 ,即 c1 c2 0 ,
c1 c2 11 所以 f1 60 ,f 2 40 ,
9
一、基本概念
最短路径算法:Dijkstra法 初始化:给起点标上P标号0,其他节点标上T标号∞。 重复以下步骤,直到全部节点都得到P标号 →从刚得到P标号的节点出发,计算P标号与相连路段阻 抗之和,作为相邻节点的T标号备选; →如果备选T标号小于节点原有的T标号,则以备选T标 (s,5) 号作为该节点的T标号; a →对T标号最小的节点,将其 (s,0) (d,10) T标号定为P标号。 (s,4) b →需辨识最短路径时,P标号 中应附带路径信息。 c 最短路径辨识:按P标号及其路 d (s,2) 径信息,从终点反推。 (b,6)
《交通量分配》课件
05
交通量分配的实践应用
城市交通规划中的应用
交通量调查
通过调查城市各区域之间的交通需求,了解不同路段的交通流量 和流向。
交通模型建立
根据调查数据,建立交通分配模型,预测不同路段上的交通量。
优化交通布局
根据交通分配结果,优化城市道路网络布局,提高道路使用效率 。
高速公路建设中的应用
高速公路建设规划
详细描述
随机用户均衡法假设用户对路径的选择是随 机的,基于概率分布将总交通量分配到各个 路径上。这种方法适用于不确定性和随机性 较大的交通情况,能够提供一种概率意义上 的最优解。
03
交通量分配模型
平衡分配模型
平衡分配模型是一种经典的交通量分配模型,它 假设所有路径上的交通量都相等,即各路径上的 流量达到平衡状态。
共享出行
鼓励共享单车、共享汽车等共享出行方式的发展,提高出行效率, 减少交通拥堵和排放。
多模式交通信息平台
建立多模式交通信息平台,提供多种交通方式的查询、预订和支付服 务,方便用户选择最合适的出行方式。
绿色出行和低碳交通的考虑
绿色出行宣传
加强绿色出行理念的宣 传和教育,鼓励市民选 择公共交通、步行、骑 行等低碳出行方式。
自动驾驶车辆
通过人工智能技术,实现自动驾驶车辆的研发和 应用,减少人为驾驶错误和交通拥堵。
3
智能停车系统
利用大数据和人工智能技术,实现停车位预约、 导航和自动泊车等功能,提高停车效率和便利性 。
多模式交通一体化考虑
综合交通枢纽
建设集多种交通方式于一体的综合交通枢纽,实现不同交通方式之 间的无最优的原则,通过迭代 算法来分配交通量。
VS
详细描述
用户均衡法考虑了用户对路径的选择和偏 好,通过迭代计算每条路径的效用(如行 程时间)和用户选择概率,最终达到用户 最优的交通量分配结果。这种方法能够反 映实际交通情况,但计算复杂度较高。
交通量分配
第二节 交通量分配方法
多路径概率法 容量限制-多路径概率分配法
第一节概述二wardrop均衡理论?wardrop第一原理useequilibrium?在起迄点中可以利用的路径当中各条实际被利用的路径的所需时间相等而且比没有被利用利用的路径的所需时间相等而的路径所需时间少
交通量分配
ห้องสมุดไป่ตู้
Trip Assignment
第一节 概述
一、基本概念 交通量分配
将OD交通量按照一定的规则,分配到道路网中 的各条道路上,并求出各条道路的交通流量。
交通量分配时路程最短?时间最短? 交通量和时间的关系; 均衡状态。
第一节 概述
二、Wardrop均衡理论 Wardrop第一原理(Use Equilibrium)
在起迄点中可以利用的路径当中,各条实际被 利用的路径的所需时间相等而且比没有被利用 的路径所需时间少。
Wardrop第二原理(System Equilibrium)
道路网中总的行驶时间最小。
第二节 交通量分配方法
非平衡模型 全有全无分配法 步骤:
寻找O、D间的最短路径; 将O、D交通量全部分配到该最短路径上。
第二节 交通量分配方法
容量限制-加载(增量)分配法(incremental assignment method) 步骤:
(1)将交通量n(通常,n=10)等分; (2)找O、D间的最短路径; (3)将1/n的O、D交通量全部分配到该最短路 径上; (4)返回(2)、(3),直至全部分配完毕。
第8章 交通流分配(基本概念)
25
矩阵迭代法例题
4、进行矩阵迭代运算(第m步) 经过m步到达某一节点的最短距离为:
Dm= Dm-1 *D=[dmij] [dmij] =min[dm-1ik+dkj]
k=1,2,3„,n 式中:dm-1ik ---距离矩阵Dm-1中的元素;
dkj ---距离矩阵D中的元素。 迭代不断进行,直到: Dm= Dm-1。即:
33
(1)Wardrop第一平衡原理
前提条件:准确完备的信息、理智的选择行为
结论:当网络达到平衡状态时 ,每个OD对的各条被使用的 路径具有相等而且最小的行驶时间;没有被使用路径的行
驶时间大于或等于最小行驶时间 。
路径1,q1=0
O
路径2, q2≠0
路径3, q3≠0
D
t1> t2=t3=tmin
5- 6-9
30
第2节 交通流分配的基本概念
三、交通平衡问题
网络平衡:假设从一个OD对的出行者都选择同一条路(它 在开始时是阻抗最小的),则这条路径上就会产生拥挤而导 致阻抗上升,直到它不再是最好的路径。此时,部分出行者 将选择其它路径,不过被选择的路径也会随流上升而增加阻 抗。出行者就这样不断权衡、不断修改出方案,直至这些路 径上的流量分布达到某种程度的稳定即所谓的平衡状态。
27
矩阵迭代法实际应用分析:
用该方法求解网络的最短路,能够一次获 得n*n阶的最短路权矩阵,简便快速。
软件的开发比 Dijkstra方法节省内存, 速度快。网络越复杂,该方法的优越性越 明显。
28
最短路径辨识例题:
dri+Lmin(i,s)=Lmin(r,s)
例2:辨识出例1所求得的从节点1到节点9的最短 路径。(P182)
交通规划分配交通量
一、基本概念
交通量分配旳作用 OD交通量 交通网络
现状
现状
作用
拟定分配模型参数 确认分配措施旳现状再现性
将来(预测)
现状
研究今后交通网旳建设方向 制定路网规划
将来(预测) 将来(预测) 对规划方案进行评价
现状
将来
4
一、基本概念
交通量分配旳准备工作 交通网络模型 节点属性:编号、坐标,发生吸引点,换乘节点等 路段属性: ➢ 编号、起点编号、终点编号; ➢ 长度、最高车速; ➢ 通行能力、路阻函数(QV特征)、车道数; ➢ 通行方向(单向、双向、禁行、禁止转向、限行) ➢ 高速/一般,收费费率;
15
二、非平衡分配措施
增量分配法(Incremental Assignment Method) 考虑交通量对路阻旳影响。 分配思绪:逐次分配部分OD交通量,根据路网流动情 况,决定下次分配旳最短途径 将OD表分为若干个份(等分或不等分),每次分配一份 每份OD表分配前,重新计算路网上各路段旳阻抗和 各OD正确最短径路 每份OD表均按全有全无法分配到相应旳最短途径上
→ 将q旳水量加入容器中
有流量旳途径,阻抗(旅行时间)相同
→有水旳容器,水面高度相同
系统旳势能总和最小
E g
xa 0
ta
(
)d
min
a
24
三、平衡分配措施
系统优化分配旳模型化
Wardrop第二原理:道路上全部出行者旳总行驶时间最小
路段a旳总行驶时间:xa ta (xa )
系统优化分配旳模型
18
三、平衡分配措施
顾客平衡旳模型化
c1=5+0.1f1 q=f1+f2=100辆
交通流分配
1964 Johnson 1965
1967 Tomlin 1968 1969 Murchland
1971
1973 Evans 1974 Potts & Oliver 1975 Florian et al.
1977 Erlander
基于 Studies 的研究
• 一些年轻的研究者分析了固定需求的用户均衡问题,并 提出和检验了求解算法
• ..\Ran, Bin.htm
第二节 交通分配中的基本概念
• 一、交通流分配 • 二、交通阻抗 • 三、径路与最短径路 • 四、交通平衡问题
一、交通流分配
• OD交通量是两点之间的交通量,即从出发 地到目的地之间的交通量。
• 一般的道路网中,两点之间(即O与D之间) 有很多条道路,如何将OD交通量正确合理 地分配到O与D之间的各条道路上即是交通 流分配要解决的问题。
Network Equilibrium Research
Based on Studies Fixed OD Flows
1956 Variable OD
Flows
1961 Walters
Almond
Dafermos Bruynooghe et al.
Netter Leventhal /LeBlanc
研究论文
• BMW共完成了8篇论文,从中可以看出他们研 究的起点和方向。按照时间的顺序,他们是,
• Beckmann, Optimum Transportation on Networks, Aug 1951
• McGuire, Highway Capacity and Traffic Congestion, Jul 1952
源于资源分配的研究
演示文稿第八章交通流分配
第二节 交通流分配基本概念
二、交通阻抗
交通阻抗直接影响到交通流路径的选择和流量的分配。道路阻抗在 交通分配中可以通过路阻函数描述,所谓路阻函数是指路段行驶时 间与路段交通负荷,交叉口延误与交叉口负荷之间的关系。在具体 分配过程中,由路段行驶时间及交叉口延误共同组成出行交通阻抗
。(路段行驶时间与路段交通负荷或者交叉口延误与交叉口之间的 函数关系)
:
T3(3)=min[T(3),P(2)+d23 ]=min[∞ ,2+2]=4 T3(5)=min[T(5),P(2)+d25 ]=min[∞ ,2+2]=4 在所有T标号(点3,4,5…9)中,节点4为最小,给节点4标上P标号,即P[4]=
T 2 (4)=2
第二十一页,共41页。
第二节 交通流分配基本概念
第二节 交通流分配基本概念
路段阻抗:
a:时间与距离成正比,与路段流量无关(城市轨道交通网)
b:时间与距离不一定成正比,与路段流量有关 (公路网、城市道路网
)
广义定义
Ca= f (﹛V﹜)
第十三页,共41页。
第二节 交通流分配基本概念
美国公路局BPR函数 ta = t0 { 1 + α ( qa / ca )β }
交通阻抗:路段阻抗、节点阻抗 影响路阻的主要因素:时间 (计算的主要指标)
第十一页,共41页。
第二节 交通流分配基本概念
• 交通时间是出行者所考虑的首要因素,尤其在城市道路交通 中
• 影响路阻的其他因素都与交通时间有关,且呈现与其相同变 化趋势
• 更易于测量,其他必要考虑的因素可转换为时间度量
第十二页,共41页。
5. 节点5刚得到P标号。节点6、8与5相邻,且为T标号,修改这两点的T标号 : T 5 (6)=min[T(6),P(5)+d 56 ]=min[∞,3+1]=4
第八讲交通流分配
T1(j)=∞,j=2,3,…,n。即表示从起点1到起点1最短路权为0,到其
各点的最短路权的上限临时定为∞。标号中括号内数字表示节点号,下标
表示第几步标号。经过第一步标号得到一个P标号P(1)=0。
步骤2 设经过了(K-1)步标号,节点i是刚得到P标号的点,则对所有没有
如果每步循环中权重系数严格按照数学规划模型取值时即可得到平衡分配83非平衡分配方法733迭代加权法incrementalassignmentmethod本章主要内容85交通分配模型中存在的问题82交通网络平衡与非平衡分配理论81概述83非平衡分配法84平衡分配法84平衡分配法用户平衡分配模型和系统最优平衡分配模型用户平衡分配模型ue1956年beckmann等学者提出了一种满足wardrop准则的数学规划模型奠定了研究交通分配问题的理论基础
Tk(j0)=min[Tk(j),T(r)]
式中, j0——最小T标号所对应的节点;
T(γ)——与i点不相邻点r的T标号。
给点j0标上P标号:P(j0)= Tk(j0),第K步标号结束。
步骤3 当所有节点中已经没有T标号,算法结束,得到从起点1到其它各点
的最短路权;否则返回第二步。
例题8.1
用Dijkstra法计算图7-1所示路网从节点1到各
四、最短路径的计算方法
•
交通网络上任意一OD点对之间,从发生点到吸引点
一串连通的路段的有序排列叫做这一OD点对之间的路
径。一OD点对之间可以有多条路径,总阻抗最小的路
径叫“最短路径”。
•
最短路径的计算是交通量分配中最基本也是最重要
的计算:
任何一种交通量分配法都是建立在最短路径的基础
交通分配方法-分配
动态交通分配
根据实时交通流信息和预测结果, 动态调整交通分配方案,提高道 路通行效率。
基于人工智能的交通分配
01
人工智能技术应用
运用深度学习、强化学习等人工 智能技术,实现交通分配的自动 化和智能化。
02
交通模式识别
03
智能路径规划
随着环境保护意识的提高,如何在交通分配中考虑环境因素,如减少尾气排放、降低噪音等,将成为未来研究的重要 课题。
多目标交通分配
在实际交通场景中,往往需要考虑多个目标,如时间最短、费用最少、舒适度最高等。如何设计多目标 交通分配算法,平衡不同目标间的冲突和矛盾,将是未来研究的重要方向。
THANKS
感谢观看
06
总结与展望
研究成果总结
01
交通分配方法理论体系
本文构建了完整的交通分配方法理论体系,包括交通网络建模、交通流
分配、算法设计和性能评估等方面。
02 03
高效算法设计
针对大规模交通网络和复杂交通场景,设计了高效的交通分配算法,如 基于最短路径的分配算法、基于多路径的分配算法等,提高了交通分配 的准确性和效率。
容量限制分配法
原理
在交通分配过程中考虑道 路的通行能力限制,确保 分配结果符合实际交通情 况。
优点
能够反映道路通行能力对 交通分配的影响,提高分 配结果的准确性。
缺点
计算复杂度高,需要获取 详细的道路通行能力数据。
04
先进交通分配技术
基于GIS的交通分配
GIS技术应用
利用GIS强大的空间数据处理和分析功能,实现交通网络建模和路 径规划。
系统最优原则
第八章_交通分配分析
进行交通分配时所需要的基本数据有:
(1)表示需求的OD交通量出行矩阵。在拥挤的城市道路网中通常采用 高峰期OD交通量出行矩阵,在城市间公路网中通常采用年平均日交通量 (AADT)的OD交通量出行矩阵 ;
第一节 交通流分配中的基本概念 第二节 平衡分配法 重点内容 第三节 非平衡分配法 重点内容 第四节 随机分配法 第五节 动态交通流分配法
第一节 基本概念
交通分配(assignment)相关概念
一、交通流分配定义
就是将预测得出的OD交通 量,根据已知的道路网描述, 按照一定的规则分配到路网中 的各条道路上去,进而求出路 网中各路段的交通流量,并据 此对城市交通网络的使用状况 做出分析和评价。
其二,几乎所有的影响路阻的其他因素都与交通时间密切相关,且 呈现出与交通时间相同的变化趋势;
其三,交通时间比其他因素更易于测量,即使有必要考虑到其他因 素,也常常是将其转换为时间来度量。
交通阻抗由两部分组成:路段上的阻抗和节点处的阻抗。
1.路段上的阻抗
在诸多交通阻抗因素中,时间因素最主要。对于单种交通网 络,出行者在进行路径选择时,一般以时间最短为目标。有些交 通网络,路段上的行驶时间与距离成正比,与路段上的流量无关 ,如城市轨道交通网。此时用时间或距离作为阻抗是等价的,为 了量测方便起见,选用路段的距离较好。有些交通网络,如公路 网、城市道路网,路段上的行驶时间与距离不一定成正比,而与 路段上的交通流量有关,此时就选用时间作为阻抗。这类行驶时 间 与距离、流量的关系比较复杂,这种关系可以广义地表达为 :
ta f (V )
即路段 a 上的费用 ta 不仅仅是路段本身流量的函数,而且是整个 路网上流量 V 的函数。这个一般化的公式在城市道路网上是比较 多见的,因为交叉口的存在,不同路段上的流量会相互影响。
第八章_交通分配.
这条定义通常简称为Wardrop平衡(Wardrop Equilibrium), 在实际交通分配中也称为用户均衡 ( User Equilibrium , UE) 或用户最优。没有达到平衡状态时,会有一些道路使用者通过 变换路线来缩短行驶时间直至平衡。即,路段流量(拥挤)和出 行费用同时为出行者所考虑的因素,是平衡形成的条件。
??
1952 年 , Wardrop 提 出了交通网络平衡定 义的第一原理和第二 原理,奠定了交通分 配的基础。
Wardrop提出的第一原理定义是:在道路的使用者都确切知
道网络的交通状态并试图选择最短路径时,网络将会达到平衡 状态。在考虑路段流量对行驶时间影响的网络中,当网络达到 平衡状态时,每个OD对的各条被使用的路径具有相等而且最小 的 行驶时间;没有被使用的路径的行驶时间大于或等于最小 行驶时间 。
第一节 交通流分配中的基本概念 第二节 平衡分配法 重点内容
第三节 非平衡分配法 重点内容
第四节 随机分配法
第五节 动态交通流分配法
第一节
基本概念
交通分配(assignment)相关概念
一、交通流分配定义
就是将预测得出的 OD 交通 量,根据已知的道路网描述, 按照一定的规则分配到路网中 的各条道路上去,进而求出路 网中各路段的交通流量,并据 此对城市交通网络的使用状况 做出分析和评价。
ta f (Va )
即路段的费用只与该路段的流量及特性相关,这个假定简化 了对路段函数的建立和标定,以及交通流分配模型的开发。 对于公路行驶时间函数的研究,既有通过实测数据进行回归 分析的,也有进行理论研究的。其中被广泛应用的是由美国 道路局 (Bureau of Public Road , BPR) 开发的函数,被称为 BPR函数,形式为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
❖ 概括而言,交通流分配,就是将预测得出的 OD 交通量,根据已知的道路网描述,按照 一定的规则符合实际地分配到路网中的各条 道路上去,进而求出路网中各路段的交通流 量、所产生的 OD 费用矩阵,并据此对城市 交通网络的使用状况做出分析和评价。
3
❖ 理论发展进程: ❖ 1、全有全无的最短路径方法 ❖ 非常理想化的城市交通网络,即假设网络上
第八章 交通流分配
第1节 交通流分配理论的产生与发展 第2节 交通量分配中的基本概念 第3节 非平衡分配方法 第4节 平衡分配方法 第5节 随机分配方法 第6节 动态交通流分配
(重点) (重点) (重点) (重点)
1
第一节 交通流分配理论的产生与发展
❖ 城市交通网络上形成的交通流量分布是两种机制相 互作用直至平衡的结果。一种机制是:系统用户即 各种车辆试图通过在网络上选择最佳行驶路线来达 到自身出行费用最小的目标;另一种机制是:路网 提供给用户的服务水平与系统被使用的情况密切相 关,道路上的车流量越大,用户遇到的阻力即对应 的行驶阻抗越高。两种机制的交互作用使人们不易 找到出行的最佳行驶路线和最终形成的流量分布结 果。
没有交通拥挤,路阻是固定不变的,一个 OD 对间的流量都分配在“一条 路 径 ”, 即最短 路 径 路 上。
❖ 对于城市之间非拥挤公路网的规划设计过程 中的交通流分配是比较合适的,但对于既有 的城市内部拥挤的交通网络,该方法的结果 与网络实际情况出入甚大。
4
❖ 2、1952 年,著名交通问题专家 Wardrop 提 出了网络平衡分配的第一、第二定理,人们 开始采用系统分析方法和平衡分析方法来研 究交通拥挤时的交通流分配,带来了交通流 分配理论的一次大的飞跃。
驶所需要的时间; ❖ q a ---- — 路段a上的交通量; ❖ c a ---- —路段a的实际通过能力,即单位时间内路段实
际可通过的车辆数; ❖ a 、 b — ----- 阻滞系数,在美国公路局 交通分配 交通
流分配 程序中, a 、 b 参数的取值分别为 a =0.15、 b =4。也可由实际数据用回归分析求得。 可知:走行时间 行驶时间 是路段流量的单调递增函数。
8
第二节 交通流分配中的基本概念
一、交通流分配
i
j
小汽车
9
❖1、交通分配 交通流分配 涉及到以下
几个方面 :
❖ (1) 可以是 将现状OD 交通量分配到现状交通 网络上,以分析目前交通网络的运行状况,如 果有某些路段的交通量观测值,还可以将这些 观测值与在相应路段的分配结果进行比较,以 检验 四阶段预测 模型的精度。
13
❖ 交通网络上的路阻,应包含反映交通时间、 交通安全、交通成本、舒适程度、便捷性 和准时性等等许多因素。
❖ 经过大量的理论分析和工程实践,人们得 出影响路阻的主要因素是时间,因此交通 时间常常被作为计量路阻的主要标准。
14
❖ 交通阻抗由两部分组成路段上的阻抗和节点处 的阻抗。
❖ 1.路段阻抗
❖ (1)表示需求的OD 交通量出行矩阵 。 ❖ (2)路网定义,即路段及交叉口特征和属性
数据,同时还包括其时间 — - 流量函数。 ❖ (3) 径路 选择原则。
12
二、交通阻抗
道路阻抗在 交通分配 交通流分配 中可以通过 路阻函数来描述,所谓路阻函数是指路段行驶 时间与路段交通负荷,交叉口延误与交叉口负 荷之间的关系。在具体分配过程中,由路段行 驶时间及交叉口延误共同组成出行交通阻抗。
❖
(8-1)
❖ 对于公路行驶时间函数的研究,既有通过实测 数据进行回归分析的,也有进行理论研究的。 其中被广泛应用的是由美国道路局(Bureau of Public Road,BPR)开发的函数,被称为BPR 函数,形式为:
15
❖
(8-3)
❖ 式中 : t a ---- —路段a上的阻抗; ❖ t 0 ---- —零流阻抗,即路段上为空静状态时车辆自由行
6
❖ 3、1977 年,美国加州大学伯克利分校的 Daganzo 教授及麻省理工学院的 Sheffi 教授 提出了随机性分配的理论。
❖ 其前提是认为出行者对路段阻抗的估计值与 实际值之间的差别是一个随机变量,出行者 会在“多条 路 径 路 ”中选择,同一起讫点 的流量会通过不同的 路 径 路 到达目的地。 随机性分配理论和方法的提出,在拟合、反 映现实交通网络实际的进程中又推进了一大 步。
16
❖ 从交通流分配的观点出发,理想的路段阻抗函数应该 具备下列的性质:
❖ (1)真实性,用它计算出来的 走行时间 行驶时间 应具 有足够的真实性。
❖ (2)函数应该是单调递增的,流量增大时, 走行时间 行驶时间不应减少。
❖ (3)函数应该是连续可导微的。 ❖ (4)函数应该允许一定的“超载”,即当流量等于或超
10
❖ (2) 也可以是将规划年OD 交通量分布 预测值 分配到现状交通网络上,以发现对规划年的 交通需求而言,现状交通网络的缺陷,为后 面交通网络的规划设计提供依据。
❖ (3) 还可以是将规划年OD 交通量分布预测值 分配到 规划交通网络上,以评价交通网络规 划方案的合理性 。
11
❖2、进行 交通分配 交通流分配 时所需要 的基本数据有:
7
❖ 确定性分配能够较好的反映网络的拥挤性, 随机性分配能够较好地反映出行选择行为的 随机性,但是要真正地符合路网实际情况, 还有更重要更基本的交通需求的时变性需要 反映出来。
❖ 也就是说,需要一种交通流分配方法能够将 路网上交通流的拥挤性、路径选择的随机性、 交通需求的时变性综合集成地刻画反映出来, 这正是研究交通问题的人们一直积极探索的 领域。
❖ 首先,人们进行了确定性的分配研究,其前 提是假设出行者能够精确计算出每条 路 径 路 的阻抗,从而能作出完全正确的选择决定, 且每个出行者的计算能力和水平是相同的。 可见确定性分配反映了网络的拥挤特性,反 映了路阻随流量变化的实际,该方法是一次 理论的进步。
5
❖ 但是,进一步研究实际网络中出行者的出行 行为发现,现实中出行者对路段阻抗的掌握 只能是估计而得。因为出行者的计算能力和 水平是各异的,对同一路段不同出行者的估 计值不会完全相同。