一元二次函数的图像和性质教学设计
二次函数图像和性质教学设计【优秀3篇】
![二次函数图像和性质教学设计【优秀3篇】](https://img.taocdn.com/s3/m/1c2cd873842458fb770bf78a6529647d26283464.png)
二次函数图像和性质教学设计【优秀3篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!二次函数图像和性质教学设计【优秀3篇】二次函数的基本表示形式为y=aX²+bX+c(a≠0)。
《二次函数的图像和性质》教学设计
![《二次函数的图像和性质》教学设计](https://img.taocdn.com/s3/m/e15471bcf71fb7360b4c2e3f5727a5e9856a278d.png)
05
二次函数的应用举例
最值问题
引入最值概念
通过实际问题的例子,如最大利 润、最小成本等,引入最值的概 念,并说明最值与二次函数的关
系。
求解最值
通过配方或公式法将二次函数化为 顶点式,从而找到函数的最大值或 最小值。同时,也可以通过观察函 数的图像来确定最值。
顶点
抛物线的顶点位于对称轴上,对于一般形式的二次函数,顶点坐标可以通过公式 $(-frac{b}{2a},c-frac{b^2}{4a})$求得。对于顶点式的二次函数,顶点坐标直接 为$(h,k)$。
抛物线与坐标轴的交点
与$x$轴的交点
令$y=0$,解一元二次方程$ax^2+bx+c=0$,得到抛物线与$x$轴的交点横坐标。若方程有两个实数根,则抛 物线与$x$轴有两个交点;若方程有一个重根,则抛物线与$x$轴有一个交点;若方程无实数根,则抛物线与$x$ 轴无交点。
宽度
由二次项系数的绝对值 $|a|$决定,$|a|$越大,抛 物线越窄;$|a|$越小,抛 物线越宽。
顶点位置
由顶点式$y=a(xh)^2+k$中的$h$和$k$决 定,顶点坐标为$(h,k)$。
抛物线的对称轴和顶点
对称轴
对于一般形式的二次函数$y=ax^2+bx+c$,其对称轴为直线$x=-frac{b}{2a}$ 。对于顶点式的二次函数$y=a(x-h)^2+k$,其对称轴为直线$x=h$。
02
二次函数是一种非线性函数,其 图像是一个抛物线。
二次函数的一般形式
二次函数的一般形式为 $f(x) = ax^2 + bx + c$,其中 $a, b, c$ 是 常数,且 $a neq 0$。
二次函数的图象和性质课教案
![二次函数的图象和性质课教案](https://img.taocdn.com/s3/m/41e5fd75b5daa58da0116c175f0e7cd185251870.png)
二次函数的图象和性质优质课教案第一章:引言教学目标:1. 让学生了解二次函数的概念和重要性。
2. 引导学生通过实际问题情境,感受二次函数的应用。
教学内容:1. 引入二次函数的概念,给出一般形式的二次函数表达式:y = ax^2 + bx + c。
2. 通过实际问题情境,让学生观察二次函数的图象和性质。
教学活动:1. 引入二次函数的概念,引导学生理解二次函数的三个参数a、b、c的含义。
2. 通过实际问题情境,让学生观察二次函数的图象和性质,例如:抛物线的开口方向、顶点的坐标等。
教学评价:1. 检查学生对二次函数概念的理解程度。
2. 评估学生在实际问题情境中观察二次函数图象和性质的能力。
第二章:二次函数的图象教学目标:1. 让学生掌握二次函数图象的基本特征。
2. 培养学生通过图象分析二次函数性质的能力。
教学内容:1. 介绍二次函数图象的基本特征,包括开口方向、顶点、对称轴等。
2. 引导学生通过图象分析二次函数的增减性和最值问题。
教学活动:1. 利用多媒体展示不同a值的二次函数图象,引导学生观察开口方向的变化。
2. 让学生通过图象分析二次函数的增减性和最值问题,例如:找出函数的最大值或最小值。
教学评价:1. 检查学生对二次函数图象基本特征的掌握程度。
2. 评估学生在图象分析中解决问题的能力。
第三章:二次函数的性质教学目标:1. 让学生了解二次函数的顶点公式及其应用。
2. 培养学生通过二次函数性质解决实际问题的能力。
教学内容:1. 介绍二次函数的顶点公式:顶点坐标为(-b/2a, c b^2/4a)。
2. 引导学生通过二次函数的性质解决实际问题,例如:求函数的最值、对称轴等。
教学活动:1. 让学生通过实际问题情境,应用顶点公式求解二次函数的最值、对称轴等问题。
2. 引导学生利用二次函数的性质解决实际问题,例如:求解抛物线与直线的交点等。
教学评价:1. 检查学生对二次函数顶点公式的掌握程度。
2. 评估学生在实际问题中应用二次函数性质解决问题的能力。
二次函数的性质与图像教案
![二次函数的性质与图像教案](https://img.taocdn.com/s3/m/bb078147c4da50e2524de518964bcf84b9d52dfa.png)
二次函数的性质与图像教案一、教学目标1. 让学生了解二次函数的定义和标准形式;2. 理解二次函数的性质,包括顶点、开口、对称轴等;3. 掌握二次函数图像的特点,如开口方向、顶点位置等;4. 能够运用二次函数的性质和图像解决实际问题。
二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质:顶点、开口、对称轴;3. 二次函数图像的特点:开口方向、顶点位置等;4. 实际问题举例。
三、教学重点与难点1. 重点:二次函数的性质和图像的特点;2. 难点:运用二次函数的性质和图像解决实际问题。
四、教学方法1. 采用讲解、演示、练习、讨论等教学方法;2. 使用多媒体课件辅助教学,直观展示二次函数的图像;3. 引导学生通过实际问题,探究二次函数的性质和图像特点。
五、教学过程1. 引入:通过生活中的实例,引导学生思考二次函数的存在;2. 讲解:讲解二次函数的定义和标准形式,阐述二次函数的性质,如顶点、开口、对称轴等;3. 演示:使用多媒体课件,展示二次函数的图像,让学生直观理解二次函数的性质和图像特点;4. 练习:布置练习题,让学生巩固二次函数的性质和图像知识;5. 讨论:组织学生分组讨论,分享解题心得和实际问题解决方法;6. 总结:总结二次函数的性质和图像特点,强调运用二次函数解决实际问题的重要性。
六、教学评估1. 课堂练习:设计一份包含不同难度的练习题,以评估学生对二次函数性质与图像的理解程度。
2. 小组讨论:观察学生在小组讨论中的参与情况和合作能力,评估他们对知识点的掌握和运用能力。
3. 课后作业:布置一道综合性的课后作业,要求学生应用二次函数的性质与图像解决实际问题,以评估他们的应用能力。
七、教学资源1. 多媒体课件:制作详细的课件,包括二次函数的图像、性质解释和实际问题示例。
2. 练习题库:准备一份涵盖各种类型题目的题库,用于课堂练习和课后作业。
3. 实际问题案例:收集一些与二次函数相关的实际问题案例,用于教学中的实例分析。
1.4.1一元二次函数教学设计-2024-2025学年高一上学期数学北师大版(2019)必修第一册
![1.4.1一元二次函数教学设计-2024-2025学年高一上学期数学北师大版(2019)必修第一册](https://img.taocdn.com/s3/m/43b41e87a48da0116c175f0e7cd184254b351ba9.png)
教学实施过程
1.课前自主探索
教师活动:
-发布预习任务:通过学校在线教学平台,发布预习资料,包括PPT课件、预习视频和预习指导文档,明确预习目标和要求,即理解一元二次函数的定义和图像特点。
-设计预习问题:围绕一元二次函数的概念,设计问题,如“一次函数和二次函数有什么区别?”、“二次函数的图像有哪些特点?”等,引导学生自主思考。
-研究二次函数图像的平移、伸缩、翻转等几何变换,理解这些变换对函数解析式的影响。
-探索如何通过几何变换解决实际问题,例如在图像处理、图形设计中的应用。
- **一元二次方程与二次函数的关系**
-分析一元二次方程的根与二次函数图像的关系,包括根的个数、位置与图像的交点。
-研究一元二次方程的判别式与二次函数图像开口方向、顶点位置的关系。
-《一元二次方程与二次函数的关系》:深入探讨一元二次方程与对应二次函数图像之间的内在联系。
-《二次函数在实际问题中的应用》:收集和整理了二次函数在物理学、经济学等领域的应用案例,帮助学生理解数学知识如何应用于现实生活。
2.课后自主学习和探究
-研究二次函数的性质与图像之间的关系,如开口方向、顶点位置、对称轴、与x轴的交点等,并尝试自己绘制二次函数图像。
-探索不同类型的一元二次方程的解法,如因式分解法、配方法、求根公式等,并比较它们的优缺点。
-调查和研究二次函数在现实生活中的应用实例,例如在工程设计、市场分析、资源优化等领域的应用。
-尝试解决一些综合性的问题,如最优化问题、二次不等式的解集问题等,这些问题可能涉及多个数学知识点。
- **二次函数的图像与几何变换**
二次函数图像和性质教学设计(3篇)
![二次函数图像和性质教学设计(3篇)](https://img.taocdn.com/s3/m/05d9585558eef8c75fbfc77da26925c52dc59155.png)
二次函数图像和性质教学设计(3篇)二次函数的图像和性质3教学设计篇一22.1.3二次函数y=a(x-h)2+k的图象和性质教学设计知识与技能:会用描点法画出二次函数y=a(x-h)2+k的图象;过程与方法:结合图象确定抛物线y=a(x-h)2+k的开口方向、对称轴与顶点坐标及性质;情感态度与价值观:通过比较抛物线y=a(x-h)2+k与y=ax2的关系,培养学生的观察、分析、总结的能力。
学情分析学生在学习了前两课时的基础上,对于顶点式已经有了一定的认识,可以根据类比思想比较容易得出完整顶点式的图象性质,所以这一部分主要是学生独立探究,个别指导,然后归纳总结。
之后把侧重点放在对实际问题的探究上,重点研究实际问题的建模过程,鼓励一题多解,拓展学生思维。
重点难点教学重点:画出形如y=a(x-h)2+k的二次函数的图象,能指出开口方向,对称轴,顶点。
教学难点:理解函数y=a(x-h)2+k与y=ax2及其图象的相互关系。
4教学过程一、复习导入新课师:同学们,在学习新课之前,我们先来做这样一道题。
观察y=-x2、y=-x2-1、y=-(x+1)2这三条抛物线中,第一条抛物线可以经过怎样的平移得到第二条和第三条抛物线。
(指名学生回答)。
师:同学们可不可以在这个知识点的基础上进一步猜想一下第一条抛物线能否经过怎样的平移得到抛物线y=-(x+1)2-1 生:向左平移一个单位,再向下平移一个单位。
师:这个猜想是否正确呢?这节课我们一起来验证一下。
(板书课题)二、探究探究一(大屏幕出示)(自探问题部分)1.画出函数y=-(x+1)2-1的图象,指出它的开口方向、对称轴及顶点、最值、增减性.x y=-(x+1)2-1 函数… …-4-3-2-10 1 2 ……开口方向顶点对称轴最值增减性y=-(x+1)2-1(学生口头展示以上问题)2.师:(结合课件)把抛物线y=-x2向_______平移______个单位,再向_______平移_______个单位,就得到抛物线y=-(x+1)2-1.所以抛物线y=-x2 与抛物线y=-(x+1)2-1 形状___________,位置________________.通过刚才的演示,可以证明我们前面的猜想是正确的。
《二次函数的图象与性质》教学设计
![《二次函数的图象与性质》教学设计](https://img.taocdn.com/s3/m/6b284e753b3567ec102d8a89.png)
《二次函数的图象与性质》教学设计课时题目:二次函数的图象与性质教学目标:1. 能画二次函数的图象,并能够比较它们与二次函数的图象的异同,理解对二次函数图象的影响.2. 能说出二次函数图象的开口方向、对称轴、顶点坐标、增减性、最值.3. 经历探索二次函数的图象的作法和性质的过程,进一步获得将表格、表达式、图象三者联系起来的经验,体会数形结合思想在数学中的应用.4. 通过学生自己的探索活动,达到对抛物线自身特点的认识和对二次函数性质的理解.教学重点:1.二次函数的图象和性质2. 二次函数与二次函数图象的关系。
教学难点:能够比较和的图象的异同,理解对二次函数图象的影响. 板书设计:课题二次函数的图象与性质:………………………………………………………………………………………………………………………………教学过程:Ⅰ.温故知新、引入新课:二次函数的图象是____________.(1)开口___________;(2)对称轴是___________;(3)顶点坐标是___________;(4)当时,随的增大而___________;当时,随的增大而___________;(5)函数图象有___________点,函数有___________值;当_____时,取得__________值____.问题:那二次函数的图象会是什么样子呢?它会有哪些性质呢?它与的图象有关系吗?Ⅱ.自主探索、小组互学、展学提升:1、学生活动内容及方法学生以小组为单位:(1)作出二次函数的图象;(2)观察、思考并与同伴交流完成“议一议”(3)一小组派代表展示,其它小组与老师评价、完善。
2、自学问题设计(1)作出二次函数的图象:列表:观察的表达式,选择适当的值,填写下表:描点:在直角坐标系中描出各点;连线:用光滑的曲线连接各点,便得到函数的图象。
议一议:仔细观察,用心思考,与同伴交流:(1)二次函数的图象是什么样子?(2)它的开口方向是什么?(3)它是轴对称图形吗?对称轴是谁?(4)它的顶点坐标是什么?(5)当取什么值时,随的增大而增大?当取什么值时,随的增大而减小?(6)二次函数的图象有最高点还是最低点?它会取得最大还是最小值?是多少?此时,等于多少?(7)二次函数与二次函数的图象有哪些相同点和不同点呢?它们的图象之间有什么关系呢?3、教师活动内容教师巡视,察看学生完成情况并适时给予指导。
二次函数的性质与图像教案
![二次函数的性质与图像教案](https://img.taocdn.com/s3/m/2ca15411e418964bcf84b9d528ea81c758f52ece.png)
二次函数的性质与图像教案一、教学目标:1. 理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制和分析二次函数的图像;4. 能够应用二次函数解决实际问题。
二、教学内容:1. 二次函数的定义和标准形式;2. 二次函数的性质:对称轴、顶点、开口方向;3. 二次函数的图像:抛物线的基本形状;4. 实际问题中的应用。
三、教学方法:1. 讲授法:讲解二次函数的定义、性质和图像;2. 案例分析法:分析实际问题中的二次函数;3. 互动讨论法:引导学生参与课堂讨论,巩固知识点;4. 实践操作法:让学生动手绘制二次函数的图像,加深理解。
四、教学准备:1. 教学PPT:包含二次函数的定义、性质、图像及实际问题;2. 练习题:用于巩固所学知识;3. 绘图工具:如直尺、圆规等,用于绘制二次函数的图像。
五、教学过程:1. 导入:通过一个实际问题引入二次函数的概念;2. 讲解:讲解二次函数的定义、性质和图像,引导学生理解;3. 案例分析:分析实际问题中的二次函数,让学生学会应用;4. 互动讨论:引导学生参与课堂讨论,巩固知识点;5. 实践操作:让学生动手绘制二次函数的图像,加深理解;6. 总结:对本节课的内容进行总结,强调重点知识点;7. 布置作业:让学生通过练习题巩固所学知识。
六、教学评估:1. 课堂问答:通过提问方式检查学生对二次函数定义和性质的理解;2. 练习题:布置针对性的练习题,评估学生对二次函数图像分析的能力;3. 小组讨论:评估学生在团队合作中解决问题的能力;4. 作业反馈:收集学生作业,评估其对课堂所学知识的掌握程度。
七、教学拓展:1. 探讨二次函数在实际生活中的应用,如抛物线镜面、物理运动等;2. 介绍二次函数相关的数学历史故事,激发学生兴趣;3. 引导学生探究二次函数的其它性质,如最大值、最小值等;4. 组织数学竞赛,提高学生的学习积极性。
八、教学反思:1. 反思教学方法:根据学生反馈,调整教学方法,提高教学效果;2. 反思教学内容:确保教学内容符合学生认知水平,适当调整难度;3. 反思教学过程:关注学生在课堂上的参与度,优化教学过程;4. 及时与学生沟通:了解学生的学习需求,调整教学策略。
22.1.2二次函数的图像和性质(教案)
![22.1.2二次函数的图像和性质(教案)](https://img.taocdn.com/s3/m/f25ee57aa4e9856a561252d380eb6294dd8822ee.png)
最后,我意识到在课堂上,对于学生的疑问和困惑,我需要更加耐心和细致地进行解答。有时候,一个简单的解释就能帮助学生跨越理解的障碍。在今后的教学中,我会更加注重与学生的互动,鼓励他们提出问题,并及时给予反馈。
-重点三,利用图示和计算,说明二次函数与x轴的交点即为二次方程的实数根;
-重点四,通过图像和数学推导,让学生理解二次函数最值的含义及其计算方法。
2.教学难点
-理解二次函数图像的对称性,特别是对称轴的概念及其与顶点的关系;
-掌握顶点坐标计算公式的应用,尤其是对于含有绝对值、分式等复杂二次函数的顶点求解;
-学会求解二次函数与坐标轴的交点,理解这些交点与二次方程解的关系;
-掌握二次函数的最值问题,明确当a>0时,函数有最小值;当a<0时,函数有最大值。
举例解释:
-对于重点一,强调a的符号决定了图像的形状,并通过实例展示a的正负对图像的影响;
-重点二,通过具体函数示例,演示如何计算顶点坐标,并解释顶点即为对称轴上的点;
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“22.1.2二次函数的图像和性质”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过物体抛高后落地的情况?”(如抛球游戏)这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索二次函数图像和性质的奥秘。
3.二次函数图像的顶点坐标计算,顶点公式为(-b/2a,4ac-b²/4a);
4.二次函数图像的对称轴,即x = -b/2a;
九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)
![九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)](https://img.taocdn.com/s3/m/1e7b3e52b94ae45c3b3567ec102de2bd9605defb.png)
九年级数学下册《二次函数的图像与性质》教学教案(通用3篇)九年级数学下册《二次函数的图像与性质》教学篇1【知识与技能】1.会用描点法画函数y=ax2(a>0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,掌握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步认识问题1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么形状呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思考探究,获取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互交流、展示,表扬画得比较规范的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和发展趋势.如图(1)就是y=x2的图象的错误画法.误区二:并非对称点,存在漏点现象,导致抛物线变形.如图(2)就是漏掉点(0,0)的y=x2的图象的错误画法.误区三:忽视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延伸,而并非到某些点停止.九年级数学下册《二次函数的图像与性质》教学教案篇2 【知识与技能】1.会用描点法画二次函数y=ax2+bx+c的图象.2.会用配方法求抛物线y=ax2+bx+c的顶点坐标、开口方向、对称轴、y随x的增减性.3.能通过配方求出二次函数y=ax2+bx+c(a≠0)的最大或最小值;能利用二次函数的性质求实际问题中的最大值或最小值.【过程与方法】1.经历探索二次函数y=ax2+bx+c(a≠0)的图象的作法和性质的过程,体会建立二次函数y=ax2+bx+c(a≠0)对称轴和顶点坐标公式的必要性.2.在学习y=ax2+bx+c(a≠0)的性质的过程中,渗透转化(化归)的思想.【情感态度】进一步体会由特殊到一般的化归思想,形成积极参与数学活动的意识.【教学重点】①用配方法求y=ax2+bx+c的顶点坐标;②会用描点法画y=ax2+bx+c的图象并能说出图象的性质.【教学难点】能利用二次函数y=ax2+bx+c(a≠0)的对称轴和顶点坐标公式,解决一些问题,能通过对称性画出二次函数y=ax2+bx+c(a≠0)的图象.一、情境导入,初步认识请同学们完成下列问题.1.把二次函数y=-2x2+6x-1化成y=a(x-h)2+k的形式.2.写出二次函数y=-2x2+6x-1的开口方向,对称轴及顶点坐标.3.画y=-2x2+6x-1的图象.4.抛物线y=-2x2如何平移得到y=-2x2+6x-1的图象.5.二次函数y=-2x2+6x-1的y随x的增减性如何?【教学说明】上述问题教师应放手引导学生逐一完成,从而领会y=ax2+bx+c与y=a(x-h)2+k的转化过程.二、思考探究,获取新知探究1 如何画y=ax2+bx+c图象,你可以归纳为哪几步?学生回答、教师点评:一般分为三步:1.先用配方法求出y=ax2+bx+c的对称轴和顶点坐标.2.列表,描点,连线画出对称轴右边的部分图象.3.利用对称点,画出对称轴左边的部分图象.探究2 二次函数y=ax2+bx+c图象的性质有哪些?你能试着归纳吗?九年级数学下册《二次函数的图像与性质》教学教案篇3 【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图象和性质的真正理解,从而产生对数学的兴趣,调动学习的积极性.【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质.【教学难点】二次函数图象的性质及其探究过程和方法的体会.【知识与技能】1.会用描点法画函数y=ax2(a<0)的图象,并根据图象认识、理解和掌握其性质.2.体会数形结合的转化,能用y=ax2(a<0)的图象与性质解决简单的实际问题.【过程与方法】经历探索二次函数y=ax2(a<0)图象的作法和性质的过程,获得利用图象研究函数的经验,培养观察、思考、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间交流讨论,达到对二次函数y=ax2(a≠0)图【教学重点】①会画y=ax2(a<0)的图象;②理解、掌握图象的性质. 【教学难点】二次函数图象的性质及其探究过程和方法的体会.。
高中数学 第二章 函数 一元二次函数的图象和性质(1)教案 苏教版必修1-苏教版高一必修1数学教案
![高中数学 第二章 函数 一元二次函数的图象和性质(1)教案 苏教版必修1-苏教版高一必修1数学教案](https://img.taocdn.com/s3/m/28dde651f524ccbff02184b8.png)
3.函数y=-3(x+2)2+5的图象的开口向,对称轴为,顶点坐标为;当x=时,函数取最值y=;当x满足时,y随着x的增大而减小.
4.求抛物线y=x2-2x-3的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象.
活动三:想一想
例1求二次函数y=-3x2-6x+1图象的开口方向、对称轴、顶点坐标、最大值(或最小值),并指出当x取何值时,y随x的增大而增大(或减小)?并画出该函数的图象
变式训练
已知函数y=x2,-2≤x≤a,其中a≥-2,求该函数的最大值与最小值,并求出函数取最大值和最小值时所对应的自变量x的值.
特殊补充
当堂检测
1.函数y=-x2+x-1图象与x轴的交点个数是
2.求抛物线y=1+6x-x2的开口方向、对称轴、顶点坐标、最大(小)值及y随x的变化情况,并画出其图象
小结与作业
变式训练
求把二次函数y=x2-4x+3的图象经过下列平移变换后得到的图象所对应的函数解析式:(1)向右平移2个单位,向下平移1个单位; (2)向上平移3个单位,向左平移2个单位.
例2.已知函数y=-x2-2x+3,当自变量x在下列取值范围内时,分别求函数的最大值或最小值,并求当函数取最大(小)值时所对应的自变量x的值:(1)x≤-2;(2)x≤2;(3)-2≤x≤1;(4)0≤x≤3.
二次函数的图象和性质1
学习目标
1.掌握二次函数的图像和性质
2.体会数形结合的思想
学习重难点
二次函数的图像和性质
学生活动
教师活动
活动一:知识回顾
1、图像画法
2、解析式求解
活动二:练一练
1.二次函数y=2x2-mx+ቤተ መጻሕፍቲ ባይዱ图象的顶点坐标为(1,-2),则m=,n=.
二次函数的图像与性质教案
![二次函数的图像与性质教案](https://img.taocdn.com/s3/m/344ab5aeafaad1f34693daef5ef7ba0d4a736d8b.png)
二次函数的图像与性质教案教案标题:二次函数的图像与性质教案教案目标:1. 理解二次函数的基本概念和性质;2. 掌握二次函数图像的绘制方法;3. 能够分析二次函数的图像特征和性质。
教案步骤:步骤一:引入二次函数的概念和性质(10分钟)1. 引导学生回顾一次函数的概念和性质,然后引入二次函数的概念,解释二次函数与一次函数的区别。
2. 介绍二次函数的一般形式:f(x) = ax^2 + bx + c,并解释各项的含义。
3. 解释二次函数的性质:对称性、开口方向、顶点、轴等。
步骤二:绘制二次函数的图像(20分钟)1. 通过给定不同的a、b、c值,绘制不同形态的二次函数图像。
2. 详细解释如何确定二次函数的顶点、轴和开口方向。
3. 引导学生观察图像的变化规律,总结二次函数图像与a、b、c值的关系。
步骤三:分析二次函数的图像特征和性质(15分钟)1. 引导学生观察不同形态的二次函数图像,分析其对称性、最值、零点等特征。
2. 引导学生发现二次函数图像的对称轴与一次函数图像的x轴有何关系。
3. 引导学生讨论二次函数图像的开口方向与a值的关系,并总结规律。
步骤四:应用二次函数的图像与性质(15分钟)1. 给定实际问题,引导学生建立与之对应的二次函数模型。
2. 利用二次函数图像的性质,解决实际问题,如求最值、零点等。
3. 引导学生讨论二次函数图像在不同场景中的应用,如抛物线的运动轨迹、物体的抛射问题等。
步骤五:总结与拓展(10分钟)1. 让学生总结二次函数的图像特征和性质,包括对称性、开口方向、顶点、轴等。
2. 引导学生思考二次函数的应用领域,并拓展到其他数学知识的应用,如函数的复合、函数的逆运算等。
教学资源:1. 教材:包含二次函数相关知识的教材或教学参考书。
2. 白板、彩色笔等教学工具。
3. 实际问题的案例素材。
评估方式:1. 课堂练习:通过绘制二次函数图像、分析图像特征等练习,检查学生对二次函数的理解和应用能力。
二次函数图像与性质教案
![二次函数图像与性质教案](https://img.taocdn.com/s3/m/000ec369657d27284b73f242336c1eb91a373394.png)
二次函数图像与性质教案教案标题:二次函数图像与性质教案教案目标:1. 理解二次函数的定义和性质;2. 掌握二次函数图像的绘制和相关参数的解释;3. 能够分析二次函数图像的特征和变化规律;4. 运用二次函数图像和性质解决实际问题。
教案步骤:第一步:引入1. 引导学生回顾一次函数的概念和图像特征;2. 提问:你们对二次函数有什么了解?第二步:二次函数的定义和性质1. 讲解二次函数的定义:f(x) = ax^2 + bx + c;2. 解释二次函数的性质:对称性、开口方向、顶点、轴对称、零点等;3. 示例演示:通过具体的二次函数例子,解释性质的含义。
第三步:二次函数图像的绘制1. 讲解如何绘制二次函数图像:确定顶点、轴对称线和开口方向;2. 指导学生绘制几个简单的二次函数图像;3. 练习:提供一些二次函数的表达式,让学生绘制对应的图像。
第四步:二次函数图像的特征和变化规律1. 分析二次函数图像的特征:顶点、开口方向、轴对称线、最值等;2. 探讨二次函数图像的变化规律:a、b、c对图像的影响;3. 练习:给出不同参数的二次函数,让学生分析图像的变化规律。
第五步:实际问题的应用1. 引导学生思考如何利用二次函数解决实际问题;2. 提供一些实际问题,让学生运用二次函数图像和性质进行求解;3. 练习:让学生自己设计一个实际问题,并用二次函数解决。
第六步:总结与拓展1. 总结二次函数图像与性质的重点内容;2. 拓展学生的思维:提问一些拓展问题,让学生思考更复杂的二次函数图像和性质。
教案评估:1. 针对性问题:提问学生关于二次函数图像和性质的问题;2. 绘图练习:要求学生根据给定的二次函数表达式绘制图像;3. 应用问题:给学生实际问题,要求他们用二次函数图像和性质解决。
教案延伸:1. 引导学生进一步探究二次函数的其他性质,如最值、零点等;2. 引导学生研究二次函数的应用领域,如物理学、经济学等;3. 提供更复杂的二次函数图像和性质的练习,挑战学生的能力。
二次函数的性质与图像教案
![二次函数的性质与图像教案](https://img.taocdn.com/s3/m/4dfc0d91ba4cf7ec4afe04a1b0717fd5370cb274.png)
二次函数的性质与图像教案一、教学目标1. 让学生理解二次函数的定义和标准形式;2. 掌握二次函数的性质,包括对称轴、顶点、开口方向等;3. 能够绘制二次函数的图像,并分析图像的性质;4. 能够运用二次函数解决实际问题。
二、教学内容1. 二次函数的定义和标准形式;2. 二次函数的性质;3. 二次函数的图像;4. 实际问题中的应用。
三、教学重点与难点1. 重点:二次函数的性质和图像;2. 难点:二次函数图像的分析与应用。
四、教学方法1. 采用问题驱动法,引导学生探究二次函数的性质;2. 利用数形结合法,让学生直观地理解二次函数的图像;3. 结合实际例子,让学生学会运用二次函数解决实际问题。
五、教学准备1. 教学课件;2. 练习题;3. 实物模型或图形软件。
教案内容请参考下述示例:一、二次函数的定义和标准形式1. 二次函数的定义:形如y=ax^2+bx+c(a≠0,a、b、c为常数)的函数称为二次函数。
2. 二次函数的标准形式:y=a(x-h)^2+k,其中(h,k)为顶点坐标。
二、二次函数的性质1. 对称轴:二次函数的对称轴为x=h。
2. 顶点:二次函数的顶点坐标为(h,k)。
3. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。
三、二次函数的图像1. 绘制二次函数的图像:通过顶点、对称轴、关键点等方法绘制。
2. 分析二次函数的图像:观察开口方向、对称轴、顶点等。
四、实际问题中的应用1. 利用二次函数解决实际问题:如抛物线与坐标轴的交点、最值问题等。
2. 结合实际例子,让学生学会运用二次函数解决实际问题。
五、课堂练习1. 练习题:巩固二次函数的性质与图像知识。
2. 实物模型或图形软件:让学生直观地感受二次函数的图像。
六、教学过程1. 导入:通过回顾一次函数和线性函数的图像,引导学生思考二次函数图像的特点。
2. 新课:介绍二次函数的定义和标准形式,解释对称轴、顶点、开口方向等概念。
二次函数的性质和图像教学设计
![二次函数的性质和图像教学设计](https://img.taocdn.com/s3/m/ea88a623bb1aa8114431b90d6c85ec3a87c28bdc.png)
二次函数的性质和图像教学设计二次函数的性质和图像教学设计一、教学内容分析本节课是《普通高中课程标准实验教科书·数学(1)》(人教B版)第二章第二节第二课(2.2.2)《二次函数的性质与图象》。
关于《二次函数的性质与图象》在初中已经学习过,根据我所任教的学生的实际情况,我将《二次函数的性质与图象》设定为一节课(探究图象及其性质)。
二次函数是重要的基本初等函数之一,作为常见函数,它不仅是今后学习其他初等函数的基础,同时在生活及生产实际中有着广泛的应用,所以二次函数应重点研究。
二、学生学习况情分析二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,是学生对函数概念及性质的又一次应用。
基于在初中教材的学习中已经给出了二次函数的图象及性质,已经让学生掌握了二次函数的图象及一些性质,只是像单调性、对称性、零点这种性质还没有规范,课本给出的三个例题对于学生来说非常熟悉。
本节课需要认真设计问题来激发学生学习新知的兴趣和欲望。
三、设计思想1.函数及其图象在高中数学中占有很重要的位置。
如何突破这个既重要又抽象的内容,其实质就是将抽象的符号语言与直观的图象语言有机的结合起来,通过具有一定思考价值的问题,激发学生的求知欲望――持久的好奇心。
我们知道,函数的表示法有三种:列表法、图象法、解析法,以往的函数的学习大多只关注到图象的作用,这其实只是借助了图象的直观性,只是从一个角度看函数,是片面的。
本节课,力图让学生从不同的角度去研究函数,对函数进行一个全方位的研究,并通过对比总结得到研究的方法,让学生去体会这种研究方法,以便能将其迁移到其他函数的研究中去。
2.结合新课程实施的教学理念,在本课的教学中我努力实践以下两点:(1)在课堂活动中通过同伴合作、自主探究尝试培养学生积极主动、勇于探索的学习方式。
(2)在教学过程中努力做到师生的互动,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。
二次函数的图像和性质教案
![二次函数的图像和性质教案](https://img.taocdn.com/s3/m/4f15d81f182e453610661ed9ad51f01dc281573e.png)
二次函数的图像和性质教案教案标题:二次函数的图像和性质教学目标:1. 理解二次函数的定义、图像和性质;2. 能够画出二次函数的图像,并根据图像分析其性质;3. 掌握二次函数的顶点、对称轴、零点以及开口方向的求解方法;4. 运用二次函数的性质解决实际问题。
教学重点:1. 二次函数的图像及其意义;2. 二次函数的性质及其应用。
教学难点:1. 二次函数性质的理解和应用;2. 实际问题转化为二次函数求解。
教学准备:1. 教师:计算机、投影仪;2. 学生:纸张、铅笔、计算器。
教学过程:一、导入(5分钟)1. 展示一个抛物线的图像,引发学生思考:这个图像与平面解析几何中的什么有关?2. 引导学生回顾解析几何中的抛物线,了解其定义和性质。
二、知识讲解(15分钟)1. 介绍二次函数的定义:二次函数是形如y = ax^2 + bx + c的函数,其中a、b、c为实数且a≠0;2. 讲解二次函数图像的基本形状和性质,包括抛物线的开口方向、顶点、对称轴等概念;3. 指导学生如何利用顶点求解二次函数的最值和对称轴的方程。
三、图像绘制(20分钟)1. 学生利用计算器或手工绘制二次函数的图像,从中观察和分析抛物线的特征;2. 小组讨论并汇报图像的性质,如开口方向、顶点坐标、对称轴等。
四、性质探究(15分钟)1. 学生根据图像和定义,推导二次函数与其各特征之间的关系;2. 学生以小组为单位,解答提出的问题,并进行讨论。
五、解题实践(20分钟)1. 提供一组具体的问题,要求学生利用所学二次函数的性质解答;2. 学生独立或合作解答问题,并与小组成员讨论思路和解题方法;3. 学生汇报解答结果,并进行讨论。
六、拓展与总结(10分钟)1. 引导学生思考:二次函数的图像和性质在哪些实际问题中能够应用?2. 总结本节课所学内容,强调二次函数图像与性质的重要性。
教学延伸:1. 进一步讲解二次函数图像的平移、伸缩等变换;2. 利用软件工具进行二次函数的探索和应用。
中学数学教案:《二次函数的图像与性质》教学设计
![中学数学教案:《二次函数的图像与性质》教学设计](https://img.taocdn.com/s3/m/63de15869fc3d5bbfd0a79563c1ec5da51e2d64d.png)
中学数学教案:《二次函数的图像与性质》教学设计一、引言二次函数是中学数学中一个重要且常见的内容,它在数学教学中具有相当高的实用性和启发性。
通过学习二次函数的图像与性质,学生可以进一步加深对函数的理解,培养思维灵活性和解决实际问题的能力。
本教学设计将结合学生的认知特点,通过引入具体案例和实际问题,帮助学生深入理解二次函数的图像与性质。
二、教学目标1. 知识与技能:a. 掌握二次函数的标准式、顶点式和描点法表达方式;b. 理解二次函数图像与二次函数的性质之间的关系,如对称性、单调性等;c. 能够准确画出二次函数的图像,并根据图像解决实际问题。
2. 过程与方法:a. 引导学生主动思考和发现数学规律;b. 培养学生观察、分析实际问题的能力;c. 激发学生的兴趣,提高学习的主动性。
3. 情感态度与价值观:培养学生的数学思维习惯和解决问题的能力,增强学生对数学的兴趣和自信心。
三、教学过程3.1 导入活动:生活中的二次函数(15分钟)通过展示一些与二次函数相关的实际问题,如摆锤在空中的运动、喷泉的水柱高度等,引起学生对二次函数的兴趣,并鼓励学生讨论这些现象背后的数学规律。
3.2 概念讲解与示例分析(30分钟)a. 引导学生回顾二次函数的定义,并介绍二次函数的标准式、顶点式和描点法表达方式;b. 通过几个典型的示例,解释二次函数图像与二次函数的性质之间的关系,如顶点、对称轴、单调性等;c. 提醒学生时刻关注实际问题背后的数学模型和变量之间的关系。
3.3 图像绘制与分析(40分钟)a. 给予学生一些简单的二次函数,要求他们根据函数表达式画出图像,并分析图像的特点;b. 引导学生思考,特别关注图像的对称性、最值点等,并进一步解释这些特点与二次函数的性质之间的联系;c. 通过类似的练习,逐渐提高学生分析和解决问题的能力。
3.4 真实问题解决(30分钟)a. 给出一个实际问题,如抛物线喷泉的喷水高度问题,要求学生根据已知条件建立二次函数模型,并解决问题;b. 引导学生思考问题的分析步骤,设置合理的变量,并通过图像或计算得到结果;c. 汇总学生的解决方法,并进行讨论和总结。
3.5 一元二次函数的图像和性质 教案-2021-2022学年人教版(山东专用)中职数学第一册
![3.5 一元二次函数的图像和性质 教案-2021-2022学年人教版(山东专用)中职数学第一册](https://img.taocdn.com/s3/m/d0fdc3e70342a8956bec0975f46527d3240ca6be.png)
授课班级21机1、汽1 授课内容一元二次函数的图像和性质授课地点835、803 授课时间12.11-12.13教学目标知识目标理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;能力目标通过教学,使学生初步掌握数形结合研究二次函数的方法;素质目标渗透数形结合思想,渗透由特殊到一般的辩证唯物主义观点,培养学生观察分析、类比抽象的能力.教学重难点教学重点理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;教学难点函数对称性的分析与数形结合研究二次函数的方法.教学过程教学环节教学内容学生活动教师活动设计意图一、回顾旧知,做实铺垫(5min)二、引课示标,明确方向(2min)二次函数的一般形式:y=a x2+b x+c (a≠0),定义域是R.练习1 下列函数中,哪些是二次函数?若是,分别指出二次项系数,一次项系数,常数项.(1)y=2 x2+3 x-1; (2)y=x+1x;(3) y=3(x-1)2+1; (4) y=(x+3)2-x2;(5) s=3-2 t2; (6) v=4 πr2.重点:理解并掌握二次函数的图象和性质;了解二次函数与一元二次方程、一元二次不等式之间的关系;难点:函数对称性的分析与数形结合研究二次函数的方法。
学生口答.预设问题:学生对于二次函数的基本性质和图像的掌握不够好,不能很好的运用数形结合方法。
齐读学习目标,30s内化教师引导学生回忆二次函数的一般式,并让学生举例.关注点:学生对于二次函数的掌握情况教师在引导学生复习旧知识的同时,让学生自主探索新知识,激发学生获取新知的动力.三、自学质疑,合作探究(15min)引例在同一坐标系内作出下列函数的图象.y=x2,y=2 x2,y=3 x2,y=-x2,y=-2x2,y=-3 x2.观察图象,小组合作讨论.然后每组选一名代表汇报各组的交流结果,最后师生一起汇总得出结论.师生共同解决例1,教师详细板书解题过程,带领学生仔细分析各个性质的由来.学生模仿如果b=c=0,则一般式变为y=ax2(a≠0),下面我们先来研究这类函数的性质.出示引例.教师引导学生观察图象可得出:函数的对称轴是直线x=-4.师:这个结论是否是正确的呢?教师通过问题1、2,引导学生证明上述结论正确.实现重点突破和难通过引例,使学生进一步掌握二次函数图象的描点作图法,并根据所做图象来分析函数y=a x2中系数a 对图象的影响,提高学生读图能力.学生合作,集体回忆初中所学二次函数的知识.通过对例1中二次三项式的代数分析,使学生对二次函数的直观感知上升到理性认识的高度,更重要的是使学生掌握数形结合研究函数的方法,初步培养学生的画图、识图能力.四班级交流释疑升华练习.老师巡回观察点拨、解答学生疑难.例2是二次函数中a<0的类型,学生可类比例1,自己得出图象与性质.例1与例2分别是二次函数中a>0,a<0的两种类型,教师引导学生填表,自己总结出二次函数的性质表格,对比记忆.学生独立完成,根据答案完成互纠自改,小组度的提升保证优等生的知识拓展老师出示答案,对易错点进行讲解老师出示答案,对易错点进行讲解巩固用图象法解一元二次不等式的步骤.利用表格总结,使所学知识系统化.补充:函数f(x)在区间[a,b]的最值求分析图象与x轴的交点,一方面为描点作图,另一方面为下节研究函数与方程,不等式的关系做铺垫.对称性的教学设计是为了启发学生完成从直观到抽象、从感性思维到理性思维的升华.教师让学生经历“观察—发现—验证—归纳”四个过程,感受数学的严密性、科学性.小结函数性质,将例1的分析条理化.通过练习2,进一步2xy=2xy-=22xy=23xy=22xy-=23xy-=板书设计学生展示:函数的概念1、三要素:定义域、值域、对应法则2、函数的概念:3、函数的表达式. y = f (x)学习目标:重点:难点:作业布置:课本40第3、4题,提高题第5题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§ 3.4一元二次函数的图象和性质教学设计1. 掌握一元二次函数图象的画法及图象的特征2. 掌握一元二次函数的性质,能利用性质解决实际问题 3. 会求二次函数在指定区间上的最大(小)值 4. 掌握一元二次函数、一元二次方程的关系。
1.函数)0(2≠++=a c bx ax y 叫做一元二次函数。
2. 一元二次函数的图象是一条抛物线。
3.任何一个二次函数)0(2≠++=a c bx ax y 都可把它的解析式配方为顶点式:ab ac a b x a y 44)2(22-++=,性质如下:(1)图象的顶点坐标为)44,2(2a b ac a b --,对称轴是直线abx 2-=。
(2)最大(小)值① 当0>a ,函数图象开口向上,y 有最小值,a b ac y 442min-=,无最大值。
② 当0>a ,函数图象开口向下,y 有最大值,ab ac y 442max -=,无最小值。
(3)当0>a ,函数在区间)2,(a b --∞上是减函数,在),2(+∞-a b上是增函数。
当0<a ,函数在区间上),2(+∞-a b 是减函数,在)2,(ab--∞上是增函数。
【说明】1.我们研究二次函数的性质常用的方法有两种:配方法和公式法。
2.无论是利用公式法还是配方法我们都可以直接得出二次函数的顶点坐标与对称轴;但我们讨论函数的最值以及它的单调区间时一定要考虑它的开口方向。
一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x xx 【例2】求作函数342+--=x x y 的图象。
【解】)34(3422-+-=+--=x x x x y 7)2[(]7)2[(22++-=-+-=x x先画出图角在对称轴2-=x 的右边部分,列表【点评】画二次函数图象步骤: (1)配方; (2)列表;(3)描点成图; 也可利用图象的对称性,先画出函数的左(右)边部分图象,再利用对称性描出右(左)部分就可。
二、一元二次函数性质【例3】求函数962++=x x y 的最小值及图象的对称轴和顶点坐标,并求它的单调区间。
【解】 7)3(79626222-+=-++=++=x x x x x y由配方结果可知:顶点坐标为)73(--,,对称轴为3-=x ; 01> ∴当3-=x 时, 7min -=y函数在区间]3(--∞,上是减函数,在区间)3[∞+-,上是增函数。
【例4】求函数1352++-=x x y 图象的顶点坐标、对称轴、最值及它的单调区间。
103)5(232=-⨯-=-a b ,2029)5(431)5(44422=-⨯-⨯-⨯=-a b ac ∴函数图象的顶点坐标为)2029,103(,对称轴为2029=x 05<- ∴当103=x 时,函数取得最大值2029=maz y函数在区间]103,(-∞上是增函数,在区间),3[+∞-上是减函数。
【点评】要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:(1) 配方法;如例3 (2) 公式法:适用于不容易配方题目(二次项系数为负数或分数)如例4,可避免出错。
任何一个函数都可配方成如下形式:)0(44)2(22≠-++=a ab ac a b x a y 三、二次函数性质的应用【例5】(1)如果c bx x x f ++=2)(对于任意实数t 都有)3()3(t f t f -=+,那么( )(A ))4()1()3(f f f << (B ) )4()3()1(f f f << (C ))1()4()3(f f f <<(D ))1()3()4(f f f <<【解】 ∵)3()3(t f t f -=+对于一切的R t ∈均成立∴ )(x f 的图像关于3=x 对称 又01>=a ∴ 抛物线开口向上。
∴ )3(f 是)(x f 的最小值。
3431->- ,∴ )1()4()3(f f f <<(2)如果c bx x x f ++-=2)(对于任意实数t 都有)2()2(t f t f --=+-,则)1(-f)1(f 。
(用“>”或“<”填空)【解】∵)2()2(t f t f --=+-对于一切的R t ∈均成立∴ )(x f 的图像关于2-=x 对称 又01>-=a∴ 抛物线开口向下。
)2(1)2(1--<--- ,∴ )1()1(f f >-【点评】1.当0>a 时,对称轴通过它的最低点(此时函数有最小值),如果这时有一个点离图象对称轴越远,则对应的函数值就越大。
如例5(1)中当1=x 所对应的点比当4=x 所对应的点离对称轴远,所以1=x 时对应的函数值也比较大。
2.1.当0<a 时,对称轴通过它的最高点(此时函数有最大值),如果这时有一个点离图象对称轴越远,则对应的函数值就越小。
如例5(2)中当1=x 所对应的点比当1-=x 所对应的点离对称轴远,所以1=x 对应的函数值也比较小。
【例6】求函数522--=x x y 在给定区间]5,1[-上的最值。
【解】(1)原函数化为()615222--=--=x x x y∵01>=a ∴ 当1=x 时,6min -=y又∵1511+<+- ∴当5=x 时,106)15(2max =--=y(2)原函数可化为:910)31(2++-=x y ,图象的对称轴是直线31-=x 注意到当21≤≤x 时,函数为减函数 ∴313134412322)2(2min -=+--=+⨯--==f y 【例7】已知函数1)2(2-+-=nx x n y 是偶函数,试比较)2(f ,)2(f ,)5(-f 的大小。
【解】解法一:∵1)2(2-+-=nx x n y 是偶函数,∴ 0=n , ∴122--=x y∴ 可知函数的对称轴为直线0=x 又∵02<-=a ,020205->->--∴)5()2()2(->>f f f解法二: ∵32)1(2++-=mx x m y 是偶函数, ∴ 0=n , ∴122--=x y可知122--=x y 在),0(+∞上单调递减又∵1)2(2-+-=nx x n y 是偶函数, ∴)5()5(f f =-而225>>∴)5()2()2(f f f >>∴)5()2()2(->>f f f三、一元二次函数、一元二次方程的关系。
【例8】求当k 为何值时,函数k x x y ++-=422的图象与x 轴(1)只有一个公共点;(2)有两个公共点;(3)没有公共点.【解】令0422=++-k x x ,则022=++-k x x 的判别式k ac b 81642+=-=∆(1)当0=∆,即0816=+k ,2=k 时,方程有两个相等的实根,这时图象与x 轴只有一个公共点;(2) 当0>∆,即0816>+k ,2>k 时,方程有两个不相等的实根,这时图象与x 轴有两个公共点;(3) 当0<∆,即0816<+k ,2<k 时,方程有两个不相等的实根,这时图象与x 轴无公共点;一.选择题1.二次函数522+-=x x y 的值域是( )A.)4∞+, [ B.),4(∞+ C.(4, ∞-] D.)4,( -∞2.如果二次函数452++=mx x y 在区间)1,(--∞上是减函数,在区间),1[+∞-上是增函数,则=m ( )A.2 B.-2 C.10 D.-103.如果二次函数)3(2+++=m mx x y 有两个不相等的实数根,则m 的聚值范围是( ) A.),6()2,(+∞⋃--∞ B.)6,2(- C.)6,2[- 0 D.}6,2{- 4.函数3212-+=x x y 的最小值是( ) A.-3. B..213- C.3 D..2135.函数2422---=x x y 具有性质( )A.开口方向向上,对称轴为1-=x ,顶点坐标为(-1,0)B.开口方向向上,对称轴为1=x ,顶点坐标为(1,0) C.开口方向向下,对称轴为1-=x ,顶点坐标为(-1,0) D.开口方向向下,对称轴为1=x ,顶点坐标为(1,0) 6.下列命题正确的是( ) A.函数3622--=x x y 的最小值是23 B.函数3622---=x x y 的最小值是415 C.函数342+--=x x y 的最小值为7 D.函数342+--=x x y 的最大值为7 7.函数(1)3422-+=x x y ;(2)3422++=x x y ;(3)3632---=x x y ;(4)3632-+-=x x y 中,对称轴是直线1=x 的是( )A.(1)与(2) B.(2)与(3) C.(1)与(3) D.(2)与(4) 8.对于二次函数x x y 822+-=,下列结论正确的是( )A.当2=x 时,y 有最大值8 B.当2-=x 时,y 有最大值8C.当2=x 时,y 有最小值8 D.当2-=x 时,y 有最小值8 9.如果函数)0(2≠++=a c bx ax y ,对于任意实数t 都有)2()2(t f t f -=+,那么下列选项中正确的是( )A.)4()1()2(f f f <-< B.)4()2()1(f f f <<- C.)1()4()2(-<<f f f D.)1()2()4(-<<f f f 10.若二次函数1422+-=x x a y 有最小值,则实数a =( ) A.2 B.2- C.2± D.2±二.填空1.若函数12)(2-+=x x x f ,则)(x f 的对称轴是直线2.若函数322++=bx x y 在区间]2,(-∞上是减函数,在区间],2(+∞是增函数,则=b 3.函数9322--=x x y 的图象与y 轴的交点坐标是 ,与x 轴的交点坐标是 、 4.已知6692+-=x x y ,则y 有最 值为 5.已知12842++-=x x y ,则y 有最 值为 三.解答题1.已知二次函数342-+-=x x y ,(1)指出函数图象的开口方向;(2)当x 为何值时0=y ;(3)求函数图象的顶点坐标、对称轴和最值。
2.如果二次函数)8()(2--+=k kx x x f 与x 轴至多有一个交点,求k 的值。
3.已知二次函数222)1(2)(m m m x x f -+-+-=, (1)如果它的图象经过原点,求m 的值。