第七章 相关与回归分析

合集下载

第7章 相关分析与回归分析(含SPSS)

第7章 相关分析与回归分析(含SPSS)



四、偏相关分析
(一) 偏相关分析和偏相关系数 偏相关分析也称净相关分析,它在控制其他变量 的线性影响的条件下分析两变量间的线性相关性, 所采用的工具是偏相关系数(净相关系数)。

偏相关分析的主要用途是根据观测资料应用偏相 关分析计算偏相关系数,可以判断哪些解释变量对 被解释变量的影响较大,而选择作为必须考虑的解 释变量。这样在计算多元回归分析时,只要保留起 主要作用的解释变量,用较少的解释变量描述被解 释变量的平均变动量。
(7.7)

偏相关系数的取值范围及大小含义与相关系数相 同。
2、对样本来自的两总体是否存在显著的偏相关 进行推断。
(1)提出原假设:两总体的偏相关系数与零无显 著差异。
(2)选择检验统计量。偏相关系数的检验统计量 为 t 统计量。 (3)计算检验统计量的观测值和相伴概率 p 。
(4)给定显著性水平 ,并作出决策。如果相 伴概率值小于或等于给定的显著性水平,则拒绝 原假设;如果相伴概率值大于给定的显著性水平, 则不能拒绝原假设。

(二)偏相关系数在SPSS中的实现

1、建立或打开数据文件后,进入Analyze→ Correlate →Partial主对话框,如图7-6所示。
图7-6 偏相关分析主对话框
2、选择分析变量送入Valiables框,选择控制变
量进入Controlling for框。
3、在Test of Significance 栏中选择输出偏相
图7-7 偏相关分析的选项对话框
(1)Statistics 统计量选择项,有两个选项: ①
Means and standard deviations 复选项,要求
SPSSZero-order correlations 复选项,要求显示零阶

第7章 相关与回归分析。

第7章 相关与回归分析。

第七章相关与回归分析学习内容一、变量间的相关关系二、一元线性回归三、线性回归方程拟合优度的测定学习目标1. 掌握相关系数的含义、计算方法和应用2. 掌握一元线性回归的基本原理和参数的最小二3. 掌握回归方程的显著性检验4. 利用回归方程进行预测5. 了解可化为线性回归的曲线回归6. 用Excel 进行回归分析一、变量间的相关关系1. 变量间的关系(函数关系)1)是一一对应的确定关系。

2)设有两个变量x和y,变量y 随变量x一起变化,并完全依赖于x,当变量x 取某个数值时,y依确定的关系取相应的值,则称y 是x的函数,记为y = f (x),其中x 称为自变量,y 称为因变量。

3)各观测点落在一条线上。

4)函数关系的例子–某种商品的销售额(y)与销售量(x)之间的关系可表示为 y = p x (p 为单价)。

–圆的面积(S)与半径之间的关系可表示为S = π R2。

–企业的原材料消耗额(y)与产量x1、单位产量消耗x2、原材料价格x3间的关系可表示为y =x1 x2 x3。

单选题下面的函数关系是()A、销售人员测验成绩与销售额大小的关系B、圆周的长度决定于它的半径C、家庭的收入和消费的关系D、数学成绩与统计学成绩的关系2. 变量间的关系(相关关系)1)变量间关系不能用函数关系精确表达。

2)一个变量的取值不能由另一个变量唯一确定。

3)当变量 x 取某个值时,变量 y 的取值可能有几个。

4)各观测点分布在直线周围。

5)相关关系的例子–商品的消费量(y)与居民收入(x)之间的关系。

–商品销售额(y)与广告费支出(x)之间的关系。

–粮食亩产量(y)与施肥量(x1)、降雨量(x2)、温度 (x3)之间的关系。

–收入水平(y)与受教育程度(x)之间的关系。

–父亲身高(y)与子女身高(x)之间的关系。

3. 相关图表1)相关表:将具有相关关系的原始数据,按某一顺序平行排列在一张表上,以观察它们之间的相互关系。

2)相关图:也称为分布图或散点图,它是在平面直角坐标中把相关关系的原始数据用点描绘出来,通常以直角坐标轴的横轴代表自变量x,纵轴代表因变量y。

第七章 相关分析和线性回归分析

第七章  相关分析和线性回归分析
❖偏相关系数的取值范围及大小含 义与相关系数相同。
❖对样本来自的两总体是否存在显 著的净相关进行推断。
练习
❖ 高校科研研究.sav:高级职称的人年数 可能是共同影响课题总数和发表论文数 的变量,希望考察控制高级职称的人年 数的影响后,课题总数和发表论文数之 间的关系。
❖ 教养方式.sav:父亲对情感温暖的理解 是否成为父亲惩罚严厉以及拒绝否认的 中介变量?
线性回归分析
❖ 回归分析是一种应用极为广泛的数量分 析方法。它用于分析事物之间的统计关 系,侧重考察变量之间的数量变化规律, 并通过回归方程的形式描述和反映这种 关系,帮助人们准确把握变量受其他一 或者多个变量影响的程度,进而为控制 和预测提供两个或两个以上变量之间关系的方法。 从广义上说,相关分析包括了回归分析。严格地说, 二者有区别:
❖偏相关也称净相关,它在控制其 他变量的线性影响的条件下分析 两变量间的线性相关,所采用的 工具是偏相关系数。
❖控制变量数为1时,偏相关系数称 为一阶偏相关;当控制两个变量 时,称为二阶偏相关;当控制变 量的个数为0时,偏相关系数称为 零阶偏相关,也就是相关系数。
❖ 如果需要进行相关分析的两个变量其取值 均受到其他变量的影响,就可以利用偏相 关分析对其他变量进行控制,输出控制其 他变量影响后的相关系数。
❖相关系数
(二)散点图
❖含义 ❖简单散点图:生成一对相关变量的散
点图 ❖重叠散点图:生成多对相关变量的散
点图 ❖矩阵散点图:同时生成多对相关变量
的矩阵散点图 ❖三维散点图:生产成三个变量之间的
三维散点图
散点图的基本操作
❖简单散点图 ❖重叠散点图 ❖矩阵散点图 ❖三维散点图
练习
❖高校科研研究.sav: ❖绘制课题总数与论文数的简单散点

第七章相关与回归分析

第七章相关与回归分析

第七章 相关与回归分析一、本章学习要点(一)相关分析就是研究两个或两个以上变量之间相关程度大小以及用一定函数来表达现象相互关系的方法。

现象之间的相互关系可以分为两种,一种是函数关系,一种是相关关系。

函数关系是一种完全确定性的依存关系,相关关系是一种不完全确定的依存关系。

相关关系是相关分析的研究对象,而函数关系则是相关分析的工具。

相关按其程度不同,可分为完全相关、不完全相关和不相关。

其中不完全相关关系是相关分析的主要对象;相关按方向不同,可分为正相关和负相关;相关按其形式不同,可分为线性相关和非线性相关;相关按影响因素多少不同,可分为单相关和复相关。

(二)判断现象之间是否存在相关关系及其程度,可以根据对客观现象的定性认识作出,也可以通过编制相关表、绘制相关图的方式来作出,而最精确的方式是计算相关系数。

相关系数是测定变量之间相关密切程度和相关方向的代表性指标。

相关系数用符号“γ”表示,其特点表现在:参与相关分析的两个变量是对等的,不分自变量和因变量,因此相关系数只有一个;相关系数有正负号反映相关系数的方向,正号反映正相关,负号反映负相关;计算相关系数的两个变量都是随机变量。

相关系数的取值区间是[-1,+1],不同取值有不同的含义。

当1||=γ时,x 与y 的变量为完全相关,即函数关系;当1||0<<γ时,表示x 与y 存在一定的线性相关,||γ的数值越大,越接近于1,表示相关程度越高;反之,越接近于0,相关程度越低,通常判别标准是:3.0||<γ称为微弱相关,5.0||3.0<<γ称为低度相关,8.0||5.0<<γ称为显著相关,1||8.0<<γ称为高度相关;当0||=γ时,表示y 的变化与x 无关,即不相关;当0>γ时,表示x 与y 为线性正相关,当0<γ时,表示x 与y 为线性负相关。

皮尔逊积距相关系数计算的基本公式是: ∑∑∑∑∑∑∑---==])(][)([22222y y n x x n y x xy n y x xy σσσγ 斯皮尔曼等级相关系数和肯特尔等级相关系数是测量两个等级变量(定序测度)之间相关密切程度的常用指标。

统计学第七章 相关与回归分析

统计学第七章 相关与回归分析

(四)按变量之间的相关程度分为完全相关、不完全相 关和不相关。
二、相关关系的测定
(一)定性分析,相关表,相关图 判断现象间有无相关关系是一个定性认 识问题,单纯依靠数学方法是无法解决的。 因此,进行相关分析必须以定性分析为前 提,这就要求研究人员首先必须根据有关 经济理论,专业知识,实际经验和分析研 究能力等。对被研究现象在性质上作出定 性判断。 相关表是将相关变量的观察资料,按照 其对应关系和一定顺序排列而成的表格。
Se
y
2
a y b xy n2
(7- 12)
这个公式可以直接利用前面计算回归系 数和相关系数的现成资料。以表7-1的资 料计算如下:
Se y 2 a y b xy n2 56615-30.3 731-28.36 1213 10 2 65.02 8 2.85 (万件)
2

y- y R= 1- 2 y y



ˆ 式中,y 为y的多元线性趋势值或回归估计值。
若变量间呈曲线(非直线)相关,则应
计算相关指数来测定变量间相关的密切程度。
ˆ y y y y
2 2
Ryx
( 7-7)
R
ˆ y y
由表7-4资料计算相关系数如下:
r
n xy x y n x x
2 2
n y y
2 2
2
10 1213-15.1 731
2
10 26.25-15.1 10 56615-731 1091.9 1091.9 38.49 31789 6.2 178.3 1091.9 0.988 1105.5

第七章相关分析与回归分析

第七章相关分析与回归分析

第七章相关分析与回归分析1.企业 编号 产量(千 件)生产费用 (千元)企业编 号 产量(千 件)生产费用 (千元) 1 40 130 7 84 165 2 42 140 8 100 170 3 49 155 9 110 167 4 49 150 10 114 183 550 154 11 125 175 65516012130189试根据上表材料: (1) 绘制散点图。

(2) 计算相关系数。

(3) 配合一条直线回归方程。

解: ( 1)(2) 企业编号产量(千件)x生产费用(千元)yxy x2 y2 1 40 130 **** **** 16900 2 42 140 5880 1764 19600 3 49 155 **** **** 24025 4 49 150 **** **** 22500 5 50 154 7700 2500 23716 6 55 160 8800 3025 25600 784 165 138607056272258 100170 17000 10000 28900 911016718370 12100 278896080040200 150 100产量与生产费用散点图512x159062 -948x1938.12 88368 -9482、12 316190 -19382(3)设回归方程为? = a bxb』甞7n Z x 一(送 x)12 159062-948 1938 12y -bx =1^ -0.4423948=126.558312 12所以回归方程为$ =126.5583 0.4423x2.某县城研究居民月家庭人均生活费支出和月家庭收入的相互关系,随机抽样 10利用上表材料:(1) 绘制散点图并观察两变量之间是否存在线性关系 (2) 计算相关系数,建立回归方程。

(3) 计算估计标准误差。

(4) 测算人均收入为200时,其人均生活费应为多少元 解: ( 1)12 88368-9482_ n 瓦xy-任x)任y) n' x 2 -r x)2. n' y 2 -(' y)2 71520 78838.84-0.907271520 161712二 0.4423(2) 家庭序号月人均收入(元)x月人均生活费(元)yxy x2y21 100 85 8500 10000 72252 110 88 968012100 77443 120 90 10800 14400 81004 130 94 12220 16900 88365 140 96 13440 19600 9216 6 150 100 15000 22500 100007 160 106 16960 25600 112368 170 118 20060 28900 13924 9180 120 21600 32400 14400 10 190 124 23560 36100 15376合计14501021151820 218500 106057n' xy-C x)(' y)10 151820 -1450 1021设回归方程为bxn £ xy-(£ x)(£ y) 10 汇 151820 —1450 乂 1021 n' x 2-C x)2 n' y 2-(' y)2 _ 10 218500 -14502a-bx=1021-0.45761450=35.74810 10所以回归方程为? =35.748 0.4576x (3)、10 218500 -14502 一 10 106057 -10212费活生均人月200-C x)2 .. n'y 2-c y)2 3775038673.54= 0.97613775082500 = 0.4576月人均生活费与人均收入散点图120140160月人均收入180oo oooooo 4 2 0 8 6 4 2' y2-a' y-b' xy _ 106057-35.748 1021-0.4576 151820 目二n-2 「10-2= 3.2684(4)当x=200 时,人均生活费为:y =35.748 0.4576 200 =127.2683. 已知x、y两变量的相关系数r = 0.8 , X =20, y = 50,二y为二x的两倍,求y 对x 的回归方程。

统计学 第 七 章 相关与回归分析

统计学 第 七 章 相关与回归分析
3. 利用所求的关系式,根据一个或几个变量 的取值来预测或控制另一个特定变量的取 值,并给出这种预测或控制的精确程度
(一)回归分析与相关分析的关系
回归分析与相关分析是研究现象 之间相互关系的两种基本方法。
区别:
1、相关分析研究两个变量之间相关的 方向和相关的密切程度。但是相关分析不 能指出两变量相互关系的具体形式,也无 法从一个变量的变化来推测另一个变量的 变化关系。
2、按研究变量多少分为单相关和 复相关
单相关即一元相关,亦称简单相 关,是指一个因变量与一个自变量 之间的依存关系。复相关又称多元 相关,是指一个因变量与两个或两 个以上自变量之间的复杂依存关系。
3、按相关形式分为线性相关和非 线性相关
从相关图上观察:观察的样本点的 分布近似表现为直线形式,即观察点近 似地分布于一直线的两边,则称此种相 关为直线相关或线性相关。如果这些样 本点近似地表现为一条曲线,则称这种 相关为曲线相关或非线性相关(curved relationship).
不确定性的统计关系 —相关关系
Y= f(X)+ε (ε为随机变量)
在这种关系中,变量之间的关系值 是随机的,当一个(或几个)变量的值 确定以后,另一变量的值虽然与它(们) 有关,但却不能完全确定。然而,它们
之间又遵循一定的统计规律。
相关关系的例子
▪ 商品的消费量(y)与居民收入(x)
之间的关系
▪ 商品销售额(y)与广告费支出(x)
▲相关系数只反映变量间的线性相关程度,不 能说明非线性相关关系。
▲相关系数不能确定变量的因果关系,也不能 说明相关关系具体接近于哪条直线。
例题1: 经验表明:商场利润额与 其销售额之间存在相关关系。下表为 某市12家百货公司的销售额与利润额 统计表,试计算其相关系数。

第七章相关与回归分析

第七章相关与回归分析
x
函数关系
(几个例子)

某种商品的销售额 y 与销售量 x 之间的关系 可表示为 y = px (p 为单价)
圆的面积S与半径R之间的关系可表示为 S=R2 企业的原材料消耗额y与产量x1 、单位产量 消耗x2 、原材料价格x3之间的关系可表示为 y = x1 x2 x3


相关关系
(correlation)
1. 是一一对应的确定关系 2. 设有两个变量 x 和 y ,变量 y 随变量 x 一起变化,并完 y 全依赖于 x ,当变量 x 取某 个数值时, y 依确定的关系 取相应的值,则称 y 是 x 的 函数,记为 y = f (x),其中 x 称为自变量,y 称为因变量 3. 各观测点落在一条线上
二.相关关系的种类 1、按相关的程度划分 完全相关 不完全相关 不相关 正相关 负相关 线性相关 非线性相关 单相关 4、按影响因素的多少划分 复相关 3、按相关的形式划分
2、按相关的方向划分
散点图
(scatter diagram)








第七章 相关与回归分析
教学目的与要求 掌握相关关系的含义,以及相关关系与 函数关系的区别,了解相关分析的内容,掌 握相关关系的判别方法和类型,理解回归分 析的实质,熟悉回归分析与相关分析的区别 与联系,掌握一元线性回归分析方法和应用
本章主要内容 第一节 相关分析 第二节 回归分析
第一节
相关分析
客观存在的各种现象之间的相互联系,都可以 表现为一定的数量关系,研究现象之间的数量关系 ,则是回归分析和相关分析的宗旨。现象之间的相 互联系,在许多情况下,表现为一定的因果关系, 将这些现象数量化,则成为变量,其中起着影响作 用的变量称为自变量,受自变量影响而发生变动的 变量称为因变量。 现象之间的相互关系,可以概括为两种不同的类 型,即函数关系和相关关系。

《统计学》-第七章-相关与回归分析

《统计学》-第七章-相关与回归分析

第七章 相关与回归分析(一)填空题1、相关关系按其相关的程度不同,可分为 、 和 。

2、相关系数的正负表示相关关系的方向,r 为正值,两变量是 ;r 为负数,两变量是 。

3、r=0,说明两个变量之间 ;r=+1,说明两个变量之间 ;r=-1说明两个变量之间 。

4、一元线性回归方程bx a y+=ˆ 中的参数a 代表 ,数学上称为 ;b 代表 ,数学上称为 。

5、 分析要根据研究的目的确定哪一个为自变量,哪一个为因变量,在这一点与 分析时不同。

6、相关关系按方向不同,可分为 和 。

7、完全线性相关的相关系数r 值等于 。

8、计算回归方程要注意资料中因变量是 的,自变量是 的。

9、回归方程只能用于由 推算 。

(二)单项选择题(在每小题备选答案中,选出一个正确答案)1、相关分析研究的是( )A. 变量之间关系的密切程度B. 变量之间的因果关系C. 变量之间严格的相互依存关系D. 变量之间的线性关系2、相关关系是( )A 、现象间客观存在的依存关系B 、现象间的一种非确定性的数量关系C 、现象间的一种确定性的数量关系D 、现象间存在的函数关系3、下列情形中称为正相关的是( )A. 随着一个变量的增加,另一个变量也增加B. 随着一个变量的减少,另一个变量增加C. 随着一个变量的增加,另一个变量减少D. 两个变量无关4、当自变量x 的值增加,因变量y 的值也随之增加,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关5、相关系数r 的取值范围是( )A. B.C. 6、当自变量x 的值增加,因变量y 的值也随之减少,两变量之间存在着( )A 、曲线相关B 、正相关C 、负相关D 、无相关7、相关系数等于零表明两变量( )A. 是严格的函数关系B. 不存在相关关系C. 不存在线性相关关系D. 存在曲线相关关系8、相关系数r 的取值范围是( )A 、从0到1B 、从-1到0C 、从-1到1D 、无范围限制11<<-r 10≤≤r 11≤≤-r9、相关分析对资料的要求是( )A. 两变量均为随机的B. 两变量均不是随机的C. 自变量是随机的,因变量不是随机的D. 自变量不是随机的,因变量是随机的10、相关分析与回归分析相比,对变量的性质要求是不同的,回归分析中要求( )A 、自变量是给定的,因变量是随机的B 、两个变量都是随机的C 、两个变量都是非随机的D 、因变量是给定的,自变量是随机的11、回归方程 中的回归系数b说明自变量变动一个单位时,因变量( )A. 变动b个单位 B. 平均变动b 个单位C.变动a+b 个单位 D. 变动a 个单位12、一般来说,当居民收入减少时,居民储蓄存款也会相应减少,二者之间的关系是( )A 、负相关B 、正相关C 、零相关D 曲线相关13、回归系数与相关系数的符号是一致的,其符号均可判断现象( )A. 线性相关还是非线性相关B. 正相关还是负相关C. 完全相关还是不完全相关D. 简单相关还是复相关14、配合回归方程比较合理的方法是( )A 、移动平均法B 、半数平均法C 、散点法D 、最小平方法15、在相关分析中不能把两个变量区分为确定性的自变量和随机性的因变量,在回归分析中( )A. 也不能区分自变量和因变量B. 必须区分自变量和因变量C. 能区分,但不重要D. 可以区分,也可以不区分16、价格愈低,商品需求量愈大,这两者之间的关系是( )A 、复相关B 、不相关C 、正相关D 、负相关17、按最小平方法估计回归方程 中参数的实质是使( )A. B. C. D. 18、判断现象之间相关关系密切程度的方法是( )A 、作定性分析B 、制作相关图C 、计算相关系数D 、计算回归系数19、在线性相关条件下,自变量的标准差为2,因变量的标准差为5,而相关系数为0.8,其回归系数为( )A. 8B. 12.5C. 0.32D. 2.020、已知某产品产量与生产成本有直线关系,在这条直线上,当产量为1000件时,其生产成本为50000元,其中不随产量变化的成本为12000元,则成本总额对产量的回归方程是( )A 、Y=12000+38XB 、Y=50000+12000XC 、Y=38000+12XD 、Y=12000+50000Xbx a y +=ˆbx a y +=ˆ∑=-最小值2)ˆ(y y21、已知,则相关系数为()A.不能计算 22、相关图又称( )A 、散布表B 、折线图C 、散点图D 、曲线图23、工人的出勤率与产品合格率之间的相关系数如果等于0.85,可以断定两者是( )A 、显著相关B 、高度相关C 、正相关D 、负相关24、相关分析与回归分析的一个重要区别是( )A 、前者研究变量之间的关系程度,后者研究变量间的变动关系,并用方程式表示B 、前者研究变量之间的变动关系,后者研究变量间的密切程度C 、两者都研究变量间的变动关系D 、两者都不研究变量间的变动关系25、当所有观测值都落在回归直线上,则这两个变量之间的相关系数为( )A 、1B 、-1C 、+1或-1D 、大于-1,小于+126、一元线性回归方程y=a+bx 中,b 表示( )A 、自变量x 每增加一个单位,因变量y 增加的数量B 、自变量x 每增加一个单位,因变量y 平均增加或减少的数量C 、自变量x 每减少一个单位,因变量y 减少的数量D 、自变量x 每减少一个单位,因变量y 增加的数量(三)多项选择题(在每小题备选答案中,至少有两个答案是正确的)1、直线回归方程 中,两个变量x 和y ( )A. 前一个是自变量 ,后一个是因变量B. 两个变量都是随机变量C. 两个都是给定的量D. 前一个是给定的量 ,后一个是随机变量E. 前一个随机变量 ,后一个是给定的量2、相关分析( )A 、分析对象是相关关系B 、分析方法是配合回归方程C 、分析方法主要是绘制相关图和计算相关系数D 、分析目的是确定自变量和因变量E 、分析目的是判断现象之间相关的密切程度,并配合相应的回归方程以便进行推算和预测3、相关分析的特点有 ( )A. 两个变量是对等的关系B. 它只反映自变量和因变量的关系C. 可以计算出两个相关系数D. 相关系数的符号都是正的E. 相关的两个变量必须都是随机的4、下列现象中存在相关关系的有( )A 、职工家庭收入不断增长,消费支出也相应增长B 、产量大幅度增加,单位成本相应下降C 、税率一定,纳税额随销售收入增加而增加D 、商品价格一定,销售额随销量增加而增加E 、农作物收获率随着耕作深度的加深而提高bx a y +=ˆ5、相关关系与函数关系的区别在于( )A. 相关关系是变量间存在相互存在依存关系,而且函数关系是因果关系B. 相关关系的变量间是确定不变的,而函数关系值是变化的C. 相关关系是模糊的,函数关系是确定的D. 两种关系没有区别6、商品流通费用率与商品销售额之间的关系是( )A 、相关关系B 、函数关系C 、正相关D 、负相关E 、单相关7、为了揭示变量x 与y 之间的相互关系,可运用( )A. 相关表B. 回归方程C.相关系数D. 散点图8、相关系数( )A 、是测定两个变量间有无相关关系的指标B 、是在线性相关条件下测定两个变量间相关关系密切程度的指标C 、也能表明变量之间相关的方向D 、其数值大小决定有无必要配合回归方程E 、与回归系数密切相关9、可以借助回归系数来确定( )A. 两变量之间的数量因果关系B. 两变量之间的相关方向C. 两变量之间的相关的密切程度D.10、直线回归方程( )A、建立前提条件是现象之间具有较密切的直线相关关系B 、关键在于确定方程中的参数a 和bC 、表明两个相关变量间的数量变动关系D 、可用来根据自变量值推算因变量值,并可进行回归预测E 、回归系数b=0时,相关系数r=011、可用来判断现象相关方向的指标有( )A. 相关系数B. 回归系数C. 回归参数aD. 协方差E. 估计标准误差 12、某种产品的单位成本y (元)与工人劳动生产率x (件/人)之间的回归直线方程Y=50-0.5X ,则( )A 、0.5为回归系数B 、50为回归直线的起点值C 、表明工人劳动生产率每增加1件/人,单位成本平均提高0.5元D 、表明工人劳动生产率每增加1件/人,单位成本平均下降0.5元E 、表明工人劳动生产率每减少1件/人,单位成本平均提高50元13、对于回归系数,下列说法中正确的有( )A. b 是回归直线的斜率B. b 的绝对值介于0-1之间C. bD. bE. b 满足方程组y S ⎪⎩⎪⎨⎧+=+=∑∑∑∑∑2xb x a xy x b na y14、相关关系的特点是()A、现象之间确实存在数量上的依存关系B、现象之间不确定存在数量上的依存关系C、现象之间的数量依存关系值是不确定的D、现象之间的数量依存关系值是确定的E、现象之间不存在数量上的依存关系15、回归方程可用于( )A. 根据自变量预测因变量B. 给定因变量推算自变量C. 给定自变量推算因变量D. 推算时间数列中缺失的数据E. 用于控制因变量16、建立一元线性回归方程是为了()A、说明变量之间的数量变动关系B、通过给定自变量数值来估计因变量的可能值C、确定两个变量间的相关程度D、用两个变量相互推算E、用给定的因变量数值推算自变量的可能值17、在直线回归方程中,两个变量x和y()A、一个是自变量,一个是因变量B、一个是给定的变量,一个是随机变量C、两个都是随机变量D、两个都是给定的变量E、两个是相关的变量18、在直线回归方程中()A、在两个变量中须确定自变量和因变量B、回归系数只能取正值C、回归系数和相关系数的符号是一致的D、要求两个变量都是随机的E、要求因变量是随机的,而自变量是给定的19、现象间的相关关系按相关形式分为()A、正相关B、负相关C、直线相关D、曲线相关E、不相关20、配合一元线性回归方程须具备下列前提条件()A、现象间确实存在数量上的相互依存关系B、现象间的关系是直线关系,这种直线关系可用散点图来表示C、具备一组自变量与因变量的对应资料,且能明确哪个是自变量,哪个是因变量D、两个变量之间不是对等关系E、自变量是随机的,因变量是给定的值21、由直线回归方程y=a+bx所推算出来的y值()A、是一组估计值B、是一组平均值C、是一个等差级数D、可能等于实际值E、与实际值的离差平方和等于0(四)是非题1、判断现象之间是否存在相关关系必须计算相关系数。

统计学第7章 相关与回归分析 (2)

统计学第7章 相关与回归分析 (2)
完成量(小时)
20 50 20 30 50 20 50 40 20 80 40 20 50 80 30 单位成本(元/小时) 16 16 18 16 15 18 15 14 16 14 15 16 14 15 15
完成量(小时)
整理后有
20 20 20 20 20 20 20 20 20 30 30 30 30 30 40 单位成本(元/小时) 15 16 16 16 16 18 18 18 18 15 15 15 16 16 14
rXY
样本相关系数
通过X和Y的样本观测值去估计样本相关系 数变量X和Y的样本相关系数通常用 r 表示
r
rXY
( x x )( y y ) (x x) ( y y)
2
2
特点:样本相关系数是根据从总体中抽取的随机样 本的观测值计算出来的,是对总体相关系数 的估计,它是个随机变量。
例:为了研究分析某种劳务产品完成量与其单位 产品成本之间的关系,调查30个同类服务公司得到的 原始数据如表。 相关表:将自变量x的数值按照从小到大的顺序,并 配合因变量y的数值一一对应而平行排列的表。
20 30 20 20 40 30 40 80 80 50 40 30 20 80 50 单位成本(元/小时) 18 16 16 15 16 15 15 14 14 15 15 16 18 14 14
根据相关关系的方向划分
1、正相关。指两个因素(或变量)之间的变化方向 一致,都是呈增长或下降的趋势。即自变量x的值 增加(或减少),因变量y的值也相应地增加(或 减少),这样的关系就是正相关。例如,工业总 产值增加,企业税利总额也随之增加;家庭消费 支出随收入增加而增加等。 2、负相关。指两个因素或变量之间变化方向相反, 即自变量的数值增大(或减小),因变量随之减 小(或增大)。 如劳动生产率提高,产品成本降 低;产品成本降低,企业利润增加等。

统计学 第七章 相关与回归分析

统计学 第七章 相关与回归分析

数 值 说 明
完全负相关
无线性相关
完全正相关
-1.0
-0.5
0
+0.5
正相关程度增加
+1.0
r
负相关程度增加
通常:当相关系数的绝对值: 通常:当相关系数的绝对值: 小于0.3 小于0.3时,表示不相关或微弱相关 0.3时 介于0.3 0.5, 介于0.3至0.5,表示低度相关 0.3至 介于0.5 0.8,表示显著(中度) 介于0.5至0.8,表示显著(中度)相 0.5至 关 大于0.8Lxx Lyy
r=
n ∑ xy − ∑ x ⋅ ∑ y n ∑ x 2 − (∑ x ) 2 ⋅ n ∑ y 2 − (∑ y ) 2
r=
∑ ( x − x )( y − y) ∑ ( x − x )2 ∑ ( y − y)
2
( x − x )( y − y) = ∑ xy − 1 ∑ x ∑ y ∑ n
第二节
定性分析
相关分析的方法
是依据研究者的理论知识和实践经 验,对客观现象之间是否存在相关 关系,以及何种关系作出判断。 关系,以及何种关系作出判断。 在定性分析的基础上,通过编制相 在定性分析的基础上, 关表、绘制相关图、计算相关系数 等方法, 等方法,来判断现象之间相关的方 向、形态及密切程度。 形态及密切程度。
xy
( y − y) 2 ∑
σ xσ y
3.相关系数的其他公式 相关系数的其他公式
• (1)积差法公式: )积差法公式: • • (2)积差法简化式: )积差法简化式: r= • • (3)简捷公式: )简捷公式: •
∑ ( x − x)( y − y) r=
nσ xσ y
∑ ( x − x )( y − y ) ∑ (x − x) ⋅ ∑ ( y − y)

生物统计学:第七章 直线回归与相关分析

生物统计学:第七章  直线回归与相关分析

特别要指出的是:利用直线回归方程进行预 测或控制时,一般只适用于原来研究的范围,不 能随意把范围扩大,因为在研究的范围内两变量 是直线关系,这并不能保证在这研究范围之外仍 然是直线关系。若需要扩大预测和控制范围,则 要有充分的理论依据或进一步的实验依据。利用 直线回归方程进行预测或控制,一般只能内插, 不要轻易外延。
(三)、相关系数的显著性检验
统计学家已根据相关系数r显著性t检验法计算出了 临界r值并列出了表格。 所以可以直接采用查表法对相 关系数r进行显著性检验。
先根据自由度 n-2 查临界 r 值 ( 附表8 ), 得 r0.05(n2) ,r0.01(n2)。若|r|< r0.05(n2),P>0.05,则相 关系数r不显著,在r的右上方标记“ns”;若 r0.05(n2) ≤|r|< r0.01(n2) ,0.01<P≤0.05,则相关系数 r 显 著,在r的右上方标记“*”;若|r|≥ r0.01(n2) ,P ≤ 0.01, 则相关系数 r 极显著,在 r 的右上方标记 “**”。
第七章 直线回归与相关分析
在试验研究中常常要研究两个变量间的关系。 如:人的身高与体重、作物种植密度与产量、食品价格与需
求量的关系等。 两个关系 依存关系:依变量Y随自变量X变化而变化。
—— 回归分析 互依关系:依变量Y与自变量X间的彼此关系.
—— 相关分析
一 直线回归
(一)、直线回归方程的建立 对于两个相关变量x和y,如果通过试验或调查 获得它们的n对观测值: (x1,y1),(x2,y2),……,(xn,yn) 为了直观地看出x和y间的变化趋势,可将每一 对观测值在平面直角坐标系描点,作出散点图。
y)2 y)2
SPxy 2 SSxSS y
SPxy SS x

第七章 直线回归与相关分析

第七章 直线回归与相关分析
最小二乘估计法 设回归直线方程为:
ˆ a bx y
(6-2)
其中, a 是α的估计值,b是β的估计值。
主 页退 出 上一张 下一张
建立 样本线性回归方程的方法 最小二乘法
实际观察值与样本回归线上
的点的距离的平方和最小
y


n
i1
yi yi
n 2 i i 1
函数关系 有精确的数学表达式 (确定性的关系) 直线回归分析 一元回归分析 变量间的关系 因果关系 曲线回归分析 (回归分析) 多元线性回归分析 多元回归分析 相关关系 多元非线性回归分析 (非确定性的关系) 简单相关分析—— 直线相关分析 平行关系 复相关分析 (相关分析) 多元相关分析 偏相关分析


2
(x,y) y=a+bx y-y y-y y
ˆ y) 2 (y y ˆ ) 2 2 (y ˆ y)(y y ˆ) (y
ˆ y )( y y ˆ ) b( x x )( y y ) b( x x ) (y bSPxy b 2 SS x ( SP SP 2 ) SP ( ) SS x 0 SS x SS x
多因一果,多元回归分析 多个自变量与一个依变量的回归分析,分为 多元线性回归分析与多元非线性回归分析两种。
回归分析的任务: 揭示出呈因果关系的相关变量间的联系形 式,建立它们之间的回归方程,利用所建立的 回归方程,由自变量(原因)来预测、控制依 变量(结果)。 回归分析主要包括: 找出回归方程;检验回归方程是否显著; 通过回归方程来预测或控制另一变量。
2
a、b应使回归估计值与实际观测值的误差平方和最小,即:
ˆ )2 ( y a bx) 2 最小 Q (y y

统计学原理第七章_相关分析

统计学原理第七章_相关分析

各类相关关系的表现形态图
三、相关分析与回归分析
• (一)相关分析 • 是用一个指标(相关系数)来表明现象 之间相互依存的密切程度。 • (二)回归分析 • 是根据相关关系的具体形态,选择一个 合适的数学模型,来近似地表达变量之 间的平均变化关系。(高度相关)
• (三)相关分析与回归分析的联系
• 1. 它们有具有共同的研究对象。
n
(x x )(y y ) n
σx
(x x )
n
2

(x x ) n
(y y ) n
1
1
2
σy
(y y )
n
2

2
再代入到原公式中,得:
r σ
2 xy
σx y σ

( x x ) ( y y ) ( x x ) ( y y )
2
·· ·②
销售收入 (百万元)
40 30 20 10 0 0 20 40 60 80 100
广告费(万元)
钢材消费量与国民收入
2500
2000
1500
钢材消费量(万吨)
1000
500
0
(相关图)
0
500
1000
1500
2000
2500
3000
国民收入(亿元)
例子
表1 某企业产量与生产费用的关系
企业编号 1 2 3 4 5 6 7 8
量,哪个是因变量,变量都是随机的。
• 2. 回归分析是对具有相关关系的变量间
的数量联系进行测定,必须事先确定变
量的类型。通常因变量是随机的,自变
量可以是随机的,也可以是非随机的。
第二节 简单线性相关分析

统计学第7章相关与回归分析PPT课件

统计学第7章相关与回归分析PPT课件
预测GDP增长
利用回归分析,基于历史GDP数据和其他经济指标,预测未来GDP 的增长趋势。
预测通货膨胀率
通过分析通货膨胀率与货币供应量、利率等经济指标的关系,利用回 归分析预测未来通货膨胀率的变化。
市场研究
消费者行为研究
通过回归分析研究消费者购买决策的影响因素, 如价格、品牌、广告等。
市场细分
利用回归分析对市场进行细分,识别不同消费者 群体的特征和需求。
线性回归模型假设因变量和自变量之间 存在一种线性关系,即当一个自变量增 加时,因变量也以一种可预测的方式增
加或减少。
参数估计
参数估计是用样本数据来估计线性回 归模型的参数β0, β1, ..., βp。
最小二乘法的结果是通过解线性方程 组得到的,该方程组包含n个方程(n 是样本数量)和p+1个未知数(p是 自变量的数量,加上截距项)。
回归模型的评估
残差分析
分析残差与自变量之间的关系, 判断模型的拟合程度和是否存在
异常值。
R方值
用于衡量模型解释因变量变异的 比例,值越接近于1表示模型拟
合越好。
F检验和t检验
用于检验回归系数是否显著,判 断自变量对因变量的影响是否显
著。
05 回归分析的应用
经济预测
预测股票市场走势
通过分析历史股票数据,利用回归分析建立模型,预测未来股票价 格的走势。
回归模型的评估是通过各种统计 量来检验模型的拟合优度和预测 能力。
诊断检验(如Durbin Watson检 验)可用于检查残差是否存在自 相关或其他异常值。
03 非线性回归分析
非线性回归模型
线性回归模型的局限性
线性回归模型假设因变量和自变量之间的关系是线性的,但在实 际应用中,这种关系可能并非总是成立。

第七章 相关与回归分析

第七章  相关与回归分析

总体一元线性 回归方程:
Yˆ EY X
以样本统计量估计总体参数
(估计的回归方程)
样本一元线性回归方程: yˆ a bx
(一元线性回归方程)
截距 斜率(回归系数)
截距a 表示在没有自变量x的影响时,其它各 种因素对因变量y的平均影响;回归系数b 表
明自变量x每变动一个单位,因变量y平均变 动b个单位。
n x2 x2 n y2 ( y)2
1637887 916 625
0.9757
16 55086 9162 16 26175 6252
r 2 0.97572 0.9520
第七章 回归分析与相关分析
第七章 相关与回归分析
STAT
★ 第一节 相关分析概述 ★ 第二节 一元线性回归分析
第七章 回归分析与相关分析
yˆ a bx是理论模型,表明x与y变量 之间的平均变动关系,而变量y的实际
值应为yi (a bxi ) i yˆ i
X对y的线性影响而形 成的系统部分,反映两 变量的平均变动关系, 即本质特征。
随机干扰:各种偶然 因素、观察误差和其 他被忽视因素的影响
体重(Y)
75 70 65 60 55 50 45 40
b
n xy x y
n x2 x2
16 37887 916 625 16 55086 9162
0.7961
a y bx 625 0.7961 916 6.5142
16
16
即线性回归方程为:
yˆ 6.5142 0.7961x
计算结果表明,在其他条件不变时,能源消耗 量每增加一个单位(十万吨),工业总产值将 增加0.7961个单位(亿元)。
函数关系 相关关系

统计学导论 科学出版社 第七章 相关与回归分析

统计学导论  科学出版社 第七章 相关与回归分析


对于 n 组实际观察数据(yi ; xi1,,xi2 , , xip ),(i=1,2,…,n),多元线性回归模型可 表示为
{
y1 = 0 1 x11 2 x12 px1p 1 y2= 0 1 x21 2 x22 px2p 2 …… yn= 0 1 xn1 2 xn2 pxnp n
x 1766.293
y 1379.13
(x x)
2
4670769.25
( y y ) 2741904.99 ( x x )( y y) 3447388.39
2
要求:(1)计算相关系数r; (2)配合简单线性回归方程
(3)估计人均生活费收入为2000元时的商品支出额
表明Y的期望值是X的线性函数
反映了除 X和 Y之间的线性关系之外的随机因素对Y的 影响 是不能由X和Y之间的线性关系所解释的变异性
• 总体回归直线(回归方程) :E (Yt ) 1 2 X t
• 方程的图示是一条直线,因此也称为直 线回归方程 • 1是回归直线在 y 轴上的截距,是当 x=0 时 y 的期望值 • 2是直线的斜率,称为回归系数,表示 当 x 每变动一个单位时,y 的平均变动 值
样本回归函数
(概念要点)
样本回归线
ˆ ˆ ˆ Yt 1 2 X t
样本回归函数
ˆ ˆ Yt 1 2 X t et
最小二乘法
1. 使因变量的观察值与估计值之间的离差平方和 达到最小来求得回归系数。即
垐 ) ( y y ) 2 e2 最小 Q( 1 , 2 i ˆ i
年份
1981 1982 1983 1984 1985 1986 1987

第七章相关与回归分析

第七章相关与回归分析

第七章 相关与回归分析一、单项选择1.年劳动生产率x (千元)和职工工资y (元)之间的回归方程为y=10+70x 这意味着年劳动生产率每提高1千元时,职工工资平均( )A .增加70元B .减少70元C .增加80元D .减少80元2.用最小平方法配合的趋势线,必须满足的一个基本条件是( ) A .()2∑-Yc Y =最小值 B .()=-∑Yc Y 最小值 C .()=-∑2Yc Y 最大值 D .()=-∑Yc Y 最大值3.在正态分布条件下,以2Sy (Sy 为估计标准误差)为距离作平行于回归直线的两条直线,在这两条直线中,包括的观察值的数目大约为全部观察值的( )A .68.27%B .90.11%C .95.45%D .99.73%4.合理施肥量与农作物亩产量之间的关系是( )A .函数关系B .单项因果关系C .互为因果关系D .严格的依存关系5.由变量X 对变量Y 回归,同由变量Y 对变量X 回归,所得到的回归方程是不同的,表现在( ) A .与方程对应的两条直线只有一条经过点(__,Y X )B .参数的估计方法不同C .方程中参数的实际意义不同D .如果其中一个方程反映的是正相关,那么另一个方程反映的就是负相关6.某企业的运动鞋产量和生产成本有直接关系,在生产成本对运动鞋产量的回归直线上,当产量为1000双时,其生产成本为30000元,其中不变成本6000元,该直线的回归方程为( )。

(Y 以元为单位,X 以双为单位)A .Yc=6000+24XB .Yc=6+0.24XC .Yc=24000+6XD .Yc=24+6000X7.已知变量X 的标准差为 x σ,变量Y 的标准差为y σ,并且xy σ=x σ)4/1(=2y σ,则判定系数 2r 为( )A .不能计算B .1/2C .2/2D .1/48.如果变量X 和Y 之间直线相关,在同一平面坐标图上,Y 倚X 的回归直线和X倚Y 的回归直线重合,那么( )A .相关系数等于零B .回归系数a=0C .回归系数b=0D .估计标准误差Sy=09.当自变量X 作等差增减时,因变量Y 随之作等比增减,则X 和Y 之间应配合( )A .抛物线回归方程B .指数曲线回归方程C .双曲线回归方程D .直线回归方程10.下列关系式中正确的是( ),(其中r 为相关系数,r 为判定系数,b 为回归系数)A .y x xy r σσσ⋅=22B .yyxx xy L L L r ⋅=2 C .y xb r σσ⋅= D .yx b r σσ⋅=2 11.方差分析是关于两个主变量线性相关程度的分析方法,它将一组样本数据所发生的总变差依可能引发变差的来源分割为数个部分,其中,回归平方和是( )A .∑=-n i i y y 12_)(B .∑=-n i i i y y 12_^)( C .∑=-n i i i y y 12^)( D . ∑=-n i i i y y 12_^)(+∑=-n i i i y y 12^)(12.当自变量的数值确定后,因变量的数值也随之完全确定,这种关系属于( )A .相关关系B .函数关系C .回归关系D .随机关系13.测定变量之间线性相关密切程度的代表性指标是( )A .估计标准误B .两个变量的协方差C .相关系数D .两个变量的标准差14.现象之间的相关关系可以归纳为两种类型,即( )A .相关关系和函数关系B .相关关系和因果关系C .相关关系和随机关系D .函数关系和因果关系15.相关系数的取值范围是( )A .0≤r ≤1B .-1<r <1C .-1≤r ≤1D .-1≤r ≤016.变量之间的线性相关程度越低则相关系数的数值( )A .越小B .越接近于0C .越接近于-1D .越接近于117.在价格不变的条件下,商品销售额和销售量之间存在着( )A .不完全的依存关系B .不完全的随机关系C .完全的随机关系D .完全的依存关系18.下列哪两个变量之间的相关程度高( )A .商品销售额和销售量的相关系数是0.9B .商品销售额与商业利润率的相关系数是0.84C .平均流通费用率与商业利润率的相关系数是-0.94D .商品销售价格和销售量的相关系数是-0.9119.回归分析中的两个变量( )A .都是随机变量B .关系是对等的C .都是给定的量D .一个是自变量,一个是因变量20.每一吨铸铁成本(元)倚铸件废品率(%)变动的回归方程为:Yc=56+8X ,这意味着( )A .废品率每增加1%,成本每吨增加64元B .废品率每增加1%,成本每吨增加8%C .废品率每增加1%,成本每吨增加8元D .如果废品率每增加1%,则每吨成本为56元21.某校对学生的考试成绩和学习时间的关系进行测定,建立了考试成绩倚学习时间的直线回归方程为:Yc=180-5X ,该方程明显有错,错误在于( )A .a 值的计算有误,b 值是对的B .b 值的计算有误,a 值是对的C .a 值和b 值的计算都有误D .自变量和因变量的关系搞错了22.配合回归方程对资料的要求是( )A .因变量是给定的数值,自变量是随机的B .自变量是给定的数值,因变量是随机的C .自变量和因变量都是随机的D .自变量和因变量都不是随机的23.估计标准误说明回归直线的代表性,因此( )A .估计标准误数值越大,说明回归直线的代表性越大B .估计标准误数值越大,说明回归直线的代表性越小C .估计标准误数值越小,说明回归直线的代表性越小D .估计标准误数值越小,说明回归直线的实用价值小24.交互列表中的行边缘频数是指( )A 列频数之和B 行频数C 列频数与行频数总计D 行频数合计25.若自变量在表的主栏位置,分析变量之间的相关关系时,应该使用( )A 列频率B 行频率C 行边缘频数D 列边缘频数26.下列计算公式中,属于2χ统计量的是( )A ()02e e f f f χ-=∑ B ()020e f f f χ-=∑C ()020e f f f χ-=∑D ()202e e f f f χ-=∑27.运用2χ统计量检验变量之间相关关系的显著性时,拒绝原假设的准则是( ) A 222αχχ> B 222αχχ< C 22αχχ> D 22αχχ<28.测定害类变量之间相关程度的是( )A 简单相关系数B 复相关系数C 品质相关系数D 偏相关系数29.如果r c ⨯双变量交互列表中,任意一个变量所划分的类目数大于2,则φ系数可按下式计算( )A φ=2n χφ=C φ=2nφχ=30.下列公式中,属于v 系数的计算公式是( )A. v =v =v =31. 描述两个定序变量之间相关程度的指标是( )A φ系数B v 系数C λ系数D 等级相关系数32.当10n ≥时,等级相关系数的抽样分布近似为正态分布,其标准差为() 11n - C 11n - D 1n -33. 简单相关系数的取值范围是( )A []0,1B []1,1-C []1,0-D []1,034. 若0r =,说明x 与y 之间不存在( )A 任何关系B 非线性关系C 线性关系D 相关关系35.检验相关系数的显著性采用的统计量为( )A t =B t =t =D t = 36.反映一个因变量与多个自变量之间数量变化关系密切程度的指标是( )A 简单相关系数B 等级相关系数C 偏相关系数D 复相关系数37.在多变量观测数据中分析两个特定变量之间数量变化关系密切程度的指标是( )A 简单相关系数B 复相关系数C 偏相关系数D 等级相关系数二、多项选择1.相关系数等于零,说明两变量之间的关系是( )A .可能完全不相关B .可能是曲线相关C .高度相关D .中度相关E .以上都不对2.当现象完全相关时:( )A .r=0B .r=1-C .r=1D .r=0.5E .r=5.0-3.测定现象之间有无相关关系的方法有( )A .编制相关表B .绘制相关图C .对客观现象做定性分析D .计算估计标准误E .配合回归直线4.直线回归分析中( )A .自变量是可控制的量,因变量是随机的B .两个变量不是对等的关系C .利用一个回归方程,两个变量可以互相推算D .根据回归系数可判定相关的方向E .对于没有明显因果关系的两变量可求得两个回归方程5.下列属于正相关的现象是( )A .家庭收入越多,其消费支出也越多B .某产品产量随工人劳动生产率的提高而增加C .流通费用率随商品销售额的增加而减少D .生产单位产品所消耗工时随劳动生产率的提高而减少E .产品产量随生产用固定资产价值的减少而减少6.直线回归方程Yc=a+bX 中的b 称为回归系数,回归系数的作用是( )A .可确定两变量之间因果的数量关系B .可确定两变量的相关方向C .可确定两变量相关的密切程度D .可确定因变量的实际值与估计值的变异程度E .可确定当自变量增加一个单位时,因变量的平均增加值7.计算相关系数是( )A .相关的两个变量都是随机的B .相关的两个变量是对等的关系C .相关的两个变量一个是随机的,一个是可控制的量D .相关系数有正负号,可判断相关的方向E .可以计算出自变量和因变量两个相关系数8.可用来判断现象之间相关方向的指标有( )A .估计标准误B .相关系数C .回归系数D .两个变量的协方差E .两个变量的标准差9.由变量Y 倚变量X 回归,同变量X 倚变量Y 回归( )A .是具有不同逻辑意义的两个问题B .方程的参数估计方法不同C .两个方程有不同的判定系数D .估计标准误差一般是不同的E .方程参数的实际意义是不同的10.简单直线回归方程的估计标准误差受诸多因素的影响,其中包括( )A .两变量间的相关系数rB .因变量的标准差C .样本容量的大小nD .因变量的平均数E .自变量的平均数11.如果变量X 和Y 存在正相关关系,当X 和Y 都大于0时,可以允许存在以下情况( )A .X 按固定数额增加,Y 也大致按固定数额增加B .X 按固定数额减少,Y 也大致按固定数额减少C .当X 按固定数额增加时,Y 大致按固定比例增加D .当X 按固定数额减少时,Y 大致按固定比例减少E .当X 按固定数额减少时,Y 大致按固定比例增加12.判定系数2r 形式简单,内容丰富,其内容包括( )A .它是线性相关系数的平方B .它是自变量方差与因变量方差之比C .它是Y 对X 作直线回归的斜率同X 对Y 作直线回归的斜率的乘积D .它是剩余平方和占总离差平方和的比例E .它是回归平方和占总离差平方和的比例13.在进行线性关系的显著性检验中,选取的统计量F= ()2-n Q U ( ) A .F 服从第一自由度为1,第二自由度为n-2的F 分布B .F 很大则认为X ,Y 线性关系不显著C .F 很大则认为X ,Y 线性关系显著D .对于给定的显著性水平α,查F 分布表得 λ=αF (1,n-2)且F λ> ,则线性关系显著E .F=()()2122--n r r14.工人的工资(元)倚劳动生产率(千元)的回归方程为Y=10+70X ,这意味着( )A .如果劳动生产率等于1000元,则工人工资为70元B .如果劳动生产率每增加1000元,则工人工资平均提高70元C .如果劳动生产率每增加1000元,则工人工资增加80元D .如果劳动生产率等于1000元,则工人工资为80元E .如果劳动生产率每下降1000元,则工人工资平均减少70元15.在回归分析中,就两个相关变量X 与Y 而言,变量Y 倚变量X 的回归和变量X 倚变量Y 的回归所得的两个回归方程是不同的,这种不同表现在( )A .方程中参数估计的方法不同B .方程中参数的数值不同C .参数表示的实际意义不同D .估计标准误的计算方法不同E .估计标准误的数值不同16.估计标准误是反映( )A .回归方程代表性大小的指标B .估计值与实际值平均误差程度的指标C .自变量与因变量离差程度的指标D .因变量估计值的可靠程度的指标E .回归方程实用价值大小的指标17.对于定类数据进行相关分析,可采用的方法有( )A 交互列表方法B 2χ检验方法C 品质相关系数D 等级相关系数E 复相关系数18.对于定量数据进行相关分析,可采用的方法有( )A 相关表和相关图B 简单相关系数C 复相关系数D 偏相关系数E 2χ检验方法19.列联表分析法是一套分析技术的总称,它包括( )A 交互列表分析技术B 2χ检验分析技术C 品质相关系数分析技术D 等级相关系数分析技术E 复相关系数分析技术20.分析定量数据相关关系时,可以采用的指标有( )A 简单相关系数B 复相关系数C 净相关系数D 品质相关系数E 等级相关系数三、填空1.现象之间的相关关系按相关的程度分有_______相关,_______相关,和_______相关;按相关的方向分有——相关和_______相关;按相关的形式分有_______相关和_______相关;按相关的影响因素分有_______相关和_______相关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y0 y0 p{ t (n 2)} 1 2 1 ( x0 x) 2 s 1 n l xx
其中令:
1 ( x0 x) 2 ( x0 ) s 1 t (n 2) n l xx 2

则预测区间为 ( y ( x), y ( x)) 其中 2

1 ( x x) (x ) s 1 t (n 2) n l xx 2
即夹在两曲线 y ( x), y ( x)之间的部分就是 预测带。 当给定n对数据和置信度,则 (x) 是x的函数, 因此预测精度(即置信区间长度)实际上与x 有关,x越靠近 ,精度越高; 时区间 x xx 最短,精度最高。
rXY
● 样本相关系数
通过X和Y 的样本观测值去估计样本相关系 数变量 X和Y的样本相关系数通常用 rXY 表示
rXY
rXY
( X X )(Y Y ) ( X X ) (Y Y )
i i __ 2 __ i i
__
__
2
特点:样本相关系数是根据从总体中抽取的随 机样本的观测值计算出来的,是对总体相关 系数的估计,它是个随机变量。
有:
Y Y Y Y
推导出:
(Y (Y
Y)
2 2
(Y Y
2

Y Y)

2
Y ) ( Y Y ) (Y Y ) 2

SST = SSR +
SSE
总离差平方和 回归平方和 残差平方和 SST:反映Yi的分散程度。 SSR:反映 Y i 的分散程度。 SSE:扣除了X对Y的线性影响之外的剩余因素对Y的分 散性的作用。
给定显著性水平 , 查自由度为 n-2 的临界值 t
相关系数的检验方法
2
若 ,表明相关系数 r 在统计上是 显著的,应否定 而接受 0 的假设; 0 反之,若 t t ,应接受 0 的假 2 设。
t t 2
例:假设根据6对样本观测数据计算出 来某公司的股票价格与气温的样本相关 系数为0.50,试问是否可以根据0.05的 显著性水平认为该公司的股票与气温之 间存在一定程度的线性相关关系?
误差项的标准假定
误差项的期望值为0。 误差项的方差为常数。 误差项之间不存在序列相关关系。 自变量与误差项不相关。 误差项服从正态分布。
一元线性回归模型的估计
回归系数的估计
– 采用最小二乘法(OLS):残差平方和最小 – 残差平方和
2
e (Y Y ) (Y X )
可决系数是就回归模型而言,是判断模 型拟合程度的优劣。 相关系数是就两个变量而言。 当仅有一个自变量和一个因变量,且线 性时,相关系数r的平方等于可决系数。
显著性检验
t检验:对回归系数的显著性检验。 F检验:对回归方程的显著性检验。 学习对回归系数的显著性检验,就是利 用样本估计的结果对总体回归系数的有 关假设进行检验。 2 已知: ~ N ( , 2 ) , ~ N ( , )
第七章 相关与回归分析
1、相关与回归分析的基本概念 2、相关分析 3、一元线性回归分析
相关与回归分析的基本概念
函数关系与相关关系
函数关系:当自变量取一定值时,因变量
有确定值对应。例如:y=2x 相关关系:当自变量取一定值时,因变量 的值不确定,但是按某种规律变化。 例如:某商品的销售量与居民收入密切相 关;粮食产量与施肥量密切相关。



1 x [ ] 2 n ( x x)
2 2
2

2

1 [ ] 2 ( x x)
2

2
检验
方差未知,小样本,采用t检验。 对 检验,因为它表示x对y的影响程度。 样本信息计算出
H 0 : 2 0 H1 : 0
t
相关系数的特性
r的取值范围【-1,1】 r=0,表示x与y没有线性关系,但并不 意味着x与y之间不存在其他类型关系。 r=1,x与y完全正相关。 r=-1,x与y完全负相关。 0 r 1,表示x与y存在线性关系。 r>0,x与y正相关。r<0,x与y负相关。
使用相关系数的注意事项:
可决系数 r 2 SSR 1 SSE L xy
SST SST
2
Lxx Lyy
可决系数特性
可决系数越大,拟合程度越高。 可决系数非负。 可决系数取值范围【0,1】
– 可决系数等于0,表示X,Y完全无关。 – 可决系数等于1,说明观测值都位于回归线 上,残差等于0。
相关系数与可决系数
相关关系的种类
按相关程度分:
完全相关、不完全相关、不相关
按相关方向分:
正相关、负相关
按相关形式分:
线性相关、非线性相关
按变量多少分:
单相关、复相关、偏相关
相关分析与回归分析
相关分析:描述的是两个数值变量间关 系的强度。但不能指出变量间相互关系 的具体形式,也无法从一个变量来推测 另一个变量的变化。 回归分析:依靠相关关系来表明数量变 化的相关程度。只有变量高度相关,回 归才有意义。
样本回归函数
总体回归函数未知,需利用样本来估计。 一元线性回归模型的样本回归线: ,其中: Y X


是样本回归线上与X对应的Y值,为
的估计; Y ) E (Y 为截距系数; 为斜率系数,是对总 体 和 的估计。
样本回归函数
实际观测到的因变量Y的值,并不完全 等于 Y ,则 残差 e Y Y 样本回归函数: Y X e e与总体误差项u相互对应。
二、简单线性相关分析
●总体相关系数
对于所研究的总体,表示两个相互联系变量 相关程度的总体相关系数为:
Cov( X , Y ) Var ( X )Var (Y )
总体相关系数反映总体两个变量X和Y的线性 相关程度。 特点:对于特定的总体来说,X和Y的数值是 既定的总体相关系数是客观存在的特定数值。
第三节 一元线性回归 分析
1、标准的一元线性回归模型 2、模型的估计 3、模型的检验 4、模型的预测
总体回归函数
最简单的模型: Y X u ,其中 和 是回归系数。 u 是随机误差项,反映除X的其他因素对Y
的干扰。
例如:消费函数 Y X ,影响 Y的因素主要有可支配收入,但是诸如 消费习惯、地理等因素都会对Y有影响。 所以公式中的Y应表示为E(Y),即 E (Y ) X
2

2
要使e最小,对 和 求偏导,得
n XY X Y Lxy 2 2 n X ( X ) Lxx


Y X


总体方差的估计
和 估计后,还要对u的方差进行估计。 方差反映模型误差的大小,误差小说明 模型拟合的好。 因为u的方差未知,用样本方差代替 可以证明:
▲X和Y 都是相互对称的随机变量,所以 XY YX ▲相关系数只反映变量间的线性相关程 度,不能说明非线性相关关系。 ▲相关系数不能确定变量的因果关系, 也不能说明相关关系具体接近于哪条直 线。
相关系数的检验
为什么要检验? 样本相关系数是随抽样而变动的随机变 量,相关系数的统计显著性还有待检验。 检验的依据: 如果X和Y都服从正态分布,在总体相 关系数 0 的假设下,与样本相关系数 r 有关的 t t r n 2 1 r 2 ~ t (n 2) 统计量服从自由度为n-2的 t 分布:
习题:
某零售商店流通费用率对商品销售额依存关系的 资料如下:
按销售额分组X (万元) 10-12 12-14 14-16 16-18 18-20
流通费用率Y(%) 8.0 7.5 6.7 6.0 5.0
要求:计算相关系数。拟合直线方程。计算回归估计 标准误差
总结
掌握一元线性回归方程的拟合。 模型拟合程度的评价。 两个变量相关系数的计算。
样本与总体回归函数的关系
总体回归线未知,但只有一条;样本回 归线多条,每一组样本拟合一条回归线。 总体中 未知,但是常数;而样本 和 回归函数中的 和 是随机变量,因 样本观测值而变动。 u是Y与未知回归线的距离,不可直接 观测;而e是Y与样本回归线的距离,可 根据样本数据拟合出回归线后,计算e。
s2
e
2
推导出

n2

e2 Y 2 Y
XY
一元线性回归模型的检验
拟合程度的评价
– 拟合程度:指样本观测值聚集在样本回归
线周围的紧密程度。 – 评价指标:可决系数(决定系数)
总离差 (Y Y ) 可以分解为

– 回归值与均值的离差 Y Y (解释离差) – 观测值与回归值的离差,即e (未解释离差)

0
s


给定显著性水平,查临界值
t ( n 2 )
2
一元线性回归模型的预测
区间预测:对于给定的x 及置信度水平, 找到 p{ yl ( x0 ) y0 y u ( x0 )} 1 定理:在一元线性回归中,
0

y0 y0 ~ t (n 2) 2 1 ( x0 x) s 1 n l xx 给定1 ,有
相关文档
最新文档