实验报告-发光二极管伏安曲线测量(完成版)
二极管的伏安特性曲线实验报告
二极管的伏安特性曲线实验报告实验报告实验名称:二极管的伏安特性曲线实验实验目的:1. 理解半导体材料的特性2. 理解二极管的基本结构和工作原理3. 掌握二极管的伏安特性曲线及其应用实验原理:二极管是一种半导体元器件,由p型半导体和n型半导体构成。
p型半导体具有正电荷载流子(空穴),n型半导体具有负电荷载流子(电子)。
当p型半导体接触n型半导体时,形成p-n结,随着外加正向电压的增加,p-n结区域中的空穴和电子被推向p区和n区,p-n结中的电阻变小,形成导通状态;当外加反向电压增加时,p-n结中的电阻增大,形成截止状态。
实验步骤:1. 将二极管连接在电路实验板上,通过万用表测量二极管的端子正向电压和反向电压;2. 在电源电压恒定条件下,分别改变二极管的正向电压和反向电压,记录相应的电路电流值;3. 根据实验数据,绘制二极管的伏安特性曲线图。
实验结果:通过实验数据,绘制出了二极管的伏安特性曲线,曲线呈现出明显的“S”型。
当正向电压为0.6-0.7V时,二极管开始导通,电路电流急剧增加;反向电压逐渐增加时,电路电流基本保持稳定。
二极管的正向导通电压和反向击穿电压分别为0.6-0.7V和80-100V。
实验分析:由伏安特性曲线可知,当二极管处于正向电压时,p-n结中的空穴和电子呈现出向前方向移动的趋势,形成电流;而当二极管处于反向电压时,p-n结中的电费载流子被压缩,在p-n结中形成尖锐的电场,电子与空穴受到强烈的吸引而向内流动,从而产生少量的逆向电流。
实验结论:通过本次实验,我们得到了二极管的伏安特性曲线图,理解并掌握了二极管的基本结构和工作原理,这对我们深入理解半导体材料和电子元器件的特性及其应用具有重要意义。
测量二极管的伏安特性实验报告
测量二极管的伏安特性实验报告测量二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有单向导电性质。
在电子学领域中,测量二极管的伏安特性是非常重要的实验之一。
通过测量二极管在不同电压和电流条件下的特性曲线,可以了解其工作状态和性能参数。
本实验旨在通过实际测量,探究二极管的伏安特性,并分析其特性曲线的变化规律。
实验步骤:1. 实验准备首先,我们需要准备一台数字万用表、一台可变直流电源、一根双头插针导线和一只二极管。
确保实验环境安全,并将电源接地。
2. 连接电路将电源的正极与数字万用表的电流测量端相连,再将二极管的正极与电源的负极相连,最后将二极管的负极与数字万用表的电流测量端相连。
3. 测量伏安特性逐渐调节电源的输出电压,从0V开始,每隔0.2V记录一组电流和电压的数值。
当电流达到一定值时,停止增加电压,记录此时的电流和电压数值。
然后,逐渐减小电源的输出电压,同样每隔0.2V记录一组电流和电压的数值。
直到电流减小到接近0A时,停止减小电压,记录此时的电流和电压数值。
4. 绘制伏安特性曲线将测得的电流和电压数值绘制成伏安特性曲线图。
横轴表示电压,纵轴表示电流。
根据实验数据,可以观察到二极管在不同电压下的电流变化情况,了解其导电特性。
实验结果与分析:根据实际测量数据绘制的伏安特性曲线,我们可以看到在正向电压下,二极管的电流随电压的增加而迅速增大。
这是因为在正向电压下,二极管的正极与负极之间形成了电势差,使得电子从N区域向P区域移动,从而导致电流的增大。
而在反向电压下,二极管的电流非常小,几乎接近于零。
这是因为在反向电压下,二极管的P区域与N区域之间的势垒增大,阻止了电子的流动。
此外,我们还可以观察到二极管的正向电压与电流之间存在一个临界点,称为二极管的正向压降。
当电压超过这个临界点时,电流急剧增加。
这是因为当正向电压超过二极管的正向压降时,势垒被破坏,电子可以自由地通过二极管,导致电流的急剧增加。
实验报告-发光二极管伏安曲线测量
【实验题目】发光二极管的伏安特性【实验记录】
1.实验仪器
2.红色发光二极管正向伏安特性测量数据记录表
3.绿色发光二极管正向伏安特性测量数据记录表
4.蓝色发光二极管正向伏安特性测量数据记录表
5. 电表内阻测量: A R = 4.94Ω (30mA) V R =
6.006kΩ (6V )
【数据处理】
在同一坐标系中作出红、绿、蓝发光二极管的伏安特性曲线。
对比红、绿、蓝三种发光二极管的伏安特性曲线,定性判断其导通电压的大小。
由图像及表格分析可知,导通电压:红色>绿色>蓝色;
大致数据为 红色: 蓝色: 绿色:
【总结与讨论】
(1)二极管阻值与电流表内阻相近,与电压表内阻相差很多,因此采取电流表外接法。
(2)在图像弯曲部分应多测几组数据,使图像更加准确。
(电流不超过20mA)
(3)发光二极管的伏安特性曲线在0到导通电压之间曲线与X轴接近,达到导通电压后快速上升,最终
应接近直线。
【复习思考题】
发光二极管有哪些应用?试举一两例并介绍其工作原理。
(1)交流开关指示灯
用发光二极管作白炽灯开关的指示灯,当开关断开时,电流经R、LED和灯泡形成回路,LED亮,方便在黑暗中找到开关,此时回路中电流很小,灯泡不会亮;当接通开关时,灯泡被点亮,LED熄灭。
(2)指示灯
当装置通电后,经过限流电阻产生mA级别的电流,流经LED的时候发光,用以指示电源接通。
报告成绩(满分30分):⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽指导教师签名:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽日期:⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽⎽。
实验1 二极管伏安特性曲线的测试
实验1 二极管伏安特性曲线的测试
一、实验目的:
学会使用电流表和电压表(或万用表)测试二极管的伏安特性。
二、实验器材
稳压电源、万用表(两个)、二极管(IN4007、2AP9)、电位器、电阻、实验电路板。
三、实验内容和步骤
1、测试二极管的正向特性
(1)按实验线路图1连接好电路。
(2)接通电源,调节R1的值,按表1所列的数据逐渐增大二极管两端的电压。
测出对应的流过二极管的正向电流I V,把测量结果填入表1中
(3)按表1中记录数据,在直角坐标系上逐点描出两种二极管的正向特性曲线。
图1
正向电压(V) 0 0.2 0.4 0.6 0.8 1 2 3
正向电流(mA)1N4007 2AP9
2、测试二极管的反向特性
(1)按实验线路图2连接好电路(电压表与二极管并联)
(2)输出电压从0V开始起调,按每2V间隔依次提高加在二极管两端的反向电压,并测量不同反压时的反向漏电流并将其数据记入表2中(测量时要注意万用表的量程和极性)。
(3)按表2中记录数据,在同一个直角坐标系上描出两种二极管的反向特性曲线。
图2
反向电压(V)0 2 4 6 8
1N4007
反向电流(μA)
2AP9。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告实验名称:二极管伏安特性曲线实验报告实验目的:通过对二极管的伏安特性进行测量,了解二极管的基本特性和工作原理。
实验器材:二极管、直流电源、万用表、电阻箱实验原理:二极管是一种半导体元件,具有单向导电性。
二极管正向导通电压较低,反向击穿电压较高。
在正向电压下,二极管两端间的电流与电压之间的关系可以用伏安特性曲线表示。
伏安特性曲线是指在不同电流下,二极管正向电压与两端电压之间的关系。
实验步骤:1. 将二极管连接在直流电源的正极与万用表的红色表笔之间,将直流电源的负极与万用表的黑色表笔之间连接一个小电阻,相当于串联一个电阻作为二极管的负载。
2. 通过调节直流电源的输出电压,从 0V 开始逐渐增加正向电压,每增加 0.1V 记录一组电压和电流数值,直到二极管正向电流较大时停止测量。
3. 将直流电源的极性反向,继续测量二极管反向电压下的电流和电压数值。
实验结果:正向电流(mA)正向电压(V)反向电流(uA)反向电压(V)0 0.00 0 0.000.2 0.10 0 0.101.0 0.20 0 0.205.0 0.30 0 0.3010.0 0.40 0 0.4030.0 0.50 0 0.5050.0 0.60 0 0.6070.0 0.70 0 0.7080.0 0.80 0 0.8090.0 0.90 0 0.90100.0 1.00 2.5 1.00150.0 1.10 27.1 1.10200.0 1.20 204.3 1.20250.0 1.30 614.7 1.30300.0 1.40 3485.8 1.40350.0 1.50 22382.9 1.50实验分析:根据伏安特性曲线,当二极管正向电压超过其正向击穿电压时,电流会急剧增加。
在正向电流较小时,正向电压与电流呈线性关系。
但当正向电流达到一定值时,二极管会进入饱和状态,使电流增加速度变慢,且电压变化范围也会明显缩小。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告二极管伏安特性曲线实验报告引言:二极管是一种常见的电子元件,它具有非线性的伏安特性。
通过研究二极管的伏安特性曲线,可以更好地理解二极管的工作原理和特性。
本实验旨在通过实验测量,绘制二极管的伏安特性曲线,并分析其特点和应用。
实验过程:1. 实验器材准备:本实验所需的器材有:二极管、直流电源、电阻、万用表、导线等。
2. 实验步骤:(1)将二极管连接到电路中,注意极性的正确连接。
(2)将直流电源接入电路,调节电压为适当的范围,如0-10V。
(3)通过万用表测量电压和电流的数值,并记录下来。
(4)调节直流电源的电压,重复步骤(3),得到不同电压下的电流数值。
(5)根据测量数据,绘制二极管的伏安特性曲线。
实验结果:根据实验测量的数据,我们得到了二极管的伏安特性曲线。
在实验中,我们发现了以下几个重要的特点:1. 正向特性:当二极管的正向电压增加时,电流呈指数增长。
这是因为在正向电压作用下,二极管的P区域和N区域之间的势垒逐渐减小,导致电子和空穴的扩散增加,形成电流。
当正向电压超过二极管的导通电压时,电流急剧增加,二极管进入导通状态。
2. 反向特性:当二极管的反向电压增加时,电流基本保持为零,直到达到反向击穿电压。
反向击穿电压是指当反向电压达到一定程度时,势垒电场足以使电子和空穴发生碰撞,形成电流。
在反向击穿电压下,二极管的电流急剧增加,导致二极管受损。
3. 饱和电流和饱和电压:在正向特性中,当二极管的正向电压继续增大时,电流并不会无限增加,而是趋于饱和。
饱和电流是指当正向电压增大到一定程度时,二极管的电流达到最大值并趋于稳定。
饱和电压是指在饱和状态下,二极管的电压维持在一个相对稳定的值。
实验分析:通过实验测量得到的二极管的伏安特性曲线,我们可以进一步分析其特点和应用。
1. 整流器:二极管的正向特性使其成为一种理想的整流器。
在交流电路中,通过使用二极管,可以将交流电信号转换为直流电信号。
二极管的伏安特性实验报告
二极管的伏安特性实验报告二极管的伏安特性实验报告引言:二极管是一种常见的电子元件,具有非常重要的应用价值。
它是一种具有单向导电性的电子器件,能够将电流限制在一个方向上流动。
本实验旨在通过测量二极管在不同电压下的电流变化,探究其伏安特性,并分析其在电子设备中的应用。
实验装置:本实验所需的装置主要包括:二极管、直流电源、电阻、万用表等。
实验过程:1. 首先,将二极管与直流电源和电阻连接起来,组成一个电路。
2. 调节直流电源的电压,从0V开始逐渐增加,每次增加一个固定的电压值。
3. 在每个电压值下,使用万用表测量二极管的电流,并记录下来。
4. 根据测得的电压和电流数据,绘制伏安特性曲线图。
实验结果:根据实验数据绘制的伏安特性曲线图显示,二极管的伏安特性呈现出明显的非线性特性。
在正向偏置时,电流随着电压的增加而迅速增大;而在反向偏置时,电流保持在一个极低的水平上。
讨论与分析:1. 正向偏置时,二极管的导通特性使得电流能够顺利通过。
当电压增加到二极管的正向压降(正向电压)时,电流急剧增加,呈指数增长。
这是由于二极管内部的PN结在正向偏置下形成了导电通道,电流能够自由地流动。
这种特性使得二极管在电子设备中广泛应用于整流、放大、开关等电路中。
2. 反向偏置时,二极管的导通特性被阻断,电流无法通过。
在反向电压下,二极管的电流仅仅是由于少量的载流子扩散而产生的,因此电流非常微弱。
这种反向电流被称为反向饱和电流。
反向偏置使得二极管具有了单向导电性,可以用于保护电路免受反向电压的损害。
3. 二极管的伏安特性曲线图中,还可以观察到一个重要的参数——二极管的截止电压。
截止电压是指当二极管的电压低于一定值时,电流基本上为零。
截止电压是二极管的重要参数之一,它决定了二极管在电路中的工作状态和特性。
结论:通过本次实验,我们深入了解了二极管的伏安特性及其在电子设备中的应用。
二极管具有单向导电性,能够将电流限制在一个方向上流动。
它在正向偏置下具有导通特性,在反向偏置下具有阻断特性。
实验报告-发光二极管伏安曲线测量(完成版)
实验报告-发光二极管伏安曲线测量(完成版)实验目的:掌握发光二极管伏安特性测量的方法,熟悉发光二极管的性能参数,了解发光二极管的基本工作原理及应用;实验器材:发光二极管、数字万用表、可调直流稳压电源、电阻箱、拨码开关等;实验原理:发光二极管是一种半导体发光器件,具有导电性和较高的发光效率。
它是由P型半导体和N型半导体材料组成,电流流过PN结时,会产生光电效应,从而实现发光。
发光二极管的性能参数包括:最大允许反向电压、正向电压、正向电流、发光亮度等。
发光二极管的工作电路分为两种:直流工作电路和交流工作电路。
发光二极管伏安特性曲线的测量方法是:利用电压表和电流表对发光二极管进行正反向电压、电流的测量。
测量曲线的斜率即为发光二极管的串联电阻。
实验中首先应选用恰当的电流和电压测量范围,以免对发光二极管造成损坏。
实验操作步骤:1. 确认实验器材2. 连接电路将发光二极管、电阻箱、数字万用表、可调直流稳压电源等器材按照电路图连接好,注意正负极的连接,可调直流稳压电源的输出维持在约2V以下。
3. 测量正向电压电流特性曲线通过电压调节开关,记录正向电流电压特性曲线,将可调直流稳压电源的输出电压逐渐加大,记录相应的电流和电压测量数据。
5. 计算发光二极管特性参数根据测量数据计算发光二极管的特性参数,包括正向电压、最大允许反向电压、正向电流、发光强度、串联电阻等。
6. 实验总结实验注意事项:1. 实验时应遵守实验室安全规定,注意用电安全。
2. 确认电路连线正确,避免短路或接反。
3. 在选择电流电压范围时,应注意不要超过发光二极管的最大允许电流或最大允许电压。
4. 实验结束后,应将实验器材清洗归位,保持实验环境整洁。
二极管伏安特性曲线实验报告
二极管伏安特性曲线实验报告一、实验目的1、深入理解二极管的单向导电性。
2、掌握测量二极管伏安特性曲线的方法。
3、了解二极管伏安特性曲线的特点及其影响因素。
二、实验原理二极管是一种由 P 型半导体和 N 型半导体组成的电子元件,具有单向导电性。
当二极管正向偏置时(P 区接高电位,N 区接低电位),电流容易通过;反向偏置时(P 区接低电位,N 区接高电位),电流极小。
二极管的伏安特性方程为:\I = I_S (e^{\frac{U}{nV_T}} 1)\其中,\(I\)是通过二极管的电流,\(I_S\)是反向饱和电流,\(U\)是二极管两端的电压,\(n\)是发射系数,\(V_T\)是温度的电压当量(约为 26 mV,在室温下)。
在正向偏置时,随着电压的增加,电流迅速增大;在反向偏置时,只有很小的反向饱和电流,当反向电压达到一定值(反向击穿电压)时,二极管被击穿,电流急剧增加。
三、实验仪器1、直流电源2、电压表(量程:0 20 V)3、电流表(量程:0 100 mA)4、电阻箱5、二极管6、导线若干四、实验步骤1、按照实验电路图连接好电路。
将二极管、电阻箱、电流表和直流电源串联,电压表并联在二极管两端。
2、调节直流电源,使输出电压为 0 V。
然后逐渐增加电压,每次增加 01 V,记录相应的电流值,直到电压达到 10 V 左右(正向偏置)。
3、接着,将电源极性反转,使二极管反向偏置。
从 0 V 开始逐渐增加反向电压,每次增加 1 V,记录对应的电流值,直到反向电压达到20 V 左右。
4、在实验过程中,要注意电流表和电压表的量程选择,避免超过量程损坏仪器。
五、实验数据记录与处理1、正向特性数据|电压(V)| 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 |08 | 09 | 10 ||::|::|::|::|::|::|::|::|::|::|::|::||电流(mA)| 000 | 015 | 050 | 120 | 250 | 500 | 850 |1500 | 2200 | 3000 | 4000 |2、反向特性数据|电压(V)| 00 | 10 | 20 | 30 | 40 | 50 | 60 | 70 |80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 | 160 |170 | 180 | 190 | 200 ||::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::|::||电流(μA)| 000 | 010 | 020 | 030 | 050 | 080 | 120 |180 | 250 | 350 | 500 | 700 | 1000 | 1500 | 2000 | 2500 |3000 | 3500 | 4000 | 4500 | 5000 |3、绘制伏安特性曲线以电压为横坐标,电流为纵坐标,分别绘制出二极管的正向和反向伏安特性曲线。
二极管的伏安特性曲线实验报告
二极管的伏安特性曲线实验报告二极管的伏安特性曲线实验报告引言:二极管是一种广泛应用于电子电路中的元件。
在电子学中,了解二极管的伏安特性曲线对于设计和分析电路至关重要。
本实验旨在通过测量二极管在不同电压下的电流,绘制出其伏安特性曲线,并对实验结果进行分析和讨论。
实验原理:二极管是一种半导体器件,由正负两种掺杂的半导体材料构成。
在正向偏置下,二极管的导通电流迅速增加;而在反向偏置下,二极管的导通电流非常小。
通过测量二极管在不同电压下的电流,可以得到其伏安特性曲线。
实验步骤:1. 准备实验仪器和材料:二极管、直流电源、电流表、电压表、电阻、导线等。
2. 搭建实验电路:将二极管连接到直流电源的正负极上,通过电阻限制电流大小,同时连接电流表和电压表以测量电流和电压。
3. 设置直流电源输出电压:从0V开始,逐渐增加直流电源的输出电压,记录下每个电压下的电流值。
4. 绘制伏安特性曲线:将实验得到的电流和电压数据绘制在坐标系上,横轴表示电压,纵轴表示电流,通过连接各个数据点,即可得到二极管的伏安特性曲线。
实验结果与讨论:根据实验所得数据,我们绘制出了二极管的伏安特性曲线。
曲线的形状呈现出两个不同的区域:正向偏置区和反向偏置区。
在正向偏置区,随着电压的增加,二极管的导通电流迅速增加。
这是因为在正向偏置下,二极管的p-n结被正向电压击穿,电子和空穴得以结合,形成电流。
而随着电压继续增加,导通电流增加的速度逐渐减缓,直至达到饱和状态。
这是因为在饱和状态下,所有的电子和空穴都被结合,无法再增加导通电流。
在反向偏置区,二极管的导通电流非常小。
这是因为在反向偏置下,二极管的p-n结被反向电压击穿,电子和空穴被阻止结合,形成很小的反向漏电流。
这种反向漏电流也被称为反向饱和电流。
通过实验数据和曲线分析,我们可以得到二极管的一些重要参数。
例如,正向偏置下的导通电流(正向饱和电流)和反向偏置下的反向漏电流(反向饱和电流)。
这些参数对于电路设计和分析非常重要。
(完整版)发光二极管及热敏电阻的伏安特性研究
(完整版)发光二极管及热敏电阻的伏安特性研究非线性电阻特性研究(一)【实验目的】(1)了解并掌握基本电学仪器的使用。
(2)学习电学实验规程,掌握回路接线方法。
(3)学习测量条件的选择及系统误差的修正。
(4)探究发光二极管和热敏电阻在常温下的伏安特性曲线。
【实验仪器】发光二极管(BT102)热敏电阻(根据实验室情况选择)滑动变阻器(0~100 Ω)定值电阻(400Ω)毫安表(0~50mA)微安表(0~50μA) 电压表(0~3v 0~6v)电源(10v)导线等【实验原理】(1)当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻R(R=U/I)。
若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。
若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。
一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图b)。
从图上看出,直线通过一、三象限。
它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数。
常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。
LED是英文light emitting diode(发光二极管)的缩写,它属于固态光源,其基本结构是一块电致发光的半导体材料,置于一个有引线的架子上,然后四周用环氧树脂密封,起到保护内部芯线的作用(如图一)。
常规的发光二极管芯片的结构如图二所示,主要分为衬底,外延层(图2中的N型氮化镓,铝镓铟磷有源区和P型氮化镓),透明接触层,P型与N型电极、钝化层几部分。
图3 发光二极管的工作原理n p电场eΔVpnnpδhνhν⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕⊕○-○-○-○-○-○-○-○-○-○-○-○-○-○-⊕⊕⊕+++---(a)(b)(c)电子的电势能电子的势能δ’发光二极管的核心部分是由p型半导体和n型半导体组成的晶片,在p型半导体和n型半导体之间有一个过渡层,称为p-n结。
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验是衡量并分析二极管运放特性的一种重要方式,本实验
旨在观察和测量二极管运放原理工作性质,探究一极管伏安特性曲线,测量有源阻抗及输
出特性,并不断改进电路设计,达到理想的电路特性。
实验过程:
1、准备实验设备:万用表、恒流源、可调电阻、电容、Power控制仪、二极管。
2、根据实验报告要求使用万用表调节可调电阻的电阻值,并使用恒流源将合适的电
流流入二极管。
3、进行实验,将二极管的输入和输出特性记录下来,并绘制出二极管伏安特性曲线,分析其特性。
4、修改电路,将实验结果与理论值对比,进行性能指标的比较,确定电路的优劣,
并不断改进电路设计,最终达到理想的电路特性。
本次实验测量了二极管伏安特性曲线,从实验结果可以看出,随着施加偏压的增加,
二极管控制区渐渐变大,放大系数逐渐增大,电路稳定性和可靠性也提高,功耗较低,噪
声低无失真,符合要求,可实现正常工作、放大及信号处理等功能。
实验可视化表明,原
理性能良好,各指标符合设计要求,将有助于更好更准确地测量电路特性,改进电路的设计,提高电路性能。
二极管伏安特性曲线的测绘实验报告完整版
二极管伏安特性曲线的测绘实验报告Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、名称:二极管伏安特性曲线的测绘二、目的:依据二极管非线性电阻元件的特点,选择实验方案,设计合适的检测电路,选择配套的仪器,测绘出二极管元件的伏安特性曲线。
三、仪器:μ)、万用表、电阻箱、直流稳压电源、直流电流表、直流微安表(500A滑线电阻、单刀开关、导线、待测二极管等。
四、原理:对二极管施加正向偏置电压时,则二极管中就有正向电流通过(多数载流子导电),随着正向偏置电压的增加,开始时,电流随电压变化很缓慢,而当正向偏置电压增至接近二极管导通电压时(锗管为左右,硅管为左右),电流急剧增加,二极管导通后,电压的少许变化,电流的变化都很大。
对上述二种器件施加反向偏置电压时,二极管处于截止状态,其反向电压增加至该二极管的击穿电压时,电流猛增,二极管被击穿,在二极管使用中应竭力避免出现击穿观察,这很容易造成二极管的永久性损坏。
所以在做二极管反向特性时,应串联接入限流电阻,以防因电流过大而损坏二极管。
二极管伏安特性示意图如图:五、步骤:(1)反向特性测试电路。
二极管的反向电阻值很大,采用电流表内接测试电路可以减少测量误差。
测试电路见图,变阻器设置700Ω。
(2)正向特性测试电路。
二极管在正向导通时,呈现的电阻值较小,拟采用电流表外接测试电路,电源电压在0~10V内调节,变阻器开始设置700Ω,调节电源电压,以得到所需电流值。
图-二极管反向特性测试电路图-二极管正向特性测试电路六、数据:正向伏安曲线测试数据表七、数据处理:电阻修正值电流表外接修正公式:反向伏安曲线正向伏安曲线。
二极管伏安特性曲线测量实验报告
二极管伏安特性曲线测量实验报告二极管伏安特性曲线测量实验报告一、实验题目:二极管伏安特性曲线测量二、实验目的:1、先搭接一个调压电路,实现电压1-5V连续可调2、在面包板上搭接一个测量二极管伏安特性曲线的电路3、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好。
4、用excel或matlab画二极管的伏安特性曲线三、实验摘要:1、在面包板上搭接一个测量二极管伏安特性曲线的电路2、测量二极管正向和反向的伏安特性,将所测的电流和电压列表记录好四、实验仪器:1、示波器2、函数发生器3、数字万用表4、面包板,稳压二极管,100欧电阻,电位器,导线,可调直流电压源五、实验原理:示波器是可以直接观察电信号的波形的一种用途广泛的电子测量仪器,可以测电压的大小、信号的周期、相位差等。
一切可以转化为电压的电学量和非电学量,都可以用示波器来观察和测量。
设计一个测量二极管两端电压和电流的电路。
通过万用表测量出数据,画出伏安特性曲线并验证。
用函数信号发生器产生一个信号,测量二极管两端的信号。
原理图:六、实验步骤及数据为防止电流过高烧毁电路,使用了一个100欧姆的保护电阻。
用万用表测量不同阻值下二极管两端的电压和通过二极管的电流值,观察并记录数据。
为保证精确度,多测量几组数据绘制的二极管伏安特性曲线:用函数信号发生器产生一个信号,加在保护电阻和二极管两端,在示波器的CH1通道显示输入信号的波形。
原理图:波形图:七、实验总结:刚开始接的时候不知道是原件问题还是线路问题还是什么,用万用表测电压时一直没有示数,在面包板上拆了又装了好久都还是不行,这里就浪费了好多时间,最后换了面包板又换了原件换了电源才终于测了出来。
所以在装电路的时候一定要细心还有要弄清原理图的工作原理才能真正做好一个实验。
还有本实验在测电流时记得先将电阻断开再用万用表测,以免烧表。
第二篇:稳压二极管实验报告 1800字课程名称:开放性试验指导老师:钟老师实验日期 2011/12/19 院系:专业班级:实验地点 N212 姓名:学号: 同组人:实验项目名称:2CW56稳压二极管特性研究(实验报告)一、实验目的通过稳压二极管反向伏安特性非线性的强烈反差,进一步熟悉掌握电子元件伏安特性的测试技巧;通过本实验,掌握二端式稳压二极管的使用方法、特性及其应用测绘出稳压二极管的伏安特性曲线二、实验器材电流表、电压表、2CW56稳压二极管、滑动变阻器、限流电阻(200?)、稳压电流源用伏安法测电阻有电流表内接法和外接法:(1)电流表内接法如图4-3所示,电流表内接法。
二极管伏安特性测量实验报告
二极管伏安特性测量实验报告二极管伏安特性测量实验报告引言二极管是一种常见的电子器件,具有非常重要的应用。
在电子学中,了解二极管的伏安特性是非常关键的。
本实验旨在通过测量二极管的伏安特性曲线,深入了解二极管的工作原理和性能。
实验目的1. 了解二极管的基本原理和结构;2. 熟悉伏安特性曲线的测量方法;3. 分析二极管的导通和截止条件;4. 探究二极管的非线性特性。
实验器材和仪器1. 二极管(常见的硅二极管或锗二极管);2. 直流电源;3. 电压表;4. 电流表;5. 变阻器。
实验步骤1. 将二极管连接到实验电路中,确保正极连接到正极,负极连接到负极;2. 调节直流电源的电压,从0V开始逐渐增加,同时记录电流表和电压表的读数;3. 在一定范围内,每隔一定电压间隔记录一组电流和电压的值;4. 改变二极管的连接方向,重复步骤2和步骤3;5. 根据实验数据绘制伏安特性曲线。
实验结果与分析通过实验测量得到的伏安特性曲线如下图所示。
从图中可以明显看出,当二极管正向偏置时,电流随着电压的增加而迅速增大,呈现出非线性特性;而当二极管反向偏置时,电流几乎为零,呈现出截止状态。
二极管的伏安特性曲线图根据实验数据,我们可以计算出二极管的导通电压和截止电压。
导通电压是指二极管开始导通的电压值,截止电压是指二极管完全截止的电压值。
通过实验测量,我们可以得到导通电压约为0.7V,截止电压约为-5V。
二极管的导通和截止状态是由其内部结构和材料特性决定的。
在正向偏置时,二极管的P区与N区形成正向电场,使得电子从N区向P区移动,同时空穴从P区向N区移动,导致电流增大。
而在反向偏置时,电子和空穴被电场阻挡,几乎没有电流通过。
二极管的非线性特性使其在电子电路中有着广泛的应用。
例如,二极管可以用作整流器,将交流信号转换为直流信号;还可以用作电压稳压器,保持电路中的稳定电压。
了解二极管的伏安特性对于正确选择和使用二极管非常重要。
实验总结通过本次实验,我们深入了解了二极管的伏安特性。
实验四 二极管伏安特性曲线测量
实验四二极管伏安特性曲线测量一、实验目的:研究二极管的伏安特性曲线二、实验原理和电路图:1.实验原理:晶体二极管是常见的非线性元件。
当对晶体二极管加上正向偏置电压,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
在导通后,电压变化少许,电流就会急剧变化。
当加反向偏置电压时,二极管处于截止状态,但不是完全没有电流,而是有很小的反向电流。
该反向电流随反向偏置电压增加得很慢,但当反向偏置电压增至该二极管的击穿电压时,电流剧增,二极管PN结被反向击穿。
2.电路图:1)静态的:(图1)2)动态的:(图2)三、实验环境:面包板(SYB—130)、直流电源面板(IT6302)、台式万用表、Tek 示波器、发光二极管、电阻、导线、四、实验步骤1、在面包板上搭接一个测量二极管伏安特性曲线的电路如图1所示。
2、用万用表测量二极管两端的电压及其通过的电流,调节滑动变阻器使二极管两端电压不同,形成多组数据,记录数据。
3、用excel或matlab画二极管的伏安特性曲线。
4、在面包板上搭接一个电路如图1所示。
5、给二极管测试电路的输入端加Vp-p=6.5V、f=1500Hz的正弦波,用示波器观察该电路的输入输出波形。
6、并将二极管的正负极倒过来,用示波器观察此时该电路的输入输出波形。
五、数据记录和分析1、通直流电源是二极管两端的电压及其通过的电流:分析:当对发光二极管加上正向电压大约1.4伏时,则有正向电流流过二极管,且随正向偏置电压的增大而增大。
开始电流随电压变化较慢,而当正向偏压增到接近二极管的导通电压,电流明显变化。
2、动态电路的结果1)通正向电流时二极管两端的电压V 0.178 0.786 1.431 1.654 1.659 1.665 1.669 1.688 1.695 1.707 1.832 mA0.012 0.796 0.861 0.962 1.03 1.469 1.641 1.828 7.899峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.84V -3.32V 52.08% 输出5.20V664us1.88V-3.32V 57.35%2)通反向电流时二极管两端的电压(在做实验时按了反相)3)通正向电流时电阻两端的电压峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.88V -3.28V 52.22% 输出5.20V664us1.88V-3.32V 56.88%峰值(Vpp ) 周期T (频率f )最大值(Vmax ) 最小值(Vmin ) 占空比 Duty输入 6.16V 664us 2.88V -3.28V 52.07% 输出960mV664us920mV-40.0mV 22.55%4)通反向电流时电阻两端的电压。
伏安法测二极管特性曲线,大学物理实验,预习报告(完整版)
一, 实验目的:a.用伏安法测量时的误差考虑。
b.学习半导体二极管的伏安特性。
二,实验仪器:安培计,伏特计,变阻器(或电位器),直流电源,待测二极管(2AP型),开关等三,实验原理:1.二极管简介:半导体二极管的核心是一个PN结,这个PN结处在一小片半导体材料的P区与N区之间(如图3-1-1),它由这片材料中的P型半导体区域和N型半导体区域相连所构成。
连接P型区域的引出线称为P极,连接N型区域的引出线称为N极。
当电压加在PN结上时,若电压的正端接在P极上,电压的负端接在N极上(如图3-1-2),称这种连接为“正向连接”;反之,档PN 结的两极反向连接到电压上时为“反向连接”。
正向连接时,二极管很容易导图3-1-1 图3-1-2通,反向连接时,二极管很难导通。
我们称二极管的这种特性为单向导电性。
实验工作中往往利用二极管的单向导电性进行整流、检波、作电子开关等。
2.二极管的伏安特性曲线二极管电流随外加电压变化的关系曲线称为伏安特性曲线。
二极管的伏安特性曲线如图3-1-3和图3-1-4所示。
这两个图说明了二极管的单向导电性。
由图可见,在正向区域,锗管和硅管的起始导通电压不同,电流上升的曲线斜率也不同。
图3-1-3 图3-1-4利用绘制出的二极管的伏安特性曲线,可以计算出二极管的直流电阻及表征其它特性的某些参数。
二极管直流电阻(正、反向电阻)R等于该管两端所加的电压U与流过它的电流I之比,即R=U/I。
R是随U的变化而变化的。
我们通常用万用表所测出的二极管的电阻为某一特定电压下的直流电阻。
四,实验内容和步骤:1.用伏安法正向特性曲线和反向特性曲线进行测量(1)测定正向特性曲线打开电源开关,将电源电压调到最小,然后接通线路,逐步减少限流电阻,直到毫安表显示1.9999mA为止,记下相应的电流和电压。
然后调节电流和限流电阻,将电压表的最后一位读数调为0,记录电压,电流;以后按每降低0.010V测一次数据,直至伏特表读数为0.5500V为止,正向电流不用修正。
实验四 二极管伏安特性曲线的测试
实验四二极管伏安特性曲线的测试一、实验目的掌握利用万用表检测二极管的方法、学习使用图示仪测量半导体二极管特性曲线的方法。
二、实验仪器YB4810A晶体管特性图示仪、万用表三、实验原理晶体二极管是具有单向导电性能的半导体两极器件。
它由一个PN结加上相应的引线和管壳组成,用符号“”表示,本符号中左边为正极,接P型半导体,右边为负极,接N型半导体。
根据二极管制造时所用的材料不同可分为硅管和锗管两种:硅管的正向管压降一般为0.6~0.8V,锗管的正向管压降则一般为0.2~0.3V。
加在二极管两端的电压U与通过该二极管的电流I之间的关系称二极管的伏安特性。
二极管的伏安特性曲线可以通过YB4810A型晶体管特性图示仪的测试直观得到。
四、实验内容和步骤1、二极管的检测将万用表选择二极管档位,完成以下检测,并做好记录工作。
①发光二极管发光二极管的长脚为正。
用万用表进行测试时,若万用表有示数,则红表笔所测端为二极管的正极,同时发光二极管会发光;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此发光二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
②稳压二极管稳压二极管有黑圈的一端为负。
用万用表进行测试时,若万用表有示数,则红表笔所测端为正,黑表笔端为负;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此稳压二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
③整流二极管整流二极管有白色圈的一端为负。
用万用表进行测试时,若万用表有示数,则红表笔所测端为正,黑表笔端为负;若没有读数,则将表笔反过来再测一次。
如果两次测量都没有示数,表示此整流二极管已经损坏。
将万用表的读数记录下来,该数值即为二极管的正向管压降。
2、特性曲线的测试选用二极管,按照如图1将二极管放置合适的位置,使用YB4810A型图示仪进行测量。
记录二极管的输入特性曲线和反向击穿特性曲线,并按比例进行测画和记录,分别标注I D、U D、、I Z和U Z的具体数值、单位和正负号,并说明所测二极管和稳压管的型号等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.00V ;蓝色次之,约为 3.12V ;绿色发光二极管
【总结与讨论】
通过实验及由发光二极管伏安特性曲线易知,当二极管正向接通时,开始时
LED 电流随电压变化几
乎不可察,发光二极管不发光,但当电压大于某一值时(开启电压后)
,电流随电压的变化率呈线性增加,
而且红色二极管增长最快。
'.
.
【复习思考题】
4. 蓝色发光二极管正向伏安特性测量数据记录表
电流( mA ) 电压( V )
修正后电压或电流 =
电流( mA ) 电压( V )
修正后电压或电流 =
0.00
0.35
0.00
0.60
0.18
1.10
0.22
1.60
0.30
2.10
0.44
2.58
0.32
2.20
1.00
2.80
2.40
2.88
1.90
0.00
0.80
2.75
0.00
4.60
2.95
0.00
8.00
3.03
0.00
9.80
3.05
0.00
12.80
3.10
0.00
16.20
3.15
0.07
17.70
3.16
1.52
19.10
3.18
1.92 2.62 3.51 0.34 4.11 7.49 9.29 12.28 15.67 17.17 18.57
电流( mA ) 电压( V )
修正后电压或电流 =
0.10
0.60
0.12
1.02
0.16
1.15
0.16
1.33
0.18
1.50
0.20
1.70
0.22
2.08
0.30
2.21
0.40
2.55
0.52
2.69Βιβλιοθήκη 2.002.850.00
2.40
2.88
0.00
3.10
2.90
0.00
4.00
2.93
.
姓名 陈灿贻 黄小君
学号 2 2
院系 数学科学学院 数学科学学院
时间 2015.11 2015.11
地点 物理楼 306 物理楼 30
【实验题目】 发光二极管的伏安特性
【实验记录】
1.实验仪器
仪器名称
直流稳定电 源
伏特表
安培表
型号
HV1791-35
滑动变阻 器
电阻箱
BX70-7112 型
ZX21 型
1.85
3.84
1.85
4.86
1.86
6.70
1.90
0.00
8.30
1.91
0.00
10.22
1.94
0.00
11.42
1.95
0.00
12.82
1.95
0.00
14.60
1.97
0.00
16.60
1.98
0.41
14.58
1.96
1.50
16.90
1.99
2.59
17.60
1.99
3.53
18.40
.
3.60
2.90
3.12
18.40
3.05
5.51
5. 电表内阻测量:
RA
【数据处理】
5.0Ω(30mA )
RV
5.985Ω( 6V )
在同一坐标系中作出红、绿、蓝发光二极管的伏安特性曲线。
对比红、绿、蓝三种发光二极管的伏安特性曲线,定性判断其导通电压的大小。
由图可知,红色发光二极管的导通电压最小,约为 的导通电压最大,约为 3.21V 。
发光二极管有哪些应用?试举一两例并介绍其工作原理。
1,各种指示灯,原理是当装置通电后,经过限流电阻产生
mA级别的电流,流经 LED的时候发光,用以指
示电源接通; 2,可以用作景观灯,原理同上; 3,信号灯,原理都一样。
报告成绩 (满分 30 分):
指导教师签名:
日期:
'.
2.00
4.55
19.30
2.00
6.38
14.50
1.96
7.98 9.90 11.10 12.49 14.27 16.27 14.25 16.57 17.27 18.07 18.97 14.17
3. 绿色发光二极管正向伏安特性测量数据记录表
'.
.
电流( mA ) 电压( V )
修正后电压或电流 =
2.85
'.
0.00
7.20
2.95
0.00
8.60
2.96
0.00
11.00
3.00
0.00
14.00
3.03
0.00
16.00
3.05
0.01
19.00
3.05
0.00
11.84
3.01
0.53
3.30
2.89
1.92
1.60
2.83
1.42
6.00
2.95
4.41 6.71 8.11 10.50 13.49 15.49 18.49 11.34 2.82 1.13
发光二极 管
导线开关
2. 红色发光二极管正向伏安特性测量数据记录表
电流( mA ) 电压( V )
修正后电压或电流 =
电流( mA ) 电压( V )
修正后电压或电流 =
0.00
0.06
0.00
0.30
0.00
0.40
0.04
0.75
0.12
1.10
0.18
1.45
0.70
1.75
1.80
1.80
2.90