统计学_ 贾俊平 -中国人民大学出版社_第五版
统计学第五版课后答案(贾俊平)
第四章统计数据的概括性度量4.1 一家汽车零售店的10名销售人员5月份销售的汽车数量(单位:台)排序后如下:2 4 7 10 10 10 12 12 14 15要求:(1)计算汽车销售量的众数、中位数和平均数。
(2)根据定义公式计算四分位数。
(3)计算销售量的标准差。
(4)说明汽车销售量分布的特征。
解:Statistics10Missing 0Mean 9.60Median 10.00Mode 10Std. Deviation 4.169Percentiles 25 6.2550 10.0075单位:周岁19 15 29 25 2423 21 38 22 1830 20 19 19 1623 27 22 34 2441 20 31 17 23要求;(1)计算众数、中位数:排序形成单变量分值的频数分布和累计频数分布:网络用户的年龄(2)根据定义公式计算四分位数。
Q1位置=25/4=6.25,因此Q1=19,Q3位置=3×25/4=18.75,因此Q3=27,或者,由于25和27都只有一个,因此Q3也可等于25+0.75×2=26.5。
(3)计算平均数和标准差;Mean=24.00;Std. Deviation=6.652(4)计算偏态系数和峰态系数:Skewness=1.080;Kurtosis=0.773(5)对网民年龄的分布特征进行综合分析:分布,均值=24、标准差=6.652、呈右偏分布。
如需看清楚分布形态,需要进行分组。
1、确定组数:()lg 25lg() 1.398111 5.64lg(2)lg 20.30103n K =+=+=+=,取k=6 2、确定组距:组距=( 最大值 - 最小值)÷ 组数=(41-15)÷6=4.3,取53、分组频数表网络用户的年龄 (Binned)分组后的直方图:客都进入一个等待队列:另—种是顾客在三千业务窗口处列队3排等待。
人大版_贾俊平_第五版_统计学_第5章_概率与概率分布
P ( ) = 1; P ( ) = 0
可加性
若A与B互斥,则P ( A∪B ) = P ( A ) + P ( B ) 推广到多个两两互斥事件A1,A2,…,An,有 P
( A1∪A2 ∪… ∪An) = P ( A1 ) + P (A2 ) + …+ P (An )
5.2.2 概率的加法法则 法则一
• 必然事件:每次试验一定出现的事件,用表示
例如:掷一枚骰子出现的点数小于7
• 不可能事件:每次试验一定不出现的事件,用表示
例如:掷一枚骰子出现的点数大于6
样本空间
1. 基本事件 • 一个不可能再分的随机事件 • 例如:掷一枚骰子出现的点数 2. 样本空间 • 一个试验中所有基本事件的集合,用表示 • 例如:在掷枚骰子的试验中,{1,2,3,4,5,6} • 在投掷硬币的试验中,{正面,反面}
连续型随机变量 1. 随机变量 X 取无限个值 2. 所有可能取值不可以逐个列举出来,而是 取数轴上某一区间内的任意点
试验 随机变量 可能的取值
X0 使用寿命(小时) 抽查一批电子元件 半年后工程完成的百分比 0 X 100 新建一座住宅楼 X0 测量一个产品的长度 测量误差(cm)
4800 1500 P( A B) P( A) P( B) 0.504 12500 12500
法则二 对任意两个随机事件 A 和 B ,它们和的 概率为两个事件分别概率的和减去两个事件 交的概率,即
P ( A∪ B ) = P ( A ) + P ( B ) - P ( A∩B )
事件的关系和运算(事件的包含) 若事件 A发生必然导致事件 B 发生,则称 事件 B 包含事件 A ,或事件 A 包含于事件 B ,记 作或 A B或 B A
贾俊平《统计学》(第5版)课后习题-第9章 分类数据分析【圣才出品】
第9章 分类数据分析一、思考题1.简述列联表的构造与列联表的分布。
答:列联表是由两个以上的变量进行交叉分类的频数分布表。
列联表的分布可以从两个方面看,一个是观察值的分布,又称为条件分布,每个具体的观察值就是条件频数;一个是期望值的分布。
2.用一张报纸、一份杂志或你周围的例子构造一个列联表,说明这个调查中两个分类变量的关系,并提出进行检验的问题。
答:对三个生产厂甲、乙、丙提供的学习机的A、B、C三种性能进行质量检验,欲了解生产厂家同学习机性能的质量差异是否有关系。
抽查了450部学习机次品,整理成为如表9-2所示的3×3列联表。
表9-2根据抽查检验的数据表明:次品类型与厂家(即哪一个厂)生产是无关的(即是相互独立的)。
建立假设:H0:次品类型与厂家生产是独立的,H1:次品类型与厂家生产不是独立的。
可以计算各组的期望值,如表9-3所示(表中括号内的数值为期望值)。
表9-3 各组的期望值计算表所以2222(2017)(4033)(7058)9.821173358χ---=+++=…。
而自由度等于(R -1)(C -1)=(3-1)×(3-1)=4,若以0.01的显著性水平进行检验,查χ2分布表得20.01(4)13.277χ=。
由于220.019.821(4)13.277χχ=<=,故接受原假设H 0,即次品类型与厂家生产是独立的。
3.说明计算2χ统计量的步骤。
答:计算2χ统计量的步骤:(1)用观察值o f 减去期望值e f ;(2)将(o f -e f )之差平方;(3)将平方结果2)(e o f f -除以e f ;(4)将步骤(3)的结果加总,即得:22()o e ef f f χ-=∑。
4.简述ϕ系数、c 系数、V 系数的各自特点。
答:(1)ϕ相关系数是描述2×2列联表数据相关程度最常用的一种相关系数。
它的计算公式为:ϕ,式中,∑-=ee of f f 22)(χ;n 为列联表中的总频数,也即样本量。
统计学(第五版)贾俊平等著—课后习题答案
4.2(1)众数:19;23中位数:23 平均数:24(2)四分位数:Q L 位置=425=6.25.所以Q L =19+0.25^0=19 Q U 位置=475=18.75,所以Q U =25+2^0.75=26.5(3)标准差:6.65 (4)峰度0.77,偏度1.08 4.3(1)茎叶图Frequency Stem & Leaf 1.00 5. 5 3.00 6. 678 5.00 7. 13488 (2) 平均数:7,标准差0.71 (3)第一种方式的离散系数x s v s ==2.797.1=0.28 第二种方式的离散系数xs v s ==771.0=0.10 所以,第二种排队方式等待时间更集中。
(4)选择第二种,因为平均等待的时间短,而且等待时间的集中程度高 4.5.甲企业总平均成本nf Mx ki ii∑==1=3406600=19.41(元) 乙企业总平均成本nf Mx ki ii∑==1=(元)29.183426255=所以甲企业的总平均成本比乙企业的高,原因是甲企业高成本的产品B 生产的产量比乙企业多,所以把总平均成本提高了。
4.6计算数据如表:利润总额的平均数nf Mx ki ii∑==1=(万元)67.42612051200= 利润总额标准差()nx x f *2∑-=σ= (万元)99.1151201614666==σ 峰态系数6479.03352.23)99.115(120851087441643)(4414—=-=-⨯=--=∑=ns f x MK ki ii偏态系数313)(ns f x MSK ki ii∑=-==2057.0)99.115(120)67.426(3513=⨯-∑=i iif M4.8对于不同的总体的差异程度的比较采用标准差系数,计算如下:%3.8605===x s v s 男; %10505===x s v s 女 (1)女生的体重差异大,因为离散系数大;(2)以磅为单位,男生的平均体重为132.6磅,标准差为11.05磅;女生的平均体重为110.5磅,标准差为11.05磅%33.86.13205.11===x s v s 男%105.11005.11===x s v s 女 (3)156065=-=-=s x x z i i ,所以大约有68%的人体重在55kg~65kg 之间;(4)255040=-=-=s x x z i i ,所以大约有95%的女生体重在40kg~60kg 之间。
贾俊平《统计学》(第五版)考研真题(含复试)与典型习题详解 分类数据分析
合计
赞成
35
30
65
反对
15
20
35
合计
50
50
100
如果要检验男女教师对教师体制改革的看法是否相同,提出的原假设为( )。
A.H0:π1=π2=35 B.H0:π1=π2=50 C.H0:π1=π2=65
6 / 19
圣才电子书
D.H0:π1=π2=0.65
十万种考研考证电子书、题库视频学习平台
156 162
圣才电子书
A.0.6176
十万种考研考证电子书、题库视频学习平台
B.1.2352
C.2.6176
D.3.2352
【答案】B
【解析】 2 检验可以用于变量间拟合优度检验和独立性检验,可以用于测定两个分类 变量之间的相关程度。用 fo 表示观察值频数,用 fe 表示期望值频数,则 2 统计量为:
圣才电子书
十万种考研考证电子书、题库视频学习平台
第 9 章 分类数据分析
一、单项选择题
1.列联分析是利用列联表来研究( )。
A.两个数值型变量的关系
B.两个分类变量的关系
C.两个数值型变量的分布
D.一个分类变量和一个数值型变量的关系
【答案】B
【解析】列联表是由两个以上的变量进行交叉分类的频数分布表,列联分析是利用列联
【解析】表中的行是态度变量,这里划分为三类,即赞成,中立和反对;表中的列是单 位变量,这里划分为两类,即男同学和女同学,即 3×2 列联表。
5.一所大学为了解男女学生对后勤服务质量的评价,分别抽取了 300 名男学生和 240
名女学生进行调查,得到的结果如表 9-2 所示。
表 9-2 关于后勤服务质量评价的调查结果
贾俊平《统计学》(第5版)章节题库-第十一章至第十四章【圣才出品】
2.下面的各问题中,哪个不是相关分析要解决的问题( )。 A.判断变量之间是否存在关系 B.判断一个变量数值的变化对另一个变量的影响 C.描述变量之间的关系强度 D.判断样本所反映的变量之间的关系能否代表总体变量之间的关系 【答案】B 【解析】相关分析就是对两个变量之间线性关系的描述与度量,它主要解决的问题包括: ①变量之间是否存在关系;②如果存在关系,它们之间是什么样的关系;③变量之间的关系 强度如何;④样本所反映的变量之间的关系能否代表总体变量之间的关系。
9.根据你的判断,下面的相关系数取值哪一个是错误的( )。 A.-0.86 B.0.78 C.1.25 D.0
4 / 166
圣才电子书
【答案】C
十万种考研考证电子书、题库视频学习平台
【解析】相关系数 r 的取值范围是[-1,1]。
10.下面关于相关系数的陈述中哪一个是错误的( )。 A.数值越大说明两个变量之间的关系就越强 B.仅仅是两个变量之间线性关系的一个度量,不能用于描述非线性关系 C.只是两个变量之间线性关系的一个度量,不一定意味着两个变量之间一定有因果关 系 D.绝对值不会大于 l 【答案】A 【解析】相关系数的性质有:①r 的取值范围是[-1,1];②r 具有对称性;③r 的数值
6 / 1பைடு நூலகம்6
圣才电子书 十万种考研考证电子书、题库视频学习平台
【答案】C 【解析】在线性相关中,若两个变量的变动方向相反,一个变量的数值增加,另一个变
5 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台
量的数值随之减少,或一个变量的数值减少,另一个变量的数值随之增加,即 x 值增大时 y 值随之变小,或 x 值变小时 y 值随之增大,则称为负相关。
最新人大版_贾俊平_第五版_统计学_第10章_方差分析PPT课件
பைடு நூலகம்
10.1.3 方差分析中的基本假定 1.每个总体都应服从正态分布
• 对于因素的每一个水平,其观察值是来自服从正态 分布总体的简单随机样本。
• 比如,每种颜色饮料的销售量必需服从正态分布 2.各个总体的方差必须相同
• 对于各组观察数据,是从具有相同方差的总体中抽 取的
10.2 单因素方差分析
10.2.1 数据结构
观察值 ( j )
1 2 : : n
水平A1
x11 x21 : : xn1
因素(A) i
水平A2
…
x12
…
x22
…
:
:
:
:
xn2
…
水平Ak
x1k x2k : : xnk
10.2.2 分析步骤
1.提出假设
• 一般提法 H0: m1 = m2 =…= mk (因素有k个水平) H1: m1 ,m2 ,… ,mk不全相等
身所造成的,后者所形成的误差是由系统性因素造成的, 称为系统误差
2.两类方差 (1)组内方差(误差平方和 、残差平方和、 SSE)
– 因素的同一水平(同一个总体)下样本数据的方差 – 比如,无色饮料A1在5家超市销售数量的方差 – 组内方差只包含随机误差
(2)组间方差(因素平方和、SSA)
– 因素的不同水平(不同总体)下各样本之间的方差 – 比如,四种颜色饮料销售量之间的方差 – 组间方差既包括随机误差,也包括系统误差
水平A ( i ) 粉色(A2) 橘黄色(A3)
绿色(A4)
1
26.5
31.2
27.9
30.8
贾俊平《统计学》(第5版)章节题库-第4章 数据的概括性度量【圣才出品】
第4章 数据的概括性度量一、单项选择题1.一组数据中出现频数最多的变量值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】A【解析】众数是一组数据中出现次数最多的变量值。
众数主要用于测度分类数据的集中趋势。
一般情况下,只有在数据量较大的情况下,众数才有意义。
2.下列关于众数的叙述,不正确的是( )。
A.一组数据可能存在多个众数B.众数主要适用于分类数据C.一组数据的众数是唯一的D.众数不受极端值的影响【答案】C【解析】众数是一组数据中出现次数最多的变量值。
众数主要用于测度分类数据的集中趋势,当然也适用于作为顺序数据以及数值型数据集中趋势的测度值。
一般情况下,只有在数据量较大的情况下,众数才有意义。
一组数据可能存在多个众数,由于众数是一个位置代表值,因此它不受数据中极端值的影响。
3.一组数据排序后处于中间位置上的变量值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】B【解析】中位数是一组数据排序后处于中间位置上的变量值。
中位数将全部数据等分成两部分,每部分包含50%的数据,一部分数据比中位数大,另一部分则比中位数小。
4.一组数据排序后处于25%和75%位置上的值称为( )。
A.众数B.中位数C.四分位数D.平均数【答案】C【解析】四分位数也称四分位点,它是一组数据排序后处于25%和75%位置上的值。
四分位数是通过3个点将全部数据等分为4部分,其中每部分包含25%的数据。
5.非众数组的频数占总频数的比例称为( )。
A.异众比率B.离散系数C.平均差D.标准差【答案】A【解析】异众比率是指非众数组的频数占总频数的比例。
主要用于衡量众数对一组数据的代表程度。
6.四分位差是( )。
A.上四分位数减下四分位数的结果B.下四分位数减上四分位数的结果C.下四分位数加上四分位数D.四分位数与上四分位数的中间值【答案】A【解析】四分位差也称内距或四分间距,它是上四分位数与下四分位数之差。
四分位差反映了中间50%数据的离散程度,其数值越小,说明中间的数据越集中;其数值越大,说明中间的数据越分散。
贾俊平《统计学》第五版第6章_统计量及其抽样分布
6. 3. 3 F分布 定义6.5 设随机变量Y与Z相互独立,且Y与Z分别服从自 由度为m和n的 2 分布
Y ~ 2 (m)
Z ~ 2 (n)
(6. 5)
Y/m nY 则称 X Z/n mZ
X服从第一自由度为m,第二自由度为n的F分布,记为 F(m,n),简记为X~F(m,n) 。
1 ( X i X )2 n 1 i1
2 2 (n 1)S x (m 1)S y
n
Sy
2
1 m (Yi Y )2 m 1 i1
S xy
nm2
6 - 23
( X Y ) ( 1 2 ) mn ~ t (n m 2) (6. 4) S xy mn
6-3
统计学(第三版)
6. 1
统计量
6. 1 统计量
6.1.1 统计量的概念 统计量是样本的函数,它不依赖于任何未知参 数; 根据不同的研究目的,可构造不同的统计量; 利用构造的统计量,用样本性质推断总体的性 质; 统计量是统计推断的基础,在统计学中占据着 非常重要的地位。
6-5
统计学(第三版)
统计学(第三版)
6.3 由正态分布得到的几个重要分布
证明:
X 1 1 X , Y i Yi n i 1 m i 1
n m
Sx
2
1 n 1 m 2 2 (Xi X ) , Sy (Yi Y ) 2 n 1 i 1 m 1 i 1
2
(n 1) S x
但对于较小的 n, t分布与N(0,1) 分布相差很大.
6 - 20
统计学(第三版)
6.3 由正态分布得到的几个重要分布
统计学(贾俊平)第五版课后习题答案(完整版)
统计学(第五版)贾俊平课后习题答案(完整版)第一章思考题1.1什么是统计学统计学是关于数据的一门学科,它收集,处理,分析,解释来自各个领域的数据并从中得出结论。
1.2解释描述统计和推断统计描述统计;它研究的是数据收集,处理,汇总,图表描述,概括与分析等统计方法。
推断统计;它是研究如何利用样本数据来推断总体特征的统计方法。
1.3统计学的类型和不同类型的特点统计数据;按所采用的计量尺度不同分;(定性数据)分类数据:只能归于某一类别的非数字型数据,它是对事物进行分类的结果,数据表现为类别,用文字来表述;(定性数据)顺序数据:只能归于某一有序类别的非数字型数据。
它也是有类别的,但这些类别是有序的。
(定量数据)数值型数据:按数字尺度测量的观察值,其结果表现为具体的数值。
统计数据;按统计数据都收集方法分;观测数据:是通过调查或观测而收集到的数据,这类数据是在没有对事物人为控制的条件下得到的。
实验数据:在实验中控制实验对象而收集到的数据。
统计数据;按被描述的现象与实践的关系分;截面数据:在相同或相似的时间点收集到的数据,也叫静态数据。
时间序列数据:按时间顺序收集到的,用于描述现象随时间变化的情况,也叫动态数据。
1.4解释分类数据,顺序数据和数值型数据答案同1.31.5举例说明总体,样本,参数,统计量,变量这几个概念对一千灯泡进行寿命测试,那么这千个灯泡就是总体,从中抽取一百个进行检测,这一百个灯泡的集合就是样本,这一千个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是参数,这一百个灯泡的寿命的平均值和标准差还有合格率等描述特征的数值就是统计量,变量就是说明现象某种特征的概念,比如说灯泡的寿命。
1.6变量的分类变量可以分为分类变量,顺序变量,数值型变量。
变量也可以分为随机变量和非随机变量。
经验变量和理论变量。
1.7举例说明离散型变量和连续性变量离散型变量,只能取有限个值,取值以整数位断开,比如“企业数”连续型变量,取之连续不断,不能一一列举,比如“温度”。
贾俊平《统计学》第五版 第1章 _导论
统计学
STATISTICS (第五版)
例 题
1 - 31
统计学
STATISTICS (第五版)
变 量
(其他分类)
1. 随机变量和非随机变量 2. 经 验 变 量 (empirical variables) 和 理 论 变 量 (theoretical variables)
经验变量所描述的是我们周围可以观察到的事 物 理论变量则是由统计学家用数学方法所构造出 来的一些变量,比如,z 统计量、t 统计量、2 统计量、F 统计量等
2. 时间序列数据(time series data)
1 - 17
统计学
STATISTICS (第五版)
例 题
1 - 18
统计学
STATISTICS (第五版)
1.3 统计中的几个基本概念
1.3.1 总体和样本 1.3.2 参数和统计量 1.3.3 变量
1 - 19
统计学
STATISTICS (第五版)
1 - 32
统计学
STATISTICS (第五版)
变量及其类型
变量
基本分类
其他分类
分类变量
顺序变量
数字变量
随机变量 非随机变量
经验变量 理论变量
1 - 33
统计学
STATISTICS (第五版)
统计中的几个基本概念
总体 样本
1-3
统计学
STATISTICS (第五版)
1.1 统计及其应用领域
1.1.1 什么是统计学 1.1.2 统计的应用领域1-4Fra bibliotek统计学
STATISTICS (第五版)
《统计学》(贾俊平,第五版)分章习题及答案
《统计学》分章习题及答案(贾俊平,第五版)主编:杨群目录习题部分 (2)第1章导论 (3)第2章数据的搜集 (4)第3章数据的整理与显示 (5)第4章数据的概括性度量 (6)第5章概率与概率分布 (9)第6章统计量及其抽样分布 (10)第7章参数估计 (11)第8章假设检验 (12)第9章分类数据分析 (13)第10章方差分析 (15)第11章一元线性回归 (17)第12章多元线性回归 (19)第13章时间序列分析和预测 (22)第14章指数 (25)答案部分 (29)第1章导论 (29)第2章数据的搜集 (29)第3章数据的图表展示 (29)第4章数据的概括性度量 (30)第5章概率与概率分布 (31)第6章统计量及其抽样分布 (32)第7章参数估计 (32)第8章假设检验 (33)第9章分类数据分析 (33)第10章方差分析 (35)第11章一元线性回归 (35)第12章多元线性回归 (37)第13章时间序列分析和预测 (38)第14章指数 (40)习题部分第1章导论一、单项选择题1.指出下面的数据哪一个属于分类数据()A.年龄B.工资C.汽车产量D.购买商品的支付方式(现金、信用卡、支票)2.指出下面的数据哪一个属于顺序数据()A.年龄B.工资C.汽车产量D.员工对企业某项制度改革措施的态度(赞成、中立、反对)3.某研究部门准备在全市200万个家庭中抽取2000个家庭,据此推断该城市所有职工家庭的年人均收入,这项研究的统计量是()A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的人均收入4.了解居民的消费支出情况,则()A.居民的消费支出情况是总体B.所有居民是总体C.居民的消费支出情况是总体单位D.所有居民是总体单位5.统计学研究的基本特点是()A.从数量上认识总体单位的特征和规律B.从数量上认识总体的特征和规律C.从性质上认识总体单位的特征和规律D.从性质上认识总体的特征和规律6.一家研究机构从IT从业者中随机抽取500人作为样本进行调查,其中60%的人回答他们的月收入在5000元以上,50%的回答他们的消费支付方式是使用信用卡。
统计学第五版(贾俊平)课后习题答案
统计学第五版(贾俊平)课后题答案第4章 数据的归纳性气宇(1)众数:100=M 。
中位数:5.5211021=+=+=n 中位数位置,1021010=+=e M 。
平均数:6.91096101514421==++++==∑= nxx ni i。
(2)5.24104===n Q L 位置 ,5.5274=+=LQ 。
5.7410343=⨯==n Q U 位置,1221212=+=U Q 。
(3)2.494.156110)6.915()6.914()6.94()6.92(1)(222212==--+-++-+-=--=∑= n x xs ni i(4)由于平均数小于中位数和众数,所以汽车销售量为左偏散布。
(1)从表中数据能够看出,年龄出现频数最多的是19和23,所以有两个众数,即190=M 和230=M 。
将原始数据排序后,计算的中位数的位置为:13212521=+=+=n 中位数位置,第13个位置上的数值为23,所以中位数23=e M 。
(2)25.64254===n Q L 位置,19)1919(25.019=-⨯+=L Q 。
75.184253=⨯=位置U Q ,56.252-7257.052=⨯+=)(U Q 。
(3)平均数242560025231715191==++++==∑= n xx ni i。
65.61251062125)2423()2417()2415()2419(1)(222212=-=--+-++-+-=--=∑= n x xs ni i(4)偏态系数:()08.165.6)225)(125(242533=⨯---=∑i x SK 。
峰态系数:[]77.065.6)325)(225)(125()125()24(3)24()125(254224=⨯-------+=∑∑i i x x K 。
(5)分析:从众数、中位数和平均数来看,网民年龄在23~24岁的人数占多数。
由于标准差较大,说明网民年龄之间有较大不同。
贾俊平《统计学》(第5版)章节题库-第1章 导 论【圣才出品】
第1章 导 论一、单项选择题1.指出下面的变量哪一个属于分类变量?( )A.年龄B.工资C.汽车产量D.购买商品时的支付方式(现金、信用卡、支票)【答案】D【解析】分类变量是指观测结果表现为某种类别的变量。
题中D项购买商品时的支付方式分为三类:现金、信用卡和支票,因此属于分类变量。
ABC三项均属于数值型变量。
2.指出下面的变量哪一个属于顺序变量?( )A.年龄B.工资C.汽车产量D.员工对企业某项改革措施的态度(赞成、中立、反对)【答案】D【解析】顺序变量又称为有序分类变量,观测结果表现为某种有序类别的变量。
C项员工对企业某项改革措施的态度按顺序依次表现为:赞成、中立、反对三种,因此属于顺序变量。
ABD三项均属于数值型变量。
3.指出下面的变量哪一个属于数值型变量?( )A.年龄B.性别C.企业类型D.员工对企业某项改革措施的态度(赞成、中立、反对)【答案】A【解析】数值型变量又称为定量变量,观测结果表现为数字的变量。
A项生活费支出的观测结果表现为数字的变量,因此为数值型变量。
BD项均为顺序变量,C项为分类变量。
4.某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
这项研究的总体是( )。
A.2000个家庭B.200万个家庭C.2000个家庭的人均收入D.200万个家庭的总收入【答案】B【解析】总体是指包含所研究的全部个体(数据)的集合,它通常由所研究的一些个体组成。
题中的总体为200万个家庭。
5.某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
这项研究的样本是( )。
B.200万个家庭C.2000个家庭的总收入D.200万个家庭的人均收入【答案】A【解析】样本是指从总体中抽取的一部分元素的集合。
题中的样本为2000个家庭。
6.某研究部门准备在全市200万个家庭中抽取2000个家庭,推断该城市所有职工家庭的年人均收入。
统计学(贾俊平等)第五版课后习题答案(完整版)人大出版社
by _kiss-ahuang3.1为评价家电行业售后服务得质量,随机抽取了由100个家庭构成得一个样本。
服务 质量得等级分别表示为:A ・好:B .较好;C -般:D ・较差;E 、差。
调査结果如卞:B E CC AD C B AE D A C B C D E C E E A D B C C A E D C B B A C D E A B D D C C B C E D B C C B C D A C B C D E C E B B E C C A D C B A E B A C E E A B D D C AD B C C AE D C B CBCEDBCCBC要求:U)指出上而得数据属于什么类型。
顺序数据(2) 用Excel 制作一张频数分布表。
用数据分析一一直方图制作:—— (3)绘制一张条形图仮映评价等级得分布。
——用数据分析一一直方图制作:16 17 32 21 14(4) 绘制评价等级得帕累托图0 逆序排序后,制作累计频数分布表:接收频数频率(知累讣频率(知第二部分:直方图DBAC 接收40緊20E接收E D C B AC 32 32 32 B 21 21 53D 17 17 70 E16 16 86 A14141003・2某行业管理局所属40个企业2002年得产品销售收入数据如下: 152 124 129 H6 100 103 92 95 127 104 105 119 114 115 87 103 118 142 135 125 117 108 105 110 107 137 120 136 117 108 9788123115H9138112146113126要求:(1)根摇上而得数据进行适当得分组,编制频数分布表,并计算出累积频数与累积频率。
1、确定组数:2 +髓-罟十蹤心2心2、 确定组距:组距=(最大值-最小值)+组数={152-87)4-6=10. 83,取103、 分组频数表(2)按规世,销售收入在125万元以上为先进企业,115-125万元为良好企业,105〜115万 元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行■频数 T 一累计频率(%)分组。
贾俊平统计学第5版视频精讲
贾俊平统计学第5版视频精讲!贾俊平《统计学》(第5版)精讲班【教材精讲+考研真题串讲】讲师:孙玉奎/谷小冉目录说明:本课程共包括27个高清视频(共42课时)。
序号名称1 第1章导论2 第2章数据的搜集(1)3 第2章数据的搜集(2)4 第3章数据的图表展示(1)5 第3章数据的图表展示(2)6 第4章数据的概括性度量(1)7 第4章数据的概括性度量(2)8 第5章概率与概率分布(1)9 第5章概率与概率分布(2)10 第6章统计量及其抽样分布11 第7章参数估计(1)12 第7章参数估计(2)13 第8章假设检验(1)14 第8章假设检验(2)15 第8章假设检验(3)16 第9章分类数据分析17 第10章方差分析(1)18 第10章方差分析(2)19 第11章一元线性回归(1)20 第11章一元线性回归(2)21 第12章多元线性回归(1)22 第12章多元线性回归(2)23 第13章时间序列分析和预测(1)24 第13章时间序列分析和预测(2)25 第13章时间序列分析和预测(3)26 第14章指数(1)27 第14章指数(2)内容简介本课程是贾俊平《统计学》(第5版)网授精讲班,为了帮助参加研究生招生考试指定考研参考书目为贾俊平《统计学》(第5版)的考生复习专业课,我们根据教材和名校考研真题的命题规律精心讲解教材章节内容。
【辅导内容】(1)精讲教材核心考点。
按照教材篇章结构,讲解教材的重难知识点。
(2)串讲名校考研真题。
通过分析历年考研真题,梳理命题规律和特点,分析名校考研真题出题思路。
考虑到课时的需要以及相关知识点的难易程度,对于一些简单的、考试不易涉及的知识点,本课程不予以讲述或一带而过,故建议在学习本课程之前提前复习一遍教材。
注:本课程的学员可以下载电子版讲义打印学习。
【讲师简介】孙玉奎,中央财经大学统计学博士,圣才教育独家签约讲师,主要讲授《统计学》、《商务经济统计学》等,常年从事统计类考研、统计师考试的辅导工作,并参与编写统计学类考研等辅导书,具有扎实的理论基础和实践经验,能将统计学知识寓于生活学习中的生动事例,通俗易懂。
贾俊平《统计学》(第5版)课后习题-第7章 参数估计【圣才出品】
抽样标准差为:
x
n
5 0.79 40
(2)估计误差为:
E z /2
n
1.96
5 1.55 40
2.某快餐店想要估计每位顾客午餐的平均花费金额,在为期 3 周的时间里选取 49 名 顾客组成了一个简单随机样本。
(1)假定总体标准差为 15 元,求样本均值的抽样标准误差。 (2)在 95%的置信水平下,求估计误差。 (3)如果样本均值为 120 元,求总体均值 μ 的 95%的置信区间。
4 / 27
圣才电子书
十万种考研考证电子书、题库视频学习平台大样本,所以总均值 μ 的 90%的置信区间为:
x z /2
n
811.645
12 811.974 100
即(79.026,82.974)。
(2)已知: 0.05,z0.05 2 1.96 。由于 n=100 为大样本,所以总体均值 μ 的
4.20
(3)由于总体标准差已知,所以总体均值 μ 的 95%的置信区间为:
x z /2
n
120 1.96
15 49
120 4.20
即(115.8,124.2)。
3.从一个总体中随机抽取 n =100 的随机样本,得到 x 104560,假定总体标准差
σ=85414,试构建总体均值 μ 的 95%的置信区间。
(3)样本量与边际误差的平方成反比,即可以接受的估计误差的平方越大,所需的
样本量就越小。
二、练习题
1.从一个标准差为 5 的总体中采用重复抽样抽出一个样本量为 40 的样本,样本均值
为 25。
(1)样本均值的抽样标准差 x 等于多少?
(2)在 95%的置信水平下,估计误差是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
2.5
1
2.5
26 - 30
5
12.5
6
15.0
31 - 35
6
15.0
12
30.0
36 - 40
14
35.0
26
65.0
41 - 45
10
25.0
36
90.0
46+
4
10.0
40
100.0
总和
40
100.0
3.4利用下面的数据构建茎叶图和箱线图。
57
29
29
36
31
23
47
23
28
28
频数
频率%
累计频数
累计频率%
先进企业
10
25.0
10
25.0
良好企业
12
30.0
22
55.0
一般企业
9
22.5
31
77.5
落后企业
9
22.5
40
100.0
总和
40
100.0
3.3某百货公司连续40天的商品销售额如下:
单位:万元
41
25
29
47
38
34
30
38
43
40
46
36
45
37
37
36
45
43
33
49
54
55
58
49
61
51
49
51
60
52
54
51
55
60
56
47
47
53
51
48
53
50
52
40
45
57
53
52
51
46
48
47
53
47
53
44
47
50
52
53
47
45
48
54
52
48
46
49
52
59
53
50
43
53
46
57
49
49
44
57
52
42
49
43
47
46
48
51
59
45
45
46
52
55
24
24.0
36
36.0
49.00 - 51.00
19
19.0
55
55.0
52.00 - 54.00
24
24.0
79
79.0
55.00 - 57.00
14
14.0
93
93.0
58.00+
7
7.0
100
100.0
合计
100
100.0
直方图:
组距4,上限为小于等于
频数
百分比
累计频数
累积百分比
有效
<= 40.00
44
35
28
46
34
30
37
44
26
38
44
42
36
37
37
49
39
42
32
36
35
要求:根据上面的数据进行适当的分组,编制频数分布表,并绘制直方图。
1、确定组数:
,取k=6
2、确定组距:
组距=(最大值-最小值)÷组数=(49-25)÷6=4,取5
3、分组频数表
销售收入(万元)
频数
频率%
累计频数
累计频率%
3.00 4 . 667
3.00 5 . 012
1.00 5 . 7
Stem width: 10
Each leaf: 1 case(s)
3.6一种袋装食品用生产线自动装填,每袋重量大约为50g,但由于某些原因,每袋重量不会恰好是50g。下面是随机抽取的100袋食品,测得的重量数据如下:
单位:g
57
46
1
1.0
1
1.0
41.00 - 44.00
7
7.0
8
8.0
45.00 - 48.00
28
28.0
36
36.0
49.00 - 52.00
28
28.0
64
64.0
53.00 - 56.00
22
22.0
86
86.0
57.00 - 60.00
13
13.0
99
99.0
61.00+
1
1.0
100
100.0
合计
100
逆序排序后,制作累计频数分布表:
接收
频数
频率(%)
累计频率(%)
C
32
32
32
B
21
21
53
D
17
17
70
E
16
16
86
A
14
14
100
3.2某行业管理局所属40个企业2002年的产品销售收入数据如下:
152
124
129
116
100
103
92
95
127
104
105
119
114
115
87
103
118
142
35
51
39
18
46
18
26
50
29
33
21
46
41
52
28
21
43
19
42
20
data Stem-and-Leaf Plot
Frequency Stem & Leaf
3.00 1 . 889
5.00 2 . 01133
7.00 2 . 6888999
2.00 3 . 13
3.00 3 . 569
3.00 4 . 123
47
49
50
54
47
48
44
57
47
53
58
52
48
55
53
57
49
56
56
57
53
41
48
要求:
(1)构建这些数据的频数分布表。
(2)绘制频数分布的直方图。
(3)说明数据分布的特征。
解:(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定组数:
,取k=6或7
2、确定组距:
B
A
C
E
E
A
B
D
D
C
A
D
B
C
C
A
E
D
C
B
C
B
C
E
D
B
C
C
B
C
要求:
(1)指出上面的数据属于什么类型。
顺序数据
(2)用Excel制作一张频数分布表。
用数据分析——直方图制作:
接收
频率
E
16
D
17
C
32
B
21
A
14
(3)绘制一张条形图,反映评价等级的分布。
用数据分析——直方图制作:
(4)绘制评价等级的帕累托图。
4
10.0
37
92.5
140.00 - 149.00
2
5.0
39
97.5
150.00+
1
2.5
40
100.0
总和
40
100.0
(2)按规定,销售收入在125万元以上为先进企业,115~125万元为良好企业,105~115万元为一般企业,105万元以下为落后企业,按先进企业、良好企业、一般企业、落后企业进行分组。
3.1为评价家电行业售后服务的质量,随机抽取了由100个家庭构成的一个样本。服务质量的等级分别表示为:A.好;B.较好;C一般;D.较差;E.差。调查结果如下:
B
E
C
C
A
D
C
B
A
E
D
A
C
B
C
D
E
C
E
E
A
D
B
C
C
A
E
D
C
B
B
A
C
D
E
A
B
D
D
C
C
B
C
E
D
B
C
C
B
C
D
A
C
B
C
D
E
C
E
B
B
E
C
C
A
D
C
B
A
E
135
125
117
108
105
110
107
137
120
136
117
108
97
88
123
115
119
138
112
146
113
126
要求:
(1)根据上面的数据进行适当的分组,编制频数分布表,并计算出累积频数和累积频率。
1、确定值)÷组数=(152-87)÷6=10.83,取10
组距=(最大值-最小值)÷组数=(61-40)÷6=3.5,取3或者4、5