工程光学,郁道银,第三章 习题及答案

合集下载

郁道银 工程光学-物理光学答案整理

郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。

(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。

解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。

3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。

工程光学第三章课后习题及答案郁道银

工程光学第三章课后习题及答案郁道银

第三章习题及答案
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2 人身高,和前后距离无关。

2.设平行光管物镜L 的焦距f ' =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直像相对于F 产生了y=2 mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
3.一光学系统由一透镜和平面镜组成,如图3-1所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像A"B"至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-1习题3图
解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。

4.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm
的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。

解:
此为平板平移后的像。

5.棱镜折射角,C 光的最小偏向角,试求棱镜光学材料的折射率。

解:
6.白光经过顶角
的色散棱镜,n=1.51 的色光处于最小偏向角,试求其
最小偏向角值及n=1.52 的色光相对于n=1.51 的色光间的交角。

解:。

工程光学课后答案-第二版-郁道银

工程光学课后答案-第二版-郁道银

工程光学第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学课后答案解析完整版机械工业出版社第二版郁道银

工程光学课后答案解析完整版机械工业出版社第二版郁道银

第一章习题1、已知真空中的光速c=3m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25m/s,当光在冕牌玻璃中,n=1.51时,v=1.99m/s,当光在火石玻璃中,n=1.65时,v=1.82m/s,当光在加拿大树胶中,n=1.526时,v=1.97m/s,当光在金刚石中,n=2.417时,v=1.24m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1,n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1.5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

郁道银老师主编工程光学3课后答案

郁道银老师主编工程光学3课后答案

=
1−
sin 2 φ n2
1 =n
n 2 − sin 2 φ
d'
=
d
cos
I
' 1
(sin
I1
cos
I
' 1
− cos I1 sin
I
' 1
)
d
=
sin
I1

d
cos I1 sin
cos
I
' 1
I
' 1
d
=
sin
I1 (1 −
cos I1
n
cos
I
' 1
)
d sin φ (1 − cosφ )
=
n2 − sin 2 φ
解:该题可以应用单个折射面的高斯公式来解决,
设凸面为第一面,凹面为第二面。 ( 1 ) 首 先考 虑 光束 射 入 玻璃 球 第 一面 时 的 状态 , 使用 高 斯 公式 :
会聚点位于第二面后15mm 处。
(2 )
将第 一面镀 膜,就 相当于 凸面镜
像位于第一面的右侧,只是延长 线的交点,因此是虚像。
∴ f ' = 150mm
答:透镜焦距为100mm。
5、如图3-30所示,焦距为 f ' =120mm 的透镜后有一厚度为 d =60mm 的平行平板,其折射率
n =1.5。当平行平板绕 O 点旋转时,像点在像平面内上下移动,试求移动量△ y' 与旋
转角φ的关系,并画出关系曲线。如果像点移动允许有 0.02mm 的非线形度,试求φ允
f ' = − l2 =100mm
解得:
2

郁道银 工程光学-物理光学答案整理

郁道银 工程光学-物理光学答案整理

第一章 光的电磁理论基础1.一平面电磁波可表示为 x E = 0 ,y E = 2cos[2π×1014(c z-t )+2π] ,z E = 0,求: (1)该电磁波的频率、波长、振幅和原点的初相位? (2)波的传播方向和电矢量的振动方向? (3)相应的磁场B 的表达式?解:(1)由y E = 2cos[2π×1014(c z-t )+2π]知: 频率:f=1014(Hz )λ=ct=c/f =ss m 114810103⨯=6103⨯(m) )(3m μ= A=2(m v ) 0ϕ=2π (2)传播方向Z , 振动方向Y 。

(3)相应磁矢量B 的大小εμ1=B E C = 881067.01032-⨯=⨯=B ()⎪⎪⎪⎩⎪⎪⎪⎨⎧==⎥⎦⎤⎢⎣⎡+⎪⎭⎫ ⎝⎛-⨯⨯-=-002102cos 1067.0148z y x B B T t c z B ππ2.在玻璃中传播的一个线偏振光可以表示为21510cos 10(),0,00.65x y z zE t E E cπ=-==,求:(1)光的频率、波长、振幅;(2)玻璃的折射率;(3)光波的传播方向和电矢量的振动方向。

解:(1)由21510cos 10()0.65x zE t cπ=-可知: 15141051022f ωπππ===⨯15220.39100.65um kcππλπ=== A=2(m v )xz(v)0Z H E =⨯y(E)(H)(2) 1.53c c n v fλ=== (3)传播方向Z , 振动方向X 。

3. 已知:h=0.01mm 5.1=μnm 500=λ 插入前后所引起的光程位相变化求光程的位相变化 解:)(10501.05.001.0101.05.13mm l -⨯=⨯=⨯-⨯=∆ )(202rad lππλϕ=⨯∆=∆4.已知: ()t a E ωα-=111cos ,()t a E ωα-=222cosHz 15102⨯=πω ,m v a 61= ,m v a 82= ,01=α,22πα=求:合成波表达式解:()()t a t a E E E ωαωα-+-=+=221121cos cos()t A ωα-=cos)cos(2212122212αα-++=a a a a Am v 100c o s 86264362=⨯⨯++=π3406806cos cos sin sin 22112211=++⨯=++=αααααa a a a tg)(927.01801.531.53)34(rad arctg o =⨯===πα ())(102927.0cos 105m v t E ⨯-=π5. 已知:()t A x E c zx -=ωcos 0 ,()[]450cos πωω+-=t A y E c z y求:所成正交分量的光波的偏振态 解:由已知得 A a a ==21,454512πωπωαα=⋅-+⋅=-c z c z 代入椭圆方程:()()1221221222212sin cos 2αααα-=--+a a E E a E a E y x y x2122222222=-+A E E A E A E y x y x ()2245sinsin 12-==-παα <0 ∴右旋椭圆光1λ椭圆长轴与x 轴夹角ψ ∞=-=ψδcos 22222121a a a a tg oo 902702==ψ∴或 又2345ππδπ<=< 的解舍去o 902=ψ∴o 2702=ψ∴ o135=ψ 第二章光的干涉和干涉系统1。

工程光学_郁道银_光学习题解答1

工程光学_郁道银_光学习题解答1

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学习题郁道银解答样本

工程光学习题郁道银解答样本

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n, 求光纤的数值孔径( 即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角) 。

解: 位于光纤入射端面, 满足由空气入射到光纤芯中, 应用折射定律则有:n0sinI1=n2sinI2(1)而当光束由光纤芯入射到包层的时候满足全反射, 使得光束能够在光纤内传播, 则有:(2)由( 1) 式和( 2) 式联立得到nsinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上, 求其会聚点的位置。

如果在凸面镀反射膜, 其会聚点应在何处? 如果在凹面镀反射膜, 则反射光束在玻璃中的会聚点又在何处? 反射光束经前表面折射后, 会聚点又在何处? 说明各会聚点的虚实。

解: 该题能够应用单个折射面的高斯公式来解决,设凸面为第一面, 凹面为第二面。

( 1) 首先考虑光束射入玻璃球第一面时的状态, 使用高斯公式:会聚点位于第二面后15mm处。

( 2) 将第一面镀膜, 就相当于凸面镜像位于第一面的右侧, 只是延长线的交点, 因此是虚像。

还能够用β正负判断:( 3) 光线经过第一面折射: , 虚像第二面镀膜,则:得到:( 4) 再经过第一面折射物像相反为虚像。

6、一直径为400mm, 折射率为1.5的玻璃球中有两个小气泡, 一个位于球心, 另一个位于1/2半径处。

沿两气泡连线方向在球两边观察, 问看到的气泡在何处? 如果在水中观察, 看到的气泡又在何处?解: 设一个气泡在中心处, 另一个在第二面和中心之间。

( 1) 从第一面向第二面看( 2) 从第二面向第一面看( 3) 在水中7、有一平凸透镜r1=100mm,r2=,d=300mm,n=1.5,当物体在时, 求高斯像的位置l’。

在第二面上刻一十字丝, 问其经过球面的共轭像在何处? 当入射高度h=10mm, 实际光线的像方截距为多少? 与高斯像面的距离为多少?解:8、一球面镜半径r=-100mm,求=0 , -0.1 , -0.2 , -1 , 1 , 5, 10, ∝时的物距像距。

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的光速。

解:则当光在水中,n=1.333时,v=2.25 m/s,当光在冕牌玻璃中,n=1.51时,v=1.99 m/s,当光在火石玻璃中,n=1.65时,v=1.82 m/s,当光在加拿大树胶中,n=1.526时,v=1.97 m/s,当光在金刚石中,n=2.417时,v=1.24 m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1.5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm,所以纸片最小直径为358.77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1.5的玻璃球上,求其会聚点的位置。

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

工程光学课后答案完整版_机械工业出版社_第二版_郁道银

第一章习题1、已知真空中的光速c=3 m/s,求光在水(n=1.333)、冕牌玻璃(n=1。

51)、火石玻璃(n=1。

65)、加拿大树胶(n=1.526)、金刚石(n=2。

417)等介质中的光速。

解:则当光在水中,n=1。

333时,v=2。

25 m/s,当光在冕牌玻璃中,n=1。

51时,v=1.99 m/s,当光在火石玻璃中,n=1。

65时,v=1。

82 m/s,当光在加拿大树胶中,n=1.526时,v=1。

97 m/s,当光在金刚石中,n=2。

417时,v=1.24 m/s.2、一物体经针孔相机在屏上成一60mm大小的像,若将屏拉远50mm,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向不变,令屏到针孔的初始距离为x,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃(设n=1。

5),下面放一直径为1mm的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1, n1=1。

5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179。

385mm, 所以纸片最小直径为358。

77mm。

4、光纤芯的折射率为n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径(即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律则有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,则有:(2)由(1)式和(2)式联立得到n0 sinI1 .5、一束平行细光束入射到一半径r=30mm、折射率n=1。

工程光学第三版课后答案(部分)郁道银

工程光学第三版课后答案(部分)郁道银

第一章2、已知真空中的光速c =3*108m/s ,求光在水(n=1.333)、冕牌玻璃(n=1.51)、火石玻璃(n=1.65)、加拿大树胶(n=1.526)、金刚石(n=2.417)等介质中的 光速。

解:则当光在水中,n=1.333 时,v=2.25*108m/s, 当光在冕牌玻璃中,n=1.51 时,v=1.99*108m/s, 当光在火石玻璃中,n =1.65 时,v=1.82*108m/s , 当光在加拿大树胶中,n=1.526 时,v=1.97*108m/s , 当光在金刚石中,n=2.417 时,v=1.24*108m/s 。

3、一物体经针孔相机在屏上成一60mm 大小的像,若将屏拉远50mm ,则像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线则方向 不变,令屏到针孔的初始距离为x ,则可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm 。

4、一厚度为200mm 的平行平板玻璃(设n=1.5),下面放一直径为1mm 的金属片。

若在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少? 解:令纸片最小半径为x,则根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1) 其中n2=1, n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立(1)式和(2)式可以求出纸片最小直径x=179.385mm , 所以纸片最小直径为358.77mm 。

8、.光纤芯的折射率为1n ,包层的折射率为2n ,光纤所在介质的折射率为0n ,求光纤的数值孔径(即10sin I n ,其中1I 为光在光纤内能以全反射方式传播时在入射端面的最大入射角)。

大学工程光学郁道银光学习题很全解答

大学工程光学郁道银光学习题很全解答

第一章习题1、真空中的光速c=3m/s,求光在水〔〕、冕牌玻璃〔〕、火石玻璃〔〕、加拿大树胶〔〕、金刚石〔〕等介质中的光速。

解:那么当光在水中,时,m/s,当光在冕牌玻璃中,时,m/s,当光在火石玻璃中,n=时,m/s,当光在加拿大树胶中,时,m/s,当光在金刚石中,时,m/s。

2、一物体经针孔相机在屏上成一60mm大小的像,假设将屏拉远50mm,那么像的大小变为70mm,求屏到针孔的初始距离。

解:在同种均匀介质空间中光线直线传播,如果选定经过节点的光线那么方向不变,令屏到针孔的初始距离为x,那么可以根据三角形相似得出:所以x=300mm即屏到针孔的初始距离为300mm。

3、一厚度为200mm的平行平板玻璃〔设〕,下面放一直径为1mm的金属片。

假设在玻璃板上盖一圆形纸片,要求在玻璃板上方任何方向上都看不到该金属片,问纸片最小直径应为多少?解:令纸片最小半径为x,那么根据全反射原理,光束由玻璃射向空气中时满足入射角度大于或等于全反射临界角时均会发生全反射,而这里正是由于这个原因导致在玻璃板上方看不到金属片。

而全反射临界角求取方法为:(1)其中n2=1,n1=1.5,同时根据几何关系,利用平板厚度和纸片以及金属片的半径得到全反射临界角的计算方法为:(2)联立〔1〕式和〔2〕式可以求出纸片最小直径,所以纸片最小直径为。

4、光纤芯的折射率为 n1、包层的折射率为n2,光纤所在介质的折射率为n0,求光纤的数值孔径〔即n0sinI1,其中I1为光在光纤内能以全反射方式传播时在入射端面的最大入射角〕。

解:位于光纤入射端面,满足由空气入射到光纤芯中,应用折射定律那么有:n0sinI1=n2sinI2 (1)而当光束由光纤芯入射到包层的时候满足全反射,使得光束可以在光纤内传播,那么有:(2)由〔1〕式和〔2〕式联立得到n0sinI1.5、一束平行细光束入射到一半径r=30mm、折射率的玻璃球上,求其会聚点的位置。

工程光学第三、四章习题

工程光学第三、四章习题

一、多重选择题(答案可能不止一个)1.与理想光学系统相比,实际光学系统的成像光束口径和成像范围都受到限制,多数系统存在渐晕现象。

__________A.渐晕是由于孔径光阑的拦光作用而产生的。

B.渐晕使成像平面的照度不均匀。

C.轴外点成像光束的宽度不只于孔径光阑有关,而且和渐晕光阑有关。

D.光阑的位置影响轴上点成像光束的选择。

2.物方远心光路具有下列属性:_______A.物方主光线通过物方焦点。

B.像方主光线通过像方焦点。

C.物方主光线平行于光轴。

D.像方主光线平行于光轴。

3.在生物显微镜系统中加入场镜后,将会出现下列哪种情况?________A.系统的放大率不变。

B .出瞳距变大。

C.在保证相同渐晕系数的情况下,目镜的通光口径变小。

D.在保证相同渐晕系数的情况下,物镜的通光口径变小。

4.在显微镜系统中加入不同焦距的场镜后,会给系统带来如下哪些影响_________A.场镜的焦距越短,在保证相同的渐晕系数情况下,目镜的通光口径会越小。

B.场镜的焦距越短,在保证相同的渐晕系数情况下,物镜的通光口径会越小。

C.场镜的焦距越短,出瞳尺寸会越大。

D.场镜的焦距越短,系统放大率会越大。

二、填空题1、反射棱镜在光学系统中主要作用有( )、( )和转像、倒像等,在光路中可等效为平行板加( )。

唯一能成完善像的光学元件是( )。

2、限制轴上物点成像光束宽度的光阑是( ),而( )在其基础上进一步限制轴外物点的成像光束宽度。

为减少测量误差,测量仪器一般采用( )光路。

3、测量显微镜的孔径光阑放置在( ),视场光阑放置在( )。

三、简答题①孔径光阑、入瞳、出瞳的关系如何?如何判定孔径光阑?②什么是渐晕?孔径光阑和视场光阑有何区别?③反射棱镜的分类及成像特点?四、解答题1.一个望远镜的物镜直径为5cm,焦距为20cm ,目镜直径为1cm ,焦距为2cm ,求此望远镜的入瞳和出瞳的位置和大小。

2.有一个⨯7望远镜,视唱82=ω,目镜焦距为25mm ,出瞳直径为5mm,假定无渐晕,求孔径光阑、入瞳和出瞳的位置,物镜与目镜的口径和场阑口径。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第三章习题及答案
1.人照镜子时,要想看到自己的全身,问镜子要多长?人离镜子的距离有没有关系?
解:
镜子的高度为1/2 人身高,和前后距离无关。

2.设平行光管物镜L 的焦距f ' =1000mm,顶杆与光轴的距离a=10 mm,如果推动顶杆使平面镜倾斜,物镜焦点F 的自准直像相对于F 产生了y=2 mm 的位移,问平面镜的倾角为多少?顶杆的移动量为多少?
解:
3.一光学系统由一透镜和平面镜组成,如图3-1所示,平面镜MM 与透镜光轴垂直交于D 点,透镜前方离平面镜600 mm 有一物体AB,经透镜和平面镜后,所成虚像A"B"至平面镜的距离为150 mm,且像高为物高的一半,试分析透镜焦距的正负,确定透镜的位置和焦距,并画出光路图。

图3-1习题3图
解:平面镜成β=1 的像,且分别在镜子两侧,物像虚实相反。

4.用焦距=450mm 的翻拍物镜拍摄文件,文件上压一块折射率n=1.5,厚度d=15mm
的玻璃平板,若拍摄倍率,试求物镜后主面到平板玻璃第一面的距离。

解:
此为平板平移后的像。

5.棱镜折射角,C 光的最小偏向角,试求棱镜光学材料的折射率。

解:
6.白光经过顶角
的色散棱镜,n=1.51 的色光处于最小偏向角,试求其
最小偏向角值及n=1.52 的色光相对于n=1.51 的色光间的交角。

解:。

相关文档
最新文档