人教版必修四三角函数知识点汇总
必修4三角函数知识总结
三角函数知识总结一、任意角和弧度制(一)任意角: 角的顶点在原点,始边与x 轴正半轴重合,始边绕原点旋转构成的图形,即构成角1. 从旋转方向可分为: 正角(绕原点逆时针旋转形成) ,负角(绕原点顺时针旋转形成) ,零角(不旋转);注:①角的大小可以是任意大小的;②其中钟表的时针、分针在旋转时所形成的角是负角。
③正确理解角:如“~间的角”、“第一象限角”、“锐角”、“小于角”、“钝角”等。
2. 从终边的位置可分为: 前提是角的顶点与坐标原点重合,角的始边与x 轴的非负半轴重合。
⎩⎨⎧)轴线角(也叫象限界角象限角注: 能熟练表示各象限角、终边在坐标轴上或特殊位置的角的集合; 3. 与α终边相同的角的集合: },2|{Z k k ∈+=απββ ①终边相同的角的集合:②终边在某条直线上的角的集合: ③终边在某一区域内的角的集合:4. α与2α的终边关系:由“两等分各象限、一二三四”确定. 如若α是第二象限角,则2α是第____象限角。
(二)弧度制1. 弧度角2. 弧度与角度的换算①角度制,角度制单位为“度”,符号是“°”,弧度制,单位为“弧度”,符号是“rad ”(一般省略)②换算关系: 180180()1()()5718rad rad ππ'==≈1°= 180π(rad )3. 扇形的弧长和面积公式: 弧长公式:l =α·R ;面积公式:S= 21l ·R = 21α·2R ;二、任意角的三角函数(一)任意角的三角函数1. 任意角的三角函数的定义:已知角α的终边上任意一点P (x , y ),它与原点的距离是r=OP =22y x +,那么正弦、余弦、正切分别为 sin α=y r , cos α=x r , tan α=y x。
2. 三角函数的象限符号图: 由于0r >,故sin α的符号只与y 有关,cos α的符号只与x 有关,正(余)切的符号取决于x ,y 是否同号,分布图如下: 一全二正弦,三切四余弦。
高一数学(人教版)必修4三角函数知识点
三角函数⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角.第一象限角的集合为{}36036090,k k k αα⋅<<⋅+∈Z第二象限角的集合为{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为{}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z终边在x 轴上的角的集合为{}180,k k αα=⋅∈Z终边在y 轴上的角的集合为{}18090,k k αα=⋅+∈Z终边在坐标轴上的角的集合为{}90,k k αα=⋅∈Z3、与角α终边相同的角的集合为{}360,k k ββα=⋅+∈Z4、长度等于半径长的弧所对的圆心角叫做1弧度.5、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是l rα=. 6、弧度制与角度制的换算公式:2360π=,1180π= ,180157.3π⎛⎫=≈ ⎪⎝⎭. 7、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l r α=,2C r l =+,21122S lr r α==.8、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距离是()0r r >,则sin y r α=,cos x r α=,()tan 0yx xα=≠. 9、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正.10、三角函数线:sin α=MP ,cos α=OM ,tan α=AT .11、角三角函数的基本关系:()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=-;()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫== ⎪⎝⎭.12、函数的诱导公式:()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-.口诀:函数名称不变,符号看象限.()5sin cos 2παα⎛⎫-=⎪⎝⎭,cos sin 2παα⎛⎫-= ⎪⎝⎭.()6sin cos 2παα⎛⎫+= ⎪⎝⎭,cos sin 2παα⎛⎫+=- ⎪⎝⎭. 口诀:正弦与余弦互换,符号看象限.13、①的图象上所有点向左(右)平移ϕ个单位长度,得到函数()sin y x ϕ=+的图象;再将函数()sin y x ϕ=+的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.②数sin y x =的图象上所有点的横坐标伸长(缩短)到原来的1ω倍(纵坐标不变),得到函数sin y x ω=的图象;再将函数sin y x ω=的图象上所有点向左(右)平移ϕω个单位长度,得到函数()sin y x ωϕ=+的图象;再将函数()sin y x ωϕ=+的图象上所有点的纵坐标伸长(缩短)到原来的A 倍(横坐标不变),得到函数()sin y x ωϕ=A +的图象.14、函数()()sin 0,0y x ωϕω=A +A >>的性质: ①振幅:A ;②周期:2πωT =;③频率:12f ωπ==T ;④相位:x ωϕ+;⑤初相:ϕ. 函数()sin y x ωϕ=A ++B ,当1x x =时,取得最小值为min y ;当2x x =时,取得最大值为max y ,则()m a x m i n 12y y A =-,()max min 12y y B =+,()21122x x x x T=-<.15 周期问题◆()()()()()()ωπωϕωωπωϕωπωϕωωπωϕωωπωϕωπωϕω2T , 0b , 0 , 0A , b 2T , 0 b , 0 , 0A , b T , 0 , 0A , T , 0 , 0A , 2T , 0 , 0A , 2T , 0 , 0A , =≠>>++==≠>>++==>>+==>>+==>>+==>>+=x ACos y x ASin y x ACos y x ASin y x ACos y x ASin y()()()()ωπωϕωωπωϕωωπωϕωωπωϕω=>>+==>>+==>>+==>>+=T , 0 , 0A , cot T , 0 , 0A , tan T, 0 , 0A , cot T , 0 , 0A , tan x A y x A y x A y x A yR ,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭三角恒等变换1、两角和与差的正弦、余弦和正切公式:⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβαβαβ--=+ ⇒ (()()tan tan tan 1tan tan αβαβαβ-=-+);⑹()tan tan tan 1tan tan αβαβαβ++=- ⇒ (()()tan tan tan 1tan tan αβαβαβ+=+-).2、二倍角的正弦、余弦和正切公式:⑴sin 22sin cos ααα=.222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±⇒ ⑵2222cos2cossin 2cos 112sin ααααα=-=-=-⇒升幂公式2sin 2cos 1,2cos 2cos 122αααα=-=+⇒降幂公式2cos 21cos 2αα+=,21cos 2sin 2αα-=. ⑶22tan tan 21tan ααα=-.3、⇒(后两个不用判断符号,更加好用)4、合一变形⇒把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(ϕϖ形式。
必修四三角函数知识点
必修四三角函数知识点三角函数是数学中的一个重要分支,在必修四中,我们主要学习了正弦函数、余弦函数、正切函数等基本三角函数的相关知识。
下面让我们一起来详细了解一下这些知识点。
一、角的概念的推广在平面内,一条射线绕着它的端点旋转所形成的图形叫做角。
按逆时针方向旋转形成的角为正角,按顺时针方向旋转形成的角为负角。
如果一条射线没有作任何旋转,我们称它形成了一个零角。
为了更广泛地研究角,我们将角的概念进行了推广。
角可以是任意大小的实数,其度量单位为弧度制和角度制。
弧度制是用弧长与半径的比值来度量角的大小。
如果半径为 r 的圆中,圆心角α所对的弧长为 l,那么α的弧度数的绝对值为|α| = l /r 。
角度制则是将圆周分为 360 等份,每一份所对的圆心角为 1 度,记作 1°。
弧度制与角度制的换算公式为:180°=π 弧度。
二、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它到原点的距离为 r(r =√(x²+ y²),且 r > 0),则角α的正弦、余弦、正切函数分别定义为:正弦函数:sinα = y / r余弦函数:cosα = x / r正切函数:tanα = y / x (x ≠ 0)三角函数值在各个象限的符号规律为:“一全正,二正弦,三正切,四余弦”。
三、同角三角函数的基本关系(1)平方关系:sin²α +cos²α = 1(2)商数关系:tanα =sinα /cosα (cosα ≠ 0)利用这些基本关系,可以进行三角函数的化简、求值和证明。
四、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如:sin(π +α) =sinα ,cos(π +α) =cosα ,tan(π +α) =tanα 等。
诱导公式的记忆口诀有“奇变偶不变,符号看象限”。
五、三角函数的图象和性质(1)正弦函数 y = sin x 的图象是一条周期为2π,振幅为 1 的波浪线。
(完整)高中必修四三角函数知识点总结,推荐文档
o
x
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)
高三数学总复习—三角函数
y
++
o -
-x
、、 、、、
y
-+
o -
+
x
、、 、、、
y
-+
o +
-
x
、、 、、、
6、三角函数线 正弦线:MP; 余弦线:OM;
正切线: AT.
7. 三角函数的定义域:
三角函数 f (x) sinx f (x) cosx f (x) tanx
cot( x) cot x cot(2 x) cot x
公式组二 sin(2k x) sin x cos(2k x) cos x tan(2k x) tan x cot(2k x) cot x
公式组六 sin( x) sin x cos( x) cos x tan( x) tan x cot( x) cot x
定义域
x | x R x | x R
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
x
|
x
R且x
k
1
,
k
Z
2
x | x R且x k , k Z
8、同角三角函数的基本关系式: sin tan cos
cos sin
cot
tan cot 1 csc sin 1
sin( ) sin cos cos sin sin( ) sin cos cos sin
tan 2 2 tan 1 tan 2
sin
最新必修4--三角函数知识点归纳总结
《三角函数》【知识网络】一、任意角的概念与弧度制1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角2、同终边的角可表示为{}()360k k Z ααβ︒=+∈x 轴上角:{}()180k k Z αα=∈ y 轴上角:{}()90180k k Z αα=+∈3、第一象限角:{}()036090360k k k Z αα︒︒+<<+∈第二象限角:{}()90360180360k k k Z αα︒︒+<<+∈ 第三象限角:{}()180360270360k k k Z αα︒︒+<<+∈ 第四象限角:{}()270360360360k k k Z αα︒︒+<<+∈4、区分第一象限角、锐角以及小于90的角 第一象限角:{}()036090360k k k Z αα︒︒+<<+∈锐角:{}090αα<< 小于90的角:{}90αα<任意角的概念弧长公式 角度制与 弧度制 同角三角函数的基本关系式 诱导 公式 计算与化简 证明恒等式任意角的 三角函数 三角函数的 图像和性质 已知三角函数值求角和角公式 倍角公式 差角公式 应用应用 应用 应用应用 应用 应用5、若α为第二象限角,那么2α为第几象限角? ππαππk k 222+≤≤+ππαππk k +≤≤+224,24,0παπ≤≤=k ,2345,1παπ≤≤=k所以2α在第一、三象限6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad .7、角度与弧度的转化:01745.01801≈=︒π 815730.571801'︒=︒≈︒=π8、角度与弧度对应表: 角度 0︒ 30︒ 45︒ 60︒90120︒ 135︒ 150︒ 180︒ 360︒弧度6π 4π 3π 2π 23π 34π 56π π2π9、弧长与面积计算公式 弧长:l R α=⨯;面积:21122S l R R α=⨯=⨯,注意:这里的α均为弧度制.二、任意角的三角函数1、正弦:sin y r α=;余弦cos x r α=;正切tan yxα=其中(),x y 为角α终边上任意点坐标,22r x y =+.2、三角函数值对应表:3、三角函数在各象限中的符号口诀:一全正,二正弦,三正切,四余弦.(简记为“全s t c ”) 度0 30 45 60 90 120 135 150 180︒270360弧度6π 4π 3π 2π 23π 34π 56π π32π 2πsin α 01222 32132 22121 0cos α132 22 12 012- 22- 32- 1- 0 1tan α 03313无 3-1-33-无ry)(x,αPsin α tan α cos α 第一象限:0,0.>>y x sin α>0,cos α>0,tan α>0, 第二象限:0,0.><y x sin α>0,cos α<0,tan α<0, 第三象限:0,0.<<y x sin α<0,cos α<0,tan α>0, 第四象限:0,0.<>y x sin α<0,cos α>0,tan α<0,4、三角函数线设任意角α的顶点在原点O ,始边与x 轴非负半轴重合,终边与单位圆相交与P (,)x y , 过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,它与角α的终边或其反向 延长线交于点T.由四个图看出:当角α的终边不在坐标轴上时,有向线段,OM x MP y ==,于是有sin 1y y y MP r α====, c o s 1x x x OM r α====, tan y MP ATAT x OM OAα====.我们就分别称有向线段,,MP OM AT 为正弦线、余弦线、正切线。
(完整版)高中数学必修4三角函数知识点总结归纳,推荐文档
高中数学必修4知识点总结第一章三角函数正角:按逆时针方向旋转形成的角1、任意角 负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2、象限角:角 的顶点与原点重合,角的始边与 x 轴的非负半轴重合,终边落 在第几象限,则称4、已知 是第几象限角,确定一n *所在象限的方法:先把各象限均分n 等n 份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、 三、四,则 原 来是第几象限对应的标号即为 一终边所落在的区域.n为第几象限角. 第一象限角的集合为第二象限角的集合为 第三象限角的集合为第四象限角的集合为 360°90° k 360° 180°, k180°k 360° 270°,k 270° k 360° 360°, k终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 k 180°,k k 180° 90°,k k 90°, k3、终边相等的角:与角终边相同的角的集合为k 360°,k360°360°360° k 360° 90°,k例4 .设角属于第二象限,且COS—2A .第一象限B .第二象限C.第三象限 D .第四象限解.C 2k 2k,(k Z),k -- k 2/k Z),2n,(n Z)时,一在第一象限;当k 2n 2 1,(n Z)时,一在第三象限;2cos —2 cos2 cos2 0,i在5、1弧度:长度等于半径长的弧所对的圆心角叫做1弧度.平方关系: 2 1 sin cos 2 1, si n 2 1 c 2 2os ,cos 1 2 sin ; 商数关系: 小sin 2 tan , sin tan cos ,cossincostan 13、三角函数的诱导公式:口诀: 奇变偶不变,付号看象限.1 sin 2k sin ,cos 2k cos , tan 2ktan k2 sin sin ,cos cos , tanta n • 3 sin sin , cos cos , tan tan•4 sin sin , coscos , tan ta n• 5 sin - cos ,cos — sin •2 26半径为r 的圆的圆心角 所对弧的长为I ,则角 的弧度数的绝对值是 7、弧度制与角度制的换算公式:2 360° , 1 180,1o 型 57.3。
(完整版)人教高中数学必修四第一章三角函数知识点归纳
三角函数一、随意角、弧度制及随意角的三角函数1.随意角(1)角的观点的推行①按旋转方向不一样分为正角、负角、零角.正角 : 按逆时针方向旋转形成的角随意角 负角: 按顺时针方向旋转形成的角零角 : 不作任何旋转形成的角②按终边地点不一样分为象限角和轴线角.角 的极点与原点重合,角的始边与 x 轴的非负半轴重合,终边落在第几象限,则称 为第几象限角.第一象限角的会合为 k 360ok 360o 90o , k第二象限角的会合为 k 360o 90o k 360o 180o , k第三象限角的会合为 k 360o 180o k 360o 270o , k第四象限角的会合为k 360o 270ok 360o360o , k终边在 x 轴上的角的会合为 k 180o , k终边在 y 轴上的角的会合为 k 180o 90o , k终边在座标轴上的角的会合为k 90o ,k(2)终边与角 α同样的角可写成 α+ k ·360 °(k ∈ Z).终边与角 同样的角的会合为k 360o, k(3)弧度制① 1 弧度的角:把长度等于半径长的弧所对的圆心角叫做1 弧度的角.②弧度与角度的换算: 360°= 2π弧度; 180°= π弧度.③ 半径为 r 的圆的圆心角所对弧的长为 l ,则角的弧度数的绝对值是lr④ 若扇形的圆心角为 为弧度制 ,半径为 r ,弧长为 l ,周长为 C ,面积为 S ,则 lr,C2r l ,S1 lr 1 r2 . 222 .随意角的三角函数定义设 α是一个随意角,角 α的终边上随意一点P(x , y),它与原点的距离为 r rx 2 y 2 ,那么角 α的正弦、余弦、rrx(三角函数值在各象限的符号规律归纳为:一全正、二正弦、三正切分别是: sin α= y , cos α= x , tan α= y.正切、四余弦)3.特别角的三角函数值角度030456090120135150180270360函数角 a 的弧度0π /6π/4π /3π /22π /33π /45π/6π3π /22πsina01/2√ 2/2√ 3/21√ 3/2√ 2/21/20-10 cosa1√ 3/2√ 2/21/20-1/2-√ 2/2-√ 3/2-101 tana0√ 3/31√ 3-√ 3-1-√ 3/300二、同角三角函数的基本关系与引诱公式A.基础梳理1.同角三角函数的基本关系(1)平方关系: sin2α+ cos2α= 1;(在利用同角三角函数的平方关系时,若开方,要特别注意判断符号)sin α(2)商数关系:=tanα.(3)倒数关系:tan cot 1cos α2.引诱公式公式一: sin( α+ 2kπ)=sin α, cos(α+ 2kπ)=cos_α,tan(2k )tan此中 k∈Z .公式二: sin( π+α)=- sin_α, cos( π+α)=- cos_α, tan( π+α)= tan α.公式三: sin( π-α)= sin α, cos( π-α)=- cos_α,tan tan.公式四: sin( -α)=- sin_α, cos(-α)= cos_α,tan tan .ππ公式五: sin -α= cos_α, cos-α= sin α.22ππ公式六: sin 2+α= cos_α, cos2+α=- sin_α.π口诀:奇变偶不变,符号看象限.此中的奇、偶是指π引诱公式可归纳为 k· ±α的各三角函数值的化简公式.的奇数22倍和偶数倍,变与不变是指函数名称的变化.假如奇数倍,则函数名称要变( 正弦变余弦,余弦变正弦 ) ;假如偶数倍,则函数名称不变,符号看象限是指:把πα当作锐角时,依据 k· ±α在哪个象限判断原三角函数值的符号,最后作为结....2...果符号.B. 方法与重点一个口诀1、引诱公式的记忆口诀为:奇变偶不变,符号看象限.2、四种方法在求值与化简时,常用方法有:sin α(1)弦切互化法:主要利用公式tan α=化成正、余弦.cos α(2)和积变换法:利用 (sin θ±cos θ)2=1 ±2sin θcos θ的关系进行变形、转变.( sin cos、sin cos、sin cos三个式子知一可求二)(3)巧用 “1”的变换: 1= sin 2θ+ cos 2θ= sinπ=tan 42(4)齐次式化切法:已知 tank ,则 a sinbcos a tan b ak bm sinn cos m tan n mk n三、三角函数的图像与性质学习目标:1 会求三角函数的定义域、值域2 会求三角函数的周期 :定义法,公式法,图像法(如y sin x 与 y cosx 的周期是)。
人教版高中数学必修四常见公式及知识点总结(完整版)
必修四常考公式及高频考点第一部分 三角函数与三角恒等变换考点一 角的表示方法 1.终边相同角的表示方法:所有与角α终边相同的角,连同角α在内可以构成一个集合:{β|β= k ·360 °+α,k ∈Z } 2.象限角的表示方法:第一象限角的集合为{α| k ·360 °<α<k ·360 °+90 °,k ∈Z }第二象限角的集合为{α| k ·360 °+90 °<α<k ·360 °+180 °,k ∈Z } 第三象限角的集合为{α| k ·360 °+180 °<α<k ·360 °+270 °,k ∈Z } 第四象限角的集合为{α| k ·360 °+270 °<α<k ·360 °+360 °,k ∈Z } 3.终边在某条射线、某条直线或两条垂直的直线上(如轴线角)的表示方法:(1)若所求角β的终边在某条射线上,其集合表示形式为{β|β= k ·360 °+α,k ∈Z },其中α为射线与x 轴非负半轴形成的夹角(2)若所求角β的终边在某条直线上,其集合表示形式为{β|β= k ·180 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角(3)若所求角β的终边在两条垂直的直线上,其集合表示形式为{β|β= k ·90 °+α,k ∈Z },其中α为直线与x 轴非负半轴形成的任一夹角 例:终边在y 轴非正半轴上的角的集合为{α|α= k ·360 °+270 °,k ∈Z }终边在第二、第四象限角平分线上的集合为{α|α= k ·180 °+135 °,k ∈Z } 终边在四个象限角平分线上的角的集合为{α|α= k ·90 °+45 °,k ∈Z } 易错提醒:区别锐角、小于90度的角、第一象限角、0~90、小于180度的角 考点二 弧度制有关概念与公式 1.弧度制与角度制互化π=︒180,1801π=︒,1弧度︒≈︒=3.57180π2.扇形的弧长和面积公式(分别用角度制、弧度制表示方法)弧长公式:R Rn l απ==180, 其中α为弧所对圆心角的弧度数 扇形面积公式:lR R n S 213602==π=12 R 2|α|, 其中α为弧所对圆心角的弧度数 易错提醒:利用S=12R 2|α|求解扇形面积公式时,α为弧所对圆心角的弧度数,不可用角度数规律总结:“扇形周长、面积、半径、圆心角”4个量,“知二求二”,注意公式选取技巧考点三 任意角的三角函数 1.任意角的三角函数定义设α是一个任意角,它的终边与单位圆交于点()y x P ,,那么sin y r α=,cos x r α=,tan y x α=(22||r OP x y ==+);化简为xyx y ===αααtan ,cos ,sin . 2.三角函数值符号规律总结:利用三角函数定义或“一全正、二正弦、三正切、四余弦”口诀记忆象限角或轴线角的三角函数值符号. 3.特殊角三角函数值SIN15º=SIN(60º-45º)=SIN60ºCOS45º-SIN45ºCOS60º=(√6-√2)/4 COS15º=COS(60º-45º)=COS60ºCOS45º+SIN60ºSIN45º=(√6+√2)/4除此之外,还需记住150、750的正弦、余弦、正切值 4.三角函数线经典结论: (1)若(0,)2x π∈,则sin tan x x x <<(2)若(0,)2x π∈,则1sin cos 2x x <+≤(3)|sin ||cos |1x x +≥考点四 三角函数图像与性质y OxyOxα终边yOx yOx P M A TPM A T正弦线余弦线 正切线PP MA TP MA T α终边α终边α终边sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R最值当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=-()k ∈Z 时,min1y=-.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =-.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数偶函数奇函数单调性在2,222k k ππππ⎡⎤-+⎢⎥⎣⎦()k ∈Z 上是增函数; 在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫-+⎪⎝⎭()k ∈Z 上是增函数.对称性对称中心()(),0k k π∈Z对称轴()2x k k ππ=+∈Z 对称中心(),02k k ππ⎛⎫+∈Z⎪⎝⎭对称轴()x k k π=∈Z对称中心(),02k k π⎛⎫∈Z⎪⎝⎭无对称轴考点五 正弦型(y=Asin(ωx +φ))、余弦型函数(y=Acos(ωx +φ))、正切性函数(y=Atan(ωx +φ))图像与性质 1.解析式求法字母 确定途径 说明A 由最值确定 A =最大值-最小值2B 由最值确定B =最大值+最小值2ω 由函数的周期确定相邻的最高点与最低点的横坐标之差的绝对值为半个周期,最高点(或最低点)的横坐标与相邻零点差的绝对值为0.25个周期φ由图象上的特殊点确定可通过认定特殊点是五点中的第几个关键点,然后列方程确定;也可通过解简单三角方程确定A 、B 通过图像易求,重点讲解φ、ω求解思路: ①φ求解思路:函数性质代入图像的确定点的坐标.如带入最高点),(11y x 或最低点坐标),(22y x ,则)(221Z k k x ∈+=+ππϕω或)(2232Z k k x ∈+=+ππϕω,求ϕ值. 易错提醒:y=Asin(ωx+φ),当ω>0,且x=0时的相位(ωx+φ=φ)称为初相.如果不满足ω>0,先利用诱导公式进行变形,使之满足上述条件,再进行计算.如y=-3sin(-2x+600)的初相是-600②ω求解思路:利用三角函数对称性与周期性的关系,解ω.相邻的对称中心之间的距离是周期的一半;相邻的对称轴之间的距离是周期的一半;相邻的对称中心与对称轴之间的距离是周期的四分之一. 2.“一图、两域、四性” “一图”:学好三角函数,图像是关键。
(完整版)新课标人教A版高中数学必修四三角函数知识点总结,推荐文档
高中数学必修4三角函数知识点总结§1.1.1、任意角1、 正角、负角、零角、象限角的概念.2、 与角终边相同的角的集合:.α{}Z k k ∈+=,2παββ§1.1.2、弧度制1、 把长度等于半径长的弧所对的圆心角叫做1弧度的角.2、 .rl =α3、弧长公式:.R Rn l απ==1804、扇形面积公式:.lR R n S 213602==π§1.2.1、任意角的三角函数1、 设是一个任意角,它的终边与单位圆交于点,那么:α()y x P ,xyx y ===αααtan ,cos ,sin 2、 设点为角终边上任意一点,那么:(设)(),A x yαr =,,,sin y r α=cos x r α=tan yx α=cot x yα=3、 ,,在四个象限的符号和三角函数线的画法.αsin αcos αtan 正弦线:MP; 余弦线:OM; 正切线:AT 4、 特殊角0°,30°,45°,60°,90°,180°,270等的三角函数值.α6π4π3π2π23π34ππ32π2πsin αcos αtan α§1.2.2、同角三角函数的基本关系式1、 平方关系:.1cos sin 22=+αα2、 商数关系:.αααcos sin tan =3、 倒数关系:tan cot 1αα=§1.3、三角函数的诱导公式(概括为“奇变偶不变,符号看象限”)Z k ∈1、 诱导公式一: (其中:(),cos 2cos ,sin 2sin απααπα=+=+k k )Z k ∈2、 诱导公式二: ()()().tan tan ,cos cos ,sin sin ααπααπααπ=+-=+-=+3、诱导公式三: ()()().tan tan ,cos cos ,sin sin αααααα-=-=--=-4、诱导公式四: ()()().tan tan ,cos cos ,sin sin ααπααπααπ-=--=-=-5、诱导公式五:.sin 2cos ,cos 2sin ααπααπ=⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-6、诱导公式六:.sin 2cos ,cos 2sin ααπααπ-=⎪⎭⎫⎝⎛+=⎪⎭⎫⎝⎛+§1.4.1、正弦、余弦函数的图象和性质、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大最小值、对称轴、对称中心、奇偶性、单调性、周期性.3、会用五点法作图.在上的五个关键点为: sin y x =[0,2]x π∈30010-12022ππππ(,)(,,)(,,)(,,)(,,).§1.4.3、正切函数的图象与性质1、记住正切函数的图象:2、记住余切函数的图象:3、能够对照图象讲出正切函数的相关性质:定义域、值域、对称中心、奇偶性、单调性、周期性.周期函数定义:对于函数,如果存在一个非零常数T ,使得当取定义域内的每一个值时,都有()x f x ,那么函数就叫做周期函数,非零常数T 叫做这个函数的周期.()()x f T x f =+()x f图表归纳:正弦、余弦、正切函数的图像及其性质xysin =xycos =xy tan =图象定义域RR},2|{Z k k x x ∈+≠ππ值域[-1,1][-1,1]R最值max min 2,122,12x k k Z y x k k Z y ππππ=+∈==-∈=-时,时,max min 2,12,1x k k Z y x k k Z y πππ=∈==+∈=-时,时,无周期性π2=T π2=T π=T 奇偶性奇偶奇单调性Zk ∈在上单调递增[2,2]22k k ππππ-+在上单调递减3[2,2]22k k ππππ++在上单调递增[2,2]k k πππ-在上单调递减[2,2]k k πππ+在上单调递(,)22k k ππππ-+增对称性Zk ∈对称轴方程:2x k ππ=+对称中心(,0)k π对称轴方程:x k π=对称中心(,0)2k ππ+无对称轴对称中心,0)(2k π§1.5、函数的图象()ϕω+=x A y sin 1、对于函数:有:振幅A ,周期,初相,相位,频率()()sin 0,0y A x B A ωφω=++>>2T πω=ϕϕω+x .πω21==Tf 2、能够讲出函数的图象与x y sin =的图象之间的平移伸缩变换关系.()sin y A x B ωϕ=++①先平移后伸缩:平移个单位sin y x =||ϕ()sin y x ϕ=+()sin y A x ϕ=+纵坐标变为原来的A 倍()sin y A x ωϕ=+横坐标变为原来的倍1||ω()sin A x Bωϕ=++(上加下减)②先伸缩后平移:sin y =sin y A x =纵坐标变为原来的A 倍sin y A xω=横坐标变为原来的倍1||ω()sin A x ωϕ=+()sin A x Bωϕ=++(上加下减)3、三角函数的周期,对称轴和对称中心函数,x∈R 及函数,x∈R(A,,为常数,且A ≠0)的周期;sin()y x ωϕ=+cos()y x ωϕ=+ωϕ2||T πω=函数,(A,ω,为常数,且A ≠0)的周期.tan()y x ωϕ=+,2x k k Z ππ≠+∈ϕ||T πω=对于和来说,对称中心与零点相联系,对称轴与最值点联系.sin()y A x ωϕ=+cos()y A x ωϕ=+求函数图像的对称轴与对称中心,只需令与sin()y A x ωϕ=+()2x k k Z πωϕπ+=+∈()x k k Z ωϕπ+=∈解出即可.余弦函数可与正弦函数类比可得.x 4、由图像确定三角函数的解析式利用图像特征:,.max min 2y y A -=max min2y y B +=要根据周期来求,要用图像的关键点来求.ωϕ§1.6、三角函数模型的简单应用1、 要求熟悉课本例题.第三章、三角恒等变换§3.1.1、两角差的余弦公式记住15°的三角函数值:ααsin αcos αtan 12π426-426+32-§3.1.2、两角和与差的正弦、余弦、正切公式1、()βαβαβαsin cos cos sin sin +=+2、()βαβαβαsin cos cos sin sin -=-3、()βαβαβαsin sin cos cos cos -=+4、()βαβαβαsin sin cos cos cos +=-5、.()tan tan 1tan tan tan αβαβαβ+-+=6、.()tan tan 1tan tan tan αβαβαβ-+-=§3.1.3、二倍角的正弦、余弦、正切公式1、,αααcos sin 22sin =.12sin cos sin 2ααα=2、ααα22sin cos 2cos -=1cos 22-=α.α2sin 21-=变形如下:升幂公式:222cos 1cos 22sin ααα=⎨-=⎪⎩降幂公式:221cos (1cos 2)21sin (1cos 2)2αααα=+=-⎧⎪⎨⎪⎩3、.ααα2tan 1tan 22tan -=4、sin 21cos 2tan 1cos 2sin 2ααααα-==+§3.2、简单的三角恒等变换1、注意正切化弦、平方降次.2、辅助角公式)sin(cos sin 22ϕ++=+=x b a x b x a y (其中辅助角所在象限由点的象限决定, ).ϕ(,)a b tan b aϕ=第二章:平面向量§2.1.1、向量的物理背景与概念1、 了解四种常见向量:力、位移、速度、加速度.2、 既有大小又有方向的量叫做向量.§2.1.2、向量的几何表示1、 带有方向的线段叫做有向线段,有向线段包含三个要素:起点、方向、长度.2、 向量的大小,也就是向量的长度(或称模),记作;长度为零的向量叫做零向量;长度AB AB AB等于1个单位的向量叫做单位向量.3、 方向相同或相反的非零向量叫做平行向量(或共线向量).规定:零向量与任意向量平行.§2.1.3、相等向量与共线向量1、 长度相等且方向相同的向量叫做相等向量.§2.2.1、向量加法运算及其几何意义1、 三角形加法法则和平行四边形加法法则.2§2.2.2、向量减法运算及其几何意义1、 与长度相等方向相反的向量叫做的相反向量.a a2、 三角形减法法则和平行四边形减法法则.§2.2.3、向量数乘运算及其几何意义1、 规定:实数与向量的积是一个向量,这种运算叫做向量的数乘.记作:,它的长度和方向规λa a λ定如下: ⑵当时, 的方向与的方向相同;当时, 的方向与的方向相反.0>λa λa 0<λa λa 2、 平面向量共线定理:向量与 共线,当且仅当有唯一一个实数,使.()0≠a a b λa b λ=§2.3.1、平面向量基本定理1、 平面向量基本定理:如果是同一平面内的两个不共线向量,那么对于这一平面内任一向量,21,e e a 有且只有一对实数,使.21,λλ2211e e a λλ+=§2.3.2、平面向量的正交分解及坐标表示1、 .()y x j y i x a ,=+=§2.3.3、平面向量的坐标运算1、 设,则:()()2211,,,y x b y x a == ⑴,()2121,y y x x b a ++=+⑵,()2121,y y x x b a --=-⑶,()11,y x a λλλ=⑷.1221//y x y x b a =⇔2、 设,则:()()2211,,,y x B y x A .()1212,y y x x AB --=§2.3.4、平面向量共线的坐标表示1、设,则()()()332211,,,,,y x C y x B y x A ⑴线段AB 中点坐标为,()222121,y y x x ++⑵△ABC 的重心坐标为.()33321321,y y y x x x ++++§2.4.1、平面向量数量积的物理背景及其含义1、 .θb a ⋅2、 在.a b θ34.5、 .0=⋅⇔⊥b a b a §2.4.2、平面向量数量积的坐标表示、模、夹角1、 设,则:()()2211,,,y x b y x a ==⑴2121y y x x b a +=⋅2121y x +⑶121200a b a b x x y y ⊥⇔⋅=⇔+=⑷1221//0a b a b x y x y λ⇔=⇔-=2、 设,则:()()2211,,,y x B y x A3、两向量的夹角公式cos a ba bθ⋅==4、点的平移公式平移前的点为(原坐标),平移后的对应点为(新坐标),平移向量为,(,)P x y (,)P x y '''(,)PP h k '=则.x x hy y k '=+⎧⎨'=+⎩ 函数的图像按向量平移后的图像的解析式为()y f x =(,)a h k =().y k f x h -=-§2.5.1、平面几何中的向量方法§2.5.2、向量在物理中的应用举例知识链接:空间向量空间向量的许多知识可由平面向量的知识类比而得.下面对空间向量在立体几何中证明,求值的应用进行总结归纳.1、直线的方向向量和平面的法向量⑴.直线的方向向量: 若A 、B 是直线上的任意两点,则为直线的一个方向向量;与平行的任意非零向量也是l AB l AB直线的方向向量.l ⑵.平面的法向量: 若向量所在直线垂直于平面,则称这个向量垂直于平面,记作,如果,那么向量nααn α⊥ n α⊥ 叫做平面的法向量.nα⑶.平面的法向量的求法(待定系数法): ①建立适当的坐标系.②设平面的法向量为.α(,,)n x y z =③求出平面内两个不共线向量的坐标.123123(,,),(,,)a a a a b b b b ==④根据法向量定义建立方程组.n a n b ⎧⋅=⎪⎨⋅=⎪⎩ ⑤解方程组,取其中一组解,即得平面的法向量.α(如图)建议收藏下载本文,以便随时学习!2、用向量方法判定空间中的平行关系⑴线线平行设直线的方向向量分别是,则要证明∥,只需证明∥,即.12,l l a b 、1l 2l a b ()a kb k R =∈ 即:两直线平行或重合两直线的方向向量共线.⑵线面平行①(法一)设直线的方向向量是,平面的法向量是,则要证明∥,只需证明,即l a αul αa u ⊥ .0a u ⋅= 即:直线与平面平行直线的方向向量与该平面的法向量垂直且直线在平面外②(法二)要证明一条直线和一个平面平行,也可以在平面内找一个向量与已知直线的方向向量是共线向量即可.⑶面面平行若平面的法向量为,平面的法向量为,要证∥,只需证∥,即证.αu βv αβu vu v λ= 即:两平面平行或重合两平面的法向量共线.3、用向量方法判定空间的垂直关系⑴线线垂直设直线的方向向量分别是,则要证明,只需证明,即.12,l l a b、12l l ⊥a b ⊥ 0a b ⋅= 即:两直线垂直两直线的方向向量垂直.⑵线面垂直①(法一)设直线的方向向量是,平面的法向量是,则要证明,只需证明∥,即l a αu l α⊥a u.a u λ= ②(法二)设直线的方向向量是,平面内的两个相交向量分别为,若l a αm n 、0,.a m l a n α⎧⋅=⎪⊥⎨⋅=⎪⎩则即:直线与平面垂直直线的方向向量与平面的法向量共线直线的方向向量与平面内两条不共线直线的方向向量都垂直.⑶面面垂直若平面的法向量为,平面的法向量为,要证,只需证,即证.αuβv αβ⊥u v ⊥ 0u v ⋅= 即:两平面垂直两平面的法向量垂直.4、利用向量求空间角⑴求异面直线所成的角已知为两异面直线,A ,C 与B ,D 分别是上的任意两点,所成的角为,,a b ,a b ,a b θ 则cos .AC BDAC BDθ⋅=9⑵求直线和平面所成的角①定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角②求法:设直线的方向向量为,平面的法向量为,直线与平面所成的角为,与的夹角为l a αu θa u , 则为的余角或的补角ϕθϕϕ的余角.即有:cos s .in a u a uϕθ⋅== ⑶求二面角①定义:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面二面角的平面角是指在二面角的棱上任取一点O ,分别在两个半平面内作射线βα--l ,则为二面角的平面角.l BO l AO ⊥⊥,AOB ∠βα--l 如图:②求法:设二面角的两个半平面的法向量分别为,再设的夹角为,二面角l αβ--m n 、m n 、ϕ的平面角为,则二面角为的夹角或其补角l αβ--θθm n 、ϕ.πϕ-根据具体图形确定是锐角或是钝角:θ◆如果是锐角,则,θcos cos m n m nθϕ⋅== 即;arccos m n m nθ⋅= ◆如果是钝角,则,θcos cos m n m nθϕ⋅=-=- 即.arccos m n m n θ⎛⎫⋅ ⎪=- ⎪⎝⎭5、利用法向量求空间距离⑴点Q 到直线距离l 若Q 为直线外的一点,在直线上,为直线的方向向量,=,则点Q 到直线距离为l P l a l b PQ l h =⑵点A 到平面的距离α若点P 为平面外一点,点M 为平面内任一点,αα平面的法向量为,则P 到平面的距离就等于在法向量方向上的投影的绝对值.αn αMP n 即cos ,d MP n MP=10n MP MP n MP ⋅=⋅ n MP n⋅= ⑶直线与平面之间的距离a α 当一条直线和一个平面平行时,直线上的各点到平面的距离相等.由此可知,直线到平面的距离可转化为求直线上任一点到平面的距离,即转化为点面距离.即.n MP d n ⋅= ⑷两平行平面之间的距离,αβ 利用两平行平面间的距离处处相等,可将两平行平面间的距离转化为求点面距离.即.n MP d n⋅= ⑸异面直线间的距离设向量与两异面直线都垂直,则两异面直线间的距离就是在向量方n ,a b ,,M a P b ∈∈,a b d MP n 向上投影的绝对值. 即.n MP d n⋅= 6、三垂线定理及其逆定理⑴三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直推理模式:,,PO O PA A a PAa a OA αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于射影就垂直于斜线.⑵三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直推理模式:,,PO O PA A a AOa a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭概括为:垂直于斜线就垂直于射影.7、三余弦定理设AC 是平面内的任一条直线,AD 是的一条斜线AB 在内的射影,且BD⊥AD,垂足为D.设AB ααα与 α(AD)所成的角为, AD 与AC 所成的角为, AB 与AC 所1θ2θ11成的角为.则.θ12cos cos cos θθθ=8、 面积射影定理已知平面内一个多边形的面积为,它在平面内的射影图形的面积为,平面与β()S S 原α()S S '射α平面所成的二面角的大小为锐二面角,则βθ 'cos =.S S S S θ=射原9、一个结论长度为的线段在三条两两互相垂直的直线上的射影长分别为,夹角分别为,则l 123l l l 、、123θθθ、、有 .2222123l l l l =++222123cos cos cos 1θθθ⇔++=222123sin sin sin 2θθθ⇔++=(立体几何中长方体对角线长的公式是其特例).。
(完整版)高中必修四三角函数知识点总结
§04。
三角函数 知识要点1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+⨯=,360|αββ②终边在x 轴上的角的集合: {}Z k k ∈⨯=,180|ββ ③终边在y 轴上的角的集合:{}Z k k ∈+⨯=,90180|ββ ④终边在坐标轴上的角的集合:{}Z k k ∈⨯=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+⨯=,45180| ββ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-⨯=,45180| ββ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0。
01745 1=57。
30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.、弧度与角度互换公式: 1rad =π180°≈57。
30°=57°18ˊ. 1°=180π≈0。
01745(rad )3、弧长公式:rl ⋅=||α。
扇形面积公式:211||22s lr r α==⋅扇形4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y)P与原点的距离为r,则 ry =αsin ; rx =αcos ; =αtan yx=αcot ; xr =αsec ;。
yr=αcsc 。
5、三角函数在各象限的符号:(一全二正弦,三切四余弦)正切、余切余弦、正割正弦、余割6、三角函数线正弦线:MP ; 余弦线:OM; 正切线: AT.SIN \COS 三角函数值大小关系图1、2、3、4表示第一、二、三、四象限一半所在区域16. 几个重要结论:8、同角三角函数的基本关系式:αααtan cos sin = αααcot sin cos = 1cot tan =⋅αα 1sin csc =α⋅α 1cos sec =α⋅α1cos sin 22=+αα 1tan sec 22=-αα 1cot csc 22=-αα9、诱导公式:2k παα±把的三角函数化为的三角函数,概括为: “奇变偶不变,符号看象限"公式组二 公式组三(完整版)高中必修四三角函数知识点总结x x k x x k x x k x x k cot )2cot(tan )2tan(cos )2cos(sin )2sin(=+=+=+=+ππππ x x x x xx x x cot )cot(tan )tan(cos )cos(sin )sin(-=--=-=--=- 公式组四 公式组五 公式组六xx x x x x xx cot )cot(tan )tan(cos )cos(sin )sin(=+=+-=+-=+ππππ xx x x x x xx cot )2cot(tan )2tan(cos )2cos(sin )2sin(-=--=-=--=-ππππ xx x x xx xx cot )cot(tan )tan(cos )cos(sin )sin(-=--=--=-=-ππππ(二)角与角之间的互换公式组一 公式组二 βαβαβαsin sin cos cos )cos(-=+ αααcos sin 22sin =βαβαβαsin sin cos cos )cos(+=- ααααα2222sin 211cos 2sin cos 2cos -=-=-= βαβαβαsin cos cos sin )sin(+=+ ααα2tan 1tan 22tan -=βαβαβαsin cos cos sin )sin(-=- 2cos 12sinαα-±= βαβαβαtan tan 1tan tan )tan(-+=+ 2cos 12cos αα+±=βαβαβαtan tan 1tan tan )tan(+-=- 公式组三 公式组四 公式组五2tan 12tan2sin 2ααα+= 2tan 12tan 1cos 22ααα+-= 2tan 12tan2tan 2ααα-=42675cos 15sin -== ,42615cos 75sin +== ,3275cot 15tan -== ,3215cot 75tan +== 。
必修四三角函数知识点经典总结
必修四三角函数知识点经典总结高一必修四:三角函数一任意角的概念与弧度制(一)角的概念的推广 1、角概念的推广:在平面,一条射线绕它的端点旋转有两个相反的方向,旋转多少度角算是多少度角。
按别同方向旋转的角可分为正角和负角,其中逆时针方向旋转的角叫做正角,顺时针方向的叫做负角;当射线没有旋转时,我们把它叫做零角。
适应上将平面直角坐标系x 轴正半轴作为角的起始边,叫做角的始边。
射线旋转停止时对应的边叫角的终边。
2、特别命名的角的定义:(1)正角,负角,零角:见上文。
(2)象限角:角的终边降在象限的角,依照角终边所在的象限把象限角分为:第一象限角、第二象限角等(3)轴线角:角的终边降在坐标轴上的角终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ 终边在y 轴上的角的集合: {}Z k k ∈+?=,90180| ββ 终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ (4)终边相同的角:与α终边相同的角2x k απ=+ (5)与α终边反向的角:(21)x k απ=++终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ 终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ(6)若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 (7)成特别关系的两角若角α与角β的终边对于x 轴对称,则角α与角β的关系:βα-=k 360 若角α与角β的终边对于y 轴对称,则角α与角β的关系:βα-+= 180360k 若角α与角β的终边互相垂直,则角α与角β的关系:90360±+=βαk 注:(1)角的集合表示形式别唯一.(2)终边相同的角别一定相等,相等的角终边一定相同. 3、本节要紧题型: 1.表示终边位于指定区间的角.例1:写出在720-?到720?之间与1050-?的终边相同的角. 例2:若α是第二象限的角,则2,2αα是第几象限的角?写出它们的普通表达形式.例3:①写出终边在y 轴上的集合.②写出终边和函数y x =-的图像重合,试写出角α 的集合. ③α在第二象限角,试确定2,,23ααα所在的象限.④θ角终边与168?角终边相同,求在[0,360)??与3θ终边相同的角.(二)弧度制1、弧度制的定义:l Rα=2、角度与弧度的换算公式:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.一具式子中别能角度,弧度混用. 3、题型(1)角度与弧度的互化例:74315,330,,63ππ?? (2)L R α=,211,22l r s lr r αα===的应用咨询题例1:已知扇形周长10cm ,面积24cm ,求中心角.例2:已知扇形弧度数为72?,半径等于20cm ,求扇形的面积.例3:已知扇形周长40cm ,半径和圆心角取多大时,面积最大. 例4:12123 7570,750,,53ααβπβπ=-?=?==- a.求出12,αα弧度,象限.b.12,ββ用角度表示出,并在720~0-??之间找出,他们有相同终边的所有角. 二任意角三角函数(一)三角函数的定义 1、任意角的三角函数定义正弦r y =αsin ,余弦r x=αcos ,正切xy =αtan 2(二)单位圆与三角函数线1、单位圆的三角函数线定义如图(1)PM表示α角的正弦值,叫做正弦线。
人教版数学必修四三角函数复习讲义
第一讲 任意角与三角函数诱导公式1. 知识要点 角的概念的推广:平面内一条射线绕着端点从一个位置旋转到另一个位置所的图形。
按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角,一条射线没有作任何旋转时,称它形成一个零角。
射线的起始位置称为始边,终止位置称为终边。
象限角的概念:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。
如果角的终边在坐标轴上,就认为这个角不属于任何象限。
终边相同的角的表示:α终边与θ终边相同(α的终边在θ终边所在射线上)⇔2()k k αθπ=+∈Z 。
注意:相等的角的终边一定相同,终边相同的角不一定相等.α终边在x 轴上的角可表示为:,k k Z απ=∈; α终边在y 轴上的角可表示为:,2k k Z παπ=+∈;α终边在坐标轴上的角可表示为:,2k k Z πα=∈. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.α与2α的终边关系:任意角的三角函数的定义:设α是任意一个角,P (,)x y 是α的终边上的任意一点(异于原点),它与原点的距离是0r =>,那么sin ,cos yx r rαα==,()tan ,0y x x α=≠,cot x y α=(0)y ≠,sec rxα=()0x ≠,()csc 0r y y α=≠。
三角函数值只与角的大小有关,而与终边上点P的位置无关。
三角函数线的特征:正弦线M P“站在x 轴上(起点在x 轴上)”、余弦线O M“躺在x 轴上(起点是原点)”、正切线AT“站在点(1,0)A 处(起点是A )”同角三角函数的基本关系式:1. 平方关系:222222sin cos 1,1tan sec ,1cot csc αααααα+=+=+=2. 倒数关系:s in αc scα=1,cos αse cα=1,tan αcot α=1,3. 商数关系:sin cos tan ,cot cos sin αααααα==注意:1.角α的任意性。
必修四三角函数和三角恒等变换知识点及题型分类总结
必修四三角函数和三角恒等变换知识点及题型分类总结三角函数知识点总结1、任意角: 正角:;负角:;零角:; 2、角得顶点与重合,角得始边与重合,终边落在第几象限,则称为第几象限角、第一象限角得集合为第二象限角得集合为第三象限角得集合为第四象限角得集合为终边在轴上得角得集合为终边在轴上得角得集合为终边在坐标轴上得角得集合为3、与角终边相同得角得集合为4 4 、已知就就是第几象限角,确定所在象限得方法: : 先把各象限均分等份, , 再从轴得正半轴得上方起, , 依次将各区域标上一、二、三、四, , 则原来就就是第几象限对应得标号即为终边所落在得区域、5、叫做弧度、6、半径为得圆得圆心角所对弧得长为,则角得弧度数得绝对值就就是、7、弧度制与角度制得换算公式:8 、若扇形得圆心角为, 半径为,弧长为, 周长为,面积为, 则l=、S=9、设就就是一个任意大小得角,得终边上任意一点得坐标就就是,它与原点得距离就就是,则,,、10、三角函数在各象限得符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正、11、三角函数线:、12 、同角三角函数得基本关系:(1);(2); ; (3) )13、三角函数得诱导公式: ,,、,,、,,、,,、,、,、口诀: : 奇变偶不变, , 符号瞧象限、重要公式⑴;⑵;⑶;⑷; ⑸(); ⑹()、二倍角得正弦、余弦与正切公式: ⑴、(2)(,)、⑶、公式得变形: :, 辅助角公式,其中、14、函数得图象平移变换变成函数得图象、15、函数得性质:① 振幅:; ② 周期:; ③ 频率:; ④ 相位:; ⑤ 初相:、16、图像正弦函数、余弦函数与正切函数得图象与性质:三角函数题型分类总结一.求值1、===2、(1)7 (07 全国Ⅰ) ) 就就是第四象限角,,则(2)(09 北京文)若,则、(3)(09 全国卷Ⅱ文)已知△ABC 中,,则、(4) 就就是第三象限角,,则==3 3 、(1))((7 07 陕西) ) 已知则=、(2)(04全国文)设,若,则=、(3)(06 福建)已知则=4 4 (0 0 7重庆) )下列各式中,值为得就就是()(A) (B)(C)(D) 5、(1 )(0 7福建) ) =(2)(06陕西)=。
必修4第一章三角函数知识点详解
(2)公式变形使用( 。
(3)三角函数次数的降升(降幂公式: , 与升幂公式: , )。
(4)常值变换主要指“1”的变换
(5)正余弦“三兄妹— ”的存联系――“知一求二”,如
注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.
、弧度与角度互换公式:1rad= °≈57.30°=57°18ˊ. 1°= ≈0.01745(rad)
五: 弧长公式:
,扇形面积公式: ,1弧度(1rad) .
1.2任意角的三角函数
一: 任意角的三角函数的定义:
设 是任意一个角,P 是 的终边上的任意一点(异于原点),它与原点的距离是 ,那么 , , , , 。三角函数值只与角的大小有关,而与终边上点P的位置无关。
正角:按逆时针方向旋转所形成的角.
负角:按顺时针方向旋转所形成的角.
零角:如果一条射线没有做任何旋转,我们称它形成了一个零角.
角的概念是通过角的终边的运动来推广的,既有旋转方向,又有旋转大小,同时没有旋转也是一个角,从而得到正角、负角和零角的定义.
二: 象限角的概念:
在直角坐标系中,使角的顶点与原点重合,角的始边与 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。
0°
90°
180°
270°
15°
75°
0
1
0
-1
1
0
-1
0
1
0
0
2-
2+
1
0
0
人教版数学必修四三角函数知识点总结
人教版数学必修四三角函数知识点总结三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。
下面是整理的人教版数学必修四三角函数知识点,仅供参考希望能够帮助到大家。
人教版数学必修四三角函数知识点三角函数常用公式正弦函数sinθ=y/r余弦函数cosθ=x/r正切函数tanθ=y/x余切函数cotθ=x/y正割函数secθ=r/x余割函数cscθ=r/y三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三角和sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-si nα·sinβ·sinγcos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sin α·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)/(1-tanα·tanβ-t anβ·tanγ-tanγ·tanα)两角和差cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积sinθ+sinφ = 2 sin[(θ+φ)/2] cos[(θ-φ)/2]sinθ-sinφ = 2 cos[(θ+φ)/2] sin[(θ-φ)/2]cosθ+cosφ = 2 cos[(θ+φ)/2] cos[(θ-φ)/2]cosθ-cosφ = -2 sin[(θ+φ)/2] sin[(θ-φ)/2]tanA+tanB=sin(A+B)/cosAcosB=tan(A+B)(1-tanAtanB)tanA-tanB=sin(A-B)/cosAcosB=tan(A-B)(1+tanAtanB)口诀:正加正,正在前,余加余,余并肩,正减正,余在前,余减余,负正弦.积化和差sinαsinβ = [cos(α-β)-cos(α+β)] /2cosαcosβ = [cos(α+β)+cos(α-β)]/2sinαcosβ = [sin(α+β)+sin(α-β)]/2cosαsinβ = [sin(α+β)-sin(α-β)]/2同角三角函数关系倒数关系: tanα ·cotα=1 sinα ·cscα=1 cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα平方关系:sin(α)+cos(α)=1 1+tan(α)=sec(α) 1+cot(α)=csc(α)诱导公式sin(-α) = -sinαcos(-α) = cosαtan (—a)=-tanαsin(π/2-α) = cosαcos(π/2-α) = sinαsin(π/2+α) = cosαcos(π/2+α) = -sinαsin(π-α) = sinαc os(π-α) = -cosαsin(π+α) = -sinαcos(π+α) = -cosαtanA= sinA/cosAtan(π/2+α)=-cotαtan(π/2-α)=cotαtan(π-α)=-tanαtan(π+α)=tanα倍角公式Sin2A=2SinA?CosACos2A=CosA-SinA=1-2SinA=2CosA-1tan2A=(2tanA)/(1-tanA)(注:SinA是sinA的平方sin2(A) )半角公式sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sin α降幂公式sin(α)=(1-cos(2α))/2=ver,通过预习,掌握度要达到百分之八十.带着预习中不明白的问题去听老师讲课,来解答这类的问题.预习还可以使听课的整体效率提高.具体的预习方法:将书上的题目做完,画出知识点,整个过程大约持续15-20分钟.在时间允许的情况下,还可以将练习册做完.让数学课学与练结合.在数学课上,光听是没用的.当老师让同学去黑板上演算时,自己也要在草稿纸上练.如果遇到不懂的难题,一定要提出来,不能不求甚解.否则考试遇到类似的题目就可能不会做.听老师讲课时一定要全神贯注,要注意细节问题,否则“千里之堤,毁于蚁穴”.课后及时复习.写完作业后对当天老师讲的内容进行梳理,可以适当地做25分钟左右的课外题.可以根据自己的需要选择适合自己的课外书.其课外题内容大概就是今天上的课.数学直线、平面、简单多面体知识点1.计算异面直线所成角的关键是平移(补形)转化为两直线的夹角计算2.计算直线与平面所成的角关键是作面的垂线找射影,或向量法(直线上向量与平面法向量夹角的余角),三余弦公式(最小角定理),或先运用等积法求点到直线的距离,后虚拟直角三角形求解.注:一斜线与平面上以斜足为顶点的角的两边所成角相等斜线在平面上射影为角的平分线.3.空间平行垂直关系的证明,主要依据相关定义、公理、定理和空间向量进行,请重视线面平行关系、线面垂直关系(三垂线定理及其逆定理)的桥梁作用.注意:书写证明过程需规范.4.直棱柱、正棱柱、平行六面体、长方体、正方体、正四面体、棱锥、正棱锥关于侧棱、侧面、对角面、平行于底的截面的几何体性质.如长方体中:对角线长,棱长总和为,全(表)面积为,(结合可得关于他们的等量关系,结合基本不等式还可建立关于他们的不等关系式),如三棱锥中:侧棱长相等(侧棱与底面所成角相等)顶点在底上射影为底面外心,侧棱两两垂直(两对对棱垂直)顶点在底上射影为底面垂心,斜高长相等(侧面与底面所成相等)且顶点在底上在底面内顶点在底上射影为底面内心.5.求几何体体积的常规方法是:公式法、割补法、等积(转换)法、比例(性质转换)法等.注意:补形:三棱锥三棱柱平行六面体6.多面体是由若干个多边形围成的几何体.棱柱和棱锥是特殊的多面体.正多面体的每个面都是相同边数的正多边形,以每个顶点为其一端都有相同数目的棱,这样的多面体只有五种,即正四面体、正六面体、正八面体、正十二面体、正二十面体.7.球体积公式。
高一数学(人教版)必修4三角函数知识点
{ } 终边在 x 轴上的角的集合为 a a = k ×180 , k Î Z
{ } 终边在 y 轴上的角的集合为 a a = k ×180 + 90 , k Î Z
{ } 终边在坐标轴上的角的集合为 a a = k ×90 , k Î Z
a
a
a ÎⅠ a ÎⅡ a ÎⅢ a ÎⅣ
2
a Î Ⅰ、Ⅲ
2
3
15、正弦函数、余弦函数和正切函数的图象与性质:
函 性质 数
y = sin x
y = cos x
y = tan x
图象
定义域 值域 最值
周期性 奇偶性
单调性
对称性
R
R
ì íx
x
¹
kp
+
p
,k
Î
ü Zý
î
2
þ
[-1,1]
p
当 x = 2kp + (k ÎZ) 时,
2
p
y max
= 1;当
x
=
2kp
②数
y
=
sin
x
的图象上所有点的横坐标伸长(缩短)到原来的
1
w
倍(纵坐标不变),得到函数
y = sin wx 的 图 象 ;再 将 函 数 y = sin wx 的 图 象上 所 有 点 向左 (右 ) 平移
j w
个单位长度,得到函数
y = sin (wx +j)的图象;再将函数 y = sin (wx +j) 的图象上所有点的纵坐标伸长(缩短)到原来的 A 倍(横
公 =
式: 1
±
+
c o sα
; sinα
必修4 三角函数知识
三角函数知识知识点一、三角恒等变换 1.同角三角函数的基本关系式:1cos sin 22=+αα αααtan cos sin = 2.诱导公式 (奇变偶不变,符号看象限;纵变横不变,符号看象限)ααsin )sin(-=- ααcos )cos(=- 3.两角和与差的公式βαβαβαsin cos cos sin )sin(+=+ βαβαβαsin cos cos sin )sin(-=- βαβαβαsin sin cos cos )cos(-=+ βαβαβαsin sin cos cos )cos(+=- βαβαβαtan tan 1tan tan )tan(-+=+ βαβαβαtan tan 1tan tan )tan(+-=-4.倍角公式αααcos sin 22sin = 1cos 2sin 21sin cos 2cos 2222-=-=-=αααααααα2tan 1tan 22tan -=5.降幂公式 22cos 1sin 2αα-= 22cos 1cos 2αα+= ααα2sin 21cos sin = 6.辅角公式x b x a ωωcos sin +)sin(22ϕω++=x b a ,其中)2,2(,tan ππϕϕ-∈=a b 8.补充公式ααααα2sin 1cos sin 21)cos (sin 2±=±=±, 2cos2sin sin 1ααα±=±附:象限角(1)已知),(yxP是α终边上的一点(原点除外),且22yxr+=,则xyrxry===αααtan,cos,sin。
(2)若α是第二象限角,那么2α是第几象限角?知识点二、三角函数的图象与性质图象定义域值域]1,1[-]1,1[-最值当且仅当22ππ+=kx时取到最大值1;当且仅当22ππ-=kx时取到最小值1-当且仅当πkx2=时取到最大值1;当且仅当ππ-=kx2时取到最小值1-周期最小正周期为π2最小正周期为π2奇偶性奇函数偶函数单调性在]22,22[ππππ+-kk上单调增;在]232,22[ππππ++kk上单调减在]2,2[πππkk-上单调增;在]2,2[πππ+kk上单调减对称性对称轴2ππ+=kx;对称中心)0,(πk对称轴πkx=;对称中心)0,2(ππ+k说明:表格中的k都是属于Z,在选择“代表”的区间或点时,先尽量选择离坐标原点近的,再尽量选择正的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
必修四《三角函数》所有知识点、公式(必须会背)
1.终边相同的角:
与角α有相同终边的角的集合为:_______________________________. 2.象限角的集合
(1)第一象限角的集合:_______________________________________
(2)第二象限角的集合:_______________________________________
(3)第三象限角的集合:_______________________________________
(4)第四象限角的集合:_______________________________________ 3.轴线角的集合
(1)终边在x 轴上的角的集合:__________________________
(2)终边在y 轴上的角的集合:__________________________
(3)终边在坐标轴上的角的集合:________________________ 4.角度制与弧度制相互换算
360°=_________rad 180°=_________rad
1°=_________rad 1 rad =_________°≈ _________° 5.弧度制下的弧长公式和扇形面积公式:
角α的弧度数的绝对值||α=______________ (l 为弧长,r 为半径)
弧长公式:l =_______ 扇形面积公式:S =________=________.扇形的周长:c = 6.任意角三角函数的的定义:1.定义:以角α顶点为原点O ,
始边为x 轴的非负半轴建立直角坐标系.在角α的终边上任取不同于原点O 的一点(),P x y ,设P 点与原点O 的距
离为r ()0r >,则||PO r ==则角α的三个三角函
数依次为:
sin α=________,cos α=________,tan α=________
8.三角函数值符号的判断:
当α为第________象限角时,sin 0α>;当α为第_________象限角时,sin 0α<; 当α为第________象限角时,cos 0α>;当α为第_________象限角时,cos 0α<; 当α为第________象限角时,tan 0α>;当α为第_________象限角时,tan 0α<.
9
10.同角三角函数的关系式:
cos α
=____________,
2.22sin cos αα+=______________. 11.ααααααcos sin ,cos sin ,cos sin -+有何关系?(用等式表示)
,
s i n
()αβ+=__________________ sin()αβ-=__________________ c o s ()αβ+=__________________ cos()αβ-=__________________
tan()αβ+=______________ t a n ()αβ-=______________ 14.二倍角公式:(5个)二倍角的正弦:sin 2___________α=
二倍角的余弦:cos 2_________________________________α=== 二倍角的正切:tan 2___________α= 15.半角公式:(3个)
sin
_________2α
= c o s _________2α= t a n _________
2
α
=
16.常见关系式:(4个)
1cos 2___________α-= 1cos 2___________α+=
1s i n 2________α+= 1s i n 2________
α-= 17.降幂扩角公式:(3个)
2sin _________α= 2c o s _________α= s i n c o s ______αα= 18.辅助角公式:(1个)
sin cos a x b x += (其中tan b
a
ϕ=)
如:⑴ ()sin cos _____sin _____cos __________________αααα+=⋅⋅+⋅= ⑵ ()sin cos _____sin _____cos __________________αααα-=⋅⋅-⋅=
⑶ ()sin _____sin _____cos __________________αααα=⋅⋅+⋅=
⑷ ()cos _____cos _____sin __________________αααα=⋅⋅-⋅= 19
正弦函数 x
余弦函数 x
正切函数 x
20
21。