电液比例阀设计

合集下载

第8讲 电液比例压力阀

第8讲 电液比例压力阀

当电磁换向阀通电使电梯下降时,阀芯运动很快,这表明 液压缸活塞很快加速到其最大速度(最大速度通过设定流 量控制阀F来确定)。电梯的这种突然启动会使乘客感到非 常不舒服。
F
同样,当电梯到达目的地时,因电磁换向阀的很快关闭,也会使电梯突 然停止,从而再次使乘客感到不舒服。在实际液压系统中,由执行元件 的突然启停而产生的冲击还会造成压力尖峰,这也是容易引起系统泄漏 的情况之一。

时间
在这种情况下, 不仅需要控制执 行元件的最大压 力,而且还需控 制施加或消除压 力的速率。

时间
实际上,机器 工作循环由一 系列斜坡和保 持周期组成, 这些周期都可 以通过比例阀 来实现。

时间
在机器工作循环末段,对许多过程 来说,压力下降速率也是非常关键 的。

因此,采用比例阀可 以实现运动和力控制 ,且在有些场合,同 一种比例阀既可用于 运动控制,也可用于 力控制。这通常涉及 到 “ PQ” 控 制 , 如 控 制 压 力 (P) 和 流 量 (Q) 。
三、电子控制
通常,比例电磁铁的线圈电流由功率放
大器(电子放大器)来控制。功率放大 器本身需要一个电源(一般为12 或 24 VDC )和一个输入信号。
功率放大器输出(电流)由输入信号控制,当输 入信号为零时,输出信号也为零。
24 V DC
当输入信号增大时,功率放大器的输出信号也相 应地增大。
24 V DC
距离
加速度
时间
2. 控制执行元件速度,若有必要,对于变负载, 应保持其恒定。
距离
速度
加速度
时间
3. 平滑减加速度,并使压力峰值最小。
距离
减速度 速度
加速度

电液比例阀的设计与实验研究

电液比例阀的设计与实验研究

电液比例阀的设计与实验研究
一、引言
随着液压系统技术的发展,电液比例阀的应用越来越广泛,它在高精
度液压系统中起到重要的作用。

电液比例阀是一种能够实现电控制的液压阀,它在自动化操作中可以实现高精度的控制,从而提高了自动化系统的
整体性能。

本文将介绍电液比例阀的设计和实验研究,总结电液比例阀的
应用特点,以及电液比例阀的优缺点。

二、电液比例阀的设计原理
电液比例阀是一种智能控制的液压阀,它的设计基本上与其他液压阀
一样,它也分为阀内部和阀外部两大部分。

电液比例阀的阀内部包括阀体、活塞、活塞杆、活塞杆定位器和活塞密封垫等零件,这些部件组成了电液
比例阀的核心部分;阀外部则由连接管路、电控装置、指示仪表等组成。

电液比例阀的工作原理是:利用电控装置将控制信号转换为有效的液压信号,通过操作活塞控制液压介质的流量大小和方向,实现液压设备的控制
操作。

一般来说,电液比例阀的阀芯结构有金属丝活塞阀、活塞杆阀、隔膜
阀和回路阀等常见类型。

电液比例控制阀结构及原理

电液比例控制阀结构及原理
节流槽与阀套通过不同的配合可以得到O型、P型、Y型等不同的阀 机能。比例方向阀有直动型和先导控制型。
阀芯形状与阀的中位机能
3-13 直动式比例方向阀
3.1 直动型比例方向阀
图 14 直动型比例方向阀(无位置控制) 1、6.比例电磁铁;2、5.对中、复位弹簧;3.阀体;4.阀芯
3.2 先导型比例方向阀
直动型比例方向阀因受比例电磁铁电磁力的限制,只能用于小流量 系统。在大流量系统中,过大的液动力将使阀不能开启或不能完全开启, 应使用先导型比例方向阀。
先导型比例方向阀有两种:一种是以传统电液动方向阀为基础发展 而成的,其先导阀是双向三通比例减压阀,主阀为液动式比例方向阀; 二是在伺服阀简化基础上发展而成的,称做伺服比例方向阀或廉价伺服 阀。
普通溢流阀采用不同刚度的调压弹簧改变压力等级。由于比例电磁 铁的推力是一定的,比例溢流阀是通过改变阀座11的孔径而获得不同的 压力等级。阀座孔颈小,控制压力高,流量小。
调节螺塞12可在一定范围内调节溢流阀的工作零位。 直动型比例溢流阀在小流量场合下单独做调压元件,更多的是做先导 型溢流阀或减压阀的先导阀。
电液比例控制阀结构及原理
1 概述 2 电液比例压力控制阀 3 电液比例方向控制阀 4 电液比例流量控制阀 5 闭环比例阀
1 概述
电液比例控制阀由于能与电子控制装置组合在一起,可以十分方便 的对各种输入、输出信号进行运算和处理,实现复杂的控制功能。同时 它又具有抗污染、低成本以及响应较快的优点,在液压控制工程中获得 越来越广泛的应用。
5.防振弹簧;6.阀座;7.阀体
图3 带位置反馈的直动溢流阀 1. 位移传感器;2. 传感器插头;3.放气螺钉;4.比例电磁铁;5.线圈插头; 6. 弹簧座;7.调压弹簧;8.防振弹簧;9.锥阀芯;10.阀体;11.阀座;12.调节螺塞

新型电液比例阀的设计及其控制方法的研究

新型电液比例阀的设计及其控制方法的研究
III
新型电液比例阀的设计及其控制方法的研究
Key Words: Electro-hydraulic proportional pressure valve; CFD; PID algorithm; PWM; Steady-state model; Dynamic Model; Simulation
IV
湖 南 大 学 学位论文原创性声明
本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取 得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其 他个人或集体已经发表或撰写的成果作品。 对本文的研究做出重要贡献的个 人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果 由本人承担。
湖南大学 硕士学位论文 新型电液比例阀的设计及其控制方法的研究 姓名:黄勇 申请学位级别:硕士 专业:机械制造及其自动化 指导教师:胡思节 20070410
新型电液比例阀的设计及其控制方法的研究


电液比例阀是实现电液比例控制技术的关键控制器件。由于其较好的控制精 度和稳定性,电液比例阀已开始逐渐代替传统控制阀。 电液比例压力控制阀是电液比例阀中的一种,其功用是对液压系统中的油液 压力进行比例控制,进而实现对执行器输出力或输出转矩的比例控制。论文在参 照国内外成熟产品的基础上,运用现代设计方法和分析手段设计了一种新型比例 压力阀的结构。首先,设计了十几种阀芯和阀腔的几何结构 , 根据计算流体力学的 理论,对每一种阀的流道建立数学模型。其次,借助商业软件 ANSYS/FLOTRAN 和 CFX 求解流道中的速度、压力数值解 , 根据求解的数据 , 分析出阀内流道的几何形 状对流场的影响。最后 , 根据所得结论优化出一种新型的阀芯和阀腔结构。 在比例压力阀的控制电路设计中, 以单片机控制系统、 数字 PID 算法和 PWM ( 脉冲宽度调制 ) 技术为研究对象。根据电液比例阀的控制要求,编制了系统控制 程序,设计了单片机控制系统的电路和功率放大电路,使控制电路的精度和可靠 性大大提高。 将阀的工作状态抽象成数学模型是研究现代液压系统的主要方法。论文运用 运动学和动力学理论,建立了所设计的电液比例压力阀的稳态和动态数学模型, 得到了系统的传递函数。另外 , 求解系统模型中的参数成为一个重要问题,论文中 同样以计算流体力学为理论依据,通过有限元等数值方法,计算出流量系数等重 要参数。为了研究阀的稳态、动态特性,将传递函数转换为 MATLAB/SIMULINK 软件包的方框图模型,利用计算机仿真技术得到阀的阶跃输入响应。然后,研究 了不同结构对阀稳态与动态特性的影响,为进一步优化阀的结构提供了理论上的 参考依据。 关键词:电液比例压力阀; CFD ; PID 算法;脉宽调制;稳态模型;动态模型; 仿真

第六章电液比例阀及比例控制回路(2015)详解

第六章电液比例阀及比例控制回路(2015)详解
第六章 电液比例阀及 比例控制回路
6.1 概述


6.2 电液比例阀

6.3 电液比例控制基本回路

6.4 电液比例控制工业应用
6.1 概述
从广义讲,凡是输出量,如压力、流量、位移、速度、加速 度等,能随输入信号连续地按比例地变化的控制系统,都称 为比例控制系统。从这个意义上说,伺服控制也是一种比例 控制。电液比例控制可以分为开环控制和闭环控制。
电梯举例 – 开关系统
当电磁换向阀通电使电梯下降时,阀芯运动很快,这表明液压缸活塞很快加速到其最 大速度(最大速度通过设定流量控制阀F来确定)。电梯的这种突然启动会使乘客感 到非常不舒服。
F
电梯举例 – 开关系统
同样,当电梯到达目的地时,因电磁换向阀的很快关闭,也会使电梯突然停止,从而 再次使乘客感到不舒服。在实际液压系统中,由执行元件的突然启停而产生的冲击还 会造成压力尖峰,这也是容易引起系统泄漏的情况之一。
1.传统的液压控制方式是开关型控制。它通过电磁驱动或手动驱动来 实现液压流体的通、断和方向控制,从而实现被控对象的机械化和自 动化。但是这种方式无法实现对液流流量、压力连续地按比例地控制 ,同时控制的速度比较低、精度差、换向时冲击比较大。
2.当需要高性能的速度或位置控制时,以前电液伺服阀曾经是唯一实 用的解决办法。电液伺服阀是一种高技术条件的方向和流量控制阀, 不可避免地带来成本高、不耐污染、维修不便等问题。在并不需要伺 服阀的全部性能潜力的应用场合,这些问题可能成为主要的缺点。
图6-6 行程控制型比例电磁铁原理图
(2) 比例电磁铁的分类与应用
位置控制型比例电磁铁
比例电磁铁衔铁的位置通过位移传感器检测,与比例放大器一起构成位 置反馈系统,就形成了位置调节型比例电磁铁。只要电磁铁运行在允许的 工作区域内,其衔铁就保持与输入电信号相对应的位置不变,而与所受反 力无关,这类位置调节型比例电磁铁多用于控制精度要求较高的各类比例 阀上。

电液比例阀用控制器的设计

电液比例阀用控制器的设计
Me a n w h i l e ,t h e d y n a mi c c h ra a ct e r s i t i c s o fp r o p o r t i o n a l v l a v e c a n b e i m p r o v e d b y s u p e r p o s i n g c e r t a i n d i t h e r s t O t h e c o i l o f
p r o p o t r i o n a l v a l v e. a n d lo f w d e z o l 2 e c f m b e r e d u c e d b y e x e r t i n g c e r t a i n i n i t i a l c u  ̄ e n L A c c o r d i n g t o t h e d i s dv a nt a a g e o f
A b s t r a c t : B a s e d o n a n a l y s i s o f s t a t i c c h a r a c t e r s i t i c o f e l e c t r o - h y d r a u l i c p r o p o r t i o n a l v a l v e ,t h e rt a i c l e d e s i g n s h rd a w re a c i r c u i t o ft h e c o n t r o l l e r, p r o p o s e s a l z e w m e t h o d o fg e n e r t a i n g s t e p s i g ,  ̄ u s i n g P WM . B y c h ng a i n g g r a o P WM s , i t s o l v e s n o — i m p ct a t r a n s i t i o n o f t h e c o n t r o l l e d s y s t e m’ S p r e s s u r e o r s p e e d a n d s i m p l i i f e s h r a d w re a c i r c u i t .

变周期PWM电液比例阀控制电路的设计与实现

变周期PWM电液比例阀控制电路的设计与实现

变周期PWM电液比例阀控制电路的设计与实现摘要:分析了脉冲宽度调制(PWM)控制电液比例阀的基本原理,采用C8051F340单片机设计控制电路,通过可编程计数器阵列(PCA)模块编程实现了变周期PWM信号的产生,通过达林顿晶体管阵列芯片实现功率放大。

实验表明,该电路具有配置灵活、响应快、精度高等优点,满足电液比例阀控制要求。

关键词:电液比例阀;单片机;变周期;脉冲宽度调制;功率放大电液比例阀具有可靠、节能、廉价、抗污染能力强等优点,是理想的电液控制元件。

电液比例控制的核心是控制电液比例阀的电流。

模拟式控制方法控制功率输出极到比例阀线圈的电流是连续电流,电子功率器件功耗大,需加装散热装置;同时,由于液压系统受温度、负载等参数变化的影响较大,在对控制性能要求较高的场合往往不能满足要求。

脉冲宽度调制(PWM)控制功率输出极为开关型结构,功耗小;且PWM信号包含同频率的脉动量,无需另加颤振信号,抗干扰、抗污染能力强,滞后时间短,重复精度高。

由于采用数控形式,与计算机或微处理器连接方便,因此,可实现程序控制[1]。

1 电液比例阀PWM控制原理电液比例阀PWM控制中,PWM信号加到比例阀线圈上时,由于脉冲频率远大于阀芯的响应频率,所以阀芯的运动只响应PWM信号的电流平均值。

PWM原理电路,PWM信号控制开关管的导通与截止。

占空比定义为:D=TH+TL (1)式中:T=TH+TL,为PWM的周期;TH为PWM信号高电平时间;TL为PWM信号低电平时间[2]。

2.1 PWM波发生电路本电路MCU采用C8051F340单片机,片内可编程计数器/定时器阵列(PCA)包含1个专用16 bit计数器/定时器时间基准和5个捕捉/比较模块,具有8 bit和16 bit两种PWM输出模式,可以利用编程实现PWM信号输出。

2.2 光电隔离 PWM信号经单片机I/O口输出。

为提高系统抗干扰能力,应在功率放大前对信号进行隔离。

这里采用6N137高速光耦芯片,其延迟时间最大仅为75 ns[4]。

电液比例阀

电液比例阀
图 电液比例换向阀
液压传动
液压传动
电液比例阀
1.1 电液比例压力阀 1.2 电液比例流量阀 1.3 电液比例换向阀
1.1 电液比例压力阀
图所示为电液比例压力先导阀。它与普通溢流阀、减压阀、顺序阀的主阀组合 可构成电液比例溢流阀、电液比例减压阀和电液比例顺序阀。
1—比例电磁铁;2—推杆; 3—传力弹簧;4—阀芯 图 电液比例压力先导阀
1.2 电液比例流量阀
普通电液比例流量阀是将本章第五节所介绍的流量阀的手调部分改换为比例 电磁铁而成。下面介绍带内反馈的比例二通节流阀的结构和工作原理。
1—比例电磁铁;2—先导滑阀;3—反馈弹簧; 4—复位弹簧;5—主阀芯 图 电液比例二通节流阀
1—比例电磁铁;2—先导滑阀; 3—反馈弹簧;4—复位弹簧;5—主阀芯
放大级由阀体、主阀芯、左右端盖和阻尼螺钉6,7 等零件组成。当前置级输出 的控制压力 pc 经阻尼孔缓冲后作用在主阀芯 5 右端时,液压力克服左端弹簧力使阀 芯左移,开启阀口,阀芯左端弹簧腔通回油 pd ,油口 ps 与B 口通,A 口与 T 口通。 主阀开口大小取决于输入电流的大小。当前置级输出的控制压力为 pc ' 时,主阀反 向位移,开启阀口,连通 ps 口与 A 口、B 口与 T 口,油流换向并保持一定的开口, 开口大小与输入电流大小成比例。
图 电液比例二通节流阀
1.3 电液比例换向阀
)两部分组成。前置级由两端比例电磁铁 4,8 分别控制双向减压阀阀芯 1 的位移。
1—减压阀阀芯; 2,3—流道;
4,8—比例电磁铁; 5—主阀芯;
6,7—阻尼螺钉 图 电液比例换向阀

工程机械新型电液比例阀放大器设计

工程机械新型电液比例阀放大器设计

工程机械新型电液比例阀放大器设计黎职富肖昌炎彭楚武(湖南大学电气与信息工程学院,长沙 410082)伴随着微电子、计算机和液压传动技术的发展和成熟,数字化、网络化、分布式控制已成为现代工程机械控制领域的研究热点。

电液比例阀作为电-液-机械转换的核心部件,具有推力大、结构简单、对油质要求不高、价格低廉等优点[1],在工程机械中得到广泛应用。

由于控制器产生的低功率信号无法直接驱动阀心线圈,放大器成为电液比例控制系统中必不可少且非常重要的组成部分。

传统的比例阀放大器一般以模拟电路为主,参数设置、控制算法调节和现场调试比较困难,无法满足当前工程机械在线调试、网络集成和分布控制的要求。

为适应这一需求,本文在分析影响比例阀控制特性因素的基础上,对现有的PWM比例放大技术进行改进。

以微处理器为核心,研究数字化的功率控制方法。

同时扩展CANopen总线接口,实现远程参数设置、程序下载和网络互联。

1.比例放大器原理及相关因素应用于工程机械的电液比例阀,按功能划分有流量阀、方向阀和压力阀等类型。

其内部大都采用一种具有固定行程的线性马达,称为螺旋管。

在稳定条件下,流过线圈的电流与阀芯位移直接相关。

比例放大器正是通过改变线圈平均电流来间接调节阀芯位移。

然而,作为一个实际系统,比例阀放大器设计不仅要实现控制信号放大,还要考虑诸多复杂因素。

1.1 高频PWM与颤振工程机械电液比例阀一般采用直流电源供电。

假设线圈内阻恒定,通过PWM信号控制开关功率管的通断时间,能实现线圈平均电流调节。

电流大小与PWM波占空比成正比。

PWM波频率取值范围为100Hz~5kHz以上,一般将100~400Hz称为低频,5kHz以上称为高频。

与PWM波频率紧密相关的是颤振现象。

它表现为阀芯相对理想位置的快速、小幅往复移动。

颤振能有效消除摩擦阻力和回程误差,是实际系统中必须考虑的一种有利因素。

颤振设计要求幅值足够大、频率足够低,使阀芯能正确响应。

通常,颤振幅值和频率应该针对不同类型、不同工作环境的比例阀进行调节。

基于PWM控制的电液比例阀控制系统的设计

基于PWM控制的电液比例阀控制系统的设计
[ 5 ] 马宪民 ,任 锋. 基于虚拟仪器的集成电路自动测试 系统设计[J ] . 仪器仪表学报 ,2006 (6) :178321785.
[ 6 ] 徐耀松 ,付 华 ,王丹丹. 网络化虚拟仪器技术在煤矿 监测系统中的应用[J ] . 工矿自动化 ,2008 (1) :38240.
[ 7 ] 谢军贤 , 纪传滨 , 付金泉. 基于虚拟仪器技术 的 电 源 自动测试系统[J ] . 航空计算技术 ,2007 (11) :1002101.
现 :在上升沿状态 ,PCA 的捕捉/ 比较寄存器被更新 为 PWM ;在下降沿状态 ,比较值被装入 PCA 的捕 捉/ 比较寄存器 ,该值为 0x0000 。
PWM 波形的周期为 65 536 个 PCA 时钟周期 , 由于 PWM 波的周期 T 或者说它的频率 f (pwm) 与 电液比例阀的固有频率有很重要的关系 ,即当两者 接近时 ,电液比例阀对信号充分响应 ,阀芯出现等幅 摆动 而不是期 望的微振 , 这是不 允许的 , 因 为 f (p wm) 至少要大于 10 倍电液比例阀频宽 。电液 比例阀频宽一般为 10~70 ,因此 ,PWM 波的周期应 为几毫秒 。本文选择 PCA 按 S YSCL K 的时钟频率 工作 ,设置 S YSCL K 为 16 M Hz 内部振荡器 ,通过 定时器 0 溢出作 PCA 时钟源 。将定时器 0 设置为 8 位自动重装方式 ,并设置重载值为 0xff 来实现 。 可计算出 PWM 波形的周期为
2009 年第 12 期
纵慧慧等 :基于 PWM 控制的电液比例阀控制系统的设计
·1 13 ·
用该环境 ,要在 Keil uVisio n2 下安装 C8051 F 的驱 动程序 ( SiC8051 F2uv2. exe) 。

带位移电反馈的二级电液比例节流阀设计

带位移电反馈的二级电液比例节流阀设计

带位移电反馈的二级电液比例节流阀设计1 绪论由于本毕业设计属于电液比例阀这一大类,故此先简略介绍一下电液比例阀:1.1 电液比例阀概述电液比例阀是以传统的工业用液压控制阀为基础,采用模拟式电气-机械转换装置将电信号转换为位移信号,连续地控制液压系统中工作介质的压力、方向或流量的一种液压元件。

此种阀工作时,阀内电气-机械转换装置根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出。

阀芯位移可以以机械、液压或电的形式进行反馈。

当前,电液比例阀在工业生产中获得了广泛的应用。

1.2 电液比例阀的特点与分类比例阀把电的快速性、灵活性等优点与液压传动力量大的优点结合起来,能连续地、按比例地控制液压系统中执行元件运动的力、速度和方向,简化了系统,减少了元件的使用量,并能防止压力或速度变换时的冲击现象。

比例阀主要用在没有反馈的回路中,对有些场合,如进行位置控制或需要提高系统的性能时,电液比例阀也可作为信号转换与放大元件组成闭环控制系统。

比例阀与开关阀相比,比例阀可简单地对油液压力、流量和方向进行远距离的自动连续控制或程序控制,响应快, 工作平稳,自动化程度高,容易实现编程控制,控制精度高,能大大提高液压系统的控制水平。

与伺服阀相比,电液比例阀虽然动静态性能有些逊色,但使用元件较少,结构简单,制造较电液伺服阀容易,价格低,效率也比伺服高(伺服控制系统的负载压力仅为供油压力的2/3),系统的节能效果好,使用条件、保养和维护与一般液压阀相同,大大地减少了由污染而造成的工作故障,提高了液压系统的工作稳定性和可靠性。

下面是开关阀、比例阀和伺服阀几种阀的特性比较:表1-1 电液比例元件和伺服、数字、开关元件的特性比较过滤精度() 25 3 25~50阀内压降(MPa) 0.5~2 7 0.25~50滞环(%) 1~3 1~3 -重复精度(%) 0.5~1 0.5~-频宽(Hz/3dB) 25 20~200 -中位死区有无有价格比 1 3 0.5 比例控制元件的种类繁多,性能各异,有多种不同的分类方法。

基于PWM控制的电液比例阀控制系统的设计

基于PWM控制的电液比例阀控制系统的设计

基于PWM控制的电液比例阀控制系统的设计电液比例阀是一种重要的液压元件,被广泛应用于液压系统中。

基于PWM(脉宽调制)控制的电液比例阀控制系统是一种高精度、高可靠性的控制系统,具有很好的控制性能和响应速度。

本文将从系统设计原理、硬件设计和软件设计等方面对基于PWM控制的电液比例阀控制系统进行详细介绍。

1.系统设计原理基于PWM控制的电液比例阀控制系统,主要由信号发生器、PWM控制电路、比例阀、油路系统和反馈系统等组成。

其中,信号发生器产生PWM信号,PWM控制电路对PWM信号进行处理生成控制信号,控制比例阀的开度,从而控制液压系统的输出。

2.硬件设计硬件设计包括信号发生器的设计、PWM控制电路的设计、比例阀的选型和油路系统的设计等。

信号发生器一般采用微控制器或FPGA实现,可以根据需要生成不同占空比的PWM信号。

PWM控制电路一般包括比较器、计数器和控制电路等,用于对PWM信号进行处理和控制。

比例阀的选型要考虑流量和压力等参数,并根据实际需求选择合适的比例阀。

油路系统包括液压泵、液压缸、液压管路等,需要根据具体应用场景进行设计。

3.软件设计软件设计主要包括信号发生器的编程和PWM控制电路的控制程序编写。

信号发生器的编程需要实现PWM信号的产生和占空比的调节功能,可以根据需求采用C语言或者汇编语言进行编写。

PWM控制电路的控制程序主要包括对PWM信号的接收和处理,以及对比例阀和油路系统的控制。

可以采用PID控制算法或者其他控制算法进行控制,实现对液压系统的闭环控制。

4.系统优化基于PWM控制的电液比例阀控制系统还可以进行一些优化工作。

例如,可以通过对PWM信号的调节和比例阀的响应特性进行实验,通过调整参数来优化系统的控制性能和响应速度。

另外,还可以采用反馈控制的方法对系统进行自适应调节,提高系统的稳定性和鲁棒性。

综上所述,基于PWM控制的电液比例阀控制系统是一种高精度、高可靠性的控制系统,通常应用于液压系统中。

电液比例方向控制阀

电液比例方向控制阀

Fs xV K fs
(2)
K fs —稳态液动力弹簧刚度。 式中 Fs —稳态液动力变化量; X V —阀芯位移偏差; 式(2)表明,当稳态液动力增大,阀口会关小,这是液动力超过比例电磁铁驱 动力的结果。 这种单级阀只能在流量不大、压力较小且流量控制精度要求不高的场合使用, 阀芯的位移和阀的功率域分别受到比例电磁铁的有效行程及电磁力的限制。
电液比例方向控制阀
1.电液比例方向控制阀概述
2.举例介绍单级电液比例方向阀
3.比例方向阀的特性分析和选用方法
1.电液比例方向控制阀概述
在电液比例方向控制阀中,与输入电信号成比例的输出量是阀芯的位移 或输出流量,并且该输出量随着输入信号的正负变化而改变运动方向。因 此,电液比例方向控制阀本质上是一个方向流量控制阀。 比例方向阀有以下几种方法: 1)根据阀内是否包含有内部反馈闭环,比例方向阀可以分为带内部反馈闭 环和不带内部反馈闭环两种类型。其中带内部反馈闭环的比例方向阀又有 位移—点反馈、位移—力反馈和直接位置反馈等形式,且以位移—电反馈 型居多。 2)根据对流量的控制方式,可分为节流控制型与流量控制型比例方向阀。 节流控制型比例方向阀与比例节流阀都是控制功率级阀芯的轴向位移 (对应阀口开度),输出流量受负载压力和供油压力变化的影响;流量控 制型比例方向阀与比例流量阀一样,可由节流控制型比例方向阀与定差减 压阀或定差异流量阀组成压差补偿型或压力适应型比例方向流量阀,或由 流量检测反馈装置构成带内部反馈闭环的流量控制型比例方向阀,其受控 流量由输入信号决定,与供油压力或负载压力的变化无关。 3)根据阀芯的结构的形式,比例方向阀可分为滑阀式(滑阀结构)和插装 式(锥阀结构)。 4)按照阀内液压功率放大的级数,比例方向阀可以分为单级阀、二级阀、 三级阀。

电液比例阀设计

电液比例阀设计

2014高考语文一轮课时专练(湖南专用)(十五)[论述类、实用类文章阅读三]一、阅读下面的文字,完成1~3题。

8月24日,中央电视台财经频道诞生三周年。

正如预期,财经频道的观众覆盖率、影响力,国内财经媒体无人能出其右,而在国际化方面,通过与路透财经、CNBC等合作,在伦敦、纽约、香港、新加坡、东京等设立报道点,实现了对主要资本市场的覆盖,这不仅是财政频道在国际市场的信息、观点采撷,未来也将成为中国财经向全球展示信息与观点的重要平台,而央视财经50指数的发布,显示财经频道已经涉足资本市场,争夺定价权与话语权。

虽然发展很快,但财经频道仍在成长。

从早期搭建平台,到今天的一体化运作;从资讯采集,到专业人才体系建设——基础工程如同骨架,思想如同血液,而品格则是独一无二的商标,是市场认可度的直接体现。

在《经济半小时》中,可以看到心系民生的火花,看到诚信财经媒体人的信念,而在《环球财经连线》等节目中,可以感知市场的热度,在《大国崛起》等纪录片中,看到了对于市场力量深度解读的努力。

这样的进展,也许需要一天十六个小时的努力,中国速度体现在所有的地方。

任何一个品牌都有各种评价,财经频道的完善还有路要走,多种声音是前进的动力。

财经频道正在走向主流。

这里指的主流,是指被专业人士、被拥有诚信观念的人所接受。

拥有影响力、拥有话语权,还需要拥有独立品格,财经媒体的独立品格既体现在对市场交易的广泛尊重中,也体现在基于对市场深入了解基础上的点穴解读中。

独立品格,不媚,不躁,不薄。

对于所做出的努力,市场给予了公允的评价。

从长期来看,评价是公允的。

正如股票市场,短期会有剧烈震荡,但从长期来看,市场总是倾向于公平。

当记者深入到田间地头,当记者深入到上市公司,所有的底蕴在努力中水滴石穿。

这是基于改革背景下的集体的力量。

中国处于关键的转型时期,有无数的难题需要破解,诸如金融市场化,诸如公共行业如何吸纳民资,诸如物流行业的高成本,诸如国际贸易变局中国企业应对,等等,这需要一个个课题认真探讨,需要长时间的努力,三年认真地工作是个良好的开端。

基于CAN总线的电液比例阀控制器的设计

基于CAN总线的电液比例阀控制器的设计

辽宁工业大学_工业控制网络课程设计(论文)题目:基于CAN总线的电液比例阀控制器的设计院(系):专业班级:学号:学生姓名:指导教师:(签字)起止时间:课程设计(论文)任务及评语院(系):电气工程学院 教研室:注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号学生姓名 专业班级 课程设计(论文)题目小型直流电机控制器的设计 课程设计(论文)任务课题完成的功能、设计任务及要求、技术参数实现功能小型直流电机控制器可实现电机的启动、加速、减速、急停、恒速等功能。

硬件设计包括CPU 选型、最小系统电路、电机驱动电路、按键电路等。

软件采用汇编语言或C 语言实现。

设计任务及要求1、确定设计方案,画出方案框图。

2、进行硬件电路的设计,包括元器件选择。

3、绘制原理图、PCB 。

4、绘出程序流程图,并编写转速检测程序、电机驱动程序等。

5、要求认真独立完成所规定的全部内容;所设计的内容要求正确、合理。

6、按学校规定的格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。

技术参数1、宽频带的工作范围:其输出频率可在 5~350KHz 范围内任意调节;2、双通道脉宽调制输出,每个通道最小输出电流为100mA 。

进度计划1、布置任务,查阅资料,确定系统设计方案(2天)2、系统硬件设计及模块选择(3天)3、系统软件设计及编写功能程序及调试(3天)4、撰写、打印设计说明书(1天)5、验收及答辩。

(1天)指导教师评语及成绩平时: 论文质量: 答辩: 总成绩: 指导教师签字: 年 月 日摘要当今,随着自动化技术的不断发展,液力传动控制在工业领域中得到了广泛的应用和发展。

而电液比例控制作为一种新的液压传动控制技术,具有更加稳定和精确的控制性能。

通过采用此项技术,可将液压系统的某些控制功能集成到电液比例控制器内,简化液压系统的构成,提高液压系统动作的稳定性和可靠性。

本设计主要运用STC89C52单片机为核心控制器,对电液比例阀进行控制。

电液比例控制阀

电液比例控制阀

第三章电液比例控制阀3.1 概述电液比例控制阀由于能与电子控制装置组合在一起,可以十分方便的对各种输入、输出信号进行运算和处理,实现复杂的控制功能。

同时它又具有抗污染、低成本以及响应较快的优点,在液压控制工程中获得越来越广泛的应用。

比例控制元件的种类繁多,性能各异,有多种不同的分类方法。

最常见的分类方法是按其控制功能来分类,可以分为比例压力控制阀、比例流量控制阀、比例方向阀和比例复合阀。

前两者为单参数控制阀,后两者为多参数控制阀。

按压力放大级的级数来分,又可以分为直动式和先导式。

直动式是由电—机械转换元件直接推动液压功率级,由于转换元件的限制,它的控制流量都在15L/min以下。

先导控制式比例阀由一直动式比例阀与能输出较大功率的主阀级构成,流量可达到500L/min,插装式更可以达到1600L/min。

按比例控制阀的内含的级间反馈参数或反馈物理量的形式可以分为带反馈或不带反馈型。

反馈型又可以分为流量反馈、位移反馈和力反馈。

比例阀按其主阀芯的型式来分,又可以分为滑阀式和插装式。

图3-1 闭环的电液比例控制系统及比例阀框图上图所示框图为一个闭环比例系统框图,红色方框内为电液比例阀的组成部分。

从图中可以看出比例阀在系统中所处的地位以及与电控器、液压执行其之间的关系。

从电液比例阀的原理框图中可以看出,它主要有以下几部分组成:1)电—机械转换元件;2)液压先导级;3)液压功率放大级;4)检测反馈元件。

3.2比例压力控制阀比例压力控制阀应用最多的有比例溢流阀和比例减压阀,有直动型和先导两种。

3.2.1 直动型比例溢流阀直动型比例溢流阀结构及工作原理如图3-2所示。

它是双弹簧结构的直动型溢流阀,与手调式直动型溢流阀功能完全相同。

其主要区别是用比例电磁铁取代了手动的弹簧力调节组件。

图3-2 直动式比例溢流阀1.比例电磁铁;2.弹簧;3.阀芯;4.阀座;5.调零螺塞;6.阀体图3-3 带位置反馈的直动溢流阀1. 位移传感器;2. 传感器插头;3.放气螺钉;4.比例电磁铁;5.线圈插头;6. 弹簧座;7.调压弹簧;8.防振弹簧;9.锥阀芯;10.阀体;11.阀座;12.调节螺塞它包括力控制型比例电磁铁4以及由阀体10、阀座11、锥阀芯9、弹簧7等组成的液压阀本体。

基于STM32的PWM电液比例阀控系统的设计

基于STM32的PWM电液比例阀控系统的设计

等 行 业 ,然而 液 压 伺服 系统受 泄 漏 、温 度 、负载 等 因素 影 响时 参数 变 化较 大 ,使 得一 些 传统 的 伺 服控 制 方式 在控 制 精 度 要求 高 的场 合 往往 达 不 到要 求 。针 对以 上 问题 ,本 文 采用 P WM 控 制 器提 高 电液 比例调 速 阀 和 电液 比例 调 压 阀 的控 制速 度 和精 度 。将 其 应 用到 实验 室 所搭 建 试验 平 台上
进 行试 验 ,取得 了很好 的效 果 。
( 1 )控 制 系统 设计
该控 制 器 采 用 的是 意 大 利 的 S GS 微 电 子 公 司 和
法 国T h o ms o n 半 导 体 公 司 合 并 而 成 立 的 意 法 半 导 体
( S T Mi c r o e l e c t r o n i c s )集 团 生产 的 S TM3 2 F1 0 3 C8 T6微
实用技术推 广
佳木斯大学研究生科技创新项
中 国科 技信 息 2 0 1 4年 第 2 2期 C HI N A S C I E N C E A ND T E C HN OL OG Y I N F OR MA T I ON N o v . 2 0 1 4
龙泽 明
一 一
加 入 整流 滤波 电路 。
( 3 )功率 放大 电路 在 功 率驱 动 放大 电路 中需 要 将 两路 P W M 输 出的 电压 信 号 分 别转 换 为 电磁 铁 所 需 的 电 流 信 号 ,为 此 ,采 用 了
L 2 9 8 N 双 H 桥 大 功 率 驱 动 芯 片 来 驱 动 电业 比例 调 速 阀 ,
3 . 3 V 电 压 给 控 制 电 路 供 电。 同 时 为 了 增 强 系 统 的 抗 干 扰 能 力 以 及 减 少 执 行 机 构 动 作 频 繁 所 带 来 的 误 差 , 在 S T M3 2 F 1 0 3 C 8的 P w M 输 出端 与功 率 驱 动 放 大 电路 之 间

电液比例方向阀控制单元设计与分析

电液比例方向阀控制单元设计与分析

电液比例方向阀控制单元设计与分析电液比例方向阀是一种将电气信号转化为液压信号的装置,广泛应用于机械工程中。

它具有响应速度快、精度高、可靠性好等优点,可以实现高效的机械控制。

本文章将介绍电液比例方向阀的控制单元设计与分析。

一、电液比例方向阀的工作原理电液比例方向阀由飞行电子学与液压技术构成,起到将电气信号转化为液压信号的作用。

其基本工作原理为:将电压信号转化为电流信号,通过电液比例阀控制液压油的流量和压力,从而实现对气压装置的控制。

电液比例方向阀通常由电源、动作机构、电液转换器和液压执行器等部分组成。

二、电液比例方向阀控制单元设计1. 控制电路设计电液比例方向阀的控制电路包括电源电路、电液转换器、比例测量电路和动作信号处理电路等。

其中,电源电路部分负责为电液比例阀提供正常的电源供应,电液转换器把控制信号转化为液压分类信号,从而实现液压控制,比例测量电路是为了检测液压油的流量变化,而动作信号处理电路负责处理液压阀接收到的信号,并将其转换为动作信号,从而实现气压装置的控制。

2. 液压电路设计液压电路设计的关键是保证液体流通、减少翻滚和噪音,防止漏油和渗油,同时保证系统的稳定性和控制性。

液压阀通常包含调节阀、安全阀、分配阀和电液比例阀等。

其中,电液比例阀是整个液压电路的核心部分,同时也是最为关键和复杂的部分。

三、电液比例方向阀控制单元分析电液比例方向阀具有响应速度快、精度高、可靠性好等优点,但其成型难度大,对产品质量及性能稳定性要求高。

因此,在产品制造中应注重优化设计,提高制造流程的控制性和重复性。

同时还需要注重制造工艺的完善,保证电液比例方向阀产品的性能和质量。

电液比例方向阀的控制单元设计和分析具有重要的意义,可以为生产和制造提供重要的参考,帮助用户理解和掌握该技术的基本原理和应用方法。

与此同时,电液比例方向阀也具有广泛的应用前景和市场需求,不断开发和改进电液比例方向阀技术,将对工程学科的发展产生积极的影响。

带位移电反馈的二级电液比例节流阀设计

带位移电反馈的二级电液比例节流阀设计

带位移电反馈的二级电液比例节流阀设计带位移电反馈的二级电液比例节流阀通常有以下几个设计要点:
1. 电液比例节流阀的主体结构应该包括两组连通口,一组连接
油箱,另一组连接液压执行器。

其中,与油箱连通的连通口一般位
于阀体底部,而与液压执行器连通的连通口则位于阀体上部。

2. 在阀体底部安装一个电机驱动的柱塞泵或齿轮泵,配合一个
小型集成电路控制系统,实现对液压系统的控制和调节。

3. 在阀体上部安装一个比例阀芯,同时采用一组电磁铁和位置
传感器,参照比例阀芯的位移,输出电信号控制液压操作器进行节
流控制。

4. 在节流阀芯和阀座之间使用特殊材料,以改善节流阀的密封
性和寿命。

总之,带位移电反馈的二级电液比例节流阀是一种具有高精度
控制功能和多种特殊材料应用的现代化液压控制装置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科毕业设计(论文)通过答辩带位移电反馈的二级电液比例节流阀设计摘要:电液比例技术发展迅猛,以其控制精度较高、结构简单、成本合理等优点在工业生产中获得了越来越来广泛的应用,它的发展程度也可从一个侧面反映一个国家液压工业技术水平,因而日益受到各国工业界的重视。

本设计的课题是电液比例阀中的一类——二级电液比例节流阀。

在对该阀各部分的结构、原理及性能参数进行详细分析的基础上,完成了功率级为二通插装阀,先导级为电液比例三通减压溢流阀,通径为32mm,最大流量为480L/min,进油口额定工作压力为31.5MPa,出油口额定工作压力为30.5MPa的电液比例节流阀的结构设计与参数设计。

关键词:电液比例节流阀;插装阀;比例电磁铁1The design of two stage electro-hydraulic proportional throttle valve with displacement electricity feedbackMajority:Machine Design &Manufacturing and AutomationAbstrac t: The technology of electro-hydraulic proportional develops swiftly and violently, it has more and more come the widespread application in the industrial production by its precision control, the simply structure, the reasonable cost and so on, its degree of development also might reflect a national hydraulic pressure industrial technology level from a side, so this technology received more and more value by the various countries' industrial field.The topic of this graduation project is precisely one kind of electro-hydraulic proportional valve----two stage electro-hydraulic proportional throttle valve. This design will first carry on detailed analysis to the structure, principle and function parameter of various part of this kind of valve, then complete the structural design and the parameter design of the two stage electro-hydraulic proportional throttle valve ,this valve's main stage is cartridge valve ,its forerunner stage is three contacts reduced pressure overflow valve .This valve's rectum is 32mm,and its max regulated flow is 480L/min,the oil input port fixed working pressure is 31.5MPa, the output port fixed working pressure is 30.5MPa.Keyword: Electro-hydraulic proportional throttle valve; Cartridge valves; Proportion electro-magnet ratio electromagnet2目录前言 (1)正文 (2)1 绪论 (2)1.1 电液比例阀概述 (2)1.2 电液比例阀的特点与分类 (2)1.3 电液比例阀的发展阶段 (3)1.4 电液比例技术在我国的发展 (5)1.5 比例流量阀 (5)2 流量阀控制流量的一般原理 (7)2.1 流量控制的基本原理 (8)2.4 主阀阀芯节流口形式的确定 (8)3 比例节流阀结构设计 (9)3.1 插装阀介绍 (9)3.2 控制盖板的设计 (9)3.3 插装式主阀设计 (11)3.4 先导阀设计 (21)3.5 弹簧的选用 (30)3.6 公差与配合的确定 (31)3.7 比例放大器 (33)3.8 比例电磁铁 (36)3.9 结构设计小结 (37)4 节流阀工作总原理分析及其性能参数指标 (38)4.1 原理分析 (38)4.2 静态性能指标 (39)4.3 动态性能指标 (40)5 比例控制系统 (41)5.1 反馈的概念 (41)5.2 闭环控制与开环控制 (41)5.3 电液比例控制系统的组成 (42)5.4 电液比例控制系统的特点 (43)5.5 比例控制系统的分类 (43)35.6 比例控制系统的发展趋势 (44)5.7 小结 (44)结论 (45)参考文献 (46)致谢 (47)4前言现代工业的不断发展对液压阀在自动化、精度、响应速度方面提出了愈来愈高的要求,传统的开关型或定值控制型液压阀已不能满足要求,电液伺服阀因此而发展起来,其具有控制灵活、精度高、快速性好等优点。

而电液比例阀是在电液伺服技术的基础上,对伺服阀进行简化而发展起来的。

电液比例阀与伺服阀相比虽在性能方面还有一定差距, 但其抗污染能力强,结构简单,形式多样,制造和维护成本都比伺服阀低,因此在液压设备的液压控制系统应用越来越广泛。

今天,一个国家的电液比例技术发展程度将从一个侧面反映该国的液压工业技术水平,因此各发达国家都非常重视发展电液比例技术。

我国在电液比例技术方面,目前已有几十种品种、规格的产品,年生产规模不断扩大,但总的看,我国电液比例技术与国际水平比有较大差距,主要表现在:缺乏主导系列产品,现有产品型号规格杂乱,品种规格不全,并缺乏足够的工业性试验研究,性能水平较低,质量不稳定,可靠性较差,以及存在二次配套件的问题等,都有碍于该项技术进一步地扩大应用,急待尽快提高。

基于以上所述,本设计将对电液比例阀中的一类——二级电液比例节流阀进行设计。

该阀的功率级为二通插装阀,先导级为电液比例三通减压溢流阀。

本说明书各章节安排如下:第一章给出了电液比例电液阀的定义,概述了电液比例阀特点、分类及其发展阶段。

另外还对电液比例流量阀、电液比例节流阀作了简单的介绍。

第二章对流量控制的基本原理进行阐述,是本设计理论依据的基础。

第三章是本阀结构设计的详细过程,依次对阀的组成部分如控制盖板、插装式主阀、先导阀进行了设计计算,并对比例放大器、比例电磁铁也进行了介绍与分析。

此章是整个说明书的核心章节。

第四章在结构设计完成之后对阀的具体控制原理和性能参数进行了阐述。

第五章是对比例控制系统的介绍。

由于比例阀在液压系统中最终应用效果将很大一部分取决于比例控制系统,故单独一章对比例控制系统做一个介绍。

由于本次毕业设计是我的第一次综合性设计,在设计的过程中,将有一定的困难,无论设计概念上的模糊或经验上的缺乏都可能导致设计的失误与不足,在此,恳请各位老师给以指正。

相信我一定会圆满完成本次毕业设计任务的。

51 绪论由于本毕业设计属于电液比例阀这一大类,故此先简略介绍一下电液比例阀:1.1 电液比例阀概述电液比例阀是以传统的工业用液压控制阀为基础,采用模拟式电气-机械转换装置将电信号转换为位移信号,连续地控制液压系统中工作介质的压力、方向或流量的一种液压元件。

此种阀工作时,阀内电气-机械转换装置根据输入的电压信号产生相应动作,使工作阀阀芯产生位移,阀口尺寸发生改变并以此完成与输入电压成比例的压力、流量输出。

阀芯位移可以以机械、液压或电的形式进行反馈。

当前,电液比例阀在工业生产中获得了广泛的应用。

1.2 电液比例阀的特点与分类比例阀把电的快速性、灵活性等优点与液压传动力量大的优点结合起来,能连续地、按比例地控制液压系统中执行元件运动的力、速度和方向,简化了系统,减少了元件的使用量,并能防止压力或速度变换时的冲击现象。

比例阀主要用在没有反馈的回路中,对有些场合,如进行位置控制或需要提高系统的性能时,电液比例阀也可作为信号转换与放大元件组成闭环控制系统。

比例阀与开关阀相比,比例阀可简单地对油液压力、流量和方向进行远距离的自动连续控制或程序控制,响应快, 工作平稳,自动化程度高,容易实现编程控制,控制精度高,能大大提高液压系统的控制水平。

与伺服阀相比,电液比例阀虽然动静态性能有些逊色,但使用元件较少,结构简单,制造较电液伺服阀容易,价格低,效率也比伺服高(伺服控制系统的负载压力仅为供油压力的2/3),系统的节能效果好,使用条件、保养和维护与一般液压阀相同,大大地减少了由污染而造成的工作故障,提高了液压系统的工作稳定性和可靠性。

下面是开关阀、比例阀和伺服阀几种阀的特性比较:表1-1 电液比例元件和伺服、数字、开关元件的特性比较过滤精度() 25 3 25~50阀内压降(MPa) 0.5~2 7 0.25~50滞环(%) 1~3 1~3 -重复精度(%) 0.5~1 0.5~-频宽(Hz/3dB) 25 20~200 -中位死区有无有价格比 1 3 0.5 比例控制元件的种类繁多,性能各异,有多种不同的分类方法。

6(1) 按其控制功能来分类,可分为比例压力控制阀,比例流量控制阀、比例方向阀(比例方向流量阀)和比例复合阀。

前两者为单参数控制阀,后两种为多参数控制阀。

比例方向阀能同时控制流体运动的方向和流量,是一种两参数控制阀,因此有的书上称之为比例方向流量阀。

还有一种被称作比例压力流量阀的两参数控制阀,能同时对压力和流量进行比例控制。

有些复合阀能对单个执行器或多个执行器实现压力、流量和方向的同时控制,这种分类方法是最常见的分类方法。

(2) 按液压放大级的级数来分,又可分为直动式和先导式。

直动式是由电一机械转换元件直接推动液压功率级。

由于受电一机械转换元件的输出力的限制,直动式比例阀能控制的功率有限,一般控制流量都在15L/min以下。

先导控制式比例阀由直动式比例阀与能输出较大功率的主阀级构成。

相关文档
最新文档