1 流体流动与传热
热传递热量通过流体的对流传递
热传递热量通过流体的对流传递热量传递是指热量从高温物体传递到低温物体的过程。
传热的方式有三种:传导、对流和辐射。
在介绍流体的对流传热之前,先了解一下传热的基本知识。
一、热传递的基本原理热传递是能量的传递方式,能量从高温物体到低温物体传递,使两者达到热平衡。
热传递的方式有传导、对流和辐射三种。
(一)传导传导是指通过物质内部的分子热振动传递热量的过程。
热量沿温度梯度从高温区域传递到低温区域。
传导率取决于物质的导热性质和温度梯度。
常见的固体和液体都能够传导热量。
(二)对流对流是指通过物体表面上的流体(比如液体或气体)的运动传递热量的过程。
对流分为自然对流和强制对流两种形式。
自然对流是指在温差的驱动下,流体由于密度的差异而形成的运动。
比如,加热后的空气密度减小,上升形成对流。
强制对流是指通过外部力(如风或泵)使流体运动,从而传递热量。
强制对流可以通过风扇或泵等设备来搅动流体,加速热量传递。
(三)辐射辐射是指通过电磁波将热量从发光物体传递到其他物体的过程。
辐射可以在真空中传递,无需介质传递。
常见的辐射形式有电磁波、红外线和可见光等。
二、流体的对流传热流体的对流传热是指通过流动的流体传递热量的过程。
流体的对流传热包括自然对流和强制对流。
(一)自然对流传热自然对流传热是指在温差作用下,流体通过密度的差异而产生的运动,从而传递热量。
自然对流传热的机理是流体受热后密度下降,体积膨胀,从而使流体向上运动。
同时,冷却后的流体密度增加,使流体向下运动。
形成这种循环运动的力称为浮力。
自然对流传热最常见的例子就是热气球。
在热气球中,空气被加热后变得轻,从而使热气球得以上升。
(二)强制对流传热强制对流传热是通过外部力(如风或泵)使流体运动,从而传递热量。
强制对流传热的机理是外部力搅动流体,使流体中的高温部分与低温部分混合,加速热量的传递。
在实际工程中,强制对流传热是非常常见的应用。
比如,利用风扇将空气吹向加热元件,加速热量传递。
传热与流体流动的数值计算-
当然,要在一本中等篇幅的书中完成这一雄心勃 当然, 勃的任务而不摒弃许多重要的内容, 勃的任务而不摒弃许多重要的内容,这是不可能 的. 因此本书只能简单地讨论控制所述过程的方程的 因此本书只能简单地讨论控制所述过程的方程的 数学形式.读者若需要了解有关方程的完整推导, 数学形式.读者若需要了解有关方程的完整推导, 就必须去查阅有关这一论题的许多标准教科 对于紊流, 书.对于紊流,燃烧以及辐射这样一类复杂过程 数学模型, 的数学模型,我们这里假设读者已经知道或是可 以查得的. 以查得的. 对于数值解的题目本身,我们也不打算在此评述 对于数值解的题目本身 数值解的题目本身, 现有的所有方法并讨论它们的优点与缺点 相反, 优点与缺点. 现有的所有方法并讨论它们的优点与缺点.相反, 我们将把注意力集中在作者已经使用, 我们将把注意力集中在作者已经使用,发展或有 过贡献的一套特定的方法. 过贡献的一套特定的方法.
数值方法概念: 数值方法概念:设想我们希望 求得图中所示域内的温度场. 求得图中所示域内的温度场.可 以认为只要知道域内各离散点上 的温度值就足够了. 的温度值就足够了. 一个可能的方法是想象一个充 满该域的网格, 满该域的网格,并寻求在网格点 上的温度值. 上的温度值. 于是我们就要构成并求解关于 这些未知温度值的代数方程 这些未知温度值的代数方程 代数方程代替微分方程所 组.用代数方程代替微分方程所 固有的简化使得数值方法强有力 并得以广泛应用. 并得以广泛应用.
具有模拟真实条件的能力 可以很容易地模拟真实条件. 可以很容易地模拟真实条件.不用要采用缩小的 模型,就一个计算机的程序而言, 模型,就一个计算机的程序而言,无论是具有很大 或很小尺寸的物体,不论是处理很低或很高的温度, 或很小尺寸的物体,不论是处理很低或很高的温度, 也不论是控制有毒或易燃的物质, 也不论是控制有毒或易燃的物质,还是跟踪很快或 很慢的过程,都几乎不会有任何困难. 很慢的过程,都几乎不会有任何困难. 具有模拟理想条件的能力 人们有时用预测的方法来研究一种基本的物理 现象,而不是一个复杂的工程问题. 现象,而不是一个复杂的工程问题.在研究某种现 象的时候,人们希望把注意力集中在几个基本的参 象的时候,人们希望把注意力集中在几个基本的参 而要设法消除所有无关的因素 数上而要设法消除所有无关的因素. 数上而要设法消除所有无关的因素.因此人们希望 实现若干理想化的条件 例如:二维状态, 若干理想化的条件, 实现若干理想化的条件,例如:二维状态,常密度 一个绝热的表面或是无限的反应速率等.在计算中, 一个绝热的表面或是无限的反应速率等.在计算中, 人们很容易而又准确地约定这样的一些条件.相反, 人们很容易而又准确地约定这样的一些条件.相反, 即便是很小心地安排的实验也很难近似做到这种理 想化的条件. 想化的条件.
流体流动与传热_ 传热_热传导_
0.08W/(m·K),已知饱和蒸汽温度为180℃,并测得保温层中央即厚度为50mm处的温度为90℃,
试求(1)由于热损失每米管长的蒸汽冷凝量为多少? (2)保温层的外侧温度为多少?
解:(1)对定态传热过程,单位管长的热损失Q/L 沿半径方向不变,故可根据靠近管壁
−
令 =
Τ
−
−
于是 =
=
当
< 时,可用算术平均代替
− 推动力
对照平壁: ==
=
热阻
−
=
Τ
1.单层圆筒壁导热
例2 为减少热损失,在外径150mm的饱和蒸汽管外覆盖厚度为100mm的保温层,保温材料的热导率为
.
− − .
保温砖 =
=
= W/m2
.
1=10.83cm
t3=201.6 ℃
2=11.64cm
1.单层圆筒壁导热
无限长单层圆筒壁一维稳态导热(无内热源)
分析:①取控制体
②作热量衡算定态:Q进=Q出
③结合特征方程求解析解
一维稳定grad =
1.傅立叶定律
◼ 傅里叶定律(Flourier’s law )表达式
热流密度与温度梯度成正比
=
= −
q:热通量,单位传热面积的传热速率,W/m2
“-”表示热通量q与温度梯度方向相反
法国著名数学家、物理学家
λ:导热系数(热导率),表征物质导热能力的大小,物性,单位 W/m·℃=W/m·K
流体力学与传热复习提纲
流体力学与传热复习提纲第一章 流体流动1) 压强的表示方法绝对压:以绝对真空为基准的真实压强值表压:以大气压为基准的相对压强值表绝=p p p a +如果绝对压小于表压,此时表压称为真空度。
例题 当地大气压为745mmHg 测得一容器内的绝对压强为350mmHg ,则真空度为 。
测得另一容器内的表压强为1360 mmHg ,则其绝对压强为 。
2) 牛顿粘度定律的表达式及适用条件dydu μτ= 适用条件:牛顿型流体 μ-流体粘度3) 粘度随温度的变化液体:温度上升,粘度下降;气体:变化趋势刚好和液体相反,温度上升,粘度增大。
4) 流体静力学基本方程式5) 流体静力学基本方程式的应用等压面及其条件静止、连续、同种流体、同一水平面6) 连续性方程对于稳定流动的流体,通过某一截面的质量流量为一常数:如果流动过程ρ不变,则1122u A u A =如果是圆管,则121222u d u d =因此管径增大一倍,则流速成平方的降低。
7) 伯努利方程式的表达式及其物理意义、单位不可压缩理想流体作稳定流动时的机械能衡算式∑-+++=+++21,222212112121f s W p u gz W p u gz ρρ 对于理想流动,阻力为0,机械能损失为0,且又没有外加功,则ρρ222212112121p u gz p u gz ++=++ )(2112z z g p p -+=ρ常数==uA m ρs物理意义:理想流体稳定流动时,其机械能守恒。
注意伯努利方程的几种表达形式和各物理量的单位。
例题 如题图所示虹吸装置。
忽略在管内流动损失,虹吸管出口与罐底部相平,则虹吸管出口处的流速8) 流型的判据流体有两种流型:层流,湍流。
层流:流体质点只作平行管轴的流动,质点之间无碰撞;湍流:流体质点除了沿管轴作主流运动外,在其它的方向上还作随机脉动,相互碰撞。
流型的判据: Re <2000,流体在管内层流,为层流区;Re >4000,流体在管内湍流,为湍流区;9) 流体在圆管内层流时的速度分布层流时流体在某一截面各点处的速度并不相等,在此截面上呈正态分布。
流体力学与传热学-1
2、连续介质假设(1753年欧拉)
假定流体是由无穷多个、无穷小的、紧密毗邻、连续不断的流体质点所构 成的一种绝无间隙的连续介质。 流体状态的宏观物理量如速度、压强、密度、温度等都可以作为空间和 时间的连续函数
§1.4 流体的主要物理性质
1、流体的密度与重度
密度: 单位体积内流体的质量
lim
流体之间或流体与固体之间的相互作用力;
流动过程中动量、能量和质量的传输规律等。
2、流体力学的发展简况 1、经验阶段(十七世纪前)
大禹治水 4000多年前的大禹治水 古代已有大规模的治河工程。 (公元前256~210年) 秦代,修建了都江堰、郑国渠、灵渠三大水利工程对明槽水流和堰 流流动规律的认识已经达到相当水平。 (公元前156~前87) 西汉武帝时期,为引洛水灌溉农田,在黄土高原上修建了龙首渠 创造性地采用了井渠法,即用竖井沟通长十余里的穿山隧洞,有效地防 止了黄土的塌方。 真州船闸(960-1126) 北宋时期,在运河上修建的真州船闸与十四世纪末荷兰的同类船相 比,约早三百多年。
两层气体之间的黏性力主要由分子动量交换形成
一般仅随温度变化,液体温度升高黏度减小,气体温度升高黏度增大。
8) 黏性流体和理想流体
黏性流体 实际中的流体都具有粘性,因为都是由分子组成,都存在分子间的 引力和分子的热运动,故都具有黏性。 理想流体(假想没有黏性的流体) 一些情况下基本上符合粘性不大的实际流体的运动规律,可用来描 述实际流体的运动规律,如空气绕流圆柱体时,边界层以外的势流就可 以用理想流体的理论进行描述。 还由于一些黏性流体力学的问题往往是根据理想流体力学的理论进 行分析和研究的。 再者,在有些问题中流体的黏性显示不出来,如均匀流动、流体静 止状态,这时实际流体可以看成理想流体。
传热流体数值计算
1 傅立叶定律傅立叶定律是导热理论的基础。
其向量表达式为:q gradT λ=-⋅ (2-1)式中:q —热流密度,是向量,2/()Kcal m h ;gradT —温度梯度,是向量,℃/m ;λ—导热系数,又称热导率,/()Kcal mh C o ; 式中的负号表示q 的方向始终与gradT 相反。
2 导热系数(thermal conductivity )及其影响因素导热系数λ(/()Kcal mh C o)是一个比例常数,在数值上等于每小时每平方米面积上,当物体内温度梯度为1℃/m 时的导热量。
导热系数是指在稳定传热条件下,1m 厚的材料,两侧表面的温差为1度(K ,°C ),在1秒内,通过1平方米面积传递的热量,用λ表示,单位为瓦/米·度,w/m·k (W/m·K,此处的K 可用℃代替)。
导热系数为温度梯度1℃/m ,单位时间通过每平方米等温面的热传导热流量。
单位是:W/(m·K)。
3.热传导微分方程推导 ♥ 在t 时刻w 界面的温度梯度为xT∂∂在t 时刻e 界面的温度梯度为dx x T x T dx x x Tx T 22∂∂+∂∂=∂∂∂∂+∂∂ 单位时间内六面体在x 方向流入的热流量为:dydz xT∂∂-λ; 单位时间内六面体在x 方向流出的热流量为:dydz dx x T x T ⎥⎦⎤⎢⎣⎡∂∂+∂∂-22λ;单位时间内六面体在x 方向流入的净热量为:dxdydz xT22∂∂λ 图3-1 微分单元体各面上进出流量示意图同理,单位时间内六面体在y 方向流入的净热量为:dxdydz yT22∂∂λ; 单位时间内六面体在y 方向流入的净热量为:dxdydz z T 22∂∂λ; 单位时间内流入六面体的总热量为:dxdydz z T y T xT ⎥⎦⎤⎢⎣⎡∂∂+∂∂+∂∂222222λ (3-1) 六面体内介质的质量为:dxdydz ρ。
化工原理流体知识点总结
化工原理流体知识点总结一、流体的基本性质1. 流体的定义流体是指在受到作用力的情况下,能够流动的物质,包括液体和气体。
2. 流体的分类(1)牛顿流体:满足牛顿流体定律的流体,即剪切应力与剪切速率成正比。
(2)非牛顿流体:不满足牛顿流体定律的流体,如塑料、胶体等。
3. 流体的性质(1)密度:单位体积流体的质量,通常用ρ表示,单位kg/m³。
(2)粘度:流体流动时的内部摩擦阻力,通常用η表示,单位Pa·s或mPa·s。
(3)表观黏度:流体在管道中流动时表现出的粘度,通常用μ表示,单位Pa·s或mPa·s。
(4)流变性:流体在外力作用下的形变特性,包括剪切流变和延伸流变。
4. 流体的运动(1)层流:流体呈层状流动,流线平行且不交叉。
(2)湍流:流体呈旋涡形式混合流动,流线交叉且无规律。
二、流态力学1. 流体静压(1)静压力:流体在容器中受到的压力,通常用P表示,单位Pa。
(2)流体的压强:P = ρgh,其中ρ为流体密度,g为重力加速度,h为液面高度。
(3)帕斯卡定律:在静止流体中,内部任意一点的压力均相等。
2. 流体动压(1)动压力:流体在流动状态下受到的压力。
(2)动压公式:P = 0.5ρv²,其中ρ为流体密度,v为流体的流速。
3. 流体的质量守恒(1)连续方程:描述流体在流动中的质量守恒关系。
(2)连续方程公式:ρ1A1v1 = ρ2A2v2,其中ρ为流体密度,A为管道横截面积,v为流速。
4. 流体的动量守恒(1)牛顿第二定律:描述流体在流动中的动量守恒关系。
(2)牛顿第二定律公式:F = ρQ(v2 - v1),其中F为管道上流体受到的合力,Q为流体流量,v为流速。
三、流体的运动1. 流体的流动类型(1)层流:小阻力、流速较慢。
(2)湍流:大阻力、流速较快。
2. 流体的流动参数(1)雷诺数:描述流体流动状态的无量纲参数,Re = ρvD/η,其中D为管道直径。
流体力学与传热学教学课程大纲
课程名称:流体力学与传热学课程编号:130 200040课程学分:36学分适用专业:测控技术与仪器流体力学与传热学教学课程大纲一、课程性质与任务:本课程是自动化装置、过程控制系统方向的技术基础课。
通过该课程的学习,使学生对流体平衡、运动规律及能量守恒与转换规律方面具备必要的基本知识,获得传热的一些基本理论、基本知识及传热计算的初步能力,学会运用基本规律来处理和解决实际问题的方法和技能,培养分析问题的能力和创新能力,为学生学习后续课程,从事工程技术工作和进行科学研究打下必2要的基础。
二、课程内容及要求:总学时数:36; 2学时/端午节放假一天。
即共17次课。
第一章绪论(2)a) 流体力学工程应用及其主要的物理性质基本要求了解:流体力学的研究对象流体力学:研究流体平衡、机械运动的规律以及在工程实际中的运用、任务研究流体的运动规律;流体之间或流体与固体之间的相互作用力;流动过程中动量、能量和质量的传输规律等。
和研究方法;熟悉:流体宏观模型─连续介质假定流体是由无穷多个、无穷小的、紧密毗邻、连续不断的流体质点所构成的一种绝无间隙的连续介质。
、理想流体、不可压缩流动; 掌握:流体的粘性流体微团发生相对运动时所产生的抵抗变形、阻碍流动的性质 和压缩性温度一定时,流体在外力作用下,其体积缩小的性质 等物理性质。
教学及考核内容流体的定义,在静力平衡时,不能承受拉力或剪力的物体。
连续介质的概念,流体的主要物理性质(粘性-牛顿内摩擦定律、流体相对运动时,层间内摩擦力T 的大小与接触面积、速度梯而与接触面压缩性),(质量力、表面力)。
第二章 流体静力学理论基础(4)a) 流体的平衡微分方程;流体静力学基本方程;压力的测量仪表b) 静止流体对平面壁、曲面壁的作用力;液体的相对平衡☐基本要求了解:静压强的概念、性质;熟悉:流体平衡微分方程式;表压力、真空度和绝对压力的概念;掌握:静力学基本方程式(重点);静压强的分布规律;流体作用在壁上总压力的计算;等压面方程(测压计)☐教学及考核内容流体静压强特性,压强的测量,重力场中静压强分布基本公式,流体作用在壁上总压力的计算。
1_流体力学与传热学
P p lim A
A 0
返回首页
第二节 流体静力学
一、流体静压强及其特性
P Z dA n
流体静压强的方向与受 压面垂直并指向受压面
Y X 0
作用于同一点上各方 向的静压强大小相等
流体静 压强的 特性
第二节 流体静力学
二、流体静压强的分布规律
分析静止液体中压强分布 作用于轴向的外力有:
可忽略。 2、气体有显著的压缩性和膨胀性,t与P的变化对v 影响很大。 3、当气体的温度不过低压强不过高时,T、P、v三
者关系服从理想气体状态方程。
第二节 流体静力学
目的:学习和讨论流体静止状态下 的力学规律及其应用
流体静止时的特点:
不显示其粘滞性,不存在切相应力
流体静止是运动中的一种特殊状态
流体静力学研究的中心问题:
流体静压强的分布规律
第二节 流体静力学
一、流体静压强及其特性
静水压力与静水压强
静止液体作用在与之接触的表面上的水压力称为 静水压力P.
在静水中表面积为A的水体,微小面积△A所受作 用力△P, P P 该微小面积上的平均压强为 A 当△A无限缩小至趋于点K时,K点的静水压强
p1
2
2
图2-5
圆管中有压流动的总水头线与测压管水头线
第四节 流动阻力和水头损失
能量损失的计算
沿程损失
hf
l v2 d 2g
沿管长 均匀发 生
局部损失
局部障 碍引起 的
hm
v2 2g
整个管路的能量损失等于:
各管段的沿程损失和局部 损失之和
第五节 流动阻力和水头损失
整个管路的能量损失等于各管段的沿程损失和局部损失之和.
化工原理之一 流体流动
第一章: 流体流动流体流动是化工厂中最基本的现象。
在化工厂内,不论是待加工的原料或是已制成的产品,常以液态或气态存在。
各种工艺生产过程中,往往需要将液体或气体输送至设备内进行物理处理或化学反应,这就涉及到选用什么型式、多大功率的输送机械,如何确定管道直径及如何控制物料的流量、压强、温度等参数以保证操作或反应能正常进行,这些问题都与流体流动密切相关。
流体是液体和气体的统称。
流体具有流动性,其形状随容器的形状而变化。
液体有一定的液面,气体则否。
液体几乎不具压缩性,受热时体积膨胀的不显著,所以一般将液体视为不可压缩的流体。
与此相反,气体的压缩民很强,受热时体积膨胀很大,所以气体是可压缩的流体。
如果在操作过程中,气体的温度和压强改变很小,气体也可近似地按不可压缩流体来处理。
流体是由大量的不断作不规则运动的分子组成,各个分子之以及分子内部的原子之间均保留着一定的空隙,所以流体内部是不连续而存在空隙的,要从单个分子运动出发来研究整个流体平衡或运动的规律,是很困难而不现实。
所以在流体力学中,不研究个别分子的运动,只研究由大量分子组成的分子集团,设想整个流体由无数个分子集团组成,每个分子集团称为“质点”。
质点的大小与它所处的空间在、相比是微不足道的,但比分子自由程要大得多。
这样可以设想在流体的内部各个质点相互紧挨着,它们之间没有任何空隙而成为连续体。
用这种处理方法就可以不研究分子间的相互作用以及复杂的分子运动,主要研究流体的宏观运动规律,而把流体模化为连续介质,但不是所有情况都是如此的,高真空度下的气体就不能视为连续介质了。
液体和气体统称为流体。
流体的特征是具有流动性,即其抗剪和抗张的能力很小;无固定形状,随容器的状而变化;在外力作用下其内部发生相对运动。
化工生产的原料及产品大多数是流体。
在化工生产中,有以下几个主要方面经常要应用流体流动的基本原理及其流动规律:(1) 管内适宜流速、管径及输送设备的选定;(2) 压强、流速和流量的测量;(3) 传热、传质等过程中适宜的流动条件的确定及设备的强化。
流动传热及传质的控制方程
缺点: ①数学模化的全面和准确性需要不断提高:
Ⅰ、物理问题的数学模型是否正确(回流问题还是边界层问题, 稳态还是非稳态),否则,数值算法的改进没有意义。
Ⅱ、所有物性数据要可靠,否则减少数值误差的努力毫无意义。 ②真实再现某些过程的代价也是极其昂贵的或不可能;(用于气象,
石油) ③有些迫不得已的简化是致命的或大大降低其价值; ④计算结果准确性仍需接受实验或精确解检验。(如对有代表性点
把原来在空间与时间坐标中连续的物理量的场速度场温度场浓度场等用一系列有限个离散点节点上的值的集合来代替通过一定的原则建立起这些离散点上变量值之间关系的代数方程称为离散方程求解所建立起来的代数方程以获得所求解变量的近似值
流动与传热的数值计算
§1 绪论
1.1 引言 1、传热、传质与流体流动的重要性
工程设备(如结晶器,中间包,钢包及锅炉,高炉等) 内部流体流动及热交换过程,自然环境中的污染问题,暴 风雨雪,河流泛滥及着火过程中出现的热、质传递,流动 起着重要作用。 2、对过程估计和认识的必要性
一.质量守恒方程(连续性方程)
1.理论依据:质量守恒定律 2.数学描述: [单位时间内微元体中流体质量的增加]=[ 同一时间间隔内流入该微
元体的净质量] 3.数学表达式:
?? ? ? ?? u?? ? ?? v?? ? ?? w?? 0
?t ?x
?y
?z
?? ? div(? U) ? 0
?t
or
?? ? ? (? U) ? 0
五.控制方程的通用形式 引入背景:比较四个基本控制方程式,虽因变量各不相同,但它
)
?
div(?
gradu)
?
?p ?x
?
Su
流体流动与传热的数值计算
12
三、本课程的目的
❖ 数值求解有关过程的方法很多,但本课程不 打算介绍所有现成的方法,这样只会把同学 们搞糊涂,感到茫然、不知所措。
❖ 本课程主要介绍由Patankar教授与Spalding教 授所开创的(通用)数值计算方法。学习和 掌握这一套方法后即可用以计算分析在科研 工作中可能遇到的实际问题,并可在此基础 上学习、掌握其他数值计算方法。
❖ 但试验的代价→昂贵,某些时候甚至不可能实现,尤 其是在大型工业化装置上进行实验更为困难。
❖ →只能针对已有的现象或装置做→很难用于开发。1: 1,逐渐放大→大大影响了我国化学工业的发展。
❖ 对一些基本物理现象的规律并不都能从实物试验中获 得。
20.8.16
15
②相似理论指导下的实验
缩小规模:或取一局部物体作模型试验。如 裂解炉的开发:单管试验、多管缩小尺寸、 传热试验、加热时间等;再如降膜结晶法:a. 短单管→物理现象观察分析;b. 长、单管, 中间实验;c. 多根管的放大试验;d工业装置。 但即使如此,有时也存在不同程度的困难。
2. R.B. Bird & W.E.Steward,Transport Phenomena
3. E.R.G. Eckert,Analysis of heat and mass transfer
4. Jacob,Heat Transfer 5. 王补宣,工程传热与传质学
6. O.C. Zienkiewieg,The finite element method , by 7. H. Schlichting,Boundary layer theory
→所有这些都要求更细的过程、更精密的控制 →有必要预测有关的过程。
20.8.16
传热与流体流动数值计算(1~3章)-PPT精选文档
• 可以代表无因次的变量 • 热、质传递,流体流动,紊流以及有关的一些现 象的所有有关微分方程都可以看成通用方程的一 个特殊情况;可以只编写一个求解通用方程的程 序,对不同意义的 重复使用这个程序; • 对不同的 需要对相应的和S分别赋以各自合适 的表达式,同时给出合适的初始条件和边界条件。
坐标的合适选择
恰当明智地选择坐标系统有时可以减少所需要的自变量数。 并非只能使用直角坐标系,任何一种描述空间位置的方式都 是可以采用的。 例子: –1. 在一个静止的坐标系上看以恒定速度飞行的飞机 周围的流体流动是非稳态的;但是相对于固定在飞机 上的移动坐标系而言,流动是稳态的。 –2. 在一圆管内的轴对称流动于直角坐标系内是三维 的,但在r,θ,z的圆柱极坐标系内则是二维的。 –3. 坐标变换可能用来进一步减少自变量数量。 –4. 改变因变量可能导致自变量数目的减少。
恰好在第三项之后截断级数,两方程相加相减得到:
3 1 d 2x dx 2
d 2 1 3 2 2 dx 2 ( x )2 2 代入微分方程就推出有限差分方程。
假设:φ的 变化多少 有点像x的 一个多项 式,从而 高阶导数 项不那么 重要。
传热与流体流动的数值计算
[美] S.V. 帕坦卡 著 同济大学机械工程学院 朱 彤
本课程学习内容
• • • • • • • 物理现象的数学描述 离散化方法 扩散项处理 对流与扩散 流场的计算 湍流数学模型 Fluent基础知识介绍
参考书目
• 传热与流体流动的数值计算——[美] S.V. 帕坦卡 • 湍流——是勋刚 • 湍流计算模型——陈义良 • 数值传热学——陶文铨
其中h是比焓,k是导热系数,T是温度,Sh是容积发热率
化工原理上册化工流体流动与传热
绪 论一、本门课程的产生化学工业是对原料进行化学加工以获得有用的产品。
显然,其核心是化学反应过程及其设备,为使化学反应经济有效的进行,反应器内必须保持某些最佳反应条件,如适宜的压强、温度和物料的纯度。
这些过程统称为前处理。
反应后,产物与反应物必须分开,产物必须精制,这些过程称为后处理。
前后处理中,绝大多数过程是纯物理过程。
从诸多化学工业生产中如何找出规律性的东西。
解剖麻雀:碳酸氢氨的制造冷气热气Q HCO NH O H CO NH +⇔++34223首先制备原料 3NHQ NH N H +⇔+32223循环冷气经合成塔内外壁环隙从上而下,由热交换器的管间进入从中心管上升入触媒层。
压强为[]a P k ⋅⨯310392.31 温度为 C C 520~480 。
①动量传递(冷气入塔)(物理学中:动量=质量⨯速度[]s N ⋅)②热量传递③质量传递(氨水吸收二氧化碳制造碳酸氢氨)④化学反应工程。
(合成炉)除化学反应外,其余步骤皆可归纳为若干基本物理过程如输送、压缩、传热、沉降、过滤、蒸发、结晶、干燥、蒸馏、吸收、萃取、冷冻等。
共同的过程:传递过程(三传一反)共同的方法:⎪⎪⎩⎪⎪⎨⎧建立数学方程。
映了过程的真实面貌,的主要因素,大体上反抓住影响过程—即半理论半经验方法)、数学研究模型方法(量之间的关系)。
、直接用实验测取各变(避免了方程式的建立验的方法)、实验研究方法即经(21 任何一个学科(或学科分支)之所以能成为一门学科,必须有统一的研究对象、统一的研究方法。
统一对象即传递过程,也是联系各单元操作的一条主线;各单元操作有着共同的研究方法,这样以单元操作为内容,以传递过程和研究方法为主线组成了“化工原理”这一门课。
共同的过程 共同的方法产生一门学科即:化工原理。
二、《化工原理》课程的性质、地位和作用《化工原理》是在高等数学、物理学及物理化学、化学等课程的基础上开设的一门基础技术课程,其主要任务是研究化工单元操作的基本原理,典型设备的构造及工艺尺寸的计算或设备选型。
化工流体流动与传热
nc ? 1.1 n nc ? 1.19 n
换热管 总数
系列标准
159mm 273mm 400mm 500mm 600mm 800mm 1000mm 1200mm 1400mm
一、设计的基本原则
8.流体通过换热器的流动阻力 (压降)计算 (1)管程阻力的计算
?? pi ? (?p1 ? ? p2)Ft Ns Np 管程压降计算式
每程管子 数应相等
一、设计的基本原则
(2)壳程数的确定
当 ? ?t ? 0.8
则 应采用多壳程
NS ? 2
不宜 采用
串联 使用
一、设计的基本原则
6.折流挡板的选用
挡板缺
口高度
(1)折流挡板的类型
h
弓形折流板√
折流挡板 圆盘形折流板
分流形折流板
系列标准 h ? 20%D
壳
h ? 25%D
体 直
径
一、设计的基本原则
对正方形排列
F ? 0.3
一、设计的基本原则
fo — 壳程流体的摩擦系数
当 Reo ? 500
fo ? 5.0 Reo?0.228
其中
Reo
?
douo? ?
uo
?
Vs Ao
Ao ? z(D ? ncdo )
壳程流 通截面
积
二、设计的具体步骤
一般步骤
? 估算传热面积,初选换热器型号 ? 根据换热任务,计算传热量 ? 确定流体的流径 ? 确定流体的进出口温度 ? 计算定性温度,查找流体物性 ? 计算平均温度差 ? 根据流体温差和设计要求,确定换热器型式
?
1)
?uo2
2
? p2?
管束压降
大学化学《化工原理-流体流动1》课件
对于Z方向微元
pA ( p dp) A gAdz dp gdz 0
不可压缩液体
const., p / gz const. p1 p2 g(z2 z1)
第一章 第二节
不可压缩流体
条件 静止
单一连续流体
结论
单一连续流体时→同一水平面静压力相等 间断、非单一流体→逐段传递压力关系
[确切标明 (表)、(绝)、(真)]
第一章 第一节
三、剪力、剪应力、粘度
流体沿固体表面流过存在速度分布
F du
A
dy
:动力粘度、粘性系数
第一章 第一节
牛顿型 非牛顿型
假塑性
塑性 涨塑性
= du
dy
=
y
du dy
= du n
dy
= du n
dy
n n
第一章 第一节
ห้องสมุดไป่ตู้ 粘度
Pa s
N / m2 m/s/m
第一章 第二节
二 、流体静力学方程的应用
1、压差计
p1 p2 (A B )gR
微差压差计
(1)D : d 10 :1
(2)
B
与
很接近
A
第一章 第二节
2、液面计
3、液封
4、液体在离心力场内的静力学平衡
p
p
r
r
第一章 第二节
N s m2
T↑ 液体 ↓, 气体 ↑
P↑ 基本不变, 基本不变
40atm以上考虑变化
第一章 第一节
混合粘度
1、不缔合混合液体
log m
xi log i
2、低压下混合气体
m
yi
流体的传热和传热学
流体的传热和传热学传热是指能量从高温区域传递到低温区域的过程。
广义上讲,传热是指热量、动能或质量等能量形式在物质之间的传递过程。
而流体的传热则是研究在流体介质中的传热现象和规律。
一、传热机制传热的机制主要有三种:传导、对流和辐射。
1. 传导传导是指固体或液体内部因分子间的热量传递而导致整体温度升高的过程。
这类传热方式在固体中较为常见,因为固体的分子排列比较紧密,相互之间的接触面积大,分子之间的热量可以通过碰撞和振动传递。
而在流体传热中,传导热量的主要途径是通过介质内部颗粒的热运动来实现的。
2. 对流对流是指传热介质在流动过程中,通过物质的扩散和传导以及流体的对流来实现热量的传递。
对流传热一般分为自然对流和强制对流两种形式。
在自然对流中,流体的上升气流或下降气流给固体带来热量传递;而强制对流则通过外部引导势力的作用使流体迅速流动起来,从而带走或带来热量。
3. 辐射辐射热量是指能量以电磁波的形式通过真空或介质,如气体和液体进行传递。
辐射可以在真空中进行,也可以在空气或其他物质中进行,辐射热量的传递主要是通过辐射能量转化为热量。
二、传热学传热学是研究传热机制、传热规律以及传热技术的一门学科。
传热学的核心是热传导、对流和辐射传热三大基本原理,它们被应用于各个领域,如工程、机械、化工、建筑等。
在传热学的研究中,我们需要了解传热的基本参数和相关性质。
其中主要包括温度、热流密度、传热系数、传热表观速度等。
这些参数与传热介质的性质、流体流动和传热方式都有关系。
此外,传热学还涉及到传热装置和传热器件的设计和优化。
传热换热器是用于实现传热的设备,根据传热方式的不同,可以分为传热器、冷凝器和蒸发器等。
传热器件的设计和优化是传热学的重要研究内容,可以通过改变传热器的结构和增加传热面积来提高传热效率。
总结起来,流体的传热和传热学是涉及流体介质中传热现象和规律的学科。
研究流体传热的机制和规律,对于工程设计和能源利用有着重要的意义。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体静压力的计算
如图所示,采用一复式U形压差计测量容器中O点处的压力,两段U形 管A和B中水银柱读数分别为60、70cm,中间一段充满水,求O点处 的压力
pO p2 0.8 w g
200
O
pa
RB=700
' p2 p2 p1' 0.6 Hg g
1 1’ 1’’
RA=600
P+dp
dp
dz
gdz 0
p
z
对于不可压缩流体,密度为常数
p
gz 常数
0
1 2
0
p1
gz1
p2
gz2
h z1 z2
p2 p1 g z1 z2
或
p2 p1 gh
注:上式只适用于重力场中静止的不可压缩的单一连续流体; 静压力只与各点的垂直位置有关,而与水平位置无关; 只有在压力变化不大时,气体才可适用上式。
聚合反应器与聚合反应操作
课程的教学内容
化工原理(流体流动与传热) 化学反应工程基础
聚合反应工程分析
搅拌聚合釜内的传递过程 搅拌聚合釜的放大 聚合过程与聚合反应器
第1章
流体流动与传热
1.1 流体流动
泵
水
水 池
水 封
连续介质假定:将流体视为由无数质点组成的、彼 此间没有空隙的连续介质。
R
d
2 1 u1
D
2
u2
1
管道两测点间连接压差计读数代表什么意义?
B
p1 pA gh1 p2
n
lg m xi lg i
i 1
x ----摩尔分数
对于低压下的混合气体
m
xi i M i
i 1 n
n
1
2
xi M i
i 1
x ----摩尔分数
1 2
1.1.2 流体静力学基本方程及应用
单一连续静止的流体内部,取高度为dz底面积为A 的流体柱微元
pA p dp A gAdz
p1' p1'' p3 0.5 w g
' p3 p3 pa 0.7 Hg g
100
2
3
2’
3’
A
B
流体静力学方程的应用
压力和压差的测定
液位的测定
p1 p2 B z c R A a p1 Rm p2 p1 B p2
C
R
b
a
A 倾斜U形管压差计 双液体U形管微差压差计
U形管压差计
液位计
吹气管
调 节 阀 N2 贮罐 h
A
R
B
鼓泡观察器
U型管压差计
远距离测量液位计示意图
例1-1 利用远距离测量装置测定一分相槽内油和水的两相界面 位置。已知两吹气管出口的间距为H=1m,压差计中指示液为 水银。煤油、水和水银的密度分别为820, 1000, 13600kg/m3. 求 当压差计指示R=67mm时,界面距离上吹气管出口端距离h
聚合反应工程学的研究内容
以工业规模的聚合过程为对象,以聚合动力学和聚 合物系的传递为基础,从一般的定性规律到数学模 型,从解决一般的技术问题到聚合反应器的设计、 放大、聚合过程的开发和工程分析、优化工艺条件 的确定和操作设计、聚合反应器的动态特性和操作 稳定性、聚合过程优化以及包括聚合反应在内的全 过程的系统工程
例1-3 有一垂直管道,内径由300mm渐缩至150mm,水从下 而上自粗管流入细管。测得水在粗管和细管内的静压力分别 为0.2MPa和0.16MPa(表压)。测定点的垂直距离为1.5m。如 两测压点之间的摩擦阻力不计,试求水的流量为多少?
d2
0.16MPa 1.5m
2
1
d1
0.2MPa
(464m3/h)
1.1.1 流体流动中的作用力
质量力
作用于流体的每个质点上的力,它与流体的 质量成正比,如重力、离心力等 作用于流体表面的作用力,它的大小与其 表面积成正比,其中垂直于表面的力称为 压力,平行于表面的力称为剪力
表面力
a. 质量力与密度
密度的定义: 气体的密度:
液体密度:
m kg / m3 V pM (理想气体的状态方程) RT
u 2 Dp We h f 对于不可压缩流体: g Dz D 2
对于理想流体且无外加功输入时:
u p1 u p2 gz1 gz2 2 2
2 1
2 2
伯努利方程的几点讨论
1.适用于不可压缩的理想流体稳定流动且无外功加入的情况 2.关于We: 输送设备对单位质量流体所做的有效功 单位时间内输送设备对流体所的有效功称为功率Ne
换热器
z2
1
泵
z1 1
1. 内能
2. 位能 3. 动能
单位质量流体的内能为U,J/kg 单位质量流体的位能为gz,J/kg 其值与基准面位置的选取有关
1 2 u ,J/kg 单位质量流体的动能为 2
分功以静压能的形式输入划定体积
4. 静压能 流体进入划定体积,需要对抗压力做功,这部
若质量为m的流体其体积为V,某截面处静压力为p,截面 面积为A, 则将其压入划定体积所做的功为
根据能量守恒定律,对于划定体积,连续稳定流动时,输入 的总能量等于输出的总能量, 以1kg流体为衡算基准,总能量 衡算式为:
2 u12 u2 U1 gz1 p1v1 Qe We U 2 gz2 p2v2 2 2
DU g Dz
D u 2 2
D pv Qe We
绝对零压线
以大气压为标准
c. 剪力、剪应力与黏度
单位面积上的剪力F 称为剪应力t 牛顿黏度定律
y u
Dy
F du t A dy
黏性系数或动力黏度,简称黏度
Pa.s
Du
1cP(厘泊) 102 P(泊) 103 Pa s
u=0
运动黏度v
混合流体的黏度
对于不缔合液体
p2
R
油 H1
pb h
H
p1
pa
水
1.1.3 流体流动的基本方程
主要讨论管内的流动 体积流量: qV 质量流量: qm
m /s
3
qV
kg / s
管内流体流速分布
qV qm 平均速度: u A A
m/s
kg /(m 2 s )
qm uA u 质量流速: G A A
单元操作
包括流体输送、沉降、过滤、混合、流态化、换热、蒸发、萃 取、吸附、膜分离、结晶、压缩、冷冻、粉碎等
三种衡算
微分衡算与总衡算
质量衡算(物料衡算)
质量守恒定律
能量衡算
能量守恒定律与热力学第一定律
动量衡算
动量守恒定律与热力学第二定律
在生产KNO3的过程中,质量分数为0.20(质量分数,下同)
V v 比体积 m
Bernoulli方程
稳定流动的总 能量衡算式
DU g Dz
D u 2 2
D pv Qe We
内能和热不能直接转化为机械能用于流体输送,可将其消去
热力学第一定律: DU = Q ' e
' Qe :
v2
v1
pdv
ห้องสมุดไป่ตู้
1kg流体从1 - 1到2 - 2所获得的热量
u1
4
d u2
2 1
4
2 d2
d12 0.12 u2 u1 2 2.12 3.31 m / s 2 d2 0.08
b. 稳定流动系统的能量衡算 ——柏努利方程
2 2
以截面1-1和2-2之间的划定 体积为研究对象 流体进出划定体积时输入或 输出的能量有: 内能、位能、动能、静压能 另外还有与外界的能量交换: 泵、换热器
V pA pV A
(力×位移)
质量为m的流体具有总的能量mE为:
1 2 mE mU mgz mu pV 2
5. 热
6. 功
单位质量流体通过划定体积所交换的热为Qe 吸热为正值,放热为负值,J/kg 单位质量流体通过划定体积所接受的功为We 接受外功为正值,对外做功为负值,J/kg
1at 1 kgf cm 2 735.6mmHg 10mH 2O 0.9807bar 9.807 10 4 Pa
表压与真空度
p /MPa
绝对压力:流体体系的真实压力
表 压
大 气 压
以绝对零压线为标准 真空度
表
压 = 绝对压力 - 大气压
以大气压为标准
真空度 = 大气压 - 绝对压力
的纯KNO3水溶液以1000kg/h的流量送入蒸发器,在422K 下蒸发出部分水而得到质量分数为0.50的浓溶液,再送入
冷却结晶器,在311K下结晶,得到含水0.04的KNO3结晶
和含KNO30.375的饱和溶液。前者作为产品取出,后者循 环回到蒸发器。过程为稳态操作。 试计算KNO3结晶产品量、水蒸发量和循环的饱和溶液量。 W 蒸发器 S R 冷却结晶器 P
v2
v1
pdv: 1kg流体从1 - 1到2 - 2中因体积膨胀而做的功
Q 的讨论
' e
主要有两部分:
一是通过环境直接获得的热Qe,如换热器; 二是克服流动阻力做功,由机械能转化的热,简称阻力损失。
' Qe = Qe + h f
代入总能量衡算式 DU g Dz