《化工原理》课程教学大纲
《化工原理》教学大纲
《化工原理》教学大纲课程编号:13ZJ091408课程名称:化工原理总学时:54一、说明(一)《化工原理》的课程性质:化工原理是应用化学专业的必修课程。
化工原理是化学化工类专业的一门紧密联系化工生产实际的课程,是一门重要的工程技术基础课程。
(二)《化工原理》教材及授课对象:教材:化工原理编者:王志魁等授课对象:化学工程与工艺(三)《化工原理》的课程目标(教学目标):开设本课程之目的是使学生了解化工生产中的基础知识、工艺原理、从化学到化工生产所涉及的有关问题和解决问题的途径,以及运用经济技术观点综合处理问题的方法,从而达到综合分析和解决问题的能力。
为学生在今后的工作中正确地联系化工生产实际打下基础。
(四)《化工原理》课程授课计划(包括学时分配):(五)考核要求:本课程的考试重点是流体动力学、传热、吸收、精馏等基础理论知识及应用。
考试要求分二个层次:掌握、了解。
成绩评定:成绩评定严格按平时占30%(包括学习态度和平时作业);期末成绩占70%。
二、教学内容第一章绪论主要教学目标:掌握物料衡算的概念;掌握压强各种单位之间的换算教学方法及教学手段:板书与多媒体结合讲授与自学结合教学重点及难点:单位换算一、化工原理课程研究内容、特点和学习要求二、单位制度及单位换算第二章流体流动主要教学目标:掌握流体静力学;掌握理想流体和实际流体稳定流动时的;伯努利方程及其应用。
教学方法及教学手段:启发式板书与多媒体结合讲授与自学结合教学重点及难点:能量衡算;伯努利方程及其应用第一节流体静力学一、流体的压力二、流体的密度与比体积三、流体静力学基本方程式四、流体静力学基本方程式的应用第二节流体流动的基本方程式一、流量与流速二、稳态流动与非稳态流动三、连续性方程式四、柏努利方程式五、实际流体的柏努利方程第三节管内流体流动现象一、粘度二、流动类型与雷诺准数三、流体在圆管内的速度分布第四节管内流体流动的摩擦阻力损失一、直管中流体摩擦阻力损失测定二、层流时摩擦阻力损失计算三、湍流时直管阻力损失计算四、流体在非圆形直管内的流动阻力五、局部阻力损失第五节管路的计算一、简单管路二、复杂管路第六节流量的测量一、测速管二、孔板流量计三、转子流量计第三章流体输送机械主要教学目标:了解离心泵的构造,掌握工作原理、性能参数教学方法及教学手段:启发式板书与多媒体结合讲授与自学结合教学重点及难点:离心泵的选择与安装第一节离心泵一、离心泵的工作原理二、离心泵主要部件三、离心泵的主要性能参数四、离心泵的特性曲线五、离心泵的工作点与流量调节六、离心泵的汽蚀现象与安装高度七、离心泵的类型与选用第二节其它化工用泵一、往复泵二、正位移泵三、非正位移泵第三节气体输送机械一、离心通风机二、鼓风机与压缩机三、真空泵第四章沉降与过滤主要教学目标:掌握非均相分离的方法,理论计算关系式,了解分离设备的构造、工作原理等教学方法及教学手段:启发式板书与多媒体结合讲授与自学结合教学重点及难点:沉降、过滤计算第一节概述一、非均相物系的分离二、颗粒与流体相对运动时所受的阻力第二节重力沉降一、沉降速度二、降尘室三、悬浮液的沉聚第三节离心沉降一、离心分离因数二、离心沉降速度三、旋风分离器第四节过滤一、悬浮液的过滤二、过滤基本方程式三、恒压过滤四、过滤设备第五章传热主要教学目标:掌握间壁式换热方式;掌握热传导基本方程、平面壁和圆筒壁的;掌握总传热方程及传热系数、稳定传热的平均温度差;了解对流传热机理、对流传热方程;熟悉强化传热途径教学方法及教学手段:板书与多媒体结合讲授与自学结合教学重点及难点:传导传热计算;总传热方程及传热系数第一节概述一、传热过程的应用二、传热过程第二节热传导一、傅里叶定律二、热导率三、平壁的稳态热传导四、圆筒壁的稳态热传导第三节对流传热一、对流传热方程和对流传热系数二、影响对流传热的因素三、对流传热的特征数关系式四、对流传热系数的经验关联式第四节传热计算一、热量衡算二、传热平均温度差三、总传热系数四、稳定传热的计算第五节辐射传热一、基本概念二、物体辐射能力与斯蒂芬-波尔兹曼定律三、克希霍夫定律四、两固体间的辐射传热第五节换热器一、换热器的分类二、间壁式换热器三、列管式换热器的选用四、系列标准换热器的选用步骤五、间壁式换热器强化传热的途径第六章吸收主要教学目标:了解吸收在化工生产中的应用;掌握吸收操作线方程,最小液气比计算;了解物理吸收与化学吸收的概念;掌握用摩尔分率和比摩尔分率表达的相组成;了解吸收机理;展我双膜论要点和强化吸收途径;掌握吸收的基本运算关系式。
《化工原理》课程教学大纲
化工原理课程教学大纲课程名称:化工原理英文名称:Principles of Chemical engineering/ Unit operations of Chemical engineering 课程编码:x2030212学时数:96其中实践学时数:16课外学时数:0学分数:6.0适用专业:生物工程一、课程简介《化工原理》将课堂教学、化工单元实验操作与设计型教学内容相结合,使学生掌握化工单元操作各部分的基本原理,掌握流体输送过程的基本理论;掌握气体和液体混合物分离操作的基本理论和实际操作要求,掌握不同单元操作条件对化工单元过程生产效果的影响;掌握传热过程的基本定律和实际生产设备应用;掌握传热,精馏和吸收单元操作所应用典型装置的设计方法;了解本学科领域热点问题;熟悉新型化工单元操作中生物化工生产的典型应用。
最终掌握生物化工生产单元操作有机结合的典型案例及设计方法,了解生产安全相关法律法规,能够针对具体化工单元操作过程,编制完整的具有典型生物工程单元操作的设计方案,培养掌握具有化工基本知识的生物和化工领域的技术人才。
二、课程目标与毕业要求关系表三、课程教学内容、基本要求、重点和难点绪论1、教学内容化工过程与单元操作;《化工原理》课程的性质与任务;2、基本要求了解部分:《化工原理》课程的性质、研究对象、任务与基本内容理解部分:因次、单位制和单位换算掌握部分:物料衡算与能量衡算熟练掌握:无3、重点和难点(1)重点:单元操作及基本特点(2)难点:无第一章流体流动1、教学内容流体概述;流体静力学方程及其应用;流体流动中的守恒原理;流体的流动状态分析;流体的阻力损失原因及阻力计算;简单管路的计算;流速和流量的测定方法。
2、基本要求了解部分:流体概述;流速和流量的测定方法理解部分:流体静力学方程及其应用;流体流动中的守恒原理;流体的流动状态分析;流体的阻力损失原因及阻力计算;简单管路的计算;掌握部分:流体静力学方程及其应用;流体的流动状态分析;简单管路的计算;熟练掌握:流体流动中的守恒原理;3、重点和难点(1)重点:流体静力学方程;连续性方程;柏努利方程;雷诺实验及应用;阻力计算(2)难点:柏努利方程;雷诺实验及应用;阻力计算第2章流体输送机械1、教学内容常用液体输送机械;离心泵的理论压头和实际压头(扬程),功率和效率;离心泵的气缚与气蚀现象;泵的安装高度、流量调节、泵的选择;离心风机的性能与选择。
(完整版)《化工原理》课程教学大纲
(完整版)《化工原理》课程教学大纲《化工原理》课程教学大纲一、课程基本信息课程代码:260353课程名称:《化工原理》英文名称:Principles of Chemical Engineering课程类别:专业基础课学时:90学时,化工原理(上册)40,化工原理(下册)40,实验10学分:4个适用对象:环境工程专业考核方式:期末考试成绩(占70%)加平时成绩(占30%),其中期末考试为闭卷考试,平时成绩包括考勤,作业、实验和平时测验等。
先修课程:数学、物理、化学、物理化学二、课程简介中文简介:化工原理课程属化学工程技术科学学科,是理论性和实践性都很强的学科,是环境工程专业必修的一门专业基础课程。
本课程的总学时为90学时,其中80学时为课堂教学,而10个学时为实践教学。
其中课堂教学章节和实验教学内容都是按环境工程专业的专业特点而设定的,而与环境工程专业关系不为紧密的则建议自学.英文简介:Chemical engineering is a technology of chemical engineering subdiscipline。
This course specialize in strong theory, practice and is a compulsory courses to environmental engineering specialty. The total period is 90, including 80 period classroom teaaching and 10 period practice teaching。
The content of this course is arranged according to the characteristics of environmental engineering. It is suggested that those content that has little relation with environmental engineering should be self—studied。
《化工原理》课程教学大纲
课程名称:化工原理
课程类型:专业基础课
总 学 时:108讲课学时:108
学 分:6
适用对象:化学工程与工艺专业、制药工程专业
先修课程:高等教学、物理学、物理化学
一、课程性质、目的和任务
化工原理课程是化学工程、化工工艺、生物化工、环境工程等类专业的一门主干课,为学生在具备了必要的高等教学、物理学、物理化学、计算机技术(包括算法语言及其应用)等基础知识后必修的技术基础课。
10.气液传质设备
板式塔和填实塔的典型结构、分类和特点;流体力学性能与传质性能。
了解板式塔和填料塔的典型结构、分类和特点; 熟练掌握板式塔流体力学性能计算及操作极限校验方法,塔板操作负荷性能图的绘制;熟练掌握板式塔流体力学性能定性分析及计算。
11萃取
液液萃取概述;三角形相图及其在单级萃取中的应用;单级萃取计算;最少溶剂的计算;萃取剂的选择;单级萃取、多级错流和多级逆流萃取的流程和计算;萃取设备简介。
四、课程的重点和难点
绪论
重点是单元操作的物料衡算和热量衡算及工程观点的建立。
第一章流体流动
重点:流体静力学基本方程及其应用;;牛顿粘性定律;流体流动连续性方程和机械能衡算方程;管路计算。
难点:管内流动的阻力损失的计算;管路计算。
第二章流体输送机械
重点:离心泵操作原理;离心泵的工作点和流量调节;离心泵安装高度的确定;离心泵的选用。
第十章气液传质设备
重点:流体力学性能与传质性能;塔板操作负荷性能图的绘制。
难点:板式塔流体力学性能定性分析及计算。
第十一章萃取
重点:三角形相图及其在单级萃取中的应用;单级萃取计算。
难点:三角形相图及应用。
第十二章干燥
化工原理课程教学大纲
化工原理课程教学大纲一、课程概述化工原理课程是化学工程与技术专业的一门重要基础课程,旨在帮助学生全面了解和掌握化工原理的基本概念、原理和应用。
本课程内容包括化工基本理论、化工过程综合设计等方面的知识,培养学生的化工思维和分析问题的能力。
二、教学目标本课程的教学目标主要包括以下几个方面:1. 使学生熟悉化工原理的基本概念和基本原理;2. 培养学生运用化工原理解决实际工程问题的能力;3. 提高学生的科学研究和创新能力;4. 培养学生的团队合作和沟通能力。
三、教学内容及安排1. 化工基本理论1.1 化学平衡与化学动力学- 反应速率与速率方程- 化学平衡常数与平衡常态1.2 物理化学基础- 热力学基本原理- 混合物热力学性质- 相平衡与相图2. 化工过程综合设计2.1 传递过程的基本原理- 传热、传质、传动基本概念与数学模型- 传递过程的控制方程2.2 化工反应器设计- 反应速率与反应器类型选择- 反应器设计与优化2.3 流程流动与分离- 流体力学基本概念与控制方程- 分离技术与设备选择四、教学方法本课程采用多种教学方法,包括理论讲授、案例分析、实验操作和课堂讨论等。
通过理论讲解,学生可以了解到化工原理的基本概念和原理;通过案例分析和实验操作,学生能够运用所学知识解决实际问题,并培养实践能力;通过课堂讨论,学生可以加深对化工原理的理解和应用。
五、考核要求1. 平时成绩:包括课堂出勤、课堂表现、作业完成情况等。
2. 期中考试:考查学生对于课程内容的理解和应用能力。
3. 期末考试:综合考查学生对于整个课程内容的掌握情况。
4. 实验报告:要求学生参加相关实验,并撰写实验报告。
六、教材参考1. 《化工原理导论》,李鸿翔,化学工业出版社2. 《化工原理与计算》,王志刚,化学工业出版社七、参考资源1. 化学工程与技术学术期刊:国内外相关领域的研究论文与实践案例。
2. 相关化工工艺软件:ASPEN、HYSYS等。
八、学习建议1. 加强课前预习,掌握基本概念和原理;2. 多进行思考和讨论,加深对于化工原理的理解;3. 积极参与实验操作,并认真完成实验报告;4. 注重课程知识与实际工程的结合,培养应用能力;5. 与同学进行合作学习,共同解决难题。
化工原理课程教学大纲
化工原理课程教学大纲一、课程背景和目标化工原理课程是化工专业的基础课程之一,旨在通过系统地介绍化工原理的基本概念、原理和应用,培养学生对化工原理的理论掌握和实际应用能力。
二、教学内容和安排1. 第一章:引言- 化工原理的定义和重要性- 化工原理与现代化工产业的关系- 化工原理的学习方法和途径2. 第二章:质量守恒原理- 质量守恒定律的表述与应用- 质量守恒的连续性方程- 质量守恒定律在化工领域的应用3. 第三章:能量守恒原理- 能量守恒定律的表述与应用- 能量守恒的热力学方程- 能量守恒定律在化工领域的应用4. 第四章:物质平衡原理- 混合物质平衡的表述与应用- 化工反应平衡的物质平衡方程- 物质平衡在化工过程中的应用5. 第五章:动量守恒原理- 动量守恒定律的表述与应用- 流体力学基本方程- 动量守恒定律在化工领域的应用 6. 第六章:传质原理- 传质过程的基本概念和分类- 线性传质模型和非线性传质模型 - 传质过程在化工中的应用7. 第七章:传热原理- 传热过程的基本概念和热传导方程 - 对流传热和辐射传热- 传热过程在化工中的应用8. 第八章:化工过程模拟与优化- 化工过程模拟的基本原理和方法- 优化化工过程的基本思想和方法- 化工过程模拟与优化在工业实践中的应用案例三、教学方法和手段1. 理论授课:通过教师讲解、示范和案例分析,介绍化工原理的基本概念和原理。
2. 实验教学:通过实验操作,培养学生的实验能力和科学思维能力。
3. 讨论与互动:组织学生进行小组讨论、课堂互动,加深对化工原理的理解和应用。
4. 课程设计:要求学生进行化工过程的模拟与优化设计,提高其综合运用化工原理的能力。
5. 学生作业:布置相关的习题和课后作业,巩固学生对所学内容的掌握程度。
四、教学评估方法1. 考试评估:定期进行笔试和实验考核,考察学生对化工原理的理解和应用能力。
2. 课程设计评估:对学生的课程设计报告进行评审和评分,评估学生的综合能力。
《化工原理》教学大纲
化工原理》教学大纲一、课程目标1.课程性质《化工原理》是化学工程与工艺类及相近专业的一门主干课,是学生在具备了必要的《高等数学》、《线性代数》、《物理》、《机械制图》、《算法语言》、《物理化学》等基础知识之后必修的技术基础课,也是学生学习《化工原理实验》、《化工原理课程设计》、《化工传递过程》、《化工分离工程》、《化工系统工程》等课程的先修课程。
《化工原理》是研究和探讨化工生产中大规模改变物质物理性质的工程技术学科,它以化工生产中的物理加工过程为背景,研究物理加工过程的基本规律,应用这些规律解决化工生产中的实际问题,并将这些规律按其操作原理的共性归纳成若干单元操作。
《化工原理》是化学工程这一学科中最早形成、基础性最强、应用面最广的学科分支。
2.教学方法以课堂讲授为主,讨论、自学、设备实物或模型现场教学、计算机辅助教学为辅。
3.课程学习目标与基本要求(1)单元操作的理论基础是流体力学(动量传递)、热量传递和质量传递理论。
通过课程教学,应使学生掌握流体力学、热量传递和质量传递的基本理论知识;掌握主要单元操作的基本原理、工艺计算和典型设备结构与设计;掌握本课程的主要研究方法,如数学模型方法和实验研究方法。
(2)通过课程教学,培养学生具备根据各单元操作在技术上和经济上的特点,进行“单元过程和设备”选择的能力、过程的计算和设备设计的能力;具备进行单元过程的操作和调节以适应不同生产要求的能力;具备单元过程在操作中发生故障时如何寻找故障的原因并加以解决的能力;具备应用计算机进行单元操作辅助计算的能力;具备通过自学获取新知识的能力等。
(3)通过课程教学,应着重培养学生具备以下两方面的良好素质。
一是针对现有生产过程单元操作中存在的问题,能够善于运用所学的基本理论和知识动脑分析、动手解决;二是针对现有单元操作中技术上不合理的地方,能够发现并提出改进措施,达到节能、降耗、提高效率的目的。
4.课程总学时:化学工程与工艺及制药类专业110学时,其中化工原理(一)A55学时,化工原理(一)B55学时。
《化工原理》教学大纲
《化工原理》教学大纲
一、课程背景
化工原理课程是一门以物理及化学原理为基础,介绍各种工业反应的基本原理和过程,提高本专业本科生的基本理论水平和实践能力的工科基础课程。
课程有助于学生全面理解化工原理,掌握化工基本概念和技术,认识各类工业反应过程,培养学生运用所学知识从事化工工程解决方案分析、实施与控制的能力。
二、教学目标
1.了解化工反应基本原理,掌握分子的基本性质和物质的变化;
2.掌握各类化工反应的基本原理,了解各类化工反应过程中有效的因素;
3.掌握反应溶液控制的方法和技术,熟悉工业反应的热物理参数;
4.熟悉常见工业反应器的结构和性能,掌握反应热传递及其计算,学会化工原理中的实验方法;
5.通过案例分析学会运用所学知识分析和解决实际工程问题。
三、教学内容
1.物理化学原理:
(1)溶液热力学及热力学的可逆性;
(2)热力学条件下化学反应的基本原理;
2.化学反应的活性:
(1)化学反应的催化原理;
(2)化学反应的浓度、温度等影响因素;
3.工业反应:
(1)气体、液体及固体反应的基本原理;
(2)常见工业反应器及其性能;。
化工原理课程教学大纲(理论和实验)
《化工原理》课程教学大纲一、课程基本情况课程编号素质学分数 41.课程名称(中文)化工原理(英文)Physical Chemistry2.课程类别专业素质教育必修核心素质教育3.课程学时及其分配总学时:64理论教学学时:48实践教学学时:164.适用院系、专业生命科学学院制药工程系5.先修课程预备知识《无机化学》《高等数学》《分析化学》《有机化学》二、本门课程的意义、作用及教学目的、要求1. 本门课程的意义、作用意义:《化工原理》课程是是制药工程的一门专业基础主干必修课,是今后从事制药工程技术以及化学化工研发必不可少的重要专业基础课程。
本门课程属工程学科,用自然科学的原理考察.解释和处理工程实际问题,既具有基本的原理理论,又具有广泛适用的工程性;该课程重点阐述单元操作的基本原理和设备结构,并介绍相关的传递过程基础,;它以高等数学.物理及物理化学.计算技术为基础,将自然科学的普遍规律应用于解决工程问题,是承前启后.是后续专业课的基础,由理及工的桥梁。
作用:本课程担负的任务是研究化工生产过程中以物理加工过程为主要背景归纳而成的若干共性规律,并应用这些共性规律进行设计计算.指导操作.强化过程及延伸拓展;该课程强调工程观点.定量运算.实验技能和设计能力的训练,强调理论联系实际,培养学生的技术经济观点,学会分析和解决工程问题的能力。
2. 教学目的及要求目的:【专业素质】知识目标:(1)掌握化工原理的基础理论和基本知识,正确运用化工单元的基本规律.满足化工过程的各种要求。
(2)掌握各种化工单元操作的理论、作用原理及要求。
能力目标:(1)掌握化工单元操作技能。
(2)将化工单元的的基本知识与技术运用于药物的研发.生产及其制备工艺的设计等工作中。
方法目标:实施开发内化教学模式。
【非专业素质】(1)树立用实践检验理论的理想;(2)耐心细致.吃苦耐劳的职业素质;(3)开拓创新.团结协作的精神。
要求:要求学生具有扎实的化学工程基础理论知识,学会研究化学工程问题的方法,建立化学工程观,掌握传递过程和化学反应过程的基本原理,熟悉化工过程常用设备的原理.构造和应用,提高学生的素质,培养他们的创新精神和创造能力,使学生具有较强分析问题和解决工程实际问题的能力。
《化工原理》课程教学大纲
《化工原理》课程教学大纲第一部分大纲说明一、课程性质及任务《化工原理》是化学工程专业极为重要的的专业基础课,通过本课程的学习,使学生掌握化工单元操作的基本原理、计算方法、典型设备以及有关的化学工程实用知识。
并能用以分析和解决工程技术中的一般问题。
以便对现行的化学工业生产过程进行管理,使设备能正常运转,进而对现行的生产过程及设备作各种改进以提高其效率,从而使生产获得最大限度的经济效益。
为深入学习本专业后续课程及从事化工专业的实际工作打下基础。
二、与其他课程的关系先修高等数学、无机化学、有机化学、分析化学、物理化学等课程。
后续课程为化工设备机械基础、化工仪表、有机化工、石油炼制等专业课程。
三、教学总体要求基本概念:流体流动、输送机械、沉降、过滤、传热、精馏、吸收、干燥等。
基本知识:化工单元操作的基本原理基本技能:一般单元操作的操作能力、典型设备计算选用能力、因次分析法、实验测定法等重点:流体流动、传热、精馏、吸收等难点:阻力计算、对流传热计算、吸收速率计算等四、课程的教学方法和教学形式建议1、本课程的工程性、实践性较强,环节多,因此,教学形式以讲授为主。
2、为加强和落实动手能力的培养,充分重视实践性教学环节,保证上机操作、实验等不少于36课时,课程设计不少于60课时。
五、教学要求的层次课程的教学要求在每一章教学内容之后给出,大体分为了解、理解和熟练掌握三个层次。
了解一般为扩展知识面,知道即可;理解是能正确表达有关概念、掌握定律、计算、结构和方法;熟练掌握是在理解的基础上加以灵活运用。
第二部分教学内容及要求一、课程教学总学时数课程教学总学时数144学时(不含课程设计60课时),其中实验36学时。
二、教材与教学环节1、参考教材:天津大学《化工原理》、李云倩编《化工原理》2、授课内容以教材为主,教材担负起形成整个课程体系系统性和完整性的任务,是学生学习的主要媒体形式。
因此教材要概念清晰、条理分明、深入浅出、便于自学,并要注意加强导学。
《化工原理》课程教学大纲
《化工原理》课程教学大纲合用专业:工艺类专业有化学工程工艺、应用化学、环境工程、制药工程、生物工程、食品工程、轻化工工程,非工艺专业有工份子材料、安全工程、生物技术、过程装备与控制;对非工艺类专业,带*部份不做要求,也可根据专业特点选择下册中的气体吸收和塔设备等部分。
课程性质:技术基础课一、目的及任务学时数: 120/80 学时学分: 7.5/5 学分第一部份教学基本要求化工原理是化学工程与工艺及相关专业最重要的技术基础课之一。
通过这门课程的学习,要使学生系统地获得:‘三传’的基本概念;各单元操作的原理、典型设备的结构、工艺尺寸计算、设备选型与校核和工程学科的研究方法。
培养学生的工程观念、分析和解决单元操作中各种问题的能力。
突出课程的实践性,使学生受到利用自然科学的基本原理解决实际工程问题的初步训练,提高学生的定量运算能力、实验技能、设计能力、单元操作的分析与调节能力。
二、本课程的先行课程数学、普通物理、物理化学、计算方法、化工设备设计基础。
三、各章节具体内容要求绪论掌握的内容:1、掌握单位换算方法;2、掌握物、热衡算的原则以及衡算的方法和步骤。
熟悉的内容:1、熟悉单元操作的概念及其在化工过程中的地位。
了解的内容:1、了解化工原理的目的、任务、化学工程的发展简史;2、了解过程速率、平衡关系。
第一章流体流动掌握的内容:1、流体的密度和粘度的定义、单位、影响因素及数据获取;2、压强的定义、表达方法、单位换算;3、流体静力学方程、连续性方程、柏努利方程及其应用; 4、流体的流动类型及其判断、蕾诺准数的物理意义、计算;5、流体阻力产生的原因、流体在管内流动的机械能损失计算;6、管路的分类、简单管路计算及输送能力核算;7、液柱式压差计、测速管、孔板流量计和转子流量计的工作原理、基本结构、安装要求和计算;8、因次分析的目的、意义、原理、方法、步骤;熟悉的内容:1、流体的连续性和压缩性,定常态流动与非定常态流动;2、层流与湍流的特征;3、圆管内流速分布公式及应用;4、Hagon-Poiseeuill方e程推导和应用;5、复杂管路计算的要点;6、正确使用各种数据图表;了解的内容:1、牛顿粘性定律,牛顿流体与非牛顿流体;2、边界层的概念、边界层的发展、层流底层、边界层分离。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《化工原理》课程教学大纲一、课程基本信息课程代码:260353课程名称:《化工原理》英文名称:Principles of Chemical Engineering课程类别:专业基础课学时:90学时,化工原理(上册)40,化工原理(下册)40,实验10学分:4个适用对象:环境工程专业考核方式:期末考试成绩(占70%)加平时成绩(占30%),其中期末考试为闭卷考试,平时成绩包括考勤,作业、实验和平时测验等。
先修课程:数学、物理、化学、物理化学二、课程简介中文简介:化工原理课程属化学工程技术科学学科,是理论性和实践性都很强的学科,是环境工程专业必修的一门专业基础课程。
本课程的总学时为90学时,其中80学时为课堂教学,而10个学时为实践教学。
其中课堂教学章节和实验教学内容都是按环境工程专业的专业特点而设定的,而与环境工程专业关系不为紧密的则建议自学。
英文简介:Chemical engineering is a technology of chemical engineering subdiscipline. This course specialize in strong theory, practice and is a compulsory courses to environmental engineering specialty. The total period is 90, including 80 period classroom teaaching and 10 period practice teaching. The content of this course is arranged according to the characteristics of environmental engineering. It is suggested that those content that has little relation with environmental engineering should be self-studied.三、课程性质与教学目的(一)课程性质《化工原理》是环境工程专业一门重要的专业基础课,它的内容是讲述化工单元操作的基本原理、典型设备的结构原理、操作性能和设计计算。
化工单元操作是组成各种化工生产过程、完成一定加工目的的基本过程,其特点是化工生产过程中以物理为主的操作过程,包括流体流动过程、传热过程和传质过程。
(二)教学目的化工原理课程的目的是使学生获得常见化工单元操作过程及设备的基础知识、基本理论和基本计算能力,并受到必要的基本操作技能训练。
为学生学习后续专业课程和将来从事工程技术工作,实施常规工艺、常规管理和常规业务打好基础。
具体目的如下:1)能正确理解各单元操作的基本原理;了解典型设备的构造、性能和操作原理,并具有设备选型及校核的基本知识。
2)熟悉主要单元操作过程及设备的基本计算方法;掌握基本计算公式的物理意义、应用方法和适用范围;具有查阅和使用常用工程计算图表、手册、资料的能力。
3)熟悉常见化工单元操作要领。
4)具有选择适宜操作条件、探索强化过程途径和提高设备效能的初步能力;具有运用工程技术观点分析和解决化工单元操作一般问题的初步能力。
四、教学内容及要求第一章绪论(1学时)(一)教学内容1.化工过程与单元操作的关系,化工生产过程的特点,化工工艺学与化学工程学的性质,单元操作的任务;2.《化工原理》课程的性质、内容,基础理论,典型单元操作,相关课程;3.《化工原理》课程规律和重要基础概念,物料衡算,能量衡算,单位换算和公式转换,平衡关系,过程速率,经济效益。
(二)基本要求了解《化工原理》课程的性质和学习要求。
(三)重点化工原理课程中三大单元操作的分类和过程速率的重要概念的内涵。
(四)难点使学生通过对课程性质的了解,把基础课程的学习思维逐步转移到对专业技术课程的学习上,在经济效益观点的指导下建立起"工程"观念。
了解本课程的性质、任务、研究对象和研究方法。
本课程与本专业其他有关课程的关系。
第二章流体流动(18学时)(一)学习目的与基本要求1.理解流体的主要物性数据求取及不同单位之间的换算。
2.了解流体流动的连续性、稳定性和两种流动类型及判别。
3.掌握流体力学方程、连续性方程、柏努利方程的内容及应用。
4.掌握流体在管道中流动中流动阻力的计算方法,流体适宜流速的选择及管道直径的确定。
5.了解管道的构成,管件,阀门的作用及简单管路和复杂管路的计算要求。
6.掌握管路中流体的压力、流速和流量的测定原理及方法。
皮托管、孔板流量计和转子流量计的测量原理,简单结构和性能。
(二)教学内容第1.1节流体的重要性质(1.5学时)1.1.1连续介质的假定1.1.2流体的密度1.1.3流体的可压缩性与不可压缩流体流体的可压缩性,不可压缩流体。
1.1.4流体的黏性牛顿粘性定律,流体的黏度,理想流体与黏性流体。
第1.2节流体静力学(2.5学时)1.2.1流体的受力体积力,表面力。
1.2.2静止液体的压力特性压强的单位及其换算、压强的表示方式。
1.2.3流体静力学方程推导过程、使用条件、物理意义和例题。
1.2.4液体静力学基本方程的应用压力与压力差的测量(U管压差计、双液U管微压差计),液位的测量,液封高度的计算。
第1.3节液体流动的概述(1学时)1.3.1流动体系的分类定态流动与非定态流动,一维与多维流动,绕流与封闭管道内的流动。
1.3.2流量与平均流速1.3.3流动型态与雷诺准数雷诺准数,流型划分,当量直径与水利半径。
第1.4节流体流动的基本方程(3.5学时)1.4.1总质量衡算——连续性方程1.4.2总能量衡算方程流体系统的总能量衡算方程,流体系统的机械能衡算方程——柏努力方程,对伯努利方程的讨论。
1.4.3机械能衡算方程的应用第1.5节动量传递现象(2学时)1.5.1层流――分子的动量传递1.5.2涡流特征与涡流传递湍流的特点与表征,雷诺应力与涡流传递1.5.3边界层与边界层分离现象边界层的形成与发展,边界层的分离与形体阻力。
1.5.4动量传递小结第1.6节流体在管内流动的阻力(3.5学时)1.6.1管流阻力计算的通式压力降――管流阻力的表现,直管摩擦力与范宁公式。
1.6.2管内层流的摩擦阻力1.6.3管内湍流的摩擦阻力与量纲分析量纲分析,管内湍流的摩擦阻力。
1.6.4非圆形管的摩擦阻力层流阻力,湍流阻力。
1.6.5管道上的局部阻力阻力系数法,当量长度法。
管道阻力的计算小结。
第1.7节流体输送管路的计算(1学时)管路布置中应注意的主要事项。
1.7.1简单管路1.7.2复杂管路并联管路,分支管路的计算。
1.7.3可压缩流体管路的计算第1.8节流量的测量(0.5学时)测速管,孔板流量计,文丘里流时计及转子流量计的构造,原理及应用。
流量计的选型,安装及使用。
1.9非牛顿型流体的流动(0.5学时)1.9.1非牛顿流体的流动特性假塑性流体,胀塑性流体,宾汉塑性流体。
1.9.2幂律流体在管内流动的阻力管内层流的阻力,管内湍流的阻力。
习题课(2学时)(三)实践环节与课后练习本章节设置一个实验,既《流体流动阻力的测定实验》,实验为3个学时。
另外,还要安排课后作业10题。
(四)教学方法与手段本章节的主要教学手段是多媒体教学,通过电子图片来讲不同流体输送系统的流体力学特点。
第三章非均相物系的分离(6学时)(一)学习目的与基本要求1.了解重力沉降和离心沉降的基本原理,沉降速度基本计算方法及沉降定,旋风分离器的主要性能。
2.掌握过滤操作的基本概念,过滤和过滤速率,恒压过滤,恒速过滤,掌握恒压过滤常数的计算方法和测定方法。
(二)教学内容概念:气态非均相物系与液态非均相物系。
非均相物系分离在化工生产中的应用。
第3.1节沉降分离原理及设备(2学时)3.1.1颗粒相对于流体的运动颗粒的特性,球形颗粒的自由沉降,阻力系数,影响沉降速度的因素。
3.1.2重力沉降自由沉降时沉降速度的计算,重力沉降设备。
3.1.3离心沉降离心力沉降速度及分离因素,离心沉降设备(旋风分离器和旋液分离器。
(重点,1学时)第3.2节过滤分离原理及设备(3学时)3.2.1流体通过固体颗粒床层的流动固体颗粒群的特点,固体颗粒层的特征,流体通过固体颗粒床层的压力降。
3.2.2过滤操作的基本原理过滤方式,过滤介质,滤饼的压缩性和助滤剂。
3.2.3过滤的基本方程滤液通过滤饼的流动,过滤速度与滤液流速,滤饼阻力,过滤介质的阻力,过滤基本方程。
3.2.4恒压过滤3.2.5恒速过滤与先恒压后恒速的过滤3.2.6过滤常数的测定恒压下K,V,(q e)的测定,压缩性指数s的测定。
3.2.7过滤设备板框压滤机,加压叶滤机,转筒真空过滤机,过滤式离心机。
3.2.8滤饼的洗涤3.2.9过滤机的生产能力间歇过滤机的生产能力,连续过滤机的生产能力。
第3.3节离心机(0.5学时)3.3.1一般概念3.3.2离心机的结构与操作简介三足式离心机,卧式刮刀卸料离心机,活塞推料离心机,管式高速离心机。
第3.4节固体流态化(0.5学时)3.4.1流态化的基本概念流态化现象,两种不同流化形式,流化床的主要特点。
3.4.2流化床的流体力学特性流化床的压降,流化床的不正常现象,流化床的操作范围。
3.4.3流化床的浓相区高度与分离高度浓相区高度,分离高度。
3.4.4气力输送简介概述,稀相输送,密相输送。
(三)实践环节与课后练习本章节设置一个实验,既《过滤常数的测定实验》,实验为3个学时。
另外,还要安排课后作业5题。
(四)教学方法与手段本章节的主要教学手段是多媒体教学,通过电子图片来讲解不同混合物分离单元的结构特点、原理和设计参数,并将各种分离设备与环境工程的实际应用结构起来。
第四章液体搅拌(4学时)(一)学习目的与基本要求通过本章学习,掌握常用典型搅拌器的性能,以便根据搅拌目的、物料特性和工艺对混合指标的要求,选择适宜结构形式的搅拌装置,并确定最佳的操作条件(如转速、功率)。
1.重点掌握几种常用搅拌器的结构、性能(主要指流动场)、混合机理及功率估算;掌握提高搅拌槽内液体湍流程度的措施。
2.初步建立设备或装置放大的概念,了解工程放大的原则和方法。
(二)教学内容第4.1节搅拌机的性能和混合机理(1学时)4.1.1搅拌设备搅拌设备的基本结构,机械搅拌器的类型,搅拌器的性能。
4.1.2搅拌作用下的流体流动搅拌设备内的基本流型,流体的流动状态,搅拌槽内液体的循环量和压头,增强搅拌槽内液体湍动的措施。
4.1.3混合机理均相液体的混合机理,非均相物系的混合机理。
4.1.4其他类型混合器管道搅拌器,非回转液体混合器。
4.1.5搅拌器的选型和发展趋势搅拌器的选型,搅拌器的发展趋势。