matlab曲线拟合实例

合集下载

matlab曲线曲面拟合讲解及实例

matlab曲线曲面拟合讲解及实例

例如:
x1=[1.0500 1.0520 1.0530 1.0900 1.0990 1.1020 1.1240 1.1420...
1.1490 1.0500 1.0520 1.0530 1.0900 1.0990 1.1020 1.1240 1.1420 1.1490];
x2=[3.8500 1.6500 2.7500 5.5000 7.7000 3.3000 4.9500 8.2500 11.5500...
52.5000 62.0000];
data=[x1;x2]; ห้องสมุดไป่ตู้ %类似于将x1 x2整合成一个2维数组。
a0= [-0.0014,0.07];
option=optimset('MaxFunEvals',5000);
format long;
同理用Symbolic Math Toolbox可以直接执行
>> ezmesh('X.^2 - Y.^2', [-2 2], [-2 2])
surf函数
在函数不能表示成z = f(x, y)时,需要用surf函数。比如x2+y2+z2=1.
先需要用柱面坐标或者球坐标来表示。这里用柱面坐标表示为 r2+z2=1
x = sqrt(1-z2)cosθ, x = sqrt(1-z2)sinθ;
执行matlab指令:
>> [theta, Z] = meshgrid((0:0.1:2)*pi, (-1:0.1:1));
>> X =sqrt(1 - Z.^2).*cos(theta);
>> Y =sqrt(1 - Z.^2).*sin(theta);

曲线拟合法的Matlab实现

曲线拟合法的Matlab实现

曲线拟合法的Matlab实现曲线拟合在许多科学和工程领域中都有广泛应用,包括机器学习,数据科学,信号处理,控制工程等。

在Matlab中实现曲线拟合的方法有多种,其中最常用的是使用fit()函数。

以下是一个基本的示例,演示如何在Matlab中使用fit()函数进行曲线拟合。

我们需要一些数据。

假设我们有一组x和y数据点,我们想要在这些点上拟合一条曲线。

y = 3*x.^2 + 2*x + 1 + randn(size(x));fitresult = fit(x, y, 'poly1');在这里,'poly1'表示我们想要拟合一个一次多项式。

你可以使用'poly2','poly3'等来拟合更高次的多项式。

同样,你也可以使用其他类型的模型,如指数、对数、自定义函数等。

然后,我们可以使用plot()函数将原始数据和拟合曲线一起绘制出来。

在这里,'hold on'命令用于保持当前图像,这样我们就可以在同一个图形上绘制多条线了。

我们可以使用fitresult来获取拟合曲线的参数和其他信息。

例如:以上就是在Matlab中进行曲线拟合的基本步骤。

需要注意的是,对于复杂的实际问题,可能需要进行更复杂的模型选择和参数优化。

也可以使用其他工具如curve fitting toolbox进行更详细的分析和拟合。

最小二乘曲线拟合是一种数学统计方法,用于根据给定数据点拟合出一条曲线或曲面,使得该曲线或曲面最小化每个数据点到拟合曲线或曲面的平方误差之和。

这种方法广泛应用于数据分析和科学计算等领域。

本文将介绍最小二乘曲线拟合的基本原理和在Matlab中的实现方法。

假设有一组数据点 (x_i, y_i),i=1,2,...,n,需要拟合出一条曲线y=f(x)。

最小二乘法要求曲线 f(x)最小化每个数据点到曲线的平方误差之和,即E = sum (f(x_i)-y_i)^2对曲线 f(x)进行求导,得到一元一次方程:f'(x)=sum(f(x)-y)*x-sum(f(x)-y)E = sum [(f'(x))^2] * x^2 - 2 * sum [f(x) * f'(x) * x] + 2 * sum [f(x)^2]令 E对 f'(x)的导数为零,可得到最小二乘曲线拟合的方程:sum [f'(x)^2] * x^2 - 2 * sum [f(x) * f'(x) * x] + 2 * n * f(x)^2 = 0在Matlab中,可以使用polyfit函数实现最小二乘曲线拟合。

matlab中拟合曲线

matlab中拟合曲线

在MATLAB 中拟合曲线可以使用fit 函数。

fit 函数可以对给定的数据进行拟合,返回拟合参数以及拟合结果的统计信息。

下面是一个简单的例子,假设我们有一组数据点(x1, y1), (x2, y2), ..., (xn, yn),我们想要拟合一条直线方程y = ax + b,可以按照以下步骤进行操作:
1. 将数据点存储为一个向量,例如:
x = [1 2 3 4 5];
y = [2 5 8 11 14];
2. 使用fit 函数进行拟合,例如:
p = fit(x', y', 'poly1');
其中,'poly1' 表示拟合模型为一次函数。

如果要拟合二次函数,可以使用'poly2'。

3. 查看拟合参数和结果:
f = p.a; a 是拟合系数
summary(p) 显示拟合参数和结果
summary(p) 可以显示拟合参数和结果的统计信息,例如标准误差、残差、拟合优度等。

除了一次函数和二次函数,MATLAB 还支持其他类型的拟合模型,例如三次函数、指数函数、对数函数等。

具体可以使用'polyN'、'expon'、'logistic'、'probit'、'nthf'、'spline'、'trend'、'bayes'、'gamfit' 等模型。

matlab 数据 曲线拟合

matlab 数据 曲线拟合

matlab 数据曲线拟合全文共四篇示例,供读者参考第一篇示例:Matlab是一款功能强大的数据分析和曲线拟合工具,广泛应用于科学研究、工程设计、金融分析等领域。

在实际工作中,我们经常需要对实验数据进行处理和分析,而曲线拟合是其中一个常见的操作。

本文将介绍在Matlab中如何进行数据曲线拟合,并通过实例详细说明其使用方法。

我们需要准备一组实验数据,这些数据通常是以表格的形式存储在Excel或文本文件中。

假设我们有一组随机产生的数据点,存储在一个文本文件中,每行包含一对(x, y)坐标。

我们可以通过Matlab的文件读取函数将这些数据导入到Matlab中,然后进行曲线拟合分析。

接下来,我们需要选择适合数据走势的拟合模型。

根据实际情况,可以选择线性函数、多项式函数、指数函数、对数函数等不同类型的拟合模型。

在Matlab中,使用`polyfit`函数可以进行多项式拟合,使用`expfit`函数可以进行指数拟合,使用`fit`函数可以进行其他自定义的拟合操作。

以多项式拟合为例,我们假设要对一组数据进行二次多项式拟合。

通过`load`函数读取数据文件,然后将数据分成两个数组`x`和`y`,分别表示x坐标和y坐标。

接下来,使用`polyfit`函数进行拟合操作,语法如下:```matlabp = polyfit(x, y, 2);````2`表示进行二次多项式拟合。

拟合结果会保存在向量`p`中,`p`的元素表示拟合多项式的系数。

完成拟合操作后,我们可以利用拟合结果绘制曲线图。

通过`polyval`函数,可以根据拟合结果生成拟合曲线的y坐标值,并与原始数据一起绘制在图上,以便进行对比和分析。

除了多项式拟合之外,Matlab还提供了许多其他灵活的拟合方法。

对于非线性数据,可以使用`fit`函数进行非线性拟合。

该函数允许用户根据实际数据特点选择不同的拟合模型,并进行参数估计和优化。

在实际应用中,曲线拟合是数据分析的重要环节之一。

最小二乘法曲线拟合的Matlab程序

最小二乘法曲线拟合的Matlab程序

最⼩⼆乘法曲线拟合的Matlab程序⽅便⼤家使⽤的最⼩⼆乘法曲线拟合的Matlab程序⾮常⽅便⽤户使⽤,直接按提⽰操作即可;这⾥我演⽰⼀个例⼦:(红⾊部分为⽤户输⼊部分,其余为程序运⾏的结果,结果图为Untitled.fig,Untitled2.fig) 请以向量的形式输⼊x,y.x=[1,2,3,4]y=[3,4,5,6]通过下⾯的交互式图形,你可以事先估计⼀下你要拟合的多项式的阶数,⽅便下⾯的计算.polytool()是交互式函数,在图形上⽅[Degree]框中输⼊阶数,右击左下⾓的[Export]输出图形回车打开polytool交互式界⾯回车继续进⾏拟合输⼊多项式拟合的阶数m = 4Warning: Polynomial is not unique; degree >= number of data points. > In polyfit at 72In zxecf at 64输出多项式的各项系数a = 0.0200000000000001a = -0.2000000000000008a = 0.7000000000000022a = 0.0000000000000000a = 2.4799999999999973输出多项式的有关信息 SR: [4x5 double]df: 0normr: 2.3915e-015Warning: Zero degrees of freedom implies infinite error bounds.> In polyval at 104In polyconf at 92In zxecf at 69观测数据拟合数据x y yh1.0000 3.0000 3.00002.0000 4.0000 4.00003 5 54.0000 6.0000 6.0000剩余平⽅和 Q = 0.000000相关指数 RR = 1.000000请输⼊你所需要拟合的数据点,若没有请按回车键结束程序.输⼊插值点x0 = 3输出插值点拟合函数值 y0 = 5.0000>>结果:untitled.figuntitled2.fig⼀些matlab优化算法代码的分享代码的⽬录如下:欢迎讨论1.约束优化问题:minRosen(Rosen梯度法求解约束多维函数的极值)(算法还有bug) minPF(外点罚函数法解线性等式约束) minGeneralPF(外点罚函数法解⼀般等式约束)minNF(内点罚函数法)minMixFun(混合罚函数法)minJSMixFun(混合罚函数加速法)minFactor(乘⼦法)minconPS(坐标轮换法)(算法还有bug)minconSimpSearch(复合形法)2.⾮线性最⼩⼆乘优化问题minMGN(修正G-N法)3.线性规划:CmpSimpleMthd(完整单纯形法)4.整数规划(含0-1规划)DividePlane(割平⾯法)ZeroOneprog(枚举法)5.⼆次规划QuadLagR(拉格朗⽇法)ActivedeSet(起作⽤集法)6.辅助函数(在⼀些函数中会调⽤)minNT(⽜顿法求多元函数的极值)minMNT(修正的⽜顿法求多元函数极值)minHJ(黄⾦分割法求⼀维函数的极值)7.⾼级优化算法1)粒⼦群优化算法(求解⽆约束优化问题)1>PSO(基本粒⼦群算法)2>YSPSO(待压缩因⼦的粒⼦群算法)3>LinWPSO(线性递减权重粒⼦群优化算法)4>SAPSO(⾃适应权重粒⼦群优化算法)5>RandWSPO(随机权重粒⼦群优化算法)6>LnCPSO(同步变化的学习因⼦)7>AsyLnCPSO(异步变化的学习因⼦)(算法还有bug)8>SecPSO(⽤⼆阶粒⼦群优化算法求解⽆约束优化问题)9>SecVibratPSO(⽤⼆阶振荡粒⼦群优化算法求解五约束优化问题)10>CLSPSO(⽤混沌群粒⼦优化算法求解⽆约束优化问题)11>SelPSO(基于选择的粒⼦群优化算法)12>BreedPSO(基于交叉遗传的粒⼦群优化算法)13>SimuAPSO(基于模拟退⽕的粒⼦群优化算法)2)遗传算法1>myGA(基本遗传算法解决⼀维约束规划问题)2>SBOGA(顺序选择遗传算法求解⼀维⽆约束优化问题)3>NormFitGA(动态线性标定适应值的遗传算法求解⼀维⽆约束优化问题)4>GMGA(⼤变异遗传算法求解⼀维⽆约束优化问题)5>AdapGA(⾃适应遗传算法求解⼀维⽆约束优化问题)6>DblGEGA(双切点遗传算法求解⼀维⽆约束优化问题)7>MMAdapGA(多变异位⾃适应遗传算法求解⼀维⽆约束优化问题)⾃⼰编写的马尔科夫链程序A 代表⼀组数据序列⼀维数组本程序的操作对象也是如此t=length(A); % 计算序列“A”的总状态数B=unique(A); % 序列“A”的独⽴状态数顺序,“E”E=sort(B,'ascend');a=0;b=0;c=0;d=0;Localization=find(A==E(j)); % 序列“A”中找到其独⽴状态“E”的位置for i=1:1:length(Localization)if Localization(i)+1>tbreak; % 范围限定elseif A(Localization(i)+1)== E(1)a=a+1;elseif A(Localization(i)+1)== E(2)b=b+1;elseif A(Localization(i)+1)== E(3)c=c+1;% 依此类推,取决于独⽴状态“E”的个数elsed=d+1;endendT(j,1:tt)=[a,b,c,d]; % “T”为占位矩阵endTT=T;for u=2:1:ttTT(u,:)= T(u,:)- T(u-1,:);endTT; % ⾄此,得到转移频数矩阵Y=sum(TT,2);for uu=1:1:ttTR(uu,:)= TT(uu,:)./Y(uu,1);endTR % 最终得到马尔科夫转移频率/概率矩阵% 观测序列马尔科夫性质的检验:N=numel(TT);uuu=1;Col=sum(TT,2); % 对列求和Row=sum(TT,1); % 对⾏求和Total=sum(Row); % 频数总和for i=1:1:ttxx(uuu,1)=sum((TT(i,j)-(Row(i)*Col(j))./Total).^2./( (Row(i)*Col(j)). /Total)); uuu=uuu+1; % 计算统计量x2endendxx=sum(xx)。

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧

Matlab中的曲线拟合与插值技巧在数据科学和工程领域中,曲线拟合和插值技术是常用的数学方法。

在Matlab 中,有许多工具和函数可用于处理这些技术。

本文将讨论Matlab中的曲线拟合和插值技巧,并介绍一些实际应用案例。

一、曲线拟合技术曲线拟合是根据已知数据点来构造一个与这些点最匹配的曲线模型。

在Matlab 中,常用的曲线拟合函数包括polyfit和lsqcurvefit。

1. polyfit函数polyfit函数是Matlab中一个功能强大的多项式拟合函数。

它可以拟合多项式曲线模型,并通过最小二乘法找到最佳拟合系数。

例如,我们有一组数据点(x,y),我们想要拟合一个二次多项式曲线来描述这些数据。

可以使用polyfit函数:```matlabx = [1, 2, 3, 4, 5];y = [2, 4, 6, 8, 10];degree = 2;coefficients = polyfit(x, y, degree);```在上述例子中,degree参数设置为2,表示拟合一个二次多项式曲线。

polyfit 函数将返回一个包含拟合系数的向量,可以用来构造拟合曲线。

2. lsqcurvefit函数lsqcurvefit函数是Matlab中一个用于非线性最小二乘拟合的函数。

与polyfit函数不同,lsqcurvefit函数可以用于拟合任意曲线模型,不局限于多项式。

例如,我们想要拟合一个指数函数曲线来拟合数据:```matlabx = [1, 2, 3, 4, 5];y = [1.1, 2.2, 3.7, 6.5, 12.3];model = @(params, x) params(1)*exp(params(2)*x);params0 = [1, 0];estimated_params = lsqcurvefit(model, params0, x, y);```在上述例子中,model是一个函数句柄,表示要拟合的曲线模型。

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合

基于Matlab实现最小二乘曲线拟合一、本文概述在数据分析和科学计算中,曲线拟合是一种常见且重要的技术。

通过拟合,我们可以根据已知数据建立数学模型,预测未知数据,以及深入理解数据背后的规律。

最小二乘法是曲线拟合中最常用的一种方法,其原理是通过最小化预测值与实际值之间的平方误差来寻找最佳拟合曲线。

本文旨在介绍如何使用Matlab这一强大的数学计算软件,实现最小二乘曲线拟合,包括其理论基础、实现步骤以及实际应用案例。

通过本文的学习,读者将能够掌握在Matlab环境中进行最小二乘曲线拟合的基本方法,提高数据处理和分析能力。

二、最小二乘曲线拟合原理最小二乘法(Least Squares Method)是一种数学优化技术,它通过最小化误差的平方和来寻找数据的最佳函数匹配。

在曲线拟合中,最小二乘法被广泛应用于通过一组离散的数据点来估计一个连续函数的形状。

这种方法的基本思想是通过选择一个模型函数(通常是多项式、指数函数、对数函数等),使得该模型函数与实际数据点之间的差距(即残差)的平方和最小。

假设我们有一组数据点 ((x_1, y_1), (x_2, y_2), \ldots,(x_n, y_n)),我们希望通过一个模型函数 (y = f(x, \mathbf{p})) 来拟合这些数据点,其中 (\mathbf{p}) 是模型的参数向量。

最小二乘法的目标就是找到最优的参数向量 (\mathbf{p}^*),使得残差平方和 (S(\mathbf{p})) 最小:S(\mathbf{p}) = \sum_{i=1}^{n} [y_i - f(x_i,\mathbf{p})]^2]为了使 (S(\mathbf{p})) 达到最小,我们需要对(S(\mathbf{p})) 求偏导数,并令其等于零。

这样,我们就得到了一个关于 (\mathbf{p}) 的方程组。

解这个方程组,就可以得到最优的参数向量 (\mathbf{p}^*)。

matlab 拟合曲线计算标准差

matlab 拟合曲线计算标准差

Matlab是一款强大的数学软件,可以进行各种数值计算和数据分析。

其中,拟合曲线和标准差计算是Matlab常用的功能之一。

本文将介绍Matlab中拟合曲线的计算方法,并且探讨如何使用Matlab计算标准差。

文章将按照以下结构进行分析和讨论:一、Matlab中拟合曲线的计算方法1. 线性拟合2. 非线性拟合3. 多项式拟合二、Matlab中标准差的计算方法1. 总体标准差2. 样本标准差3. 加权样本标准差三、示例分析1. 实例一:拟合曲线的计算与标准差的应用2. 实例二:使用Matlab进行数据分析四、结论与展望一、Matlab中拟合曲线的计算方法1. 线性拟合在Matlab中进行线性拟合,可以使用polyfit函数。

该函数通过最小二乘法拟合出多项式系数,从而得到最佳拟合曲线。

对于给定的一组数据x和y,可以使用以下代码进行线性拟合:```p = polyfit(x,y,1);y_fit = polyval(p,x);```其中,p是拟合得到的多项式系数,y_fit是根据拟合曲线计算得到的y值。

2. 非线性拟合对于非线性拟合,Matlab提供了lsqcurvefit函数。

该函数可以拟合出任意给定的非线性函数曲线。

对于给定的一组数据x和y,可以使用以下代码进行非线性拟合:```fun = @(p,x) p(1)*exp(p(2)*x);p0 = [1, 0.1];p = lsqcurvefit(fun,p0,x,y);y_fit = fun(p,x);```其中,fun是要拟合的非线性函数,p0是拟合参数的初始值,p是最终拟合得到的参数,y_fit是根据拟合曲线计算得到的y值。

3. 多项式拟合Matlab中还可以使用polyfit函数进行多项式拟合。

对于给定的一组数据x和y,可以使用以下代码进行多项式拟合:```p = polyfit(x,y,n);y_fit = polyval(p,x);```其中,n是多项式的阶数,p是拟合得到的多项式系数,y_fit是根据拟合曲线计算得到的y值。

matlab曲线拟合函数用法以及例子

matlab曲线拟合函数用法以及例子

matlab 曲线拟合函数⽤法以及例⼦⼯具/原料matlab 曲线拟合在运⾏MATLAB 编程进⾏数据的处理过程当中,我们常常⽤到matlab 曲线拟合,但是⼯具箱由于需要⼈⼯交互,得到的拟合结果,需要⼈⼯的去提取,再输⼊,所以,⼯具箱拟合结果⼗分不适合调⽤,以及继续下⾯的操作,所以我们需要⽤到matlab 曲线拟合函数,并且以最常⽤的多项式拟合函数为例作为matlab 曲线拟合例⼦,进⾏详细介绍。

MATLAB数据准备:关于MATLAB曲线拟合,我写了⼀系列的经验,为了相互统⼀,采⽤下⾯的数据:x=[0 0.3000 0.6000 0.9000 1.2000 1.5000 1.8000 2.1000 2.4000 2.7000 3.0000]y=[2.0000 2.3780 3.9440 7.3460 13.2320 22.2500 35.0480 52.2740 74.5760 102.6020 137.0000]由函数y=4*x^3+3*x^2+2 产⽣。

1函数命令拟合:MATLAB为我们提供了多项式拟合函数命令polyfit,下⾯我们就⽤这个函数命令进⾏拟合。

在MATLAB主窗⼝中输⼊y1=polyfit(x,y,3),回车我们会看到下⾯结果:y1 =4.0000 3.0000 0.0000 2.00002函数的说明:y1=polyfit(x,y,N),这⾥函数polyfit第⼀个参数传递的是拟合数据的⾃变量,第⼆个参数是因变量,第三个参数是拟合多项式的阶数,这个由我们给定。

如下图。

我们可以给定不同的N,运⽤不同的多项式进⾏拟合。

输出结果:在上⾯的例⼦中我们看到输出的结果是:y1 =4.0000 3.0000 0.0000 2.0000对照原始的函数y=4*x^3+3*x^2+2 ,我们可以看到,y1其实输出的是拟合函数的系数,并且由⾼次到低次由左到右输出。

3多项式阶数N的确定:这⾥有些⼈可能会有问题了,我们事先不知道要拟合的数据是⼏阶的,那么我们如何判断我们给定的拟合阶数N最终为多少呢?4matlab 曲线拟合结果调⽤及显⽰阶数确定⽅法⼀:这种⽅法是最常⽤的确定⽅法,⼀般情况下,我们拟合函数的⽬的,就是为了调⽤,所以在⽤函数拟合之前会⽤matlab曲线拟合⼯具箱进⾏拟合函数阶数的确定,由其确定拟合的阶数,然后我们⽤这个函数命令在其他地⽅进⾏⼗分⽅便地调⽤,这是最常⽤的做法。

使用Matlab进行曲线拟合

使用Matlab进行曲线拟合

使用Matlab进行曲线拟合引言在科学研究和工程应用中,曲线拟合是一个非常常见和重要的问题。

通过拟合实验数据或者观测数据,我们可以找到一条曲线,以最佳地描述数据的趋势。

Matlab是一个功能强大的数值计算软件,提供了丰富的工具和函数,可以帮助我们对数据进行曲线拟合。

本文将介绍如何使用Matlab进行曲线拟合,并给出一些实际案例。

一、简单线性回归简单线性回归是曲线拟合中最基础的一种方法。

它假设数据可以用一条直线来表示。

在Matlab中,使用"polyfit"函数可以很方便地进行简单线性回归。

该函数可以从数据中拟合出一个多项式,我们可以选择线性多项式来进行简单线性回归。

下面是一个例子:```matlabx = [1, 2, 3, 4, 5];y = [2, 3, 4, 5, 6];p = polyfit(x, y, 1);f = polyval(p, x);plot(x, y, 'o'); % 绘制原始数据点hold on;plot(x, f, 'r-'); % 绘制拟合曲线```在这个例子中,我们有一个包含5个数据点的数据集,分别存储在向量"x"和"y"中。

通过polyfit函数,我们可以拟合出一个线性多项式的系数"p",然后使用polyval函数来计算拟合曲线上各个x点对应的y值。

最后,使用plot函数将原始数据点和拟合曲线绘制在同一张图上。

这样我们就可以直观地看到拟合效果。

二、非线性曲线拟合除了简单线性回归,Matlab还提供了许多其他方法来进行非线性曲线拟合。

这些方法通常需要指定一个函数形式,然后通过调整函数的参数来拟合数据。

其中最常用的方法之一是最小二乘法。

在Matlab中,可以使用lsqcurvefit函数来进行非线性曲线拟合。

下面是一个例子:```matlabx = [1, 2, 3, 4, 5];y = [5.1, 6.2, 7.1, 8.5, 9.9];f = @(c,x) c(1) * exp(-c(2)*x) + c(3); % 定义拟合函数c0 = [1, 1, 1]; % 初始参数猜测c = lsqcurvefit(f, c0, x, y); % 进行曲线拟合plot(x, y, 'o'); % 绘制原始数据点hold on;plot(x, f(c, x), 'r-'); % 绘制拟合曲线```在这个例子中,我们有一个包含5个数据点的数据集,存储在向量"x"和"y"中。

matlab 多条曲线拟合公式

matlab 多条曲线拟合公式

MATLAB是一种非常强大的数学软件,它可以用来进行数值计算、数据分析、图形展示等多种功能。

在MATLAB中,拟合多条曲线是一个常见的需求,它可以用来分析多种因素对某一变量的影响,也可以用来预测未来的趋势。

在本文中,我们将讨论MATLAB中拟合多条曲线的公式及其实现方法。

1. 多条曲线拟合的常见公式在MATLAB中,拟合多条曲线的常见公式包括多项式拟合、曲线拟合、曲线拟合等。

其中,多项式拟合是一种最常见的方法,它可以用来拟合多项式函数,一般形式为:y = a0 + a1*x + a2*x^2 + ... + an*x^n其中,y是因变量,x是自变量,a0、a1、a2等是多项式的系数,n是多项式的阶数。

使用MATLAB的polyfit函数可以实现多项式拟合。

2. 多条曲线拟合的实现方法在MATLAB中,拟合多条曲线的实现方法主要包括使用polyfit函数进行多项式拟合、使用curve fitting工具箱进行曲线拟合等。

下面我们将分别介绍这两种方法的具体实现步骤。

2.1 使用polyfit函数进行多项式拟合polyfit函数是MATLAB中用来进行多项式拟合的函数,它的基本用法是:p = polyfit(x, y, n)其中,x和y是要拟合的数据点的自变量和因变量,n是多项式的阶数。

p是多项式的系数,它可以通过polyval函数来计算拟合后的曲线。

以下是一个具体的例子:x = [1, 2, 3, 4, 5];y = [2, 3, 5, 7, 11];p = polyfit(x, y, 2);f = polyval(p, x);plot(x, y, 'o', x, f, '-');2.2 使用curve fitting工具箱进行曲线拟合除了polyfit函数,MATLAB还提供了curve fitting工具箱,它可以用来进行更加复杂的曲线拟合。

使用curve fitting工具箱进行曲线拟合的基本步骤如下:(1) 导入数据:使用importdata函数导入要拟合的数据。

MATLAB曲线拟合(含实例)

MATLAB曲线拟合(含实例)

MATLAB曲线拟合(含实例)[matlab 曲线拟合(含实例)]matlab曲线拟合- ⾮常好⾮常全⾯的介绍M拟合的参考资料Mathworks Tech-Note 1508 曲线拟合向导1.介绍2. Mathworks 产品的曲线拟合特⾊a.曲线拟合⼯具箱(Curve Fitting Toolbox)b. Matlab 内建函数与其他的带有曲线拟合能⼒的附加产品(⼯具箱)c.线性曲线拟合d.⾮线性曲线拟合3.加权曲线拟合⽅法a.曲线拟合⼯具箱b.统计⼯具箱c.优化⼯具箱4.利⽤曲线拟合⼯具箱提⾼曲线拟合结果5.其他的相关资料第1节:简介MATLAB即有内建的解决很多通常遇到的曲线拟合问题的能⼒,⼜具有附加这⽅⾯的产品。

本技术⼿册描述了⼏种拟合给定数据集的曲线的⽅法,另外,本⼿册还解释了加权曲线拟合、针对复数集的曲线拟合以及其他⼀些相关问题的拟合技巧。

在介绍各种曲线拟合⽅法中,采⽤了典型例⼦的结合介绍。

第2节: MathWorks产品的曲线拟合特⾊MATLAB有可以⽤于曲线拟合的内建函数。

MathWorks公式也提供了很多⼯具箱可以⽤于曲线拟合。

这些⽅法可以⽤来做线性或者⾮线性曲线拟合。

MATLAB 也有⼀个开放的⼯具箱――曲线拟合⼯具箱(Curve Fitting Toolbox),她可以⽤于参数拟合,也可以⽤于⾮参数拟合。

本节将介绍曲线拟合⼯具箱与其他⼯具箱、以及各种MATLAB可以⽤于曲线拟合的内建函数的详细特征。

a.曲线拟合⼯具箱曲线拟合⼯具箱是专门为数据集合进⾏曲线拟合⽽设计的。

这个⼯具箱集成了⽤MATLAB建⽴的图形⽤户界⾯(GUIs)和M ⽂件函数。

曲线拟合向导 Genial @ USTC 2004-4-18利⽤⼯具箱的库⽅程(例如线性,⼆次,⾼阶多项式等)或者是⽤户⾃定义⽅程(局限于⽤户的想象⼒)可以进⾏参数拟合。

当你想找出回归系数以及他们背后的物理意义的时候就可以采⽤参数拟合。

用MatLab画图(最小二乘法做曲线拟合)

用MatLab画图(最小二乘法做曲线拟合)

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 用MatLab画图(最小二乘法做曲线拟合) 用 MatLab 画图(最小二乘法做曲线拟合) 帮朋友利用实验数据画图时,发现 MatLab 的确是画图的好工具,用它画的图比Excel光滑、精确。

利用一组数据要计算出这组数据对应的函数表达式从而得到相应图像,MatLab 的程序如下:x=[1 5 10 20 30 40 60 80] y=[15. 4 33. 9 42. 2 50. 556 62. 7 72 81. 1] plot(x, y, ‘ r*’ ) ; legend(‘ 实验数据(xi, yi) ‘ ) xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 数据点(xi, yi) 的散点图’ ) syms a1 a2 a3 x=[15 10 20 30 40 60 80]; fi=a1. *x. +a2. *x+a3 y=[15. 4 33.9 42. 2 50. 5 56 62. 7 72 81. 1] fi =[a1+a2+a3,25*a1+5*a2+a2+(400*a1+20*a2+a3-101/2) +(900*a1+30*a2+a3-56) +(1600*a1+40*a2+a3-627/10) +(3600*a1+60*a2+a3-72)+(6400*a1+80*a2+a3-811/10) ; Ja1=diff(J, a1) ;Ja2=diff(J, a2) ; Ja3=diff(J, a3) ; Ja11=simple(Ja1) ,Ja21=simple(Ja2) , Ja31=simple(Ja3) A=[114921252, 1656252, 26052; 1656252, 26052, 492; 26052, 492, 16]; B=[9542429/5, 166129/5, 4138/5]; C=B/A, f=poly2sym(C) xi=[1 5 10 20 3040 60 80] ; y=[15. 4 33. 9 42. 2 50. 5 56 62. 7 72 81. 1]; n=length(xi) ; f=-0. 0086. *xi. +1. 3876. *xi+23. 1078;1 / 6x=1: 1/10: 80; F=-0. 0086. *x. +1. 3876. *x+23. 1078; fy=abs(f-y) ; fy2=fy. ; Ew=max(fy) , E1=sum(fy) /n,E2=sqrt((sum(fy2) ) /n) plot(xi, y, ‘ r*’ ) , hold on, plot(x, F, ‘ b-’ ) , hold off legend(‘ 数据点(xi, yi) ‘ , ‘ 拟合曲线f(x) = -0. 0086x +1. 3876x+23. 1078’ ) , xlabel(‘ x’ ) , ylabel(‘ y’ ) , title(‘ 实验数据点(xi, yi) 及拟合曲线f(x) ‘ ) 下图是程序运行后得到的:Su7Tw8VxaW ybXAcZB d#Cf!Eg%FhGj*Ik(Jl-Kn+M o0Np2Or3Ps4R t6Sv7Tw8VxaWzbXAcZBe#Cf! Eg%Fi Gj*Ik)Jl-Kn+Mo1Np2Or3Qs4Rt6Sv7 Uw8Vx aWzbYAc ZBe#Df!Eg%FiHj*Ik) Jm-Kn +Mo1Nq2Or3Qs 5Rt6Sv7Uw9VxaWzbYAdZBe#D f$Eg%F iHj(I k) Jm-Ln+Mo1Nq2Pr3Qs5Ru6S v7Uw9V yaWzbY AdZCe#Df$Eh%FiHj(Il) Jm-Ln0Mo1Nq2Pr4 Qs5Ru6Tv8Uw9VyaXzbYAdZCe !Df$Eh %GiHj (Il) Km-Ln0Mp1Nq2Pr4Qt5Ru 6Tv8U x9VyaXz cYAdZCe! Dg$Eh%Gi*Hj(Il) Km+Ln0M p1Oq2P r4Qt5Su6Tv8Ux9WyaXzcYBdZ Ce!Dg$Fh%Gi* Hk(Il) Km+Lo0Mp1Oq3Pr4Qt5 Su7Tv8Ux9Wyb XzcYBd#Ce!Dg$FhGi*Hk(Jl ) Km+L o0Np1Oq 3Ps4Rt 5Su7Tw8Ux9WybXAcY Bd#Cf!Dg$FhGj*Hk(Jl-Km+Lo0Np2Oq3Ps4 Rt6Su7Tw8Vx9 WybXAcZBd#Cf!Eg$FhGj*Ik (Jl-Kn +Lo0Np2Or3Ps4Rt6Sv7Tw8VxaWybXA cZBe#Cf!Eg%F hGj*Ik) Jl-K n+Mo0Np2Or3Q s4Rt6Sv 7Uw8V xaWzbXAcZBe# D f! Eg%FiGj* Ik) Jm- Kn+Mo1 Nq2Or3Qs5Rt6Sv7Uw9VxaWzb YAcZBe#Df$Eg %FiHj*Ik)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Jm-Ln+Mo1Nq2Pr 3Qs5Ru 6Sv7Uw 9VyaWzbYAdZBe#Df$Eh%FiH j(Ik) J m-Ln0M o1Nq2Pr4Qs5Ru6Tv7Uw9VyaX zbYAdZC e#Df$ Eh%GiHj(Il) Jm-Ln0Mp1Nq2 Pr4Qt5Ru6Tv8 Uw9VyaXzcYAdZCe!Df$Eh%Gi *Hj(Il) Km+Ln 0Mp1Oq2Pr4Qt5Su6Tv8Ux9Vy aXzcYB dZCe!D g$Eh%Gi*Hk(Il) Km+Lo0Mp1O q3Pr4Qt5Su7Tv8Ux9WyaXzc Y Bd#Ce!Dg$Fh %Gi*Hk( Jl) Km +Lo0Np1Oq3Ps 4 Qt5Su7Tw8Ux 9WybXzcYBd#C f!Dg$FhGi*H k (Jl-Km+Lo0N p2Oq3Ps4Rt5S u7Tw8Vx9WybX AcYBd#Cf! Eg$ FhGj*Ik (Jl- Kn+Lo0Np2Or3 P s4Rt6Su7Tw8 VxaWybXA cZBd #Cf!Eg%FhGj * Ik) Jl-Kn+Mo 0Np2Or3Qs4Rt 6Sv7Tw8VxaWz bXAcZBe#Cf!E g%FiGj*Ik) J m-Kn+Mo1Np2O r 3Qs5Rt6Sv7U w8VxaWzbYAcZ Be#Df! Eg%Fi H j*Ik) Jm-Ln+ Mo1Nq2O r3Qs5 Ru6Sv7Uw9Vxa W zbYAdZBe#Df $Eh%Fi Hj(Ik ) Jm-Ln0Mo1Nq 2Pr3Qs5Ru6Tv 7Uw9Vya WzbYA dZCe#Df$Eh%G iHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9V ya XzbYAdZCe! Df$Eh%Gi*Hj( Il) Km-Ln0Mp1 Oq 2Pr4 Qt5Ru6Tv8Ux9Vy aXz cYAdZCe!Dg$E h%G i*Hk(Il) K m+Ln0Mp1O q3P r4Qt5Su6Tv8U x9WyaXzcYBd# Ce!Dg$Fh% Gi* Hk(Jl) Km+Lo0 Mp1Oq3Ps4Qt5 Su7Tv8Ux9Wyb XzcYBd#Cf! Dg $F hGi*Hk(Jl -Km+Lo0N p1Oq 3Ps4Rt5Su7Tw 8U x9WybXAcYB d#Cf!Eg$F hG j*Hk(Jl-Kn+Lo0Np2O q3Ps4Rt 6Su7Tw8Vx9WybXAcZBd#Cf!E g%FhGj*Ik(J l-Kn+Mo0Np2O r3Ps4Rt6Sv7T w8Vxa WzbXAcZ Be#Cf! Eg%Fi Gj*Ik) Jl-Kn+ Mo1Np2Or3Qs4 Rt6Sv7Uw8VxaWzbYAcZBe#Df !Eg%FiHj*Ik )3 / 6Jm-Kn+Mo1Nq2Or3Qs5Rt6Sv 7Uw9Vx aWzbYA dZBe#Df$Eg%FiHj(Ik) Jm-L n+Mo1Nq2Pr3Q s5Ru6Sv7Uw9VyaWzbYAdZCe# Df$Eh %FiHj( Il) Jm-Ln0Mo1Nq2Pr4Qs5Ru6 Tv8Uw9VyaXzb YAdZCe!Df$Eh%GiHj(Il) Km -Ln0Mp 1Nq2Pr 4Qt5Ru6Tv8Ux9VyaXzcYAdZC e!Dg$E h%Gi*H j(Il) Km+Ln0Mp1Oq2Pr4Qt5S u6Tv8U x9WyaX zcYBdZCe! Dg$Fh%Gi*Hk(Il) Km+Lo0Mp1Oq3 Pr4Qt5Su7Tv8Ux9WybXzcYBd #Ce!D g$FhGi *Hk(Jl ) Km+Lo0Np1Oq3Ps4R t5Su7Tw8Ux9T v7Uw9VyaXzbYAdZCe#Df$Eh% GiHj( Il) Jm- Ln0Mp1Nq2Pr4Qs5Ru6Tv8Uw9 VyaXzcY AdZCe !Df$Eh%Gi*Hj(Il) Km-Ln0Mp 1Oq2Pr 4Qt5Ru 6Tv8Ux9VyaXzcYBdZCe! Dg$E h%Gi*Hk(Il) K m+Ln0Mp1Oq3Pr4Qt5Su6Tv8U x9WyaX zcYBd# Ce!Dg$Fh%Gi*Hk(Jl) Km+Lo0 Mp1Oq3P s4Qt5 Su7Tw8Ux9Wyb X zcYBd#Cf!Dg $FhGi*Hk(Jl -Km+Lo0Np1Oq3Ps4Rt5Su7Tw 8Vx9Wy bXAcYB d#Cf! Eg$FhGj*Hk(Jl-Kn+L o0Np2O q3Ps4R t6Su7Tw8VxaWybXAcZBd#Cf! Eg%Fh Gj*Ik( Jl-Kn+Mo0Np2Or3Ps4Rt6Sv7 Tw8Vxa WzbXAc ZBe#Cf!Eg%FiGj*Ik) Jl-Kn +Mo1Np2Or3Qs 5Rt6Sv7Uw8Vx a WzbYAcZBe#D f! Eg%FiHj*Ik) Jm-Kn+Mo1 Nq 2Or3Qs5Ru6 Sv7Uw9Vx aWzb YAdZBe#Df$Eg %F iHj(Ik) Jm -Ln+Mo1N q2Pr 3Qs5Ru6Tv7Uw 9VyaWzbYAdZC e#Df$Eh%FiH j(Il) Jm-Ln0M o1Nq2Pr4Qs5R u6Tv8Uw9VyaX zbYAdZCe! Df$ E h%GiHj(Il) Km-Ln0Mp 1Oq2 Pr4Qt5Ru6Tv8 U x9VyaXzcYAd ZCe!Dg$E h%Gi *Hj(Il) Km+Ln 0Mp1Oq3Pr4Qt 5Su6Tv8Ux9Wy aXzcYBdZCe!D g $Fh%Gi*Hk(I l)---------------------------------------------------------------最新资料推荐------------------------------------------------------ Km+Lo0Mp1O q3Ps4Qt5Su7T v 8Ux9WybXzcY Bd#Ce! D g$Fh Gi*Hk(Jl) Km+ L o0Np1Oq3Ps4 Rt5Su7T w8Ux9 WybXAcYBd#Cf !Dg$FhGj*Hk (Jl-Km+ Lo0Np 2Oq3Ps4Rt6Su 7Tw8Vx9WybXA cZBd#Cf ! Eg$F hGj*Ik(Jl-K n+Mo0Np2Or3P s4Rt6Sv 7Tw8V xaWybXAcZBe# C f!Eg% FhGj*Ik) Jl-K n+Mo 1Np2Or3Qs4Rt 6Sv 7Uw8VxaWz bXAcZBe#D f!E g%FiGj*Ik) J m- Kn+Mo1Nq2O r3Qs5Rt6Sv7U w9VxaWzbYAcZ Be#Df$Eg%Fi Hj*Ik) Jm-Ln+ Mo1Nq2Pr3Qs5 Ru6Sv7Uw9Vya WzbYAdZBe#Df $Eh%FiHj(Il ) Jm -Ln0Mo1Nq 2Pr4Qs5Ru 6Tv 7Uw9VyaXzbYA dZCe#Df$Bd#C f! Eg%FhGj*I k(Jl-Kn+Mo0Np2O r3Qs4Rt 6Sv7Tw8VxaWzbXAcZBe#Cf!E g%FiGj*Ik) J l-Kn+Mo1Np2O r3Qs5Rt6Sv7U w8Vxa WzbYAcZ Be#Df! Eg%Fi Hj*Ik) Jm-Kn+ Mo1Nq2Or3Qs5 Ru6Sv7Uw9VxaWzbYAdZBe#Df $Eg%FiHj(Ik ) Jm-Ln0Mo1Nq2Pr3Qs5Ru6Tv 7Uw9Vy aWzbYA dZCe#Df$Eh%FiHj(Il) Jm-L n0Mp1Nq2Pr4Q s5Ru6Tv8Uw9VyaXzbYAdZCe! Df$Eh %GiHj( Il) Km-Ln0Mp1Oq2Pr4Qt5Ru6 Tv8Ux9VyaXzc YAdZCe!Dg$Eh%Gi*Hj(Il) Km +Ln0Mp 1Oq3Pr 4Qt5Su6Tv8Ux9WyaXzcYBdZC e!Dg$F h%Gi*H k(Jl) Km+Lo0Mp1Oq3Ps4Qt5S u7Ts5R u6Sv7U w9VyaWzbYAdZBe#Df$Eh%Fi Hj(Ik)Jm-Ln0 Mo1Nq2Pr4Qs5Ru6Tv7Uw9Vya XzbYA dZCe#Df $Eh%Gi Hj(Il) Jm-Ln0Mp1N q2Pr4Qt5Ru6T v8Uw9VyaXzcYAdZCe!Df$Eh% Gi*Hj( Il) Km- Ln0Mp1Oq2Pr4Qt5Su6Tv8Ux9 VyaXzcY BdZCe !Dg$Eh%Gi*Hk(Il) Km+Ln0Mp 1Oq3Pr4Qt5Su5 / 67Tv8Ux9WyaXzcYBd#Ce! Dg$F h%Gi*Hk (Jl) K m+Lo0Np1Oq3Ps4Qt5Su7Tw8U x9WybX zcYBd# Cf!Dg$FhGi*Hk(Jl-Km+Lo0 Np2Oq3Ps4Rt5 Su7Tw8Vx9WybXAcYBd#Cf!Eg $FhGj*Hk(Jl -Kn+Lo0Np2Or3Ps4Rt6Su7Tw 8VxaWy bXAcZB d#Cf! Eg%FhG j*Ik(Jl-Kn+M o0Np2O r3Qs4R t6Sr4Qt5Su6Tv8Ux9WyaXzcY BdZCe!Dg$Fh% Gi*Hk(Il) Km+Lo0Mp1Oq3Pr4 Qt5Su7Tv8Ux9 WybXzcYBd#Ce! Dg$FhGi*Hk (Jl) Km +Lo0Np 1Oq3Ps4Rt5Su7Tw8Ux9WybXA cYBd#Cf!Dg$FhGj*Hk(Jl- K m+Lo0Np2Oq3 Ps4Rt6Su7Tw8 Vx9WybXAcZBd # Cf!Eg$FhGj *Ik(Jl- Kn+Lo 0Np2Or3Ps4Rt 6Sv7Tw8VxaWy bXAcZBe#Cf!E g%FhGj*Ik) J l-Kn+Mo0Np2O r3Qs4Rt6Sv7U w8VxaWzbXAcZ B e#Df!Eg%Fi Gj*Ik) J m-Kn+ Mo1Nq2Or3Qs5 R t6Sv7Uw9Vxa WzbYAcZB e#Df $Eg%Ff! Dg$Fh Gi*Hk(Jl-Km +Lo0Np1Oq3Ps 4Rt5Su7Tw8Vx 9W ybXAcYBd#C f!Eg$Fh Gj*H k(Jl-Kn+Lo0N p2Oq3Ps4Rt6S u7Tw8Vxa WybX AcZBd#Cf!Eg% F hGj*Ik(Jl- Kn+Mo0N p2Or3 Ps4Rt6Sv7Tw8 V xaWzbXAcZBe #Cf!Eg% FiGj *Ik) Jl-Kn+Mo 1Np2Or3Qs5Rt 6Sv7Uw8V xaWz bYAcZBe#Df!E g%FiHj*Ik) J m-Kn+Mo1Nq2O r3Qs5Ru6Sv7U w9VxaW zbYAdZBe#Df$Eg %Fi Hj(Ik) Jm-Ln +M o1Nq2Pr3Qs 5Ru6Tv7U w9Vy aWzbYAdZCe#D f$Eh%FiHj(I l) Jm-Ln0Mo1N q2Pr4Qs5Or3P s4Rt6Su7Tw8V xaWybXAcZ Be# Cf! Eg%FhGj* I。

matlab曲线拟合方法

matlab曲线拟合方法

曲线拟合方法在MATLAB中的应用本篇文章主要介绍了曲线拟合方法在MATLAB中的应用,包括曲线拟合的基本原理、MATLAB中的曲线拟合工具箱、曲线拟合的步骤以及应用实例。

通过本篇文章的学习,读者可以掌握曲线拟合方法在MATLAB中的应用,为解决实际问题提供有力支持。

曲线拟合方法在MATLAB中的应用曲线拟合是数学中常见的一种数据处理方法,通过拟合曲线可以更好地描述数据之间的关系。

在科学研究和工程实践中,曲线拟合方法的应用非常广泛。

MATLAB作为一种常用的数学软件,提供了强大的曲线拟合工具箱,使得曲线拟合变得更加方便和简单。

一、曲线拟合的基本原理曲线拟合是指通过寻找一条曲线,使得这条曲线尽可能地贴近原始数据点。

在数学上,曲线拟合可以表示为一个方程组,即要求解一个多元非线性方程组。

通过最小二乘法等方法,可以求得最优解,即拟合曲线。

二、MATLAB中的曲线拟合工具箱MATLAB中的曲线拟合工具箱提供了多种拟合方法,包括线性回归、非线性回归、多项式拟合等。

用户可以根据需要选择不同的拟合方法,并进行参数调整和优化。

通过工具箱提供的可视化工具,可以直观地观察拟合结果,并进行相应的调整。

三、曲线拟合的步骤1. 准备数据:将原始数据导入MATLAB中,并进行必要的预处理,如去除异常值、标准化等。

2. 选择拟合方法:根据数据的特点和需求选择合适的拟合方法,如线性回归、非线性回归、多项式拟合等。

3. 拟合曲线:使用所选的拟合方法进行曲线拟合,得到拟合曲线和参数。

4. 可视化结果:使用MATLAB中的可视化工具,将原始数据和拟合曲线可视化展示出来。

5. 结果分析:根据可视化结果和拟合参数进行分析,得出结论。

四、应用实例1. 股票价格预测:通过收集股票历史价格数据,使用曲线拟合方法预测未来价格趋势。

2. 气象数据分析:通过收集气象数据,使用曲线拟合方法分析气温、湿度等因素之间的关系。

3. 生物医学研究:通过曲线拟合方法分析基因序列与蛋白质结构之间的关系。

Matlab中用fit做曲线拟合

Matlab中用fit做曲线拟合

Matlab中⽤fit做曲线拟合1.确定要拟合的类型 ⼀般情况下matlab会直接提供常⽤的类型,⽤fittype创建拟合模型。

⾄于matlab具体提供了哪些模型,参见帮助"List of library models for curve and surface fitting"ft = fittype( 'gauss1' ); %⾼斯拟合 如果库中没有⾃⼰想要的拟合形式,可以⾃⼰进⾏定义,此时使⽤匿名函数是很⽅便的,格式如下ft = fittype(@(a,b,c,x) a*x^3 + b*x^2 +c*x ); 使⽤⾃定义拟合形式需要注意⼏点:⾃变量必须是x参数要放在⾃变量前⾯,在上⾯的例⼦中,匿名函数参数的形式为(a, b, c, x),便遵循了这⼀规则2.要拟合的数据格式 在最简单的情况下,即拟合两个向量X,Y,则其必须是列向量3.拟合 使⽤fit进⾏拟合fitresult= fit( xData, yData, ft); 其输出fitresult是⼀个cfit型的对象(object),主要包含两个内容:1,拟合模型,即第⼀步中确定的拟合类型;2,拟合所得系数的值。

例如对第⼀步中所创建的⾼斯模型,其fitresult 的值为fitresult =General model Gauss1:fo(x) = a1*exp(-((x-b1)/c1)^2)Coefficients (with 95% confidence bounds):a1 = 45.54 (42.45, 48.64)b1 = 0.01011 (0.0101, 0.01012)c1 = 0.0002551 (0.0002353, 0.0002748) 获得了这样⼀个object,如何把其中的系数提取出来呢?这个要⽤到coeffvalues函数>> coeffvalues(fitresult)ans =45.54260.01010.00034.获取拟合优度 现在已经获得了拟合系数,那到底拟合得怎么样呢?可以使⽤下⾯的格式获取拟合优度[fitresult ,gof] = fit(X,Y,'gauss1'); gof是⼀个结构体,包含4个量sse:Sunm of squares due to errorrsquare:R-square 这个就是线性回归⾥的那个R2,与线性回归⾥的具有同样的意义dfe:Degrees of freedom in the error,不懂adjrsquare: 也不懂rmse: 误差的均⽅根值(rms) 暂时只需要⽤到这些,更⾼级的要⽤的时候再说。

matlab频率分布拟合曲线

matlab频率分布拟合曲线

matlab频率分布拟合曲线在Matlab中,频率分布拟合曲线是通过对数据进行统计分析,并使用合适的分布函数进行拟合来描述数据的分布情况。

频率分布拟合曲线被广泛应用于统计学、概率论、财务分析、市场研究和其他领域的数据分析中。

首先,我们需要准备一组数据,以便进行频率分布拟合曲线的演示。

我们可以使用Matlab内置的示例数据,如房价、气温等,也可以使用我们自己的数据。

在这个例子中,我们使用一个虚构的销售数据集来讨论频率分布的拟合曲线。

首先,我们需要加载数据。

假设我们有一个名为“sales”的变量,其中包含了销售数据。

我们可以使用`load()`函数将数据加载到工作空间中,如下所示:```matlabload('sales.mat') %将数据加载到工作空间中```接下来,我们可以使用`histogram()`函数绘制数据的直方图,以查看数据的频率分布情况。

直方图是一种表示数据分布情况的图表,将数据划分为多个区间(称为“柱”),每个区间的高度表示该区间中数据的频率。

```matlabhistogram(sales) %绘制销售数据的直方图```直方图显示了数据的分布情况,但是我们通常会希望使用一条曲线来近似描述数据的分布情况。

这就是频率分布拟合曲线的作用。

在Matlab中,我们可以使用`fitdist()`函数拟合数据的频率分布曲线。

`fitdist()`函数需要指定数据和拟合分布的类型作为输入参数,并返回拟合后的参数值。

以下是一个示例:```matlabpd = fitdist(sales, 'Normal') %拟合销售数据的正态分布曲线```在上面的示例中,我们拟合了销售数据的正态分布曲线,并将拟合结果存储在名为“pd”的变量中。

我们可以使用`pd`来获取拟合曲线的参数,并进行后续分析。

接下来,我们可以使用`pdf()`函数绘制拟合曲线。

`pdf()`函数可以根据给定的分布参数,在指定的范围内生成拟合曲线上的概率密度值。

matlab自动拟合曲线

matlab自动拟合曲线

MATLAB自动拟合曲线1. 简介自动拟合曲线是指使用计算机程序来辅助拟合曲线,通过最小化误差函数来找到最佳的拟合曲线参数。

MATLAB是一种强大的科学计算软件,提供了许多用于拟合曲线的工具和函数,能够帮助用户快速、准确地进行曲线拟合。

在本文中,我们将探讨MATLAB中自动拟合曲线的原理、方法和示例,帮助读者了解如何使用MATLAB来实现自动拟合曲线。

文章将分为以下几个方面进行详细介绍:2. 曲线拟合原理曲线拟合是指通过已知数据点,使用数学函数来拟合出与这些数据点尽可能接近的曲线。

在MATLAB中,常用的曲线拟合方法包括线性回归、多项式拟合、非线性曲线拟合等。

2.1 线性回归线性回归是一种常用的曲线拟合方法,它假设要拟合的曲线可以由一条直线表示。

在MATLAB中,可以使用polyfit函数来进行线性回归拟合。

以下是线性回归的示例代码:% 生成示例数据x = 1:10;y = 2*x + 1;% 添加噪声y_noise = y + randn(size(y));% 线性回归拟合p = polyfit(x, y_noise, 1);y_fit = polyval(p, x);% 绘制拟合结果figure;plot(x, y_noise, 'o', x, y_fit);legend('原始数据', '拟合曲线');2.2 多项式拟合多项式拟合是一种通过多项式函数来拟合曲线的方法。

在MATLAB中,可以使用polyfit函数来进行多项式拟合。

以下是二次多项式拟合的示例代码:% 生成示例数据x = 1:10;y = 2*x.^2 - 3*x + 1;% 添加噪声y_noise = y + randn(size(y));% 二次多项式拟合p = polyfit(x, y_noise, 2);y_fit = polyval(p, x);% 绘制拟合结果figure;plot(x, y_noise, 'o', x, y_fit);legend('原始数据', '拟合曲线');2.3 非线性曲线拟合非线性曲线拟合是指通过非线性函数来拟合曲线的方法。

Matlab最小二乘法曲线拟合的应用实例

Matlab最小二乘法曲线拟合的应用实例

MATLAB机械工程最小二乘法曲线拟合的应用实例班级:姓名:学号:指导教师:一,实验目的通过Matlab上机编程,掌握利用Matlab软件进行数据拟合分析及数据可视化方法二,实验内容1.有一组风机叶片的耐磨实验数据,如下表所示,其中X为使用时间,单位为小时h,Y为磨失质量,单位为克g。

要求:对该数据进行合理的最小二乘法数据拟合得下列数据。

x=[10000 11000 12000 13000 14000 15000 16000 170 00 18000 19000 20000 21000 22000 23000];y=[24.0 26.5 29.8 32.4 34.7 37.7 41.1 42.8 44.6 47.3 6 5.8 87.5 137.8 174.2]三,程序如下X=10000:1000:23000;Y=[24.0,26.5,29.8,32.4,34.7,37.7,41.1,42.8,44.6,47.3,6 5.8,87.5,137.8,174.2]dy=1.5; %拟合数据y的步长for n=1:6[a,S]=polyfit(x,y,n);A{n}=a;da=dy*sqrt(diag(inv(S.R´*S.R)));Da{n}=da´;freedom(n)=S.df;[ye,delta]=polyval(a,x,S);YE{n}=ye;D{n}=delta;chi2(n)=sum((y-ye).^2)/dy/dy;endQ=1-chi2cdf(chi2,freedom); %判断拟合良好度clf,shgsubplot(1,2,1),plot(1:6,abs(chi2-freedom),‘b’) xlabel(‘阶次’),title(‘chi2与自由度’)subplot(1,2,2),plot(1:6,Q,‘r’,1:6,ones(1,6)*0.5) xlabel(‘阶次’),title(‘Q与0.5线’)nod=input(‘根据图形选择适当的阶次(请输入数值)’);elf,shg,plot(x,y,‘kx’);xlabel(‘x’),ylabel(‘y’);axis([8000,23000,20.0,174.2]);hold onerrorbar(x,YE{nod},D{nod},‘r’);hold offtitle(‘较适当阶次的拟合’)text(10000,150.0,[‘chi2=’num2str(chi2(nod))‘~’int2str(freedom(nod))])text(10000,140.0,[‘freedom=’int2str(freedom(nod))]) text(20000,40.0,[‘Q=’num2str(Q(nod))‘~0.5’])disp(‘’)disp(‘拟合多项式系数’),disp(A{nod})disp(‘拟合系数的离差’),disp(DA{nod})运行结果分为两个阶段,第一阶段先判断拟合度,第二阶段根据拟合度,选择合适的拟合阶次,再绘出拟合结果。

用MATLAB(高版本)cftool拟合多条曲线

用MATLAB(高版本)cftool拟合多条曲线

用MATLAB(高版本)cftool拟合多条曲线听说你想要用cftool作出这样的东西?楼上有人说用cftool-v1,不过很绝望比较新的版本都完全无法使用这个功能了。

反正我的R2016a不行。

我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,希望对大家有帮助!转载请注明原出处和原作者!这里我们以RLC串联谐振需要在同一个坐标里画出频率特性的XC,XL,Z曲线为例,首先敲出坐标数据如下(请手动无视i数据):然后运行,转到了cftool界面如下:首先我们拟合xc-f曲线(这是个反函数曲线),然后点:文件——generate code然后你看到了这个:保存一下,然后点运行,这里就有点GAY了,说什么参数不足,但是没事,你鼠标点一下“键入运行代码那一行然后变成了下面这个样子”,再点运行图标。

然后会跳出一个窗口,就是下面这个玩意儿,注意观察的话,你会发现他的曲线颜色和你一般的直接从cftool里点print to figure曲线颜色不一样!我们要的就是这个效果!保留上面这个窗口,回答cftool依次把剩下的xl-f曲线,z-f曲线按照上面的步骤操作,得到三个窗口。

接下来是见证奇迹的时候了!进到每个窗口把属性编辑器打开,像酱紫:然后你看到下面这一幕:没错,刚才的单个独立窗口合并到了一起变成了三个标签!接下来就是把任何两个标签里的曲线复制到余下哪一个,比如我们把figure1,figure2里的曲线都弄到figure3里:选中figure2曲线——右击复制(千万不要用ctrl+c,不信你可以看一下会发生什么。

)——到figure3里右击粘贴(同样的道理,不要Ctrl+v),现在看到你要的了吧!对figure1实行同样的操作,然后就得到了:剩下的就是用属性编辑器编辑成你要的样子了!声明一下,如果直接从cftool里print to figure三次然后再复制粘贴是不行的,应为根本无法实现曲线的复制粘贴,他产生的结果会和上面你用Ctrl+c复制Ctrl+v粘贴产生同样的效果,根本不是我们想要的!重复一遍,我也是在问遍没有可靠的解法后自己无意间摸索出来的,完全原创,完全野路子,希望对大家有帮助!转载请注明原出处和原作者!谢谢!吐槽一下知乎的回答编辑板块渣渣。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档