数电实验报告

合集下载

数电实验报告半加全加器

数电实验报告半加全加器

数电实验报告半加全加器实验目的:掌握半加器和全加器的原理和应用,了解半加器和全加器的构造和工作原理。

实验器材:逻辑电路实验箱、7400四与非门、7402四与非门、7408四与门、7432四或门、7447数码显示器、开关、电源、跳线等。

实验原理:半加器和全加器是数字电路中常用的基本逻辑电路,用于对二进制进行加法运算,主要用于数字电路中的算术逻辑单元(ALU)。

1.半加器实验原理:半加器是一种能够对两个二进制位进行加法运算的电路。

半加器有两个输入端和两个输出端,输入端分别为A和B,输出端分别为S和C。

其中,A和B分别为要加的两个二进制数位,S为运算结果的个位,并且用S=A⊕B表示;C为运算结果的十位(进位),C=A·B表示。

半加器的真值表和逻辑符号表达式如下:```A,B,S,C0,0,0,00,1,1,01,0,1,01,1,0,1```2.全加器实验原理:全加器是一种能够对两个二进制位和一个进位信号进行加法运算的电路。

全加器有三个输入端和两个输出端,输入端分别为A、B和Cin,输出端分别为S和Cout。

其中,A和B分别为要加的两个二进制数位,Cin 为上一位的进位信号,S为运算结果的个位,并且用S=A ⊕ B ⊕ Cin表示;Cout为运算结果的十位(进位),Cout=(A·B) + (A·Cin) + (B·Cin)表示。

全加器的真值表和逻辑符号表达式如下:```A ,B , Cin , S , Cout0,0,0,0,00,0,1,1,00,1,0,1,00,1,1,0,11,0,0,1,01,0,1,0,11,1,0,0,11,1,1,1,1```实验步骤:1.首先,按照实验原理连接逻辑门实验箱中的电路。

将7400四与非门的1、2号引脚分别连接到开关1、2上,将开关3连接到7400的3号引脚,将开关4连接到7400的5号引脚,将7400的6号引脚连接到LED1上,表示半加器的进位输出。

数电实验报告触发器及其应用(共10篇)

数电实验报告触发器及其应用(共10篇)

数电实验报告触发器及其应用(共10篇)1、实验目的:掌握触发器的原理和使用方法,学会利用触发器进行计数、存储等应用。

2、实验原理:触发器是一种多稳态数字电路,具有存储、计数、分频、时序控制等功能。

常见的触发器有RS触发器、D触发器、T触发器、JK触发器等。

RS触发器是由两个交叉互连的反相器组成的,它具有两个输入端R(复位)和S(置位),一个输出端Q。

当输入R=1,S=0时,Q=0;当输入R=0,S=1时,Q=1;当R=S=1时,无法确定Q的状态,称为禁态。

JK触发器是将RS触发器的两个输入端合并在一起而成,即J=S,K=R,当J=1,K=0时,Q=1;当J=0,K=1时,Q=0;当J=K=1时,Q反转。

JK触发器具有启动、停止、颠倒相位等功能。

D触发器是由单个输入端D、输出端Q和时钟脉冲输入端组成的,当时钟信号上升沿出现时,D触发器的状态发生改变,如果D=1,Q=1;如果D=0,Q=0。

T触发器只有一个输入端T和一个输出端Q,在每个时钟脉冲到来时,T触发器执行T→Q操作,即若T=1,则Q取反;若T=0,则Q保持不变。

触发器可以组成计数器、分频器、存储器、状态机等各种数字电路,被广泛用于计算机、控制系统等领域。

3、实验器材:数码万用表、示波器、逻辑分析仪、CD4013B触发器芯片、几个电阻、电容、开关、信号发生器等。

4、实验内容:4.1 RS触发器测试利用CD4013B芯片来测试RS触发器的功能,在实验中将RS触发器的输入端分别接入CD4013B芯片的端子,用示波器观察输出端的波形变化,并记录下输入输出关系表格,来验证RS触发器的工作原理。

具体实验步骤如下:将CD4013B芯片的端子按如下接线方式连接:RST1,2脚接入+5V电源,C1个100nF的电容与单位时间5 ns的外部时钟信号交替输入接口CLK,以模拟器件为master时,向器件提供单个时钟脉冲。

测试时选择适宜的数据输入,R1和S2另一端程+5V,S1和R2另一端连接接地GND,用万用表测量各端电压,电容缓存的电压。

数电_实验报告

数电_实验报告

一、实验目的1. 理解数字电路的基本组成和工作原理;2. 掌握常用数字电路元器件的识别和测试方法;3. 培养数字电路设计和分析能力;4. 熟悉数字电路实验仪器的使用方法。

二、实验内容1. 逻辑门电路实验:包括与门、或门、非门、异或门等;2. 组合逻辑电路实验:包括编码器、译码器、数据选择器等;3. 时序逻辑电路实验:包括触发器、计数器、寄存器等;4. 数字电路仿真实验:使用Multisim软件进行数字电路仿真。

三、实验原理1. 逻辑门电路:逻辑门电路是数字电路的基本单元,根据输入信号的逻辑关系,输出相应的逻辑信号。

常见的逻辑门电路有与门、或门、非门、异或门等。

2. 组合逻辑电路:组合逻辑电路由逻辑门电路组成,其输出仅与当前输入信号有关,与电路历史状态无关。

常见的组合逻辑电路有编码器、译码器、数据选择器等。

3. 时序逻辑电路:时序逻辑电路由触发器组成,其输出不仅与当前输入信号有关,还与电路历史状态有关。

常见的时序逻辑电路有触发器、计数器、寄存器等。

四、实验步骤1. 逻辑门电路实验:(1)搭建与门、或门、非门、异或门等逻辑门电路;(2)观察输入信号与输出信号之间的关系,验证逻辑门电路的功能;(3)测试逻辑门电路的延迟时间。

2. 组合逻辑电路实验:(1)搭建编码器、译码器、数据选择器等组合逻辑电路;(2)观察输入信号与输出信号之间的关系,验证组合逻辑电路的功能;(3)测试组合逻辑电路的延迟时间。

3. 时序逻辑电路实验:(1)搭建触发器、计数器、寄存器等时序逻辑电路;(2)观察输入信号、时钟信号与输出信号之间的关系,验证时序逻辑电路的功能;(3)测试时序逻辑电路的延迟时间。

4. 数字电路仿真实验:(1)使用Multisim软件搭建数字电路;(2)设置输入信号和时钟信号,观察输出信号的变化;(3)分析仿真结果,验证数字电路的功能。

五、实验结果与分析1. 逻辑门电路实验:实验结果表明,与门、或门、非门、异或门等逻辑门电路能够实现预期的逻辑功能。

数字电子技术 实验报告

数字电子技术 实验报告

实验一组合逻辑电路设计与分析1.实验目的(1)学会组合逻辑电路的特点;(2)利用逻辑转换仪对组合逻辑电路进行分析与设计。

2.实验原理组合逻辑电路是一种重要的数字逻辑电路:特点是任何时刻的输出仅仅取决于同一时刻输入信号的取值组合。

根据电路确定功能,是分析组合逻辑电路的过程,一般按图1-1所示步骤进行分析。

图1-1 组合逻辑电路的分析步骤根据要求求解电路,是设计组合逻辑电路的过程,一般按图1-2所示步骤进行设计。

图1-2 组合逻辑电路的设计步骤3.实验电路及步骤(1)利用逻辑转换仪对已知逻辑电路进行分析。

a.按图1-3所示连接电路。

b.在逻辑转换仪面板上单击由逻辑电路转换为真值表的按钮和由真值表导出简化表达式后,得到如图1-4所示结果。

观察真值表,我们发现:当四个输入变量A,B,C,D中1的个数为奇数时,输出为0,而当四个输入变量A,B,C,D 中1的个数为偶数时,输出为1。

因此这是一个四位输入信号的奇偶校验电路。

图1-4 经分析得到的真值表和表达式(2)根据要求利用逻辑转换仪进行逻辑电路的设计。

a.问题提出:有一火灾报警系统,设有烟感、温感和紫外线三种类型不同的火灾探测器。

为了防止误报警,只有当其中有两种或两种以上的探测器发出火灾探测信号时,报警系统才产生报警控制信号,试设计报警控制信号的电路。

b.在逻辑转换仪面板上根据下列分析出真值表如图1-5所示:由于探测器发出的火灾探测信号也只有两种可能,一种是高电平(1),表示有火灾报警;一种是低电平(0),表示正常无火灾报警。

因此,令A、B、C分别表示烟感、温感、紫外线三种探测器的探测输出信号,为报警控制电路的输入、令F 为报警控制电路的输出。

图1-5 经分析得到的真值表(3)在逻辑转换仪面板上单击由真值表到处简化表达式的按钮后得到最简化表达式AC+AB+BC。

4.实验心得通过本次实验的学习,我们复习了数电课本关于组合逻辑电路分析与设计的相关知识,掌握了逻辑转换仪的功能及其使用方法。

数电实验报告实验

数电实验报告实验

一、实验目的1. 理解和掌握数字电路的基本原理和设计方法。

2. 培养动手能力和实验技能。

3. 提高分析问题和解决问题的能力。

二、实验原理数字电路是一种以二进制为基础的电路,其基本元件是逻辑门和触发器。

本实验主要涉及以下几种逻辑门:与门、或门、非门、异或门、同或门、与非门、或非门等。

1. 与门(AND Gate):当所有输入端都为高电平时,输出才为高电平。

2. 或门(OR Gate):当至少一个输入端为高电平时,输出为高电平。

3. 非门(NOT Gate):对输入信号取反。

4. 异或门(XOR Gate):当输入端信号不同时,输出为高电平。

5. 同或门(NOR Gate):当输入端信号相同时,输出为高电平。

6. 与非门(NAND Gate):与门和非门的组合。

7. 或非门(NOR Gate):或门和非门的组合。

三、实验器材1. 数字电路实验箱2. 逻辑门芯片3. 电源4. 连接线5. 测试仪器四、实验步骤1. 组成基本逻辑门电路:根据实验原理,搭建与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路。

2. 测试电路功能:使用测试仪器对搭建的电路进行测试,验证电路是否满足基本逻辑功能。

3. 组成组合逻辑电路:根据实验要求,搭建组合逻辑电路,如全加器、半加器、译码器、编码器等。

4. 测试组合逻辑电路:使用测试仪器对搭建的组合逻辑电路进行测试,验证电路是否满足设计要求。

5. 组成时序逻辑电路:根据实验要求,搭建时序逻辑电路,如触发器、计数器、寄存器等。

6. 测试时序逻辑电路:使用测试仪器对搭建的时序逻辑电路进行测试,验证电路是否满足设计要求。

五、实验结果与分析1. 基本逻辑门电路测试结果:根据测试数据,搭建的与门、或门、非门、异或门、同或门、与非门、或非门等基本逻辑门电路均满足设计要求。

2. 组合逻辑电路测试结果:根据测试数据,搭建的全加器、半加器、译码器、编码器等组合逻辑电路均满足设计要求。

数电实验报告【武大电气】

数电实验报告【武大电气】

数字电路实验报告专业:电气工程与自动化实验一:组合逻辑电路分析一.实验目的1.熟悉大体逻辑电路的特点。

2.熟悉各类门的实物元件和元件的利用和线路连接。

3.学会分析电路功能.二.实验原理1.利用单刀双掷开关的双接点,别离连接高电平和低电平,开关的掷点不同,门电路输入的电平也不同。

2.门电路的输出端连接逻辑指示灯,灯亮则输出为高电平,灯灭则输出低电平。

3.依次通过门电路的输入电平与输出电平,分析门电路的逻辑关系和实现的逻辑功能。

三.实验元件1.74LS00D2.74LS20D四.实验内容(1)实验内容一:a.实验电路图:由上述实验电路图接线,在开关A B C D选择不同组合的高低电平时,通过对灯X1亮暗的观察,可得出上图的逻辑真值表。

b、逻辑电路真值表:实验分析:•=AB+CD ,一样,由真值表也能推出此由实验逻辑电路图可知:输出X1=AB CD方程,说明此逻辑电路具有与或功能。

(2)实验内容2:密码锁a.实验电路图:D 接着通过实验,改变A B C D 的电平,观察灯泡亮暗,得出真值表如下: b.真值表:实验分析:由真值表(表)可知:当ABCD为1001时,灯X1亮,灯X2灭;其他情况下,灯X1灭,灯X2亮。

由此可见,该密码锁的密码ABCD为1001.因此,可以取得:X1=ABCD,X2=1X。

五.实验体会:1. 这次实验应该说是比较简单,只用到了两种不同的与非门组成一些大体的逻辑电路。

2. 分析组合逻辑电路时,可以通过逻辑表达式,电路图和真值表之间的彼此转换已抵达实验所要求的目的结果。

3. 咱们组在这次实验进程中出现过连线正确但没出现相应的实验结果的情况。

后经分析发现由于实验器材利用的次数较多,有些器材有所损坏,如一些导线表面是好的,其实内部损坏,因此意识到了连接线路时一是要注意器材的选取,二是在接线前必然注意检查各元件的好坏。

实验二:组合逻辑实验(一)半加器和全加器一.实验目的:熟悉几种元器件所带的门电路,掌握用这些门电路设计一些简单的逻辑组合电路的方式。

数电实验报告数码管显示控制电路设计

数电实验报告数码管显示控制电路设计

数电实验报告数码管显示控制电路设计一、实验目的1.学习数码管介绍和使用;2.熟悉数码管控制电路设计思路和方法;3.掌握数码管显示控制电路的实验过程和步骤。

二、实验原理数码管是数字显示器件,具有低功耗、体积小、寿命长等优点。

常见的数码管有共阳极和共阴极两种。

共阳极数码管的阳极端口是一个共用的端口,通过将不同的阴极端口接地来控制数码管的发光情况。

共阴极数码管的阴极端口是一个共用的端口,通过将不同的阳极端口接地来控制数码管的发光情况。

数码管的控制电路可以使用逻辑门电路或微控制器来实现。

本实验采用逻辑门电路来设计数码管显示控制电路。

三、实验器材和器件1.实验板一块;2.74LS47数码管译码器一颗;3.共阴极数码管四个;4.逻辑门IC:7404、7408、7432各一个;5.杜邦线若干。

四、实验步骤1.将74LS47数码管译码器插入实验板上的相应位置,并用杜邦线连接74LS47和逻辑门IC的引脚:1)将74LS47的A、B、C和D引脚依次连接到7408的输入端;2)将74LS47的LE引脚连接到VCC(高电平,表示使能有效);3)将74LS47的BI/RBO引脚连接到GND(低电平,表示译码输出);4)将7408的输出端依次连接到7432的输入端;5)将7432的输出端依次连接到数码管的阴极端口。

2.将四个数码管的阳极端口分别连接到4个控制开关上,并将开关接地。

3.将实验电路接入电源,调整电压和电流,观察数码管的显示情况。

五、实验结果和分析实验结果显示,控制开关的状态可以控制数码管的显示内容。

当其中一控制开关接地时,对应的数码管会显示相应的数字。

通过调整开关的状态,可以实现不同数字的显示。

六、实验总结通过这次实验,我学会了数码管的基本使用方法和控制电路的设计思路。

数码管作为一种数字显示元件,广泛应用于各种电子产品中,掌握其控制方法对于电子工程师来说非常重要。

在今后的学习和工作中,我将继续深入研究数码管的相关知识和应用,提高自己的技术水平。

北邮数电实验报告

北邮数电实验报告

北邮数电实验报告北邮数电实验报告一、引言数电实验是电子信息类专业学生必修的一门实验课程,通过实践操作,帮助学生巩固理论知识,培养实际动手能力。

本次实验旨在通过设计和搭建一个简单的数字电路,来理解数字电路的基本原理和工作方式。

二、实验目的本次实验的目的是设计一个4位二进制加法器,实现两个4位二进制数的相加运算。

通过实验,我们可以加深对于数字电路的理解,掌握数字电路的设计和搭建方法。

三、实验原理1. 二进制加法器二进制加法器是一种用于计算二进制数相加的数字电路。

它由若干个逻辑门和触发器组成,可以实现二进制数的加法运算。

在本次实验中,我们将设计一个4位二进制加法器,即可以计算两个4位二进制数的相加结果。

2. 逻辑门逻辑门是数字电路中常用的基本元件,用于实现逻辑运算。

常见的逻辑门有与门、或门、非门、异或门等。

在本次实验中,我们将使用与门和异或门来构建4位二进制加法器。

四、实验步骤1. 设计4位二进制加法器的电路图根据实验要求,我们需要设计一个能够计算两个4位二进制数相加的电路。

首先,我们可以将两个4位二进制数分别用D0~D3和E0~E3表示,其中D0和E0分别为最低位。

然后,我们需要使用与门和异或门来实现加法器的功能。

通过逻辑运算,我们可以得到每一位的和以及进位。

最后,将每一位的和连接起来,即可得到最终的结果。

2. 搭建电路根据电路图,我们可以开始搭建实验电路。

首先,将所需的逻辑门和触发器连接起来,形成一个完整的电路。

然后,将所需的输入信号和电源连接到电路上。

最后,使用示波器等工具检查电路的工作状态,确保电路正常运行。

3. 进行实验测试在搭建好电路后,我们可以进行实验测试。

首先,将两个4位二进制数的输入信号连接到电路上。

然后,通过观察输出信号,判断电路是否正确计算了两个二进制数的相加结果。

如果输出信号与预期结果一致,说明电路设计和搭建成功。

五、实验结果与分析在进行实验测试后,我们可以得到实验结果。

通过观察输出信号,我们可以判断电路是否正确计算了两个二进制数的相加结果。

数电实验报告实验一心得

数电实验报告实验一心得

数电实验报告实验一心得引言本实验是数字电路课程的第一次实验,旨在通过实际操作和观察,加深对数字电路基础知识的理解和掌握。

本次实验主要涉及布尔代数、逻辑门、模拟开关和数字显示等内容。

在实验过程中,我对数字电路的原理和实际应用有了更深入的了解。

实验一:逻辑门电路的实验实验原理逻辑门是数字电路中的基本组件,它能够根据输入的布尔值输出相应的结果。

常见的逻辑门有与门、或门、非门等。

本次实验主要是通过搭建逻辑门电路实现布尔函数的运算。

实验过程1. 首先,我按照实验指导书上的电路图,使用示波器搭建了一个简单的与门电路。

并将输入端连接到两个开关,输出端连接到示波器,以观察电路的输入和输出信号变化。

2. 其次,我打开示波器,观察了两个开关分别为0和1时的输出结果。

当两个输入均为1时,示波器上的信号为高电平,否则为低电平。

3. 我进一步观察了两个开关都为1时的输出信号波形。

通过示波器上的脉冲信号可以清晰地看出与门的实际运行过程,验证了实验原理的正确性。

实验结果和分析通过本次实验,我成功地搭建了一个与门电路,并观察了输入和输出之间的关系。

通过示波器上的信号波形,我更加直观地了解了数字电路中布尔函数的运算过程。

根据实验结果和分析,我可以总结出:1. 逻辑门电路可以根据布尔函数进行输入信号的运算,输出相应的结果。

2. 在与门电路中,当输入信号均为1时,输出信号为1,否则为0。

3. 示例器可以实时显示电路的输入和输出信号波形,方便实验者观察和分析。

结论通过本次实验,我对数字电路的基本原理和逻辑门电路有了更深刻的理解。

我学会了如何搭建逻辑门电路,并通过示波器观察和分析输入和输出信号的变化。

这对我进一步理解数字电路的设计和应用具有重要意义。

通过实验,我还锻炼了动手操作、实际观察和分析问题的能力。

实验过程中,需要认真对待并细致观察电路的运行情况,及时发现和解决问题。

这些能力对于今后的学习和研究都非常重要。

总之,本次实验让我更好地理解了数字电路的基本原理和应用,提高了我的实验能力和观察分析能力。

数电实验报告答案

数电实验报告答案

实验名称:数字电路基础实验实验目的:1. 熟悉数字电路的基本原理和基本分析方法。

2. 掌握数字电路实验设备的使用方法。

3. 培养动手实践能力和分析问题、解决问题的能力。

实验时间:2023年X月X日实验地点:实验室XX室实验仪器:1. 数字电路实验箱2. 万用表3. 双踪示波器4. 数字信号发生器5. 短路线实验内容:一、实验一:基本逻辑门电路实验1. 实验目的- 熟悉与门、或门、非门的基本原理和特性。

- 学习逻辑门电路的测试方法。

2. 实验步骤- 连接实验箱,设置输入端。

- 使用万用表测量输出端电压。

- 记录不同输入组合下的输出结果。

- 分析实验结果,验证逻辑门电路的特性。

3. 实验结果与分析- 实验结果与理论预期一致,验证了与门、或门、非门的基本原理。

- 通过实验,加深了对逻辑门电路特性的理解。

二、实验二:组合逻辑电路实验1. 实验目的- 理解组合逻辑电路的设计方法。

- 学习使用逻辑门电路实现组合逻辑电路。

2. 实验步骤- 根据设计要求,绘制组合逻辑电路图。

- 连接实验箱,设置输入端。

- 测量输出端电压。

- 记录不同输入组合下的输出结果。

- 分析实验结果,验证组合逻辑电路的功能。

3. 实验结果与分析- 实验结果符合设计要求,验证了组合逻辑电路的功能。

- 通过实验,掌握了组合逻辑电路的设计方法。

三、实验三:时序逻辑电路实验1. 实验目的- 理解时序逻辑电路的基本原理和特性。

- 学习使用触发器实现时序逻辑电路。

2. 实验步骤- 根据设计要求,绘制时序逻辑电路图。

- 连接实验箱,设置输入端和时钟信号。

- 使用示波器观察输出波形。

- 记录不同输入组合和时钟信号下的输出结果。

- 分析实验结果,验证时序逻辑电路的功能。

3. 实验结果与分析- 实验结果符合设计要求,验证了时序逻辑电路的功能。

- 通过实验,加深了对时序逻辑电路特性的理解。

四、实验四:数字电路仿真实验1. 实验目的- 学习使用数字电路仿真软件进行电路设计。

数电实验报告

数电实验报告

数电实验报告实验目的:本实验旨在通过实际操作,加深对数电原理的理解,掌握数字电子技术的基本原理和方法,培养学生的动手能力和实际应用能力。

实验仪器和设备:1. 示波器。

2. 信号发生器。

3. 逻辑分析仪。

4. 电源。

5. 万用表。

6. 示教板。

7. 电路元件。

实验原理:数电实验是以数字电子技术为基础,通过实验操作来验证理论知识的正确性。

数字电子技术是一种以数字信号为工作对象,利用电子器件实现逻辑运算、数字存储、数字传输等功能的技术。

本次实验主要涉及数字逻辑电路的设计与实现,包括基本逻辑门的组合、时序逻辑电路、触发器等。

实验内容:1. 实验一,基本逻辑门的实验。

在示教板上搭建与非门、或门、与门、异或门等基本逻辑门电路,通过输入不同的逻辑信号,观察输出的变化情况,并记录实验数据。

2. 实验二,时序逻辑电路的实验。

利用触发器、计数器等元件,设计并搭建一个简单的时序逻辑电路,通过改变输入信号,验证电路的功能和正确性。

3. 实验三,逻辑分析仪的应用。

利用逻辑分析仪对实验中的数字信号进行观测和分析,掌握逻辑分析仪的使用方法,提高实验数据的准确性。

实验步骤:1. 按照实验指导书的要求,准备好实验仪器和设备,检查电路连接是否正确。

2. 依次进行各个实验内容的操作,记录实验数据和观察现象。

3. 对实验结果进行分析和总结,查找可能存在的问题并加以解决。

实验结果与分析:通过本次实验,我们成功搭建了基本逻辑门电路,观察到了不同输入信号对输出的影响,验证了逻辑门的功能和正确性。

在时序逻辑电路实验中,我们设计并搭建了一个简单的计数器电路,通过实验数据的记录和分析,验证了电路的正常工作。

逻辑分析仪的应用也使我们对数字信号的观测和分析有了更深入的了解。

实验总结:本次数电实验不仅加深了我们对数字电子技术的理解,还培养了我们的动手能力和实际应用能力。

在实验过程中,我们遇到了一些问题,但通过认真分析和思考,最终都得到了解决。

这次实验让我们深刻体会到了理论与实践相结合的重要性,也让我们对数字电子技术有了更加深入的认识。

数电实验报告 数据选择器及其应用

数电实验报告  数据选择器及其应用

实验2实验报告数据选择器及其应用一、实验目的1.了解组合逻辑电路的设计步骤、分析方法和测试方法;2.掌握数据选择器的工作原理与逻辑功能;3.掌握双四选一数据选择器74LS153的应用。

二、实验设备1.数字电路实验箱2 、数字双踪示波器3.集成电路: 74LS004、集成电路: 74LS153三、实验内容1.测试双四选一数据选择器74LS153的逻辑功能;2、设某一导弹发射控制机构有两名司令员A.B和两名操作员C.D, 只有当两名司令员均同意发射导弹攻击目标且有操作员操作, 则发射导弹F;3.用74LS00与74LS153设计一位全加器。

四、实验结果1、测试双四选一数据选择器74LS153的逻辑功能。

如图S5和S6分别接A和B, 负责输入地址;S1.S2.S3.S4为上面选择器的四个输入;S7、S8、S9、S10为下面选择器的四个输入。

举例说明:如图所示, 当S5和S6都输入高电平时, 选择输出1C3和2C3的内容, 即S4和S10的输入均为高电平, 小灯亮。

设某一导弹发射控制机构有两名司令员A.B和两名操作员C.D, 只有当两名司令员均同意发射导弹攻击目标且有操作员操作, 则发射导弹F。

由题意可得出逻辑表达式如下:F=AB(C+D)分析: 由于只有A.B都为高电平时F才有可能输出高电平, 所以让A和B作为地址输入端。

而当A.B均为高电平时, C和D任意一个为高电平则F为高电平。

所以用74LS00实现C和电路图如下:S1、S2接地址选择端, S3、S4先做或运算再接1C3端。

2、用74LS00和可以通B S CI过降维将输入位A和B作为地址选择位,进位位和以及0和1作为被选择数据输入,表示S和CO。

真值表如下:A0 0 CI 低0 1 CI非CI1 0 CI非CI1 1 CI 高五、故障排除在做第二个实验内容的时候, 发现A.B值不是高电平的时候小灯也会亮。

经过检查电路发现1C0, 1C1, 1C2悬空了, 相当于接了高电平。

数电设计实验报告

数电设计实验报告

一、实验目的1. 熟悉数字电路的基本组成和设计方法。

2. 学习组合逻辑电路和时序逻辑电路的设计与实现。

3. 掌握Verilog HDL语言进行数字电路的设计与仿真。

4. 提高数字电路分析与设计能力。

二、实验内容本次实验主要设计一个数字钟电路,要求实现以下功能:1. 显示时、分、秒,时间周期为24小时。

2. 时间基准为1秒对应1Hz的时钟信号。

3. 可通过按键进行校时。

三、实验原理数字钟电路主要由以下部分组成:1. 振荡器:产生基准时钟信号。

2. 分频器:将基准时钟信号分频,得到1Hz的时钟信号。

3. 计数器:对1Hz的时钟信号进行计数,实现秒、分、时的计时。

4. 显示器:将计时结果显示出来。

5. 校时电路:通过按键进行校时操作。

四、实验步骤1. 使用Verilog HDL语言编写数字钟电路的代码。

2. 使用ModelSim进行仿真,验证电路功能。

3. 将代码编译并下载到FPGA芯片上。

4. 在FPGA开发板上进行实验,测试电路功能。

五、实验代码```verilogmodule digital_clock(input clk, // 基准时钟信号input rst_n, // 复位信号,低电平有效 input set, // 校时按键output [5:0] h, // 时output [5:0] m, // 分output [5:0] s // 秒);reg [23:0] counter; // 计数器reg [23:0] h_counter; // 时计数器reg [23:0] m_counter; // 分计数器reg [23:0] s_counter; // 秒计数器// 时计数器always @(posedge clk or negedge rst_n) beginif (!rst_n) beginh_counter <= 24'd0;end else beginif (counter >= 24'd86400) beginh_counter <= h_counter + 24'd1;counter <= 24'd0;end else begincounter <= counter + 24'd1;endendend// 分计数器always @(posedge clk or negedge rst_n) begin if (!rst_n) beginm_counter <= 24'd0;end else beginif (h_counter >= 24'd24) beginm_counter <= m_counter + 24'd1; h_counter <= 24'd0;end else beginm_counter <= m_counter + 24'd1; endendend// 秒计数器always @(posedge clk or negedge rst_n) begin if (!rst_n) begins_counter <= 24'd0;end else beginif (m_counter >= 24'd59) begins_counter <= s_counter + 24'd1;m_counter <= 24'd0;end else begins_counter <= s_counter + 24'd1;endendend// 时、分、秒输出assign h = h_counter[5:0];assign m = m_counter[5:0];assign s = s_counter[5:0];endmodule```六、实验结果1. 仿真结果:使用ModelSim对代码进行仿真,验证电路功能。

数电实验报告东大

数电实验报告东大

一、实验目的1. 理解数字电路的基本组成和基本原理。

2. 掌握常用数字电路的分析和设计方法。

3. 提高动手实践能力,加深对数字电路理论知识的理解。

二、实验内容本次实验主要包含以下内容:1. 数字电路基础实验2. 组合逻辑电路实验3. 时序逻辑电路实验三、实验仪器与设备1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 计算器5. 实验指导书四、实验原理1. 数字电路基础实验:通过实验了解数字电路的基本组成和基本原理,包括逻辑门、编码器、译码器等。

2. 组合逻辑电路实验:通过实验掌握组合逻辑电路的分析和设计方法,包括加法器、编码器、译码器、数据选择器等。

3. 时序逻辑电路实验:通过实验掌握时序逻辑电路的分析和设计方法,包括触发器、计数器、寄存器等。

五、实验步骤1. 数字电路基础实验- 连接实验箱,检查电路连接是否正确。

- 按照实验指导书的要求,进行逻辑门、编码器、译码器等电路的实验。

- 观察实验结果,分析实验现象,并记录实验数据。

2. 组合逻辑电路实验- 连接实验箱,检查电路连接是否正确。

- 按照实验指导书的要求,进行加法器、编码器、译码器、数据选择器等电路的实验。

- 观察实验结果,分析实验现象,并记录实验数据。

3. 时序逻辑电路实验- 连接实验箱,检查电路连接是否正确。

- 按照实验指导书的要求,进行触发器、计数器、寄存器等电路的实验。

- 观察实验结果,分析实验现象,并记录实验数据。

六、实验结果与分析1. 数字电路基础实验- 通过实验,验证了逻辑门、编码器、译码器等电路的基本原理和功能。

- 实验结果符合理论预期,验证了数字电路的基本组成和基本原理。

2. 组合逻辑电路实验- 通过实验,掌握了组合逻辑电路的分析和设计方法。

- 实验结果符合理论预期,验证了组合逻辑电路的基本原理。

3. 时序逻辑电路实验- 通过实验,掌握了时序逻辑电路的分析和设计方法。

- 实验结果符合理论预期,验证了时序逻辑电路的基本原理。

数电项目实验报告(3篇)

数电项目实验报告(3篇)

第1篇一、实验目的1. 理解数字电路的基本概念和组成原理。

2. 掌握常用数字电路的分析方法。

3. 培养动手能力和实验技能。

4. 提高对数字电路应用的认识。

二、实验器材1. 数字电路实验箱2. 数字信号发生器3. 示波器4. 短路线5. 电阻、电容等元器件6. 连接线三、实验原理数字电路是利用数字信号进行信息处理的电路,主要包括逻辑门、触发器、计数器、寄存器等基本单元。

本实验通过搭建简单的数字电路,验证其功能,并学习数字电路的分析方法。

四、实验内容及步骤1. 逻辑门实验(1)搭建与门、或门、非门等基本逻辑门电路。

(2)使用数字信号发生器产生不同逻辑电平的信号,通过示波器观察输出波形。

(3)分析输出波形,验证逻辑门电路的正确性。

2. 触发器实验(1)搭建D触发器、JK触发器、T触发器等基本触发器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察触发器的输出波形。

(3)分析输出波形,验证触发器电路的正确性。

3. 计数器实验(1)搭建异步计数器、同步计数器等基本计数器电路。

(2)使用数字信号发生器产生时钟信号,通过示波器观察计数器的输出波形。

(3)分析输出波形,验证计数器电路的正确性。

4. 寄存器实验(1)搭建移位寄存器、同步寄存器等基本寄存器电路。

(2)使用数字信号发生器产生时钟信号和输入信号,通过示波器观察寄存器的输出波形。

(3)分析输出波形,验证寄存器电路的正确性。

五、实验结果与分析1. 逻辑门实验通过实验,验证了与门、或门、非门等基本逻辑门电路的正确性。

实验结果表明,当输入信号满足逻辑关系时,输出信号符合预期。

2. 触发器实验通过实验,验证了D触发器、JK触发器、T触发器等基本触发器电路的正确性。

实验结果表明,触发器电路能够根据输入信号和时钟信号产生稳定的输出波形。

3. 计数器实验通过实验,验证了异步计数器、同步计数器等基本计数器电路的正确性。

实验结果表明,计数器电路能够根据输入时钟信号进行计数,并输出相应的输出波形。

数电实验报告

数电实验报告

一、实验目的1. 理解数字电路的基本组成和工作原理。

2. 掌握常用数字电路的设计方法和应用。

3. 熟悉数字电路实验设备和工具的使用。

4. 培养实际操作能力和创新思维。

二、实验原理数字电路是利用数字信号进行信息处理和传输的电路。

它主要由逻辑门、触发器、计数器、译码器等基本单元组成。

本实验主要涉及以下几种数字电路:1. 逻辑门:实现基本的逻辑运算,如与、或、非、异或等。

2. 触发器:存储一位二进制信息,是实现时序逻辑的基础。

3. 计数器:对输入脉冲进行计数,广泛应用于计时、分频等领域。

4. 译码器:将二进制代码转换为其他形式的信号。

三、实验内容1. 逻辑门电路实验:验证基本逻辑门的功能,包括与门、或门、非门、异或门等。

2. 触发器电路实验:验证D触发器、JK触发器、SR触发器等的功能。

3. 计数器电路实验:设计并验证二进制计数器、十进制计数器、可逆计数器等。

4. 译码器电路实验:设计并验证二进制译码器、七段显示译码器等。

四、实验步骤1. 逻辑门电路实验:- 将基本逻辑门电路连接到实验板上。

- 输入不同的逻辑信号,观察输出结果。

- 验证基本逻辑门的功能。

2. 触发器电路实验:- 将D触发器、JK触发器、SR触发器等电路连接到实验板上。

- 输入不同的时钟信号和输入信号,观察输出结果。

- 验证触发器的功能。

3. 计数器电路实验:- 设计并搭建二进制计数器、十进制计数器、可逆计数器等电路。

- 输入不同的时钟信号,观察计数器的输出结果。

- 验证计数器的功能。

4. 译码器电路实验:- 设计并搭建二进制译码器、七段显示译码器等电路。

- 输入不同的二进制代码,观察译码器的输出结果。

- 验证译码器的功能。

五、实验结果与分析1. 逻辑门电路实验:通过实验验证了基本逻辑门的功能,如与门、或门、非门、异或门等。

2. 触发器电路实验:通过实验验证了D触发器、JK触发器、SR触发器等的功能,掌握了触发器的基本工作原理。

3. 计数器电路实验:通过实验设计并验证了二进制计数器、十进制计数器、可逆计数器等,掌握了计数器的设计方法和应用。

数电计数器实验报告

数电计数器实验报告

数电计数器实验报告
实验名称:数电计数器实验报告
一、实验目的
了解数码计数器的基本原理和工作方式,掌握计数原理及电路实现方法,培养实验操作能力。

二、实验内容
1. 设计一个基本的二进制计数器电路
2. 加深对计数器的理解并搭建计数器电路
三、实验器材
1. 计数器芯片:CD74HC161E
2. 电源电源适配器
3. 示波器
4. 直流电压表
5. 万用表
四、实验步骤
1. 将芯片和电路板连接
2. 将电路电源设置到好
3. 用直流电压表测试电路板工作电压是否正常
4. 用万用表检查所连接线路的连通状况
5. 用示波器测量芯片输出波形是否正常
六、实验结果
在实验过程中,我们成功地节点了一个基本的二进制计数器电路,并顺利地搭建了计数器电路。

计数器能够正常工作,实验目
标全部达到。

七、实验结论
通过实验,我们深入了解了数码计数器的基本原理和工作方式,培养了实验操作的能力,并通过实验获得了实际操作的经验。

八、实验感想
通过这次实验,我们深刻认识到了学习知识的重要性。

掌握计
数器原理是我们今后从事电子学领域必要的基础,因此我们要保
持深入学习、不断拓展知识面的心态。

同时,在操作实验过程中,我们也要注重细节、沉着冷静,并时刻保持对失误的辨识、纠正
和处理能力。

数电 实验报告

数电 实验报告

数电实验报告数电实验报告引言:数电实验是电子信息类专业的基础实验之一,通过实践操作,加深学生对数字电路的理解和应用能力。

本文将结合实际实验,对数电实验进行详细的报告。

一、实验目的本次实验的主要目的是通过设计、搭建并测试数字电路,加深对数字电路基本原理的理解,并掌握数字电路的设计和调试方法。

二、实验器材和原理本次实验所需的器材包括数字逻辑实验箱、示波器、函数信号发生器等。

实验原理主要涉及数字逻辑门电路、触发器、计数器等。

三、实验步骤与结果1. 实验一:基本逻辑门电路的设计与测试在实验一中,我们根据所学的逻辑门电路的知识,设计了与门、或门和非门电路,并使用实验箱搭建电路。

通过输入不同的信号,观察输出结果,验证电路的正确性。

实验结果显示,逻辑门电路能够根据输入信号的不同进行逻辑运算,并输出相应的结果。

2. 实验二:触发器的设计与测试在实验二中,我们学习了触发器的基本原理和应用。

通过搭建RS触发器和D触发器电路,并使用函数信号发生器输入时钟信号和触发信号,观察触发器的输出。

实验结果表明,触发器能够根据输入的时钟信号和触发信号,在特定条件下改变输出状态。

3. 实验三:计数器的设计与测试在实验三中,我们学习了计数器的基本原理和应用。

通过搭建二进制计数器电路,使用示波器观察计数器的输出波形,并验证计数器的功能。

实验结果显示,计数器能够根据输入的时钟信号,按照一定规律进行计数,并输出相应的结果。

四、实验总结与心得体会通过本次数电实验,我深刻理解了数字电路的基本原理和设计方法。

在实验过程中,我不仅学会了使用实验器材进行电路搭建和测试,还掌握了数字电路的调试技巧。

通过不断的实践操作,我对数字电路的理论知识有了更加深入的理解。

在今后的学习和工作中,我将继续加强对数字电路的学习和应用,不断提高自己的实践能力。

同时,我也明白了实验中的每一个细节都非常重要,只有严格按照实验步骤进行操作,才能保证实验结果的准确性和可靠性。

总之,本次数电实验是我在数字电路领域的一次重要实践,通过实验的过程,我不仅巩固了理论知识,还培养了自己的动手操作和问题解决能力。

数电实验报告_触发器

数电实验报告_触发器

一、实验目的1. 理解触发器的概念和基本原理;2. 掌握触发器的逻辑功能和应用;3. 熟悉触发器电路的搭建和调试方法;4. 通过实验验证触发器的功能和应用。

二、实验原理触发器是一种具有记忆功能的电子电路,能够存储一个二进制信息。

它根据输入信号的变化,在一定的条件下可以改变其输出状态,从而实现数据的存储和传递。

触发器是数字电路中的基本单元,广泛应用于计数器、寄存器、存储器等数字系统中。

触发器主要分为两大类:电平触发器和边沿触发器。

电平触发器在输入信号保持一定电平期间,输出状态才会发生变化;而边沿触发器仅在输入信号的跳变沿处改变输出状态。

常见的触发器有RS触发器、D触发器、JK触发器和T触发器等。

以下分别介绍这些触发器的原理和逻辑功能。

1. RS触发器:由两个与非门交叉耦合而成,具有两个输入端(S、R)和两个输出端(Q、Q')。

当S=0,R=1时,触发器置1;当S=1,R=0时,触发器置0;当S=0,R=0时,触发器保持原状态;当S=1,R=1时,触发器处于不确定状态。

2. D触发器:由一个与非门和两个反相器组成,具有一个输入端(D)和两个输出端(Q、Q')。

当输入信号D变化时,触发器的输出状态随之变化,即D=1时,Q=1;D=0时,Q=0。

3. JK触发器:由两个与非门交叉耦合而成,具有两个输入端(J、K)和两个输出端(Q、Q')。

当J=K=0时,触发器保持原状态;当J=1,K=0时,触发器置1;当J=0,K=1时,触发器置0;当J=K=1时,触发器翻转。

4. T触发器:由一个与非门和两个反相器组成,具有一个输入端(T)和两个输出端(Q、Q')。

当T=1时,触发器翻转;当T=0时,触发器保持原状态。

三、实验内容及步骤1. 触发器电路搭建:根据实验原理,搭建RS触发器、D触发器、JK触发器和T触发器电路。

2. 触发器功能测试:通过改变输入信号,观察输出端Q的逻辑信号及其下一逻辑状态,验证触发器的逻辑功能。

数电实验五触发器实验报告

数电实验五触发器实验报告

数电实验五触发器实验报告一、实验目的二、实验原理三、实验器材四、实验步骤五、实验结果分析六、实验总结一、实验目的本次数电实验旨在通过触发器实验,加深学生对于触发器的理解和应用,掌握触发器的工作原理及其在电路中的应用。

二、实验原理1. 触发器概述触发器是一种存储器件,可以将输入信号转换成稳定的输出信号,并且能够记住先前输入过的状态。

触发器有两个稳态(高电平或低电平),并且只有在时钟信号到来时才会改变状态。

2. SR锁存器SR锁存器是最简单的触发器之一,由两个交叉耦合反相输出(NOR或NAND)门构成。

当S=1,R=0时,Q=1;当S=0,R=1时,Q=0;当S=R=0时,保持上一个状态不变。

但是SR锁存器存在一个致命缺陷——SET和RESET不能同时为1。

3. D锁存器D锁存器是由一个数据输入口和一个时钟输入口组成。

当D为1且时钟信号到来时,Q会被置为1;当D为0且时钟信号到来时,Q会被置为0。

D锁存器可以看做是SR锁存器的一种特殊情况,即S=D,R=not D。

4. JK锁存器JK锁存器是由J、K、时钟和输出端Q组成的。

当J=1,K=0时,Q=1;当J=0,K=1时,Q=0;当J=K=1时,Q状态取反;当J=K=0时,保持上一个状态不变。

JK锁存器可以看做是SR锁存器的一种改进型。

5. T锁存器T锁存器是由T、时钟和输出端Q组成的。

当T为1且时钟信号到来时,Q状态取反;当T为0且时钟信号到来时,保持上一个状态不变。

T锁存器可以看做是JK锁存器的一种特殊情况,即J=T,K=not T。

三、实验器材本次实验所需材料如下:- 数字电路实验箱- 74LS73触发器芯片- 电源线、万用表等四、实验步骤1. 按照电路图连接74LS73芯片。

2. 打开电源并接通电路。

3. 分别将CLK输入高低电平,并记录输出结果。

4. 将D输入高低电平,并记录输出结果。

5. 将J、K输入高低电平,并记录输出结果。

6. 将T输入高低电平,并记录输出结果。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数电实验报告《数字电子技术》实验报告姓名:***班级:****888学号:2014*******8指导老师:****编制时间:2016.06.10北京联合大学实验一基本集成逻辑门电路功能分析一、实验目的1.理解TTL和CMOS普通门电路的参数含义。

2.掌握TTL和CMOS普通门电路的使用方法。

3.掌握分析普通门电路逻辑功能的一般方法。

4.理解TTL和CMOS普通门电路参数的一般分析方法。

二、实验元器件双四输入与非门 74LS00×1片六反相器 74LS04×1片电阻 300Ω×1只三、实验内容(一) TTL 双四输入与非门74LS00功能分析(1)逻辑功能分析参考图1.1连接电路。

一只74LS00芯片中含有四个相同的2输入与非门,可以随意选用,此处选用的是第一个门电路。

检查电路无误时方可通电。

图1.1 与非门逻辑功能测试电路变换单刀双掷开关J1和J2的状态,用直流电压表测试电路的输出电压,将测试结果记入表1.1中。

表1.1输入输出U 1/VU 2/V实测值 逻辑值 0 0 5 5 0 5 5 5 555U1A7400NJ2Key = AJ1Key = BVCC5V0.000V +-5 5 0 0(2)电压传输特性分析依照图1.3编辑电路。

在0~5V 间逐步调整输入的直流电压,将随之变化的输出电压记入表1.2中。

图1.3 分析与非门电压传输特性仿真电路表1.2U I /V U O /V U I /V U O /V U I /V U O /V U I /V U O /V5.0 0 3.8 0 2.6 0 1.4 5 4.8 0 3.6 0 2.4 5 1.2 5 4.6 0 3.4 0 2.2 5 1.0 5 4.4 0 3.2 0 2.0 5 0.8 5 4.2 0 3.0 0 1.8 5 0.4 5 4.0 02.81.6555.000V +-VSSU1A7400NV21.8 V实验二组合逻辑电路分析与设计一、实验目的1.掌握SSI组合电路的基本设计方法。

2.掌握SSI组合电路的基本分析方法。

3.了解排除组合电路故障的一般方法。

二、实验元器件四异或门 74LS86×1片双四输入与非门 74LS00×1片六反相器 74LS04×1片电阻 300Ω×4只发光二极管 4只三、实验内容(一)分析“三个开关控制一盏灯”电路根据图2.1所示的引脚接线图连接实验电路。

74LS86中有四个异或门,此处可随意选用其中的两个。

为了便于连接实验电路,降低接线的错误率,图中标注了被选中门电路和芯片电源VCC、地线GND的引脚编号。

发光二极管的导通压降一般有1.5~2V,导通电流可高于10mA,考虑到门电路的带载能力,在门电路与发光二极管间串入了一只300欧电阻,用于限压限流。

图2.1 “三个开关控制一盏灯”实验电路转换开关A、B、C的位置,借助发光二极管的明暗状态,可以检测电路的逻辑功能。

将测试结果记入自备的表格中。

A B C 二极管开开开亮开开关灭开关开灭关开开灭开关关亮关开关亮关关开亮关关关灭(二)设计交通灯工作状态监视电路路口由红、绿、黄三种颜色的交通灯指示车辆“停止”、“直行”、“缓行”三种行车状态。

正常情况下,任何时刻有一盏灯点亮,且只允许有一盏灯被点亮,否则被认为交通灯系统发生故障。

一旦交通灯系统发生故障,要求点亮“交通灯工作状态监视”电路的报警灯。

(三)设计多数表决电路此多数表决的电路可供三人使用。

当三人中的大多数对被表决事件表示同意时,多数表决电路的指示灯被点亮。

请分别仅用与非门、或非门实现。

实验三算术运算电路加法器一、实验目的1.掌握1位全加器的工作原理,理解多位加法器的组成结构。

2.掌握加法器的基本分析方法。

3.理解MSI(Medium Scale Integration)加法器的基本使用方法。

4. 了解排除加法运算电路故障的一般方法。

二、实验元器件四异或门 74LS86×2片四2输入与非门 74LS00×1片电阻 300Ω×4只发光二极管 4只三、实验内容(一)1位全加器功能分析在Multisim7中仿照图3.1连接电路。

改变开关A、B、C的状态,检测1位全加器的逻辑功能,将分析结果记入表3.1中。

图3.1 1位全加器功能分析表3.1A B C Si Ci0 0 0 灭灭0 0 1 亮灭0 1 0 亮灭0 1 1 灭亮1 0 0 亮灭1 0 1 灭亮1 1 0 灭亮1 1 1 亮亮比较器一、实验目的1.掌握1位全比较器的工作原理,理解多位比较器的组成结构。

2.掌握比较器的基本分析方法。

3.理解MSI比较器的基本使用方法。

4. 了解排除比较运算电路故障的一般方法。

二、实验内容(一)1位全比较器分析在Multisim7中仿照图3.2连接电路。

检测1位全比较器的逻辑功能,将分析结果记入表3.2中。

图3.2 1位全比较器功能分析仿真电路表3.2Ai Bi Y1(Ai>Bi)Y2(Ai<Bi)Y3(Ai=Bi)0 0 灭亮灭0 1 亮灭灭1 0 灭灭亮1 1 灭亮灭图3.3 4位比较器CC4585的基本应用仿真电路实验四译码电路一、实验目的1.掌握地址译码器的基本功能和基本分析方法。

2.了解排除地址译码电路故障的一般方法。

二、实验元器件3线-8线译码器 74LS138×1片双四选一数据选择器 74LS153×1片双四输入与非门 74LS20×1片六反相器 74LS04×1片电阻 300Ω×8只发光二极管 8只三、实验内容2)74LS138译码器的应用用74LS138译码器实现逻辑函数BZ+=。

自拟实验方案,记BCA录实验结果。

要求列出设计真值表,先使用Multisim7画出仿真电路,再搭建实际电路。

真值表A B C 二极管0 0 0 灭0 0 1 灭0 1 0 亮0 1 1 亮1 0 0 灭1 0 1 灭1 1 0 亮1 1 1 灭(一)74LS153双4选1数据选择器的应用1)74LS153译码器功能分析仿照图4.3连接实验电路。

注意,接线时74LS153中的两个译码器共用一组地址端口,然而它们各有自己的选通端口1G和2G。

依照表4.1所示74LS153功能表,用发光二极管检测电路的逻辑功能,将分析结果记入自备的表格中。

图4.3 74LS153数据选择器功能分析电路表4.1 74LS153数据选择器真值表输入输出G B A Y1 ××00 0 0 C00 0 1 C10 1 0 C20 1 1 C32)74LS153译码器的应用用74LS153译码器实现逻辑函数B=。

自拟实验方案,记Z+CAB录实验结果。

要求列出设计真值表,先使用Multisim7画出仿真电路,再搭建实际电路。

真值表A B 二极管0 0 灭0 1 亮1 0 灭1 1 灭实验五常用集成触发器及其应用触发器能够记忆1位二值信号,是组成数字时序电路的基本逻辑部件。

在运用各种触发器和门电路构成时序电路前,需了解触发器的基本逻辑功能和使用方法。

一、实验目的1.掌握普通D触发器的基本功能和触发方式。

2.理解普通触发器的一般分析方法。

3.理解集成触发器的基本使用方法。

二、实验元器件双边沿型D触发器 74LS74×1只三、实验内容(一)基本RS触发器功能分析(Multisim7仿真)从TTL元件库中调出四2输入或非门74LS02,构成图5.1所示的基本RS触发电路。

控制单刀双掷开关R、S,使触发电路的输入信号R D、S D依次取值00 01 00 10 11 00,观察并记录实验结果于表5.1中。

图5.1 基本RS触发器功能分析表5.1序号R D S D Q Q’功能简述0 0 0 亮灭1 0 1 亮灭2 1 0 灭亮3 1 1 灭灭实验六计数电路实验内容(一)4位二进制加法计数器74LS163的基本功能分析仿照图6.1连接实验电路。

改变开关P、T的状态,用发光二极管分析74LS163的计数规则。

图6.1 74LS163功能分析电路(二)4位二进制加法计数器74LS163的应用(1)参考图6.2,用反馈归零法将74LS163改为八进制计数电路。

(2)参考图6.3,用反馈置数法将74LS163改为八进制计数电路。

总结:通过这一个学期数电学习,加深了我对这门课程的了解与掌握,同时也提高了动手实践能力。

使我对这科目越来越感兴趣。

相关文档
最新文档