运动控制系统(18)ppt课件
合集下载
运动控制系统课件
在弱磁调速范围内,转速越高,磁通越 弱,容许输出转矩减小,而容许输出转矩 与转速的乘积则不变,即容许功率不变, 为“恒功率调速方式 。 恒功率调速方式” 恒功率调速方式
Shanghai university
两种调速方式: 两种调速方式:
U Te Φ P
ΦN
UN Te U P nN
变电压调速 两种调速方式 弱磁调速
Shanghai university
绪论
一。什么是运动控制系统?
运动控制系统(Motion Control System)也可称作电力 拖动控制系统(Control Systems of Electric Drive) 运动控制系统--通过对电动机电压、电流、频率等 输入电量的控制,来改变工作机械的转矩、速度、位 移等机械量,使各种工作机械按人们期望的要求运行, 以满足生产工艺及其他应用的需要。工业生产和科学 技术的发展对运动控制系统提出了日益复杂的要求, 同时也为研制和生产各类新型的控制装置提供了可能。
直流电机 速度控制 位置控制 直流调速系统* 直流调速系统 直流伺服系统 交流电机
(异步电机*、同步电机) 异步电机 、同步电机)
交流调速系统* 交流调速系统 交流伺服系统
直流调速系统--第一篇,运动控制( 直流调速系统--第一篇,运动控制(一) --第一篇 交流调速系统--第二篇,运动控制( 交流调速系统--第二篇,运动控制(二) --第二篇
Shanghai university
电力拖动自动控制系统
第1Biblioteka 篇直流拖动控制系统
Shanghai university
直流调速方法
根据直流电动机转速方程
U − IR n= KeΦ
式中 n — U— I — R— Φ— Ke— (1-1)
MTC101-运动控制系统基础PPT课件
Servo Drive
Motor Brake
Mechanical Brake Option
Vertical Applicatio
n
Gravity
Mass
.
11
伺服驱动Servo Drive
Motor with Feedback
Motor Power
Position Feedback
Servo Drives 伺服驱动 接受运动控制器的指令信号,控制 电机所提供的速度和扭矩(电流),要完成这些,驱动器需 要将主进线电能转换成电机所需要的电压和电流,以完成营 工控制要求。
Position Feedback
•存储和执行运动程序 •控制运动 •存贮配置参数
Servo Drive
Command Signal Position Feedback
.
Motion Controller
Motion Software
14
课程内容
2. 运动控制产品
.
15
单体伺服驱动解决方案
Index 运动解决方案
1) Single CPU (Logix) for PLC / Safety and Motion applications including Kinematics
2) Single programming package (RSLogix5000) (for PLC/Motion applications and also for all Logix controllers, Tag based addressing, Alias addressing and program data scoping, Auto creation of structures (easier to install / program / maintain)
【PPT】什么是运动控制系统.
从电能的转换及传递(传输)角度来看,把电力拖动称为电 力传动,把电力拖动控制系统称为电力传动控制系统。由于 这类系统的基本任务是通过控制和调节电动机的旋转速度或 转角来实现工作机械对速度或位移的要求,因此把电力拖动 控制系统又称为运动控制系统。 电力拖动控制系统按被控制量的不同分为两大类: 以电动机的转速为被控制量的系统叫做调速系统; 以工作机械的角位移或直线位移为被控制量的系统叫做位 置伺服系统,又叫做位置随动系统。 电力拖动控制系统还有其他多种类型,如张力控制系统, 多电动机同步控制系统等。虽然电力拖动控制系统种类很多, 但是,各种电力拖动控制系统都是通过控制电动机转速来工 作的,因此,调速系统是最基本的电力拖动控制系统。
0.3 运动控制系统的发展过程及应用
纵观运动控制的发展历程,交、直流两大电气传动并 存于各个工业领域,虽然各个时期科学技术的发展使它 们所处的地位、所起的作用不同,但它们始终是随着工 业技术的发展,特别是电力电子和微电子技术的发展, 在相互竞争、相互促进中,不断完善并发生着变化。由 于历史上最早出现的是直流电机,所以19世纪80年代以 前,直流电气传动是惟一的电气传动方式。直到19世纪 末,出现了交流电,且解决了三相制交流电的输送和分 配问题,并制成了经济适用的鼠笼异步电机,这就使交 流电气传动在工业中逐步地得到广泛的应用。由于大量 使用异步电机,严重影响到电网的功率因数,同步电机 的诞生和使用大大缓解了功率因数问题。在20世纪的大 部分时间里,基本形成直流调速、交流不调速的格局。
运动控制系统的共同特点(续)
(7)可以控制单台电机运行,也可多台协调控制运行, 只是控制方法略有不同而已。 (8)只要合理地选择控制方案,几乎可以适用于任何 传动场合。 由于上述特点,运动控制系统被广泛地用于相关行 业的各个实际需求中。据统计,我国电动机的装机容 量约为4亿多千瓦,其用电量占当年全国发电量的 60%一70%,如何合理、有效、经济地利用好这一 部分电能,提高劳动生产率,运动控制系统的设计者 们对此有着不可推卸的责任。
PLC教程运动控制PPT.ppt
案例一:前缘送纸
1.6、电子凸轮代替机械凸轮
伺服轴(送纸辊)跟随主轴(主轴信号由连接在接纸棍上的编码器提 供)做电子凸轮运动完成送纸。要求每分钟送纸速度最高250张/min,送 纸精度要求在整个速度范围内的±0.5mm;
每次送纸辊伺服轴都会在编码器一圈的固定相位中作一次加速,同步 ,减速的凸轮运动;以长度1200mm为例,送纸速度达到250张/min,一秒 要进行4.17次凸轮运动;
6 一体化程度高 整个系统均由信捷公司自主开发研制,兼容性高。
案例一:前缘送纸
1.1.3、现场调试与调试精度
在同一速度下,送纸的精度±0.5mm
案例一:前缘送纸
1.1.4、前缘送纸视频
前缘送纸 (视频点击)
设备外观
案例二:轮切、飞剪方案
2.1、项目概述
横向剪切运行中的轧件的剪切机叫做飞剪,是一种能快速切断铁板、钢管 、纸卷的加工设备,是冶金轧钢行业、高速线材及螺纹钢定尺剪断机,是现 代轧制棒材剪断中的产品,具有耗电少、投资成本低的特点。
50mm~300mm+宽范围包装。
6、包装效果好 切刀、横封轴分开,采用双电子
凸轮,确保包装切口正常切开。
案例三:立式包装机方案
3.6、立式包装机
设备外观
案例四:植毛机方案
4.1、项目概述
高速牙刷植毛机传动结构由主驱动轴和四个伺服驱动轴系统组成。 四个伺服轴分别为水平X轴,垂直Y轴,换毛Z轴与旋转A轴。XY两轴坐标 决定牙刷孔的位置,A轴起更换至下一个牙刷的作用,Z轴起到更换牙刷 毛色的作用。当主轴电机(变频器控制)运转,四个电控伺服轴随之运 转,主轴停则其余四轴随动停止。主轴的转速决定植毛的速度,四个伺 服轴响应要求协调驱动,否则会出现脱毛或者毛不齐的现象。
《运动控制》课件
运动控制的基本原理
1 控制系统的要素
解释构成运动控制系统的重要要素,如传感器和执行器。
2 反馈控制原理
介绍反馈控制原理的基本概念和运作方式。
运动控制的技术方法
位置控制技术
详解位置控制技术,包括编码 器和位置伺服系统。
速度控制技术
深入研究速度控制技术,包括 PID控制和电机驱动。
力控制技术
探讨力控制技术在工业自动化 和机器人领域中的应用。
《运动控制》PPT课件
欢迎来到《运动控制》PPT课件!本课程将带您深入了解运动控制的重要性和 应用领域,并探索其基本原理、技术方法和发展趋势。
课件பைடு நூலகம்绍
本节将介绍课件的目的和重要性,以及主要内容的概述。
运动控制概述
定义
了解运动控制的定义,涵盖其在不同领域的应用。
应用领域
探索运动控制在工业、机器人和自动化等领域的 广泛应用。
2 发展前景展望
展望运动控制的未来发展,包括智能化和高效能的前景。
运动控制的发展趋势
1
高精度
2
介绍高精度运动控制技术的发展,如高
精度传感器和控制算法。
3
智能化
展望运动控制的智能化趋势,如人工智 能和机器学习的应用。
高效能
探讨提高运动控制系统效能的方法,如 优化控制策略和能源管理。
总结
1 运动控制的重要性
总结运动控制的重要性,强调其在现代工业和机器人技术中的关键作用。
运动控制技术经典PPT课件
控制器与驱动器结合策略-1
❖ 优点: ❖ 运动控制器不需要完成任何闭环,对控制器要求较
低,全部通用运动控制器都可以实现这个功能。控 制器即使不接任何反馈也可以实现控制。 ❖ 让电机运动起来很简单,几乎不会存在飞车的可能。 ❖ 脉冲信号抗干扰能力较强,对屏蔽要求低。 ❖ 控制器不需要调试PID参数,但驱动器中可能需要 调试。 ❖ 能实现这种功能的产品最多。
控制器与驱动器结合策略-1
❖ 缺点: ❖ 无法实现全闭环控制 ❖ 电机无法实现非常快速的响应 ❖ 所有运动控制部分都在驱动器中完成,由于
大部分驱动器计算能力有限,要实现较高的 控制要求往往很难实现。
控制器与驱动器结合策略-2
❖ 运动控制器完成位置环闭环 ❖ 控制器输出+/-10V速度指令信号给驱动器 ❖ 伺服驱动器工作于速度控制模式下,在驱动
现场过程信号
★可以提供低速、大转矩,取消了减速机构 ★低速稳定性好,力矩输出平稳,精度高,力矩波动小
运动控制器
驱动机构 功率放大
编码器
人机界面
执行机构 减直速线机电构机 传动机构 机械装置 光栅
现场过程信号
·直线电机可以看做将旋转电机沿径向剖开,然后将电机 沿圆周展成直线 ·取消了机械传动装置
器内部实现双闭环(速度环与电流环),驱动器 负责电机的换向。 ❖ 在这种模式下,控制器必须接受反馈信号, 否则不能实现控制。
控制器与驱动器结合策略-2
控制器与驱动器结合策略-2
❖ 名词解释: ❖ 伺服周期:控制器每隔一个固定的时间,就对伺服
电机实现一次闭环控制:将控制器内部计算的指令 值与从外部传感器获得的实际值比较做差,得到误 差值,对该误差值进行PID等控制,实现减小偏差。 这个固定的间隔时间就称为伺服周期。 ❖ 伺服周期是控制器一个非常重要的指标,伺服周期 越短,电机响应越快,能实现更快的加减速,对误 差纠正能力越强,调试效果也越好。 ❖ 三闭环有各自的伺服周期,最重要的是位置环伺服 周期。
运动控制系统ppt课件
如果要求D = 20,s ≤ 5%,则由式(1-29)可知
n N D ( n 1 N ss)2 1 0 (1 0 0 0 .0 .0 0)0 r 5 5 /m i2 .6 nr/3 min 由上例可以看出,开环调速系统的额定速降是275 r/min,而生产工艺的要求却只有2.63r/min,相差几乎 百倍! 由此可见,开环调速已不能满足要求,需采用反馈 控制的闭环调速系统来解决这个问题。
精品课件
3. 静差率与机械特性硬度的区别
然而静差
n
率和机械特性硬度 n0a
又是有区别的。一
∆ nNa
般调压调速系统在
a
不同转速下的机械 n0b
特性是互相平行的 。
∆ nNb
对于同样硬度的特
b
性,理想空载转速 越低时,静差率越 O0
TeN
Te
大,转速的相对稳
定度也就越差。
图1-23 不同转速下的静差率
精品课件
1.4.2 开环调速系统及其存在的问题
若可逆直流脉宽调速系统是开 环调速系统,调节控制电压就可以改变电 动机的转速。如果负载的生产工艺对运行 时的静差率要求不高,这样的开环调速系 统都能实现一定范围内的无级调速,可以 找到一些用途。
但是,许多需要调速的生产机 械常常对静差率有一定的要求。在这些情 况下,开环调速系精统品课往件 往不能满足要求。
精品课件
❖ 结论1:
一个调速系统的调速范围,是指在最 低速时还能满足所需静差率的转速可调范 围。
精品课件
❖ 例题1-1 某直流调速系统电动机额定转
速为,额定速降 nN = 115r/min,当要
求静差率30%时,允许多大的调速范围? 如果要求静差率20%,则调速范围是多少? 如果希望调速范围达到10,所能满足的 静差率是多少?
运动控制和学习ppt课件
运动控制卡广泛应用于各种自 动化设备和生产线,如包装机 械、印刷机械等。
运动控制器
运动控制器是一种集成了运动控 制算法和硬件接口的控制器,用
于实现多轴协调运动控制。
运动控制器通常采用高速计算机 或DSP等技术实现,具有强大的
计算和控制能力。
运动控制器广泛应用于数控机床、 机器人、自动化生产线等领域, 是实现高效、高精度加工的关键
伺服控制系统通常由伺服电机、伺服驱动器和控制器三部分组成,具有快速响应、 高精度和高稳定性的特点。
伺服控制技术的应用范围广泛,包括数控机床、机器人、自动化生产线等领域。
步进控制技术
步进控制技术是一种通过控制步进电 机的步进角度来实现精确位置控制的 技术。
步进控制技术的应用范围也较广,如 打印机、扫描仪、自动化设备等。
位置、稳定性等。
学习控制的方法
监督学习
通过输入输出数据,学习 一个从输入到输出的映射 关系,实现对被控对象的 控制。
无监督学习
通过学习数据的内在规律 和结构,对被控对象进行 控制。
强化学习
通过与环境交互,学习如 何最优地选择行为以最大 化累积奖励,实现对被控 对象的控制。
学习控制的实现
数据采集
采集被控对象的输入输出数据 ,为学习提供数据支持。
设备之一。
03 学习控制理论
学习控制的概念
学习控制
指通过一定的控制策略, 使被控对象达到所期望 的性能指标,实现最优
控制。
控制策略
指在控制过程中所采用 的方法和手段,包括开 环控制、闭环控制、最
优控制等。
被控对象
指被控制的系统或设备, 可以是机械系统、电气
系统、化工系统等。
性能指标
运动控制系统PPT参考课件
9
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
第1篇 直流拖动பைடு நூலகம்制系统
1.1 直流调速系统用的可控直流电源 ❖ 直流调速方法 ❖ 直流调速电源 ❖ 直流调速控制
10
1.1.1 直流调速方法
根据直流电机转速方程
n U IR Ke
(1-1)
n — 转速(r/min);
U — 电枢电压(V);
I — 电枢电流(A);
R — 电枢回路总电阻( );
晶闸管-电动机调速系统(简称VM系统,又称静止的Ward-Leonard系 统),图中VT是晶闸管可控整流器,通 过调节触发装置 GT 的控制电压 Uc 来移 动触发脉冲的相位,即可改变整流电压 Ud ,从而实现平滑调速。
22
• V-M系统的特点
与G-M系统相比较: 晶闸管整流装置不仅在经济性和可靠性上都有很大提
25
1). 直流斩波器的基本结构
控制电路
+
VT
Us
VD
_
a)原理图
u
+ Us ton
M _O
T
b)电压波形图
图1-5 直流斩波器-电动机系统的原理图和电压波形
Ud t
26
2). 斩波器的基本控制原理
在原理图中,VT 表示电力电子开关器件, VD 表示续流二极管。当VT 导通时,直流电源 电压 Us 加到电动机上;当VT 关断时,直流电 源与电机脱开,电动机电枢经 VD 续流,两端 电压接近于零。如此反复,电枢端电压波形如 图1-5b ,好像是电源电压Us在ton 时间内被接上, 又在 T – ton 时间内被斩断,故称“斩波”。
改变电压 UN U
U n , n0
❖ 调速特性:
O
转速下降,机械特性
运动控制系统专题讲座
运动控制系统专题讲座
• 第二代电力电子器件是全控型器件,通过门极既可以使器件 开通,也可以使它关断,例如MOSFET、IGBT、GTO等。 此类器件用于无源逆变(DC→AC)和直流调压(DC→DC) 时,无须强迫换流回路,主电路结构简单。第二代电力电子 器件的另一个特点是可以大大提高开关频率,用PWM技术 控制功率器件的开通与关断,可大大提高可控电源的质量。 • 第三代电力电子器件的特点是由单一的器件发展为具有驱动、 保护等功能的复合功率模块,提高了使用的安全性和可靠性。
运动控制系统专题讲座
• 何时刻只能执行一条指令,属于串行运行方式,其滞后时间 比模拟控制器大得多,在设计系统时应予以考虑。
• 1.1.4 信号检测与处理
• 运动控制系统中常需要电压、电流、转速和位置的反馈信号, 为了真实可靠地得到这些信号,并实现功率电路(强电)和 控制器(弱电)之间的电气隔离,需要相应的传感器。电压、 电流传感器的输出信号多为连续的模拟量,而转速和位置传 感器的输出信号因传感器的类型而异,可以是连续的模拟量, 也可以是离散的数字量。由于控制系统对反馈通道上的扰动 无抑制能力,所以,信号传感器必须有足够高的精度,才能 保证控制系统的准确性。
GD2 4gJ ;
n——转子的机械转速(r/min),
60 m n . 2
运动控制系统专题讲座
• 运动控制系统的任务就是控制电动机的转速和转角,对于直 线电动机来说就是控制速度和位移。由式(1-1)和式(1-2) 可知,要控制转速和转角,唯一的途径就是控制电动机的电 磁转矩Te,使转速变化率按人们期望的规律变化。因此,转矩 控制是运动控制的根本问题。 • 为了有效地控制电磁转矩,充分利用电机铁心,在一定的电 流作用下进可能产生最大的电磁转矩,以加快系统的过渡过 程,必须在控制转矩的同时也控制磁通(或磁链)。因为当 磁通(或磁链)很小时,即使电枢电流(或交流电机定子电 流的转矩分量)很大,实际转矩仍然很小。何况由于物理条 件限制,电枢电流(或定子电流)总是有限的。因此,磁链 控制与转矩控制同样重要,不可偏废。通常在基速(额定转 速)以下采用恒磁通(或磁链)控制,而在基速以上采用弱 磁控制。
运动控制系统ppt课件
IdL
馈的作用降低下来,
电机的电磁转矩也随 O
t
之减小,加速过程延
图2-1 a) 带电流截止负反馈
长。
的单闭环调速系统
最新版整理ppt
6
性能比较(续)
❖ 理想起动过程波形 如图,这时,起动
Id Idm
电流呈方形波,转
n
速按线性增长。这
是在最大电流(转
IdL
矩)受限制时调速 系统所能获得的最 快的起动过程。
为了分析双闭环调速系统的静特性, 必须先绘出它的稳态结构图,如下图。 它可以很方便地根据上图的原理图画出 来,只要注意用带限幅的输出特性表示 PI 调节器就可以了。分析静特性的关键 是掌握这样的 PI 调节器的稳态特征。
最新版整理ppt
19
1). 系统稳态结构图
Id
U*n +
R
ASR U*i +
Ui -
最新版整理ppt
10
1). 系统的组成
TA
L
U*n +-
Ui U*i ASR +
内环
V
ACR Uc UPE
+
Ud
Id
Un
-
外环
+
MM
n
TTGG
图2-2 转速、电流双闭环直流调速系统结构
ASR—转速调节器 ACR—电流调节器 TG—测速发电机
TA—电流互感器最新U版P整E理—pp电t 力电子变换器
11
第六讲
2.1 转速、电流双闭环直流调速系统及其静特性
2.2 双闭环直流调速系统的数学模型和动态性能 分析
最新版整理ppt
1
转速、电流双闭环直流调速系统和调节器的工程设计方法
运动控制ppt课件
缺点
模糊规则的制定和隶属度函数的选取需要一定的 经验和技巧,且计算量较大。
神经网络算法在运动控制中的优化
神经网络算法原理
通过模拟人脑神经元的结构和功能,构建多层神经网络模 型,利用样本数据对模型进行训练和优化。
在运动控制中的优化
神经网络算法可以用于运动控制系统的建模、辨识和优化 。例如,在电机参数辨识、运动轨迹规划等领域,神经网 络算法能够提高系统的精度和效率。
深入理解运动控制系统的基本原理
通过实验,学生应能够加深对运动控制系统基本原理的理解,包括控制器设计、系统稳 定性分析等方面。
培养实验操作能力和数据分析能力
学生应具备独立进行实验操作和数据分析的能力,能够根据实验数据得出合理的结论。
实验步骤和数据记录
搭建运动控制系统仿真模型
在MATLAB/Simulink环境中,根据实验要求搭建运动控制系统的 仿真模型,包括控制器、执行器、传感器等部分。
利用物联网和大数据技术,实现远程 监控和智能维护,提高维护效率和质 量。
寿命预测与健康管理
基于历史数据和实时监测信息,预测 系统剩余寿命和健康状况,制定维护 计划。
多轴协同和同步控制技术
多轴协同控制
针对多轴运动系统,设计 协同控制策略,实现各轴 之间的协调运动,提高系 统整体性能。
同步控制技术
通过精确的时序控制和同 步机制,实现多轴运动系 统的同步运行,保证系统 稳定性和精度。
设置仿真参数和运行仿真
根据实验需求设置合适的仿真参数,如仿真时间、步长等,并运行 仿真,记录仿真过程中的关键数据。
分析仿真结果
对仿真结果进行分析,包括系统响应曲线、误差曲线等,以评估系 统的性能。
实验结果分析和讨论
系统性能评估
模糊规则的制定和隶属度函数的选取需要一定的 经验和技巧,且计算量较大。
神经网络算法在运动控制中的优化
神经网络算法原理
通过模拟人脑神经元的结构和功能,构建多层神经网络模 型,利用样本数据对模型进行训练和优化。
在运动控制中的优化
神经网络算法可以用于运动控制系统的建模、辨识和优化 。例如,在电机参数辨识、运动轨迹规划等领域,神经网 络算法能够提高系统的精度和效率。
深入理解运动控制系统的基本原理
通过实验,学生应能够加深对运动控制系统基本原理的理解,包括控制器设计、系统稳 定性分析等方面。
培养实验操作能力和数据分析能力
学生应具备独立进行实验操作和数据分析的能力,能够根据实验数据得出合理的结论。
实验步骤和数据记录
搭建运动控制系统仿真模型
在MATLAB/Simulink环境中,根据实验要求搭建运动控制系统的 仿真模型,包括控制器、执行器、传感器等部分。
利用物联网和大数据技术,实现远程 监控和智能维护,提高维护效率和质 量。
寿命预测与健康管理
基于历史数据和实时监测信息,预测 系统剩余寿命和健康状况,制定维护 计划。
多轴协同和同步控制技术
多轴协同控制
针对多轴运动系统,设计 协同控制策略,实现各轴 之间的协调运动,提高系 统整体性能。
同步控制技术
通过精确的时序控制和同 步机制,实现多轴运动系 统的同步运行,保证系统 稳定性和精度。
设置仿真参数和运行仿真
根据实验需求设置合适的仿真参数,如仿真时间、步长等,并运行 仿真,记录仿真过程中的关键数据。
分析仿真结果
对仿真结果进行分析,包括系统响应曲线、误差曲线等,以评估系 统的性能。
实验结果分析和讨论
系统性能评估
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当 Eadd ,
s 1 E r0 E ad dI rT en s 使得:
这里:
s1E r0E ad ds2E r0E a ' dd
s1 s2
转速下降;
.
19
转子附加电动势的作用(续)
2. Er与Eadd反相 同理可知,若减少或串入反相的附加电
动势,则可使电动机的转速降低。
所以,在绕线转子异步电动机的转子侧 引入一个可控的附加电动势,就可调节电 动机的转速。
~
Pm
Pmech Ps
.
7
双馈调速的概念
所谓“双馈”,就是指把绕线转子异步电 机的定子绕组与交流电网连接,转子绕组 与其他含电动势的电路相连接,使它们可 以进行电功率的相互传递。
至于电功率是馈入定子绕组和/或转子绕 组,还是由定子绕组和/或转子绕组馈出, 则要视电机的工况而定。
.
8
双馈调速的基本结构
.
20
7.1.2 异步电机双馈调速的五种工况
本节摘要
❖ 电机在次同步转速下作电动运行 ❖ 电机在反转时作倒拉制动运行 ❖ 电机在超同步转速下作回馈制动运行 ❖ 电机在超同步转速下作电动运行 ❖ 电机在次同步转速下作回馈制动运行
.
21
异步电机的功率关系
忽略机械损耗和杂散损耗时,异步电机在任何 工况下的功率关系都可写作
15
转子附加电动势
~
引入可控的交 流附加电动势
M 3~
~ Er sEr0
E add
Ir
~
~
附加电动势与转子电 动势有相同的频率, 可同相或反相串接。
图7-1 绕线转子异步电动机转. 子附加电动势的原理图
16
❖ 有附加电动势时的转子相电流:
如图7-1所示,绕线转子异步电动机在外接附 加电动势时,转子回路的相电流表达式
绕线转子异步电动机
结构如图所示,从广义 上讲,定子功率和转差 功率可以分别向定子和 转子馈入,也可以从定 子或转子输出,故称作 双馈电机。
P1 Ps
.
6
绕线转子异步电动机转子串电阻调速
根据电机理论,改 变转子电路的串接电 阻,可以改变电机的 转速。
转子串电阻调速的 原理如图所示,调速 过程中,转差功率完 全消耗在转子电阻上。
工作条件:
转子侧每相加上与Er0同相的附加电动势 +Eadd(Eadd<Er0),并把转子三相回路连通。
备与电动机容量相当的变压变频器,相比之下,设备 成本最高。
3)转差功率馈送型——控制绕线转子异步电动机的转 子电压,利用其转差功率并达到调节转速的目的,这 种调节方式具有良好的调速性能和效率;但要增加一
些设备。
.
Байду номын сангаас
3
7.1 异步电机双馈调速工作原理
本节提要
概述 异步电机转子附加电动势的作用 异步电机双馈调速的五种工况
P msm P (1s)P m
(7-4)
式中 Pm —从电机定子传入转子(或由转子传出给定
子)的电磁功率
sPm —输入或输出转子电路的功率,即转差功率
(1-s)Pm —电机轴上输出或输入的功率
由于转子侧串入附加电动势极性和大小的不同,s 和
Pm 都可正可负,因而可以有以下五种不同的工作情
况。
.
22
1. 电机在次同步转速下作电动运行
(7-1)
式中 s — 异步电动机的转差率;
Er0 — 绕线转子异步电动机在转子不动时的相电动
势,或称转子开路电动势,也就是转子额定相电压 值。
.
14
❖ 转子相电流的表达式为:
Ir
sEr0 Rr2 (sXr0)2
(7-2)
式中 Rr— 转子绕组每相电阻; Xr0— s=1时的转子绕组每相漏抗。
.
Ir
sEr0 Eadd Rr2 (sXr0)2
(7-3)
.
17
转子附加电动势的作用
1. Er 与 Eadd 同相
当 Eadd ,
s 1 E r0 E ad dI rT en s
使得: 这里:
s1E r0E ad ds2E r0E a ' dd
s1 s2
转速上升;
.
18
转子附加电动势的作用(续)
电网
K1
K2
M
TI
3~
功率变换单元
.
9
如上图所示,在双馈调速工作时,除了电 机定子侧与交流电网直接连接外,转子侧 也要与交流电网或外接电动势相连,从电 路拓扑结构上看,可认为是在转子绕组回 路中附加一个交流电动势。
.
10
功率变换单元
由于转子电动势与电流的频率随转速变化,
即f2=sf1,因此必须通过功率变换单元(Power
第十八讲
第 7 章 绕线转子异步电机双馈调速系统 ——转差功率馈送型调速系统
7.1 异步电机双馈调速工作原理 7.2 异步电机在次同步电动状态下的双馈系统
——串级调速系统 7.3 异步电动机串级调速时的机械特性
.
1
7.0 引言
❖ 转差功率问题
转差功率始终是人们在研究异步电动 机调速方法时所关心的问题,因为节约 电能是异步电动机调速的主要目的之一, 而如何处理转差功率又在很大程度上影 响着调速系统的效率。
P1
3M~
Pmech
Ps
. CU
12
(2)转差功率输入状态
当电机以发电状态运行时,它被拖着运转, 从轴上输入机械功率,经机电能量变换后以电 功率的形式从定子侧输出(馈出)到电网。
P1
3M~
Pmech
Ps
CU
.
13
7.1.1 异步电机转子附加电动势的作用
❖ 异步电机运行时其转子相电动势为
Er sEr0
如第5章所述,交流调速系统按转差功 率的处理方式可分为三种类型。
.
2
交流调速系统按转差功率的分类
1)转差功率消耗型——异步电机采用调压控制等调速 方式,转速越低时,转差功率的消耗越大,效率越低;
但这类系统的结构简单,设备成本最低,所以还有一 定的应用价值。
2)转差功率不变型——变频调速方法转差功率很小, 而且不随转速变化,效率较高;但在定子电路中须配
Converter Unit—CU)对不同频率的电功率进行 电能变换。
对于双馈系统来说,CU应该由双向变频器构 成,以实现功率的双向传递。
.
11
双馈调速的功率传输
(1)转差功率输出状态
异步电动机由电网供电并以电动状态运行时, 它从电网输入(馈入)电功率,而在其轴上输出 机械功率给负载,以拖动负载运行;
.
4
7.1.0 概述
转差功率的利用
作为异步电动机,必然有转差功率,要 提高调速系统的效率,除了尽量减小转差 功率外,还可以考虑如何去利用它。
但要利用转差功率,就必须使异步电动 机的转子绕组有与外界实现电气联接的条 件,显然笼型电动机难以胜任,只有绕线 转子电动机才能做到。
.
5
绕线转子异步电动机