定量RTPCR原理

合集下载

RT-PCR详细图文解析

RT-PCR详细图文解析

一、实时荧光定量PCR原理(一)定义:在PCR反应体系中加入荧光基团,利用荧光信号累积实时监测整个PCR 进程,最后通过标准曲线对未知模板进行定量分析的方法。

(二)实时原理1、常规PCR技术:对PCR扩增反应的终点产物进行定量和定性分析无法对起始模板准确定量,无法对扩增反应实时检测。

2、实时定量PCR技术:利用荧光信号的变化实时检测PCR扩增反应中每一个循环扩增产物量的变化,通过Ct 值和标准曲线的分析对起始模板进行定量分析3、如何对起始模板定量?通过Ct值和标准曲线对起始模板进行定量分析.4、几个概念:(1)扩增曲线:(2)荧光阈值:(3)Ct值:CT值的重现性:5、定量原理:理想的PCR反应:X=X0*2n非理想的PCR反应:X=X0 (1+Ex)n n:扩增反应的循环次数X:第n次循环后的产物量X0:初始模板量Ex:扩增效率5、标准曲线6、绝对定量1)确定未知样品的C(t)值2)通过标准曲线由未知样品的C(t)值推算出其初始量7、DNA的荧光标记:二、实时荧光定量PCR的几种方法介绍方法一:SYBR Green法(一)工作原理1、SYBR Green 能结合到双链DNA的小沟部位2、SYBR Green 只有和双链DNA结合后才发荧光3、变性时,DNA双链分开,无荧光4、复性和延伸时,形成双链DNA,SYBR Green 发荧光,在此阶段采集荧光信号。

PCR反应体系的建立及优化:1、SYBR Green 使用浓度:太高抑制Taq酶活性,太低,荧光信号太弱,不易检测2、Primer:引物的特异性高,否则扩增有杂带,定量不准3、MgCl2的浓度:可以降低到1.5mM,以减少非特异性产物4、反应Buffer 体系的优化5、反应温度和时间参数:由酶和引物决定6、其他与常规PCR相同(二)应用范围1、起始模板的测定;2、基因型的分析;3、融解曲线分析:可以优化PCR反应的条件,对常规PCR有指导意义,如对primer 的评价;可以区分单一引物、引物二聚体、变异产物、多种产物。

RT–PCR的原理及实验步骤

RT–PCR的原理及实验步骤

RT –PCR的原理及实验步骤一、RT –PCR的原理RT -PCR即逆转录-聚合酶链反应。

原理是:提取组织或细胞中的总RNA,以其中的mRNA作为模板,采用Oligo(dT)或随机引物利用逆转录酶反转录成cDNA。

再以cDNA为模板进行PCR扩增,而获得目的基因或检测基因表达。

逆转录酶(reverse transcriptase)是存在于RNA病毒体内的依赖RNA的DNA聚合酶,至少具有以下三种活性:(1)依赖RNA的DNA聚合酶活性:以RNA为模板合成cDNA第一条链;(2)Rnase水解活性:水解RNA:DNA杂合体中的RNA;(3)依赖DNA的DNA聚合酶活性:以第一条DNA链为模板合成互补的双链cDNA.RT-PCR使RNA检测的灵敏性提高了几个数量级,使一些极为微量RNA样品分析成为可能。

该技术主要用于:分析基因的转录产物、获取目的基因、合成cDNA探针、构建RNA高效转录系统。

二、RT-PCR的准备:1.引物的设计及其原则:(1)引物的特异性决定PCR反应特异性。

因此引物设计是否合理对于整个实验有着至关重要的影响。

在引物设计时要充分考虑到可能存在的同源序列,同种蛋白的不同亚型,不同的mRNA剪切方式以及可能存在的hnRNA对引物的特异性的影响。

尽量选择覆盖相连两个内含子的引物,或者在目的蛋白表达过程中特异存在而在其他亚型中不存在的内含子。

(2)引物设计原则的把握:引物设计原则包括:a.引物长度:一般为15~30 bp ,引物太短会影响PCR的特异性,引物太长PCR的最适延伸温度会超过Taq酶的最适温度,也影响反应的特异性。

b.碱基分布:四种碱基最好应随机分布,避免嘌呤或嘧啶的聚集存在,特别是连续出现3个以上的单一碱基。

GC含量(Tm值):40%~60%,PCR扩增的复性温度一般是较低Tm值减去5~10度。

c.3‘端要求:3’端必须与模板严格互补,不能进行任何修饰,也不能有形成任何二级结构的可能。

rt pcr原理

rt pcr原理

rt pcr原理RT-PCR原理RT-PCR是一种广泛应用于分子生物学和医学诊断领域的实验技术,其全称为反转录聚合酶链式反应(Reverse Transcription Polymerase Chain Reaction)。

本文将详细介绍RT-PCR的原理。

一、反转录(Reverse Transcription)1. 反转录的概念反转录是指将RNA模板上的信息逆向转录成为DNA序列。

在RT-PCR中,反转录是制备cDNA(complementary DNA)模板的关键步骤。

cDNA是由RNA模板逆向合成的双链DNA,它可以作为PCR 扩增的模板。

2. 反转录过程反转录过程由三个主要部分组成:RNA逆向转录、RNA降解、cDNA 合成。

首先,需要使用反转录酶将RNA模板逆向转录为单链cDNA;然后通过碱基切除和填充,将单链cDNA变为双链cDNA;最后使用RNase H或其他酶降解RNA模板,得到纯净的cDNA。

二、聚合酶链式反应(Polymerase Chain Reaction)1. PCR的概念聚合酶链式反应是一种体外扩增核酸序列的技术。

它可以在短时间内从微量样品中扩增出大量特定的DNA序列。

2. PCR过程PCR过程由三个主要步骤组成:变性、退火、延伸。

首先,将DNA 双链分离为两条单链,即变性;然后引入引物(primers),使其与目标序列的两端互相补合,形成一个模板-引物复合体;最后,使用DNA聚合酶在引物的作用下延伸新链。

三、RT-PCR原理1. RT-PCR的概念RT-PCR是一种结合反转录和聚合酶链式反应技术的方法,用于从RNA模板中扩增特定的DNA序列。

它可以将RNA转录为cDNA,并通过PCR扩增cDNA。

2. RT-PCR过程RT-PCR过程由四个主要步骤组成:反转录、初步扩增、二次扩增、检测。

首先进行反转录反应,将RNA逆向转录为cDNA;然后进行初步扩增,使用特定引物扩增目标序列;接着进行二次扩增,使用内部引物对初步扩增产物进行进一步扩增;最后进行检测,确定是否存在目标序列。

RTpcr技术的原理

RTpcr技术的原理

RTpcr技术的原理RTpcr技术(逆转录聚合酶链反应技术),是一种基于聚合酶链反应(PCR)原理和逆转录酶(reverse transcriptase)的技术。

逆转录是一种生物学过程,它将RNA转录成相应的DNA。

这项技术在分子生物学和生物医学研究中广泛应用,特别用于病原体检测、基因表达研究和疾病诊断。

1. RTpcr技术的基本原理RTpcr技术的基本原理是先利用逆转录酶将目标RNA转录成cDNA(亦称为反转录,即逆转录),然后以cDNA作为模板进行PCR扩增。

整个过程分为两个关键步骤:逆转录和PCR反应。

2. 逆转录过程逆转录过程是RTpcr技术的第一步,其目的是将RNA转录成cDNA。

逆转录酶是这一步的关键酶类,它能够将RNA作为模板,并合成相应的cDNA。

常用的逆转录酶有AMV逆转录酶、M-MuLV逆转录酶和Tth逆转录酶等。

逆转录过程包括以下步骤:1.首先,逆转录酶结合到引物上,在低温下发生结合反应,形成逆转录酶-引物复合物。

2.然后,复合物结合到RNA模板上,在合适的反应条件下,逆转录酶开始合成新的cDNA链。

3.在合成过程中,逆转录酶通过酶的核酸酶活性,将RNA模板逐渐降解,最终产生单链cDNA。

4.最后,通过加热反应停止并灭活逆转录酶。

3. PCR反应过程PCR反应是RTpcr技术的第二步,其目的是扩增cDNA。

PCR反应是通过三步循环反应不断倍增DNA,使其产生指数级的增加。

PCR反应包括以下步骤:1.Denaturation(变性):将PCR反应体系加热至95℃,使DNA双链解开为两根单链。

2.Annealing(退火):将反应体系降温至适合引物结合的温度,引物与目标序列互补结合。

3.Extension(延伸):将反应体系温度升高至逆转录酶的最适温度,逆转录酶开始在引物的引导下合成新的DNA链。

以上三个步骤循环进行,每个循环使DNA序列倍增一倍。

通过适当的循环次数,可以将最初微小的DNA片段扩增至足够数量。

RT-PCR百度百科

RT-PCR百度百科

概念RT-PCR 为反转录RCR(reverse transcription PCR)和实时PCR(real time PCR)共同的缩写。

逆转录PCR,或者称反转录PCR(reverse transcription-PCR, RT-PCR),是聚合酶链式反应(PCR)的一种广泛应用的变形。

在RT-PCR中,一条RNA链被逆转录成为互补DNA,再以此为模板通过PCR进行DNA扩增。

由一条RNA单链转录为互补DNA(cDNA)称作“逆转录”,由依赖RNA的DNA聚合酶(逆转录酶)来完成。

随后,DNA的另一条链通过脱氧核苷酸引物和依赖RNA 的DNA聚合酶完成,随每个循环倍增,即通常的PCR。

原先的RNA模板被RNA酶H降解,留下互补DNA。

RT-PCR的指数扩增是一种很灵敏的技术,可以检测很低拷贝数的RNA。

RT-P CR广泛应用于遗传病的诊断,并且可以用于定量监测某种RNA的含量。

(检测基因表达的方法,参见Northern Blot法。

)RT-PCR有时候也会指代实时PCR(real-time PCR)。

为了与逆转录PCR相区别,通常被写作“定量PCR”(quantitative PCR)或者RTQ-PCR(real-time quantitative P CR)。

实时PCR(real-time PCR),属于定量PCR(Q-PCR)的一种,以一定时间内D NA的增幅量为基础进行DNA的定量分析。

real time PCR 的定量使用萤光色素,目前有二种方法。

一种是在ds DNA中插入特异的萤光色素;另一种使用一种能与增幅DNA序列中特定寡核酸序列相结合的一种萤光探针(probe)。

real time PCR 与reverse transcription PCR 相结合,能用微量的RNA来找出特定时间、细胞、组织内的特别表达的遗传基因。

这两种RT PCR的组合又被称之为“定量RT-PCR(quantitative RT-PCR)”[编辑本段]PCR技术相关试剂A液:变性液B液:醋酸钠溶液C液:酚/氯仿/异戊醇混合液(50:49:1)D液:异丙醇E液:75%乙醇F液:DEPC处理的灭菌去离子水G液:RNA酶抑制剂H液:反转录反应液I液:反转录酶J液:PCR反应液K液:Taq DNA聚合酶(0.5u/µl)L液:矿物油M液:50倍TAE电泳缓冲液N液:溴化乙锭溶液0液:上样缓冲液[编辑本段]PCR各步骤的目的(一)预变性:破坏DNA中可能存在的较难破坏的二级结构。

《RTPCR技术原理》课件

《RTPCR技术原理》课件

缺点
对操作人员要求较高
RTPCR技术的操作较为复杂,需要经过专 业培训的操作人员才能保证结果的准确性

成本较高
RTPCR技术需要昂贵的仪器和试剂 ,导致检测成本较高,可能限制其
在资源有限地区的普及。
A
B
C
D
可能出现交叉污染
在操作过程中,如果样品或试剂受到污染 ,可能会导致交叉污染,影响检测结果的 准确性。
《rtpcr技术原理》ppt课 件
目录 CONTENT
• RTPCR技术概述 • RTPCR技术原理 • RTPCR实验操作流程 • RTPCR技术的优缺点 • RTPCR技术的应用实例
01
RTPCR技术概述
RTPCR技术定义
实时荧光定量PCR(Real-Time PCR)是一种在PCR反应过程中,通过荧光信号 检测DNA片段的扩增情况,并实时监测其变化的技术。
2000年
ABI公司推出高分辨率熔解曲线分析 技术,提高了SNP分型和突变检测的 准确性。
2004年
基于焦磷酸测序原理的实时荧光定量 PCR技术问世,提高了检测通量和灵 敏度。
RTPCR技术的应用领域
基因表达分析
突变检测
通过比较不同组织或不同处理条件下基因 的表达水平,研究基因的表达调控机制。
用于检测DNA序列中的点突变、插入和缺 失等变异,用于遗传病、肿瘤等疾病的诊 断和监测。
基因突变检测
总结词
RTPCR技术能够高效地检测基因突变,为遗传性疾病的诊断和治疗提供依据。
详细描述
基因突变是许多遗传性疾病的诱因,RTPCR技术通过对特定基因的扩增和荧光 检测,能够快速、准确地检测出基因突变位点及类型。这有助于遗传性疾病的 早期诊断和针对性治疗,为患者提供更好的医疗方案。

rt pcr原理

rt pcr原理

Real-time PCR(实时荧光定量PCR)原理解析1. 什么是PCR?PCR(Polymerase Chain Reaction,聚合酶链反应)是一种在体外扩增DNA片段的技术。

PCR的发明者是美国生物化学家基里尔·米隆尼斯(Kary Mullis),于1983年提出了这一方法。

PCR通过不断重复三个步骤来扩增目标DNA片段:变性(Denaturation)、退火(Annealing)和延伸(Elongation)。

这些步骤在PCR仪中由多个温度循环来控制,因此PCR也被称为“温度循环扩增”。

PCR技术为科学家提供了一种快速、敏感、特异性极高的扩增目标DNA的方法。

然而,传统的PCR只能在反应结束后进行结果的检测,无法实时监测反应的过程。

为了解决这个问题,Real-time PCR技术应运而生。

2. 实时PCR概述实时PCR是在PCR扩增过程中,使用荧光信号实时监测反应的进行。

与传统PCR相比,实时PCR能够提供实时的、连续的照片剖析PCR的进展。

实时PCR有两种常用的检测方法:荧光染料法和探针法。

其中,探针法又分为TaqMan探针法和Molecular Beacon探针法。

这些探针和染料能够与PCR反应中的产物结合,并产生荧光信号,根据信号的增长情况可以推断目标DNA的含量。

实时PCR广泛应用于分子生物学、医学诊断、检测病原体等领域。

接下来,我们将重点介绍实时PCR的基本原理以及常用的探针法和荧光染料法。

3. 实时PCR基本原理实时PCR的基本原理和传统PCR类似,也是通过变性、退火和延伸三个步骤来扩增DNA片段。

然而,在实时PCR中,PCR反应是在热循环PCR仪中进行,并且扩增过程中的结果可以实时检测。

实时PCR一般需要使用一种独特的仪器,称为实时荧光PCR仪或荧光定量PCR仪。

这种仪器能够在不破坏试管密封的情况下,通过荧光信号实时检测PCR反应体系中的增长程度。

在实时PCR中,荧光信号通过专门的探测器(Detector)收集,并且荧光信号的强度会随着PCR反应进行的次数递增。

rt—qpcr实验原理及步骤

rt—qpcr实验原理及步骤

rt-qpcr是一种结合了逆转录和实时荧光定量PCR技术的方法,用于对RNA分子进行定量检测。

其原理主要包括三个方面:逆转录、PCR 扩增和实时荧光定量检测。

1. 逆转录rt-qpcr实验首先需要将RNA转录为cDNA,这是通过逆转录酶(Reverse Transcriptase)催化的反应来实现的。

逆转录酶可以将RNA模板转录成相应的cDNA,为后续的PCR扩增提供模板。

2. PCR扩增在cDNA合成完成后,接下来是PCR扩增反应。

PCR扩增需要引物(primers)来选择性地扩增目标基因的片段。

在PCR过程中,引物与模板结合,逐渐扩增出大量目标片段,这些片段即为实验所关注的RNA分子的转录产物。

3. 实时荧光定量检测在PCR扩增过程中,可以加入SYBR Green等实时荧光染料,以实现实时监测PCR反应过程中产生的DNA片段数量。

这种实时荧光检测技术可以实现对PCR反应的动态观察,并能够定量分析反应体系中的DNA含量。

rt-qpcr实验步骤主要包括样品准备、逆转录、PCR扩增和荧光定量检测,以下为详细步骤:1. 样品准备首先需要准备待检测的RNA样品,其中包括目标RNA分子的提取、纯化和定量等工作。

样品的处理质量将直接影响后续实验结果的准确性和可靠性。

2. 逆转录将RNA样品与逆转录酶、随机引物和dNTPs等混合物一起进行逆转录反应。

逆转录过程一般包括以下步骤:首先将RNA与随机引物混合,然后加入dNTPs和逆转录酶,进行逆转录反应。

3. PCR扩增在逆转录完成后,将逆转录得到的cDNA作为模板,与特定引物和PCR Master Mix(包括酶、缓冲液和dNTPs等)进行PCR扩增反应。

PCR扩增条件需要根据引物的特性和目标片段的长度进行优化,以保证扩增反应的特异性和准确性。

4. 荧光定量检测在PCR扩增过程中,引入实时荧光染料(如SYBR Green)或探针(如TaqMan探针)来进行荧光定量检测。

定量RT-PCR原理

定量RT-PCR原理
William P. Halford:
是否只有竞争性RT-PCR才能精确定量?
竞争性RT-PCR
PCR的终产物量取决于靶序列与竞争性 序列量的起始比例。
理想情况下,靶序列与参照物以相同 的效率扩增,在琼脂糖凝胶电泳中区别开 。
竞争性RT-PCR
参照物片段分两类: - 同源性片段——与靶序列只有微小差 别
IPC (VIC layer) 基因 CtVIC = 27
假阴性结果
目的基因 CtFAM = 40
IPC (VIC layer) 基因 CtVIC = 40
阳性结果
目的基因 CtFAM = 29
IPC (VIC layer) 基因 CtVIC = 28
重复样品
定量的结果需要进行统计学处理:平均值和 标准偏差。因此需要重复实验
Application
Quantification Mutation/Allele detection Multiplex RT-PCR Detection of mRNA splice variants
Mutation/Allele detection
Use different reporter dyes One increase homozygosity Two increase heterozygosity
3’ 5’
Reverse Primer
剪切
R
5’ 3’ 5’
Q
5’ 3’ 5’
延伸结束
R
5’ 3’ 5’
Q
5’ 3’ 5’
荧光定量PCR实验荧光强度的计算公式
Rn RB X O (1 EX )n RS
Rn=总荧光强度 RB=基本(空白)荧光强度 XO=靶基因起始拷贝数 EX=扩增效率(0< EX < 1) n =扩增循环数 RS=每个荧光分子的荧光强度

rtpcr的常用方法

rtpcr的常用方法

rtpcr的常用方法一、RT-PCR的基本原理1. 逆转录反应(Reverse Transcription, RT):RT-PCR的第一步是将RNA转录成互补的DNA,这一步叫做逆转录反应。

逆转录反应通过引入RNA逆转录酶(Reverse Transcriptase)和随机引物(Random Primers),将RNA模板转录成cDNA(反转录DNA)。

2. 聚合酶链反应(Polymerase Chain Reaction, PCR):逆转录完成后,所得的cDNA经过稀释和变性等预处理后,使用DNA聚合酶(DNA Polymerase)和两个特异性引物,通过多轮的循环反应来扩增目标DNA区域。

二、RT-PCR的基本步骤1.RNA提取和纯化:从样品中提取并纯化RNA,以保证所得的RNA具有较高的纯度和完整性。

2.反转录反应:将RNA转录成cDNA,这一步可通过两种方式进行:使用随机引物、dNTPs、逆转录酶等直接反转录,或通过特异性引物(即RT引物)进行引物延伸。

3. PCR扩增反应:将逆转录所得的cDNA作为模板,使用特异性引物和DNA聚合酶进行DNA扩增。

PCR的循环条件通常是:变性(denaturation)、退火(annealing)和延伸(extension)。

4.电泳分析:将PCR产物经过聚丙烯酰胺凝胶电泳,通过对比分子量标准品,判断扩增产物的大小。

三、RT-PCR的优点和局限性1.优点(1)可以从一个RNA样本中扩增目标序列,从而可以检测低丰度的mRNA。

(2)推导出目标基因的相对表达量和定量结果。

(3)能够对基因表达的动态变化进行实时监测。

(4)扩增模板的选择性强,通过控制引物的设计,能够选择性地扩增特定的目标。

2.局限性(1)需要对RNA进行提取和纯化,这一步骤可能会引入一定程度的变异,影响结果。

(2)逆转录过程中可能发生评性引物引起的“板块效应”,导致不同通量的逆转录效率不同。

RT-PCR_原理介绍

RT-PCR_原理介绍

Real-time PCR(RT-PCR) 原理介绍实时荧光定量PCR技术于1996年由美国Applied Biosystems公司推出,由于该技术不仅实现了PCR从定性到定量的飞跃,而且与常规PCR相比,它具有特异性更强、有效解决PCR污染问题、自动化程度高等特点,目前已得到广泛应用。

本文试就其定量原理、方法及参照问题作一介绍。

一.实时荧光定量PCR原理所谓实时荧光定量PCR技术,是指在PCR反应体系中加入荧光基团,利用荧光信号积累实时监测整个PCR进程,最后通过标准曲线对未知模板进行定量分析的方法。

1.Ct 值的定义在荧光定量PCR技术中,有一个很重要的概念—— Ct值。

C代表Cycle,t代表threshold,Ct值的含义是:每个反应管内的荧光信号到达设定的域值时所经历的循环数(如图1所示)。

图1. Ct值的确定2.荧光域值(threshold)的设定PCR反应的前15个循环的荧光信号作为荧光本底信号,荧光域值的缺省设置是3-15个循环的荧光信号的标准偏差的10倍,即:threshold = 10 ´SDcycle 6-153.Ct值与起始模板的关系研究表明,每个模板的Ct值与该模板的起始拷贝数的对数存在线性关系〔1〕,起始拷贝数越多,Ct值越小。

利用已知起始拷贝数的标准品可作出标准曲线,其中横坐标代表起始拷贝数的对数,纵坐标代Ct值(如图2所示)。

因此,只要获得未知样品的Ct值,即可从标准曲线上计算出该样品的起始拷贝数。

图2. 荧光定量标准曲线4.荧光化学荧光定量PCR所使用的荧光化学可分为两种:荧光探针和荧光染料〔2〕。

现将其原理简述如下:1)TaqMan荧光探针:PCR扩增时在加入一对引物的同时加入一个特异性的荧光探针,该探针为一寡核苷酸,两端分别标记一个报告荧光基团和一个淬灭荧光基团。

探针完整时,报告基团发射的荧光信号被淬灭基团吸收;PCR扩增时,Taq酶的5’-3’外切酶活性将探针酶切降解,使报告荧光基团和淬灭荧光基团分离,从而荧光监测系统可接收到荧光信号,即每扩增一条DNA链,就有一个荧光分子形成,实现了荧光信号的累积与PCR产物形成完全同步。

rtpcr原理及应用

rtpcr原理及应用

rtpcr原理及应用RT-PCR原理及应用。

RT-PCR(Reverse Transcription Polymerase Chain Reaction)是一种基因分子生物学技术,它结合了逆转录和聚合酶链式反应两种方法,可以在研究中对RNA进行扩增,从而检测和分析特定基因的表达水平。

本文将介绍RT-PCR的原理和应用,以便更好地理解和运用这一技术。

RT-PCR的原理。

RT-PCR的原理主要包括逆转录和聚合酶链式反应两个步骤。

首先是逆转录,即将RNA转录为cDNA(complementary DNA),这是因为在常规的PCR反应中需要DNA作为模板,而RNA不能直接作为PCR的模板。

逆转录过程中,需要逆转录酶和RNA模板,通过逆转录酶的作用,RNA被逆转录为cDNA。

接着是聚合酶链式反应,即利用DNA聚合酶对cDNA进行扩增,通过PCR反应使特定基因的DNA序列得以扩增,从而进行后续的分析和检测。

RT-PCR的应用。

1. 基因表达分析。

RT-PCR可以用于研究特定基因在不同组织、细胞类型或生理状态下的表达水平。

通过逆转录和PCR扩增,可以定量检测特定基因的mRNA水平,从而了解其在生物体内的表达情况。

2. 病原体检测。

RT-PCR可以用于检测病原体,如病毒、细菌等的RNA或DNA,从而进行疾病的诊断和监测。

例如,在流感疫情监测中,RT-PCR可以快速、准确地检测流感病毒的存在,为疫情防控提供重要依据。

3. 肿瘤标志物检测。

RT-PCR可以用于检测肿瘤标志物的表达水平,帮助肿瘤的早期诊断和疗效监测。

通过检测肿瘤相关基因的表达水平,可以及早发现潜在的肿瘤病变,为临床治疗提供参考。

4. 药物研发。

RT-PCR可以用于药物研发中的基因表达分析和药效评价。

通过比较药物处理前后特定基因的表达水平变化,可以评估药物对基因表达的影响,为药物研发提供重要参考。

5. 遗传病检测。

RT-PCR可以用于遗传病的检测和分析,例如常见的遗传性疾病、基因突变等。

实时定量RTPCR的原理及方法

实时定量RTPCR的原理及方法

实时定量RTPCR的原理及方法一、本文概述实时定量反转录聚合酶链式反应(Real-Time Quantitative Reverse Transcription Polymerase Chn Reaction,简称实时定量RT-PCR)是一种在分子生物学领域中广泛应用的实验技术,用于检测和分析RNA样本中特定基因的表达水平。

该技术结合了反转录和聚合酶链式反应(PCR)的基本原理,通过实时监测PCR过程中产生的荧光信号,实现对基因表达量的高精度定量。

本文将对实时定量RT-PCR 的原理、实验方法以及应用进行详细的阐述,旨在为读者提供全面且深入的了解,从而能够在实际研究中灵活应用该技术,提高实验效率和准确性。

二、实时定量RT-PCR的基本原理实时定量反转录聚合酶链式反应(Real-Time Quantitative Reverse Transcription Polymerase Chn Reaction,简称实时定量RT-PCR)是一种在DNA扩增过程中,通过荧光信号实时监测反应产物量的变化,从而得到起始模板量的分析方法。

这种技术结合了反转录(RT)和聚合酶链式反应(PCR)两个过程,使得RNA模板也能进行定量分析。

实时定量RT-PCR的基本原理可以分为三个步骤:反转录,PCR 扩增,以及实时荧光信号检测。

反转录步骤中,RNA模板在反转录酶的作用下,被转换成互补的DNA(cDNA)。

这个过程中,RNA的特异性序列被保留下来,为后续的PCR扩增提供了模板。

然后,PCR扩增步骤中,特定的DNA片段在DNA聚合酶的作用下,通过引物的引导,进行指数级的扩增。

在这个过程中,DNA的数量以2的n次方(n为循环次数)增长,从而大大提高了检测的灵敏度。

实时荧光信号检测步骤中,通过在PCR反应体系中加入荧光染料或荧光标记的特异性探针,使得在DNA扩增的每一个循环中,都能实时监测到荧光信号的变化。

这种荧光信号的变化与DNA产物的量成正比,因此可以通过实时监测荧光信号,来推算出起始模板的量。

深入理解rt pcr原理及应用

深入理解rt pcr原理及应用

深入理解rt pcr原理及应用标题:深入理解RT-PCR原理及应用引言:RT-PCR(Reverse Transcription Polymerase Chain Reaction)是一项重要的实验技术,广泛应用于分子生物学和医学研究领域。

本文将深入探讨RT-PCR的原理、操作步骤以及其在基因表达分析、传染病诊断和生物医学研究中的应用。

通过本文的阐述,读者将能够更好地理解RT-PCR的工作原理,并对其潜在应用有更全面的了解。

一、RT-PCR的基本原理1.1 反转录过程反转录过程是RT-PCR的核心步骤之一,其将RNA模板转录为相应的互补DNA(cDNA)。

该步骤涉及到逆转录酶的使用,它能够将RNA 模板上的核酸序列转录为互补的DNA序列。

1.2 PCR扩增过程PCR扩增是RT-PCR的另一个重要步骤,其能够使得少量的目标DNA 序列在体外迅速扩增至丰富、可检测的数量。

PCR扩增通过反复进行热循环,包括三个主要步骤:变性、退火和延伸。

在合适的条件下,DNA模板将被不断复制,生成指数级增加的扩增产物。

二、RT-PCR的操作步骤2.1 样本和试剂的准备在开始RT-PCR实验之前,首先需要准备好待分析的样本和所需的试剂,包括RNA提取试剂、RT反应试剂盒和PCR扩增试剂盒等。

2.2 反转录反应反转录反应是RT-PCR的第一步,其将RNA转录为cDNA。

该步骤中需要逆转录酶和引物,逆转录酶能够合成互补的DNA链,引物用于定向引导逆转录酶合成。

2.3 PCR扩增反应在完成反转录反应后,接下来是PCR扩增反应。

PCR扩增反应需要合适的引物以及热稳定的DNA聚合酶。

通过合理设计引物和优化反应条件,可以实现特定基因序列的选择性扩增。

三、RT-PCR应用领域3.1 基因表达分析RT-PCR被广泛用于基因表达分析,可以检测和定量目标基因在不同组织和细胞类型中的表达水平。

这项技术能够揭示基因在生物体中的表达模式,并为研究基因功能、生物发育和疾病机制提供重要依据。

RTPCR原理和实验步骤

RTPCR原理和实验步骤

RT—PCR原理与实验步骤一、知识背景:1、基因表达:DNA RNA Protein单拷贝基因表达存在逐步放大机制,如一个蚕丝心蛋白基因 104个丝心蛋白mRNA(每个mRNA存活4d,可以合成105个丝心蛋白) 共合成109个丝心蛋白。

因此单拷贝基因的mRNA表达水平对于其功能水平的调控是非常重要的。

2、PCR技术(Polymerase chain reaction):即聚合酶链式反应。

在模板、引物和四种脱氧核苷酸存在的条件下依赖于DNA聚合酶的酶促反应,其特异性由两个人工合成的引物序列决定。

反应分三步:A。

变性:通过加热使DNA双螺旋的氢键断裂,形成单链DNA;B.退火:将反应混合液冷却至某一温度,使引物与模板结合.C。

延伸:在DNA聚合酶和dNTPs及Mg2+存在下,退火引物沿5’3’方向延伸。

以上三步为一个循环,如此反复。

3、逆转录酶和RT-PCR逆转录酶(reverse transcriptase)是存在于RNA病毒体内的依赖RNA的DNA聚合酶,至少具有以下三种活性:1、依赖RNA的DNA聚合酶活性:以RNA为模板合成cDNA第一条链;2、Rnase水解活性:水解RNA:DNA杂合体中的RNA;3、依赖DNA的DNA聚合酶活性:以第一条DNA链为模板合成互补的双链cDNA。

二、RT—PCR的准备:1。

引物的设计及其原则:1)引物的特异性决定PCR反应特异性.因此引物设计是否合理对于整个实验有着至关重要的影响。

在引物设计时要充分考虑到可能存在的同源序列,同种蛋白的不同亚型,不同的mRNA剪切方式以及可能存在的hnRNA对引物的特异性的影响。

尽量选择覆盖相连两个内含子的引物,或者在目的蛋白表达过程中特异存在而在其他亚型中不存在的内含子。

2) 引物设计原则的把握引物设计原则包括:a、引物长度:一般为15~30bp ,引物太短会影响PCR的特异性,引物太长PCR的最适延伸温度会超过Taq酶的最适温度,也影响反应的特异性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCR 反应曲线
R n+
Sample
Threshold
Rn
Ct
R nBaseline
No Template
定量准确的要素
未知样品 标准品:产生标准曲线 内参比(Internal Standard)-ROX 校正样品管和加样误差 内对照(Internal Control): 校正扩增效率的误差
+/-对照:检验试剂和仪器的可靠性 6次重复:满足统计学要求
18S ribosomal RNA endogenous control amplifications (VIC™) showing all 20 sample wells
Detection of mRNA splice variants
主要内容
1. Taqman探针原理
2. CT值和阈值的确定
变异主要来源是样品RNA的纯度和完整性,应 设内源性参照物。
若使用DNA参照物,反转录酶的效率未受控 制。
RT-PCR定量的条件
确定PCR反应曲线上的有效范围,即 在平台效应出现以前PCR扩增得到的终 产物与加入的RNA数量呈线性关系。
确定足够的样品数,保证可对PCR扩 增产物量间差异进行统计分析。
检测范围更宽,速度更快。
Application
Quantification Mutation/Allele detection
Multiplex RT-PCR
Detection of mRNA splice variants
Mutation/Allele detection
Use different reporter dyes One increase homozygosity Two increase heterozygosity
Taqman荧光定量PCR技术
•特异性荧光 标记探针
•Taq酶 5’→3’ 外切酶活性
设置内参照
分为两种:在扩增反应中加入的外 源参照物和样品中正常存在的内源参照 物。
内源性参照物通常使用“管家” 序 列或rRNA。
实时RT-PCR特点
扩增反应处于对数增长期,无平台效应。 无需处理PCR反应产物,减少污染。
多色荧光技术
准确的荧光定量要求ROX校正和IPC校正 检材和对照最好在同一反应管中,误差最小 多重检测要求仪器有多种荧光检测能力 只有ABI的仪器才具有四色检测能力:
FAM:标记目的基因探针 VIC:标记第二个目的基因或IPC探针 TAMRA:淬灭基团 ROX:
内参比荧光
使用ROX内参比的效果
光纤出口处的激光强度;管盖厚度、透光性 缓冲液和反应体积等
校正管间差异,保证实验结果的重现性
5’ Nuclease Multiplex Assay
FAM™ dye labeled 35S Target
VIC™ dye labeled ER
阳性内对照(IPC)
为操作方便,取样一般以克或uL为单位
达到阈值时的计算公式
RB, Rs 和 Ex 是确定的 Rn=RT=阈值 n=CT= 达到阈值时的循环数
RT RB X O (1 E X ) CT RS
CT值与起始DNA拷贝数的关系
Ct
起始DNA拷贝数
阈值的作用:确定CT值
Rn (荧光信号)
Threshold(阈值)
CT Cycle Number(循环数)
IPC一般选用基因组中单拷贝的管家基因,其 定量结果代表了基因组的数量,也就是检材 中细胞的数量。 CT = CT Sample - CT IPC将定量结果校正为以基
因组为单位,不同样品之间具可比性。
阳性内对照(IPC)
IPC除了用于计算CT,校正定量结果外,还可以起 到阳性对照的作用,用于判断阴性结果的真伪。
内对照用于确认阴性结果
目的基因 CtFAM = 40
IPC (VIC layer) 基因 CtVIC = 27
假阴性结果
目的基因 CtFAM = 40
IPC (VIC layer) 基因 CtVIC = 40
阳性结果
目的基因 CtFAM = 29
IPC (VIC layer) 基因 CtVIC = 28
确定阈值的标准:基线
阈值 = 基线(背景)信号均值 +基线(背景)信号标准偏差 x 10
标 准 偏 差 3个循环
基线
阈 值
基线的范围: 从第3个循环起到指数增长开始 前3个循环止。 一般取3-15循环。
阈值选择的推导原理
1. 基线(空白)信号的产生是由于测量的偶然误差引 起的 2. 偶然误差的结果满足对数分布 3. 阈值 = 基线(背景)信号均值+基线(背景)信 号标准偏差 x 10 4. 由于测量的偶然误差而导致测得的荧光信号大于阈 值的概率小于10-5 5. 当荧光信号大于阈值时,可以肯定是由于PCR的扩 增使得荧光信号强度可以测量得到精品课件!精品课件!重复样品
定量的结果需要进行统计学处理:平均值和 标准偏差。因此需要重复实验 每个样品重复6次以上
消除定量误差
Multiplex RT-PCR
Advantage: Time and reagent saving Limitation: availability of multiple reporters excitation and detection ability
多重定量PCR结果
TNF-, TGF-, TNF- and lymphotoxin- amplifications (FAM™) in replicates of 5
3. ROX内参比荧光的作用
4. IPC内对照的作用
退火,开始延伸
5’ 3’ 5’
Forward Primer
TaqMan® R Probe Q
5’
3’ 5’
Reverse Primer
替换
5’ 3’ 5’
Forward Primer
R
Q
5’
3’ 5’
Reverse Primer
剪切
R
Q
5’ 3’ 5’
真阴性
假阴性
检材-; IPC+ 检材-; IPC-
常用的内对照:
18S
rRNA -actin GAPDH
标准品的选择
标准品可以从ABI购买,也可以自己制备 标准品的单位并不重要,取决于对最终结果的 要求:拷贝数,%,ng/uL, mol/uL 如转基因定量的国际标准是%(w/w) ,标准品 最好是先将不同重量比的转基因与非转基因 食品粉末混合,然后抽提DNA;不要先抽好 DNA,再用水梯度稀释 如果要得出的是样品中的基因拷贝数,则梯度 稀释已知摩尔浓度的DNA
传统RT-PCR与实时RT-PCR的流程比较
荧光定量RT-PCR基本流程
荧光测定的光学原理图
光源 滤光镜 反射镜 CCD 相机 多元镜
夫累舍尔透镜 96孔透镜组
双色镜
滤镜轮 96孔板
Molecular Beacon Method
Dye Incorporation Method
Hybridisation Probe Method
使用 ROX
不使用 ROX
Beta actin TaqMan定量
使用ROX内参比的好处
提高荧光定量的定量精度,减少孔间差异
报告荧光
不使用参比荧光 校正的结果
参比荧光
样品管1 使用参比荧光 校正的结果
样品管2
ROX荧光内参比的作用
以固定浓度存在于TaqMan PCR缓冲液中,常用ROX 荧光强度均一化(Normalize): Rn = RReporter / RROX, Rn = Rn,sample – Rn,blank 影响荧光信号强度的因素包括:
5’
3’ 5’
延伸结束
R
Q
5’ 3’ 5’ 5’
3’
5’
荧光定量PCR实验荧光强度的计算公式
Rn RB X O (1 EX ) RS
n
Rn=总荧光强度 RB=基本(空白)荧光强度 XO=靶基因起始拷贝数 EX=扩增效率(0< EX < 1) n =扩增循环数 RS=每个荧光分子的荧光强度
竞争性RT-PCR
PCR的终产物量取决于靶序列与竞争性 序列量的起始比例。 理想情况下,靶序列与参照物以相同 的效率扩增,在琼脂糖凝胶电泳中区别开 。
竞争性RT-PCR
参照物片段分两类: - 同源性片段——与靶序列只有微小差 别
- 非同源性片段——除两端引物-模板 区以外与靶序列不同
竞争性RT-PCR面临的问题
非竞争性RT-PCR
目前主要采用荧光实时RT-PCR, 放射性标记核苷酸的方法已基本淘汰。
实时RT-PCR
实时RT-PCR就是在PCR扩增的每一个循 环后分别检测其PCR产量,借助计算机数据 处理,可以描绘出PCR扩增循环过程中PCR产 物变化曲线。
根据PCR 变化曲线计算出目标靶基因 分子数。
相关文档
最新文档