专题01 平方根和立方根(专题强化-基础)解析版
初二--专题1-平方根-立方根
word 格式-可编辑-感谢下载支持名师堂学校方法讲义之—— 专题1: 平方根、立方根【知识要点】一、无理数:无理数是指无限不循环小数........无理数不能化成分数.而有限小数或无限循环小数都是有理数.二、平方根与算术平方根:1.算术平方根:如果一个正数..x 的平方等于a ,即x 2=a ,那么这个正数..x 叫做a 的算术平方根. 符号表示为:a .特别规定,0的算术平方根是0,即00=.因此,若a 是一个非负数,则a 也是一个非负数,即a ≥0.2.平方根:如果一个数...x .的平方等于.....a .,即x 2=a ,那么这个数x 叫做a 的平方根.(也叫做二次方根). 显然:一个正数有两个平方根,它们互为相反数;0只有一个平方根,它是0本身;负数没有平方根.一个正数a 的两个平方根记为a ±.求一个数a 的平方根的运算,叫做开平方,其中a 为被开方数. 显然,开平方与平方互为逆运算.3.性质:a a =2)((a ≥0);||2a a =(a 取任意数)三、立方根:如果一个数...x .的立方等于.....a .,即x 3=a ,那么这个数x 叫做a 的立方根(或三次方根).记为3a .任何数的立方根都只有一个............,正数的立方根是一个正数,负数的立方根是一个负,0的立方根是0. 对于任意数a ,均有a a a ==3333)(.四、数据估算:估算在现实生活中经学用到,估算主要有两种方法:①“夹逼法”,通过两边无限逼近,逐渐确定真实值所在范围;②根据问题中的误差范围,取近似值.【典型例题】例1 求下列各数的平方根:(1)81 (2)2516 (3)412 (4)49.0例2 下列各数有平方根吗?如果有,求出它的平方根;如果没有,请说明理由.(1)-64 (2)0 (3)(-4)2 (4)10-2名师课堂——关键教方法例3 求下列各式的值:(1)10000 (2)144- (3)12125 (4)0001.0- (5)±625 (6)±8149例4 求下列各数的立方根:(1)-8 (2)8 (3)278-(4)0.216 (5)0例5 求下列各式的值:(1)327 (2)327- (3)327102- (4)36427--例6 求下列各式中的x 值:(1)x 2=25; (2)25x 2-36=0; (3)x 3=0.008; (4)(x -1)3=27例7 若0)2(42=-+++x y x ,则=+y x 23_____。
(完整版)平方根、算术平方根、立方根重点例题讲解
6.1平方根、算术平方根、立方根例题讲解 第一部分:知识点讲解 1、学前准备【旧知回顾】2.平方根(1)平方根的定义:一般的,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做二次方根。
即若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
(2)平方根的性质:(3)注意事项:a x ±=,a 称为被开方数,这里被开方数一定是一个非负数(0≥a )。
(4)求一个数平方根的方法:(5)开平方:求一个数平方根的运算叫做开平方。
它与平方互为逆运算。
3. 算术平方根(1)算术平方根的定义:若a x =2,)0(≥a ,则x 叫做a 的平方根。
即有a x ±=,(0≥a )。
其中a x =叫做a 的算术平方根。
(2)算术平方根的性质:(3)注意点:在以后的计算题中,像22-52)(++,其中,25分别指的是2和5的算术平方根。
4.几种重要的运算: ① b a ab •=()0,0>>b a , ab b a =•()0,0>>b a②b a b a =)0,0(>≥b a , b aba =)0,0(>≥b a ③ a a =2)()0(≥a , a a =2 , a a =2-)(★★★ 若0<+b a ,则()ba b a b a b a --=+-=+=+2)(5.立方根(1)立方根的定义:一般地,如果一个数的立方等于a ,那么这个数叫做a 的立方根,也叫做三次方根。
即若a x =3,则x 叫做a 的立方根。
即有3a x =。
(2)立方根的性质:(3)开立方求一个数的立方根的运算叫做开立方,它与立方互为逆运算。
6.几个重要公式: ③ 333b a ab •=, 333ab b a =•333b a b a = )0(≠b , 333b a ba = )0(≠b④ a a =33)(可以为任何数)a (, a a =33 ,a a --33=)(第二部分:例题讲解题型1:求一个数的平方根、算术平方根、立方根。
专题01 平方根和立方根(专题强化-提高)解析版
专题01 平方根和立方根(专题强化-提高)一、单选题(共40分)1.(本题4分)(2021·山东菏泽市· )A .4B .4±C .2±D .-2【答案】C【分析】先计算16的算术平方根a ,再计算a 的平方根即可.【详解】4=,∴4的平方根为±2.故选C.【点睛】本题考查了实数的算术平方根,平方根,准确掌握这两个基本概念是解题的关键.2.(本题4分)(2020·宁波市镇海区仁爱中学七年级期中)下列计算正确的是()A .21155⎛⎫-= ⎪⎝⎭ B .()239-= C 2=± D .()515-=-【答案】B【分析】根据有理数的乘方以及算术平方根的意义即可求出答案.【详解】解:A.211525⎛⎫-= ⎪⎝⎭,所以,选项A 运算错误,不符合题意;B.()239-=,正确,符合题意;2=,所以,选项C 运算错误,不符合题意;D.()511-=-,所以,选项D 运算错误,不符合题意;故选:B .【点睛】本题考查了有理数的运算以及求一个数的算术平方根,解题的关键是熟练掌握相关的运算法则.3.(本题4分)(2020·云南昭通市·)下列说法:①1-的倒数是1-;②3a a =,则a>;④若11802∠=︒-∠,则1∠与2∠互为补角.其中正确说法的个数有()A.4个B.3个C.2个D.1个【答案】B【分析】①根据倒数的定义可以判断;②根据算术平方根和平方根的定义可以判断;③根据绝对值的意义可以判断;④根据补角的定义可以判断.【详解】解:①﹣1的倒数是﹣1,说法正确;②=9,所以3③若|a|=a,则a≥0,说法③错误;④若∠1=180°﹣∠2,即∠1+∠2=180°,则∠1与∠2互为补角,说法正确;正确的说法有①②④,共3个,故选:B.【点睛】此题主要考查了倒数,平方根,算术平方根,绝对值,补角的定义,熟练掌握这些定义是关键.4.(本题4分)(2020·2=0,则ba=( )A.7 B.- 18C.8 D.18【答案】B【分析】根据非负数的性质列出方程求出a、b的值,代入所求代数式计算即可.【详解】解:根据题意得:21030ab+⎧⎨-⎩==,解得:123a b ⎧-⎪⎨⎪⎩==,则a b =3(12)-=-18. 故选:B .【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.同时还考查了有理数的乘方 5.(本题4分)(2020·四川武外八年级月考)一个正偶数的算术平方根是m ,则和这个正偶数相邻的下一个正偶数的算术平方根是( )A .2m +B.m +CD【答案】C【分析】首先根据算术平方根的概念先求得这个正偶数为2m ,再根据算术平方根的定义即可求得与这个正偶数相邻的下一个正偶数的算术平方根.【详解】解:∵一个正偶数的算术平方根是m ,∴这个正偶数为2m ,∴与这个正偶数相邻的下一个正偶数为2m +2,∴故选C .【点睛】此题主要考查算术平方根的定义及其应用,比较简单.6.(本题4分)(2019·河北唐山市·八年级期末)已知一个表面积为212dm 的正方体,这个正方体的棱长为( )A .2dmBCD .3dm 【答案】B【分析】先求得正方体的一个面的面积,然后依据算术平方根的定义求解即可.【详解】设正方形的棱长为a,∵正方体有6个面且每个面都相等,∴正方体的一个面的面积为2,∴22a=,解得:a=∴dm.故选:B.【点睛】本题主要考查了算术平方根的定义,求得正方形的一个面的面积是解题的关键.7.(本题4分)(2020·浙江七年级期末)若1,38a b=-=,下列关于,a b运算结果最小的是()A.ab B.baC D.-a b【答案】B【分析】根据有理数的运算及立方根进行排除选项.【详解】解:∵1,38a b=-=,∴38ab=-,24ba=-12==-,258a b-=-,∴312524 828->->->-,∴B选项的结果最小;故选B.【点睛】本题主要考查有理数的运算及立方根,熟练掌握有理数的运算及立方根是解题的关键.8.(本题4分)(2021·江苏苏州市·1-最接近的是()A.1-B.0C.1D.2【答案】C【分析】由于4<5<9【详解】解:∵4<5<9,∴23.∵2.52=6.25>5,2.5,2,1最接近的整数是1.故选:C .【点睛】此题主要考查了无理数的估算能力,关键是掌握估算无理数的时候运用“夹逼法”.9.(本题4分)(2020·浙江七年级其他模拟)已知2316,27a b ==-,且||a b a b -=-,则+a b 的值为( )A .1-B .7-C .1D .1或7- 【答案】C【分析】根据平方根的定义及立方根的定义求出4,3a b =±=-,利用||a b a b -=-法确定a=4,b=-3,代入a+b 计算即可.【详解】∵2316,27a b ==-,∴4,3a b =±=-,∵||a b a b -=-,∴a b ≥,∴a=4,b=-3,∴a+b=4-3=1,故选:C .【点睛】此题考查平方根的定义及立方根的定义,绝对值的性质,有理数的加减法,正确理解平方根的定义及立方根的定义求出a及b的值是解题的关键.10.(本题4分)(2021·湖北十堰市·八年级期末)下面是一个按某种规律排列的数表,那么第7行的第2个数是:()A B C D.【答案】B【分析】根据观察,可得规律(n-1)最后一个数是(n-1),可得第n可得答案.【详解】,……第n第7行的第2故答案为:B.【点睛】本题是通过算术平方根的变化探究数字变化规律,观察得出规律是解题关键.二、填空题(共20分)11.(本题5分)(2020·________,2-的相反数是________.【答案】3;2. 【分析】根据平方运算,可得一个数的算术平方根,根据相反数的性质在这个数前加一“-”化简即可.【详解】解:9=3=;= ∴3,∵(222-=-=,∴22,故答案为:2.【点睛】本题考查了算术平方根和相反数的性质,注意先求出再求出9的算术平方根,熟悉相关性质是解题的关键. 12.(本题5分)(2021·广东茂名市·八年级期末)已知64的算术平方根为a ,立方根为b ,则3b a ⎛⎫= ⎪⎝⎭__________. 【答案】18【分析】根据算术平方根和立方根的定义求出a 和b ,再利用乘方的运算法则即可求解.【详解】解:64的算术平方根为8a ==,立方根为4b ==, 331128b a ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭.【点睛】本题考查算术平方根、立方根和有理数的乘方,掌握平方根和立方根的定义是解题的关键.13.(本题5分)(2019·渠县第三中学八年级月考)将1、2、3、6按如图方式排列.若规定(m ,n )表示第m 排从左向右第n 个数,则(15,7)表示的数是____.【答案】6【分析】所给的一系列数是4个数一循环,(15,7)表示第15排从左往右数的第7个数,根据奇数排最中间数的规律可得出最终结果.【详解】(15,7)表示第15排从左往右数的第7个数,由图可得:1、2、3、6四个数一循环,并且每个奇数排最中间的一个数为1,15为奇数排,最中间的数为这一排的第8个数,故可知,第76,则(15,76.6.【点睛】本题主要考查规律探索的数字变化类,还有实数,弄清题中的规律是解题的关键.14.(本题5分)(2020·浙江七年级期中)任何实数a ,可用[a]表示不大于a 的最大整数,如[4]=4,31⎡⎤=⎣⎦,现对72进行如下操作:72→72⎡⎣=8→82⎡=⎣→2=1,类似地:(1)对64只需进行________次操作后变为1;(2)只需进行3次操作后变为1的所有正整数中,最大的是________.【答案】3 255【分析】(1)根据题意的操作过程可直接进行求解;(2)根据题意可得最后取整为1,得出前面的一个数最大是3,再向前推一步取整的最大整数为15,依此可得出答案.【详解】解:(1)由题意得:64→=8→2=→=1, ∴对64只需进行3次操作后变为1,故答案为3;(2)与上面过程类似,有256→=16→4=→=2→1=,对256只需进行4次操作即变为1,类似的有255→=15→3=→=1,即只需进行3次操作即变为1,故最大的正整数为255;故答案为255.【点睛】本题主要考查算术平方根的应用,熟练掌握算术平方根是解题的关键.三、解答题(共90分)15.(本题8分)(2020·浙江七年级期末)计算:(1)()2412--⨯;(2【答案】(1)2;(2)0.【分析】(1)先计算乘方,再计算乘法和减法,即可得到答案;(2)由算术平方根和立方根进行化简,即可得到答案.【详解】解:(1)原式412422=-⨯=-=;(2330=-=.【点睛】本题考查了有理数的混合运算,算术平方根,立方根,解题的关键是熟练掌握运算法则进行解题.16.(本题8分)(2020·江苏扬州市·八年级月考)求下列x 的值.(1) 27x 3=-8 (2) (3x -1)2=9【答案】(1)x =23-;(2)x =43或x =23- 【分析】(1)利用立方根的定义求解;(2)利用平方根的定义求解.【详解】(1)解:3827x =, 23x =; (2)解:313x -=±,34x =或32x =-,43x =或23x =-. 【点睛】本题考查解方程,熟练掌握立方根、平方根的定义是关键.17.(本题8分)(2021·全国八年级)已知一个正数m 的平方根为2n +1和4﹣3n .(1)求m 的值;(2)|a ﹣3|(c ﹣n )2=0,a +b +c 的立方根是多少?【答案】(1)m =121;(2)a +b +c 的立方根是2【分析】(1)由正数的平方根互为相反数,可得2n +1+4﹣3n =0,可求n =5,即可求m ;(2)由已知可得a =3,b =0,c =n =5,则可求解.【详解】解:(1)正数m 的平方根互为相反数,∴2n +1+4﹣3n =0,∴n =5,∴2n +1=11,∴m =121;(2)∵|a ﹣3|(c ﹣n )2=0,∴a=3,b=0,c=n=5,∴a+b+c=3+0+5=8,∴a+b+c的立方根是2.【点睛】本题考查平方根的性质;熟练掌握正数的平方根的特点,绝对值和偶次方根数的性质是解题的关键.18.(本题8分)(2020·浙江杭州市·七年级其他模拟)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.【答案】(1)a=5,b=2,c=3;(2)3a-b+c的平方根是±4.【分析】(1)利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值;(2)把a、b、c的值代入代数式求出值后,进一步求得平方根即可.【详解】解:(1)∵5a+2的立方根是3,3a+b-1的算术平方根是4,∴5a+2=27,3a+b-1=16,∴a=5,b=2,∵c的整数部分,∴c=3,(2)由(1)可知a=5,b=2,c=3∴3a-b+c=16,3a-b+c的平方根是±4.【点睛】利用立方根的意义、算术平方根的意义、无理数的估算方法,求出a、b、c的值是解题关键.19.(本题10分)(2021·全国八年级)如图所示的正方形纸板是由两张大小相同的长方形纸板拼接而成的,已知一个长方形纸板的面积为162平方厘米.(提示:182=324)(1)求正方形纸板的边长;(2)若将该正方形纸板进行裁剪,然后拼成一个体积为343立方厘米的正方体,求剩余的正方形纸板的面积.【答案】(1)正方形纸板的边长为18厘米;(2)剩余的正方形纸板的面积为30平方厘米【分析】(1)根据正方形的面积公式进行解答;(2)由正方体的体积公式求得正方体的边长,然后由正方形的面积公式进行解答.【详解】解:(11622⨯=18(cm ),答:正方形纸板的边长为18厘米;(23343=7(cm ),则剪切纸板的面积=7×7×6=294(cm 2),剩余纸板的面积=324﹣294=30(cm 2)答:剩余的正方形纸板的面积为30平方厘米.【点睛】本题考查了立方根,算术平方根,解题的关键是熟悉正方形的面积公式和立方体的体积公式,属于基础题.20.(本题10分)(2020·重庆八年级月考)(1)已知x y =-,且x y x y +=--,求x y -的值(2)已知数a 与b 互为相反数,c 与d 互为倒数,20x +=,求式子200820093()()a b cd a b x+-+-的值. (325x =2y =,z 是9的算术平方根,求2x y z +-的平方根.【答案】(1)0x y -=;(2)18;(3)11【分析】()1由已知分别得到x y =或x y =-,0x y +<,进而确定x y =满足题意;()2由已知可知0a b +=,1cd =,2z =-,代入所求式子即可;()3由已知可知5x =,4y =,3z =,代入所求式子即可.【详解】解:()1x y =-,x y ∴=或x y =-, x y x y +=--,0x y ∴+<,x y ∴=,0x y ∴-=;()2a 与b 互为相反数,0a b ∴+=,c 与d 互为倒数,1cd ∴=,20x +=, 2x ∴=-,2008200933()11()0(2)8a b cd a b x +-∴+-=-=-; ()325x =,5x ∴=,2y =,4y ∴=,z 是9的算术平方根,3z ∴=,2104311x y z ∴+-=+-=.∴2x+y-z 的算术平方根为【点睛】本题考查实数的性质;熟练掌握相反数、倒数、平方根、绝对值的性质是解题的关键.21.(本题12分)(2018·河南郑州市·七年级期末)(1)已知,图1正方体的棱长为a ,体积是50,求正方体的棱长a ;(2)已知,图2是由16个边长为1的小正方形组成的大正方形,图中阴影部分也是一个正方形,求阴影部分正方形的边长b .【答案】(1350(210【分析】(1)直接由正方体的体积公式,即可求出棱长;(2)利用=4S S S -阴影大正方形小三角形,求出阴影部分的面积,即可求出b 的值.【详解】解:(1)350a =,350a ∴=(2)由題意可知,大正方形的面积是由阴影部分的面积和四个真角三角形的面积组成的,4416S =⨯=大正方形,133122S =⨯⨯=小三角形, ∴=4S S S -阴影大正方形小三角形 23=16410=2b -⨯=, 10b ∴=【点睛】本题考查了立方根和平方根的应用,比较简单,熟练掌握立方根和平方根的定义是关键.22.(本题12分)(2019·厦门市湖滨中学七年级期中)观察下列计算过程,猜想立方根.13=1 23=8 33=27 43=64 53=125 63=216 73=343 83=512 93=729(1)小明是这样试求出19683的立方根的.先估计19683的立方根的个位数,猜想它的个位数为 ,又由203<19000<303,猜想19683的立方根十位数为 ,验证得19683的立方根是 (2)请你根据(1)中小明的方法,猜想 ; .请选择其中一个立方根写出猜想、验证过程。
七年级下册数学期末考复习专题01平方根及立方根(知识点串讲)【含答案】
专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根练习1的平方根为( )A.B.C.4D.4±2±练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A.B.C.D.12±12-12116练习1_____.练习2.(·北京初二期中)16的算术平方根是。
例3.(·_________的算术平方根是_________.练习1.(·安徽初一月考)若2a-1和5-a是一个正数m的两个平方根,则m=_______练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n的值.二. 立方根1.立方根的定义:如果一个数的立方等于a,那么这个数叫做a的立方根或三次方根.这就是说,如果,那么x叫做a的立方根.记作:.3x a=2.立方根的性质:正数的立方根是正数,0的立方根是0,负数的立方根是负数.即任意数都有立方根.3.求一个数a的立方根的运算叫开立方,其中a叫做被开方数.备注:①符号中的根指数“3”不能省略;②对于立方根,被开方数没有限制,正数、零、负数都有唯一一个立方根.例1.(·安徽初一期中)64的立方根是( )A .4B .±4C .8D .±8练习1.(·淮南初一期中)下列说法中,不正确的是( )A .8的立方根是2B .﹣8的立方根是﹣2C .0的立方根是0D .64的立方根是±4练习2.(·北京市昌平区阳坊中学初二期中)的立方根是__________.8-例2.(合肥市第四十五中学初一期中)已知a +3和2a ﹣15是某正数的两个平方根,b 的立方根是﹣2,c 算术平方根是其本身,求2a +b ﹣3c 的值.练习1.(·淮南初一期中)已知的立方根是3,的算术平方根是4,c 5a 2+3a b 1+-分.(1(求a ,b ,c 的值;(2)求的平方根.3a b c -+练习2.(郑州市初二期中)已知2m+2的平方根是±4,3m+n+1的平方根是±5,求m+2n 的值.例3.(安徽初一期中)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=0专题01 平方根及立方根知识框架重难突破一. 平方根1.平方根(1)平方根的定义:如果一个数的平方等于a,这个数就叫做a的平方根,也叫做a的二次方根.备注:一个正数有两个平方根,这两个平方根互为相反数,零的平方根是零,负数没有平方根.(2)求一个数a的平方根的运算,叫做开平方.一个正数a的正的平方根表示为“”,负的平方根表示为“-”.(3)平方根的性质:正数a有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.2. 算术平方根(1)算术平方根的概念:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根.记为.(2)非负数a的算术平方根有双重非负性:①被开方数a是非负数;②算术平方根本身是非负数.a≥0,≥0.备注:||00a aa aa a>⎧⎪===⎨⎪-<⎩(3)利用算术平方根的非负性求值的问题,主要是根据被开方数是非负数,开方的结果也是非负数列出不等式求解.非负数之和等于0时,各项都等于0,利用此性质列方程解决求值问题.例1.(·安徽初一期中)下列说法正确的是( )A.-5是25的平方根B.25的平方根是5C.-5是(-5)2的算术平方根D.±5是(-5)2的算术平方根A试题分析:A、B、C、D都可以根据平方根和算术平方根的定义判断即可.解:A、﹣5是25的平方根,故选项正确;B、25的平方根是±5,故选项错误;C、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误;D、5是(﹣5)2的算术平方根,﹣5是(﹣5)2的平方根,故选项错误.故选A.练习1的平方根为( )A.B.C.4D.4±2±B,又∵(±2)2=4,∴4的平方根是±2±2,故选B.练习2.(·辽宁初二期中)9的平方根是( )A.B.C.D.3813±81±C解:9的平方根是.3±故选:C.例2.(2017·阜阳市第九中学初一期中)的算术平方根是( )14A .B .C .D .12±12-12116C 本题解析: ∵ ,211()24=∴的算术平方根为,1412+故选C.练习1 _____.2,的算术平方根是2,4 2.练习2.(·北京初二期中)16的算术平方根是。
(完整版)平方根和立方根知识点总结和练习
【基础知识巩固】一、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,2个正数x 叫做a 的算术平方根.a “根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小)a 倍,例如错误!未找到引用源。
=5,错误!未找到引用源。
=50。
(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
平方根(3个知识点+6类热点题型讲练+习题巩固)(解析版)七年级数学下册
第01讲平方根课程标准学习目标①算术平方根②算术平方根的估算③平方根的概念及其性质1.掌握算术平方根的概念及其性质,并能够熟练的进行应用及其求值。
2.掌握算术平方根的估算方法,能够进行大小比较。
3.掌握平方根的概念及其性质,并能熟练的应用及其求值。
知识点01算术平方根1.算术平方根的定义及其表示方法:一般地,如果一个正数x 的平方等于a ,即a x 2,那么这个正数x 叫做a 的算术平方根。
记为a。
读作根号a 。
所以a 就表示a 的算术平方根。
其中叫做根号,a 叫做被开方数。
规定0的算术平方根是0。
2.算术平方根的性质:①正数的算术平方根是正数,负数没有算术平方根。
0的算术平方根是0本身。
②算术平方根的双重非负性:只有非负数才有算术平方根,且它的算术平方根也是一个非负数。
所以算术平方根本身大于等于0,算术平方根的被开方数也大于等于0。
即a≥0,a≥0。
非负性的应用:几个非负数的和等于0,则这几个非负数分别等于0。
即若0...=+++m b a ,则====m b a 0。
③一个正数的算术平方根的平方等于这个数本身。
即()=2a a。
④一个数的平方的算术平方根等于这个数的绝对值。
再根据这个数的正负去绝对值符号。
即=2a a。
【即学即练1】1.求下列各数的算术平方根.(1)196(2)(3)0.04(4)102.【分析】利用算术平方根的定义计算即可得到结果.【解答】解:(1)=14;(2)=;(3)=0.2;(4)=10.【即学即练2】2.(1)=2,=3,=5,=6,=,对于任意实数0,猜想=|a |.(2)()2=4,()2=9,()2=25,()2=36,对于任意非负数a ,猜想()2=|a |.【分析】(1)由=|a |进行解答;(2)由()2=•进行计算.【解答】解:(1)=|2|=2,=|﹣3|=3,=|5|=5,=|﹣6|=6,=6,对于任意实数0,猜想=|a |.(2)()2==|4|=4,同理()2=9,()2=25,()2=36,对于任意非负数a ,猜想()2=|a |.故答案为:2,3,5,6,0,|a |;4,9,25,36.|a |.【即学即练3】3.如果,则=2.【分析】根据两个非负数的和是0,即可得到这两个数都等于0,从而得到关于a,b的方程求得a,b的值,进而求得代数式的值.【解答】解:根据题意得:a﹣2=0,4﹣b=0,解得:a=2,b=4,则==2.故答案为:2.知识点02估算算术平方根1.估算算术平方根的方法——夹逼法:具体步骤:①估算被开方数在那两个完全平方数之间(若一个数能被写成某个整数的平方,则称这个数为平方数);②确定无理数的整数步骤;③按要求估算。
(完整版)平方根和立方根知识点总结和练习
【基础知识巩固】一、平方根、算数平方根和立方根1、平方根(1)平方根的定义:如果一个数x 的平方等于a ,那么这个数x 就叫做a 的平方根.即:如果a x =2,那么x 叫做a 的平方根.(2)开平方的定义:求一个数的平方根的运算,叫做开平方.开平方运算的被开方数必须是非负数才有意义。
(3)平方与开平方互为逆运算:±3的平方等于9,9的平方根是±3(4)一个正数有两个平方根,即正数进行开平方运算有两个结果;一个负数没有平方根,即负数不能进行开平方运算(5)符号:正数a 的正的平方根可用a 表示,a 也是a 的算术平方根;正数a 的负的平方根可用-a 表示.(6)a x =2 <—> a x ±=a 是x 的平方 x 的平方是ax 是a 的平方根 a 的平方根是x2、算术平方根(1)算术平方根的定义: 一般地,如果一个正数x 的平方等于a ,2个正数x 叫做a 的算术平方根.a “根号a”,a 叫做被开方数.规定:0的算术平方根是0.也就是,在等式a x =2 (x≥0)中,规定a x =。
(2)a 的结果有两种情况:当a 是完全平方数时,a 是一个有限数;当a 不是一个完全平方数时,a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大;当被开方数缩小时与它的算术平方根也缩小。
一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小)a 倍,例如错误!未找到引用源。
=5,错误!未找到引用源。
=50。
(4)夹值法及估计一个(无理)数的大小 (5)a x =2 (x≥0) <—> a x =a 是x 的平方 x 的平方是ax 是a 的算术平方根 a 的算术平方根是x(6)正数和零的算术平方根都只有一个,零的算术平方根是零。
a (a ≥0) 0≥a==a a 2 ;注意a 的双重非负性:-a (a <0) a ≥0(7)平方根和算术平方根两者既有区别又有联系:区别在于正数的平方根有两个,而它的算术平方根只有一个;联系在于正数的正平方根就是它的算术平方根,而正数的负平方根是它的算术平方根的相反数。
平方根和立方根专题(比较难)
平方根和立方根专题(比较难) 平方根和立方根知识归纳】1.平方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术平方根,记为$\sqrt{x}$。
规定,$\sqrt{1}=1$。
2)一个正数的平方根有2个,它们互为相反数;只有1个平方根,它是本身;负数没有实数平方根。
3)两个公式:a)$(a+b)^2=a^2+2ab+b^2$;b)$(a-b)^2=a^2-2ab+b^2$。
2.立方根:1)若$x=a$($a>0$),那么$a$叫做$x$的算术立方根,记为$\sqrt[3]{x}$。
2)一个正数的立方根有1个,负数有1个立方根。
3)立方根的性质:a)$\sqrt[3]{a^2}=a^{\frac{2}{3}}$;b)$a^3=(\sqrt[3]{a})^3$。
4.已知某数有两个平方根分别是$a+3$与$2a-15$,求这个数。
设这个数为$x$,则有$(a+3)^2=x$,$2a-15$也是$x$的平方根,因此$(2a-15)^2=x$。
解得$a=7$,$x=64$。
5.已知:$2m+2$的平方根是$\pm4$,$3m+n+1$的平方根是$\pm5$,求$m+2n$的值。
由题意可列出方程组:begin{cases}sqrt{2m+2}=4\\sqrt{3m+n+1}=5end{cases}$解得$m=6$,$n=13$,因此$m+2n=32$。
6.已知$a<0$,$b<0$,求$4a^2+12ab+9b^2$的算术平方根。
4a^2+12ab+9b^2=(2a+3b)^2$,因此算术平方根为$|2a+3b|$。
7.甲乙二人计算$a+1-2a+a^2$的值,当$a=3$的时候,得到下面不同的答案:甲的解答:$a+1-2a+a^2=a+(1-a)^2=a+1-a=1$。
乙的解答:$a+1-2a+a^2=a+(a-1)^2=a+a-1=2a-1=5$。
哪一个解答是正确的?错误的解答错在哪里?为什么?乙的解答是正确的。
(完整)平方根和立方根知识点总结及练习,推荐文档
C. 0.7
)
1
C、- 与 2
2
D. 0.49
D、︱-2︱和 2
知识点二:计算类题型 1、25 的算术平方根是_______;平方根是_____. -27 立方根是_______.
___________,
___________,
___________.
2、 (4)2
; 3 (6)3
; ( 196Βιβλιοθήκη 2 =也就是,在等式 x 2 a (x≥0)中,规定 x a 。
(2) a 的结果有两种情况:当 a 是完全平方数时, a 是一个有限数;
当 a 不是一个完全平方数时, a 是一个无限不循环小数。
(3)当被开方数扩大时,它的算术平方根也扩大; 当被开方数缩小时与它的算术平方根也缩小。
一般来说,被开放数扩大(或缩小)a 倍,算术平方根扩大(或缩小) a 倍,例如
B、正数
C、非负数
D、非零数
2、要使 2x 6 有意义,x 应满足的条件是
x 1 3、当 x ________ 时,式子 x 2 有意义。 知识点五:有关平方根的解答题 1、一个正数 a 的平方根是 3x―4 与 2―x,则 a 是多少?
2、若 5a+1 和 a-19 是数 m 的平方根,求 m 的值。
1、(1)(2x-1)2-169=0;
(3) (x 2)3 125
(2) 4x 2 121
知识点四:关于有意义的题
a 本身为非负数,有非负性,即 a ≥0; a 有意义的条件是 a≥0。 要使 1 有意义,必须满足 a 0.
a
1、若 a 的算术平方根有意义,则 a 的取值范围是( )
A、一切数
3、已知 x、y 都是实数,且 y x 3 3 x 4 ,求 y x 的平方根。
专题01 平面直角坐标系的有关概念和性质(专题强化-基础)解析版
专题01 平面直角坐标系的有关概念和性质(专题强化-基础)一、单选题(共40分)1.(2020·广东省)若点(,4)P a a -在x 轴上,则点P 的坐标是( ) A .(0,4) B .(4,0)C .(4,0)-D .(0,4)-【答案】B【解析】根据点P 在x 轴上,得出a 40-=,求出a ,即可得到答案. 【详解】解:∵点(,4)P a a -在x 轴上, ∴a 40-=, ∴a 4=,∴点P 坐标是(4,0). 故选择:B.【点睛】本题考查了坐标轴上点的特点,解题的关键是熟记x 轴上的点,y=0.2.(2020·北京清华附中)如图是小数在4×4的小正方形组成的网格中画的一张脸的示意图,如果用(0,4)和(2,4)表示眼睛,那么嘴的位置可以表示成( )A .(2,1)B .(1,1)C .(1,﹣2)D .(1,2)【答案】D【解析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标. 【详解】解:建立平面直角坐标系如图,嘴的坐标为(1,2).故选:D.【点睛】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.5,6-在第几象限()3.(2018·浙江省)点()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【详解】∵点A的横坐标为正数、纵坐标为负数,∴点A(5,−6)在第四象限,故选:D.【点睛】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.(2019·重庆南开中学)如图,在平面直角坐标系中,点P的坐标为()A.(-1,2)B.(-1,-2)C.(2,-1)D.(1,2)【答案】A【解析】根据坐标系知识直接写出坐标即可.【详解】由图知P点坐标为(-1,2),故选A.【点睛】本题是对坐标系知识的考查,熟练掌握坐标系知识是解决本题的关键,难度较小.5.(2019·吉林省)在平面直角坐标系中,点(-1,m2+1)一定在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】本题主要考查平面直角坐标系中各象限内点的坐标的符号.应先判断出点的横纵坐标的符号,进而判断点所在的象限.解:因为点(-1,m 2+1)横坐标<0,纵坐标m 2+1一定>0,所以满足点在第二象限的条件. 故选B .6.(2020·北京)如图是某动物园的平面示意图,若以大门为原点,向右的方向为x 轴正方向,向上的方向为y 轴正方向建立平面直角坐标系,则驼峰所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】D【解析】首先以大门为坐标原点,建立平面直角坐标系,然后再根据驼峰的位置确定象限. 【详解】解:如图所示,熊猫馆、猴山、百草园都在第一象限,横、纵坐标都为正数; 驼峰在第四象限,横坐标为正数,纵坐标为负数, 故选D .【点睛】此题主要考查了坐标确定位置,关键是正确建立坐标系,掌握四个象限内点的坐标符号. 7.(2020·a a =3b b =,点A 的坐标为(a ,b ),则点A 的坐标不可能是( )A .(0,1)B .(1,﹣1)C .(0,0)D .(﹣1,0)【答案】D 【解析】a a =可以得到0a =或1a = 3b b =得到0b =或1b =±,依次判断A 点的坐标即可;【详解】a a =,3b b =,∴0a =或1a =,0b =或1b =±∴点,A a b ()的坐标不可能是()1,0-故选:D .【点睛】本题主要考查算术平方根和立方根的性质,熟练根据算术平方根和立方根的性质得到a 和b 的取值是解决本题的关键.8.(2020·湖北省)已知点P(a+5,a-1)在第四象限,且到x 轴的距离为2,则点P 的坐标为( ) A .(4,-2) B .(-4,2)C .(-2,4)D .(2,-4)【答案】A【解析】【详解】解:由点P 在第四象限,且到x 轴的距离为2,则点P 的纵坐标为-2, 即12a -=-解得1a =-54a ∴+=则点P 的坐标为(4,-2). 故选A .【点睛】本题考查点的坐标.9.(2020·武钢实验学校)如图,在平面直角坐标系中,矩形OABC 的顶点O 在坐标原点,边OA 在x 轴上,OC 在y 轴上,如果矩形'''OA B C 与矩形OABC 关于点O 位似,且矩形'''OA B C 的面积等于矩形OABC 面积的14,那么点'B 的坐标是( )A .(3,2)B .(2,3)--C .(2,3)或(2,3)--D .(3,2)或(3,2)--【答案】D【解析】根据面积比等于相似比的平方得到位似比为12,由图形得到点B 的坐标,根据注意在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标比等于±k 解答即可. 【详解】∵矩形OA′B′C′与矩形OABC 关于点O 位似,矩形OA′B′C′的面积等于矩形OABC 面积的14, ∴矩形OA′B′C′与矩形OABC 的位似比是12, ∵点B 的坐标是(6,4),∴点B′的坐标是(3,2)或(−3,−2), 故选:D.【点睛】此题考查位似变换,坐标与图形性质,解题关键在于得到位似比为12.10.(2019·鄱阳县第二中学)如图所示,A1(1,3),A2(32,3),A3(2,3),A4(3,0).作折线A1A2A3A4关于点A4的中心对称图形,再做出新的折线关于与x轴的下一个交点的中心对称图形……以此类推,得到一个大的折线.现有一动点P从原点O出发,沿着折线一每秒1个单位的速度移动,设运动时间为t.当t=2020时,点P的坐标为()A.(10103B.(20203C.(2016,0)D.(10103【答案】A【解析】把点P从O运动到A8作为一个循环,寻找规律解决问题即可.【详解】由题意OA1=A3A4=A4A5=A7A8=2,A1A2=A2A3=A5A6=A6A7=1,∴点P从O运动到A8的路程=2+1+1+2+2+1+1+2=12,∴t=12,把点P从O运动到A8作为一个循环,∵2020÷12=168余数为4,∴把点A3向右平移168×3个单位,可得t=2020时,点P的坐标,∵A3(23),168×6=1008,1008+2=1010,∴t=2020时,点P的坐标(10103,故选:A.【点睛】本题考查坐标与图形变化,规律型问题等知识,解题的关键是学会探究规律的方法.二、填空题(共20分)11.(2020·浙江省)若P(x,y)的坐标满足xy>0,且x+y<0,则点P在第________象限 .【答案】三【解析】先根据xy>0,且x+y<0,判断出x和y的取值范围,然后根据平面直角坐标系中点的符号特征判断点P所在的象限.【详解】∵xy >0,且x +y <0, ∴x <0,y <0, ∴点P 在第三象限. 故答案为三.【点睛】题考查了平面直角坐标系中点的坐标特征.第一象限内点的坐标特征为(+,+),第二象限内点的坐标特征为(-,+),第三象限内点的坐标特征为(-,-),第四象限内点的坐标特征为(+,-),x 轴上的点纵坐标为0,y 轴上的点横坐标为0.12.(本题5分)(2020·广东省中山中学)若点()31,3m --在第三象限,则m 的取值范围是_________. 【答案】13m <【解析】根据第三象限内点的横纵坐标是负数,列不等式求解即可.【详解】∵点(3m-1,-3)在第三象限,310m -< ,解得13m <.故答案是:13m <. 【点睛】本题考查一元一次不等式和象限,解题的关键是知道点在各个象限的特征. 13.(2017·山东省)若点P (2x +6,33x -)在y 轴上,则点P 的坐标为___________. 【答案】(0,-12) 【解析】分析:根据y 轴上的点的横坐标为0得出2x +6=0,求出x 的值即可得出点P 的坐标. 详解:∵点P (2x +6,3x -3)在y 轴上, ∴2x +6=0, 解得:x =-3,∴点P 的坐标为(0,-12). 故答案为:(0,-12).点睛:本题考查了坐标轴上点的坐标特征:x 轴上点的纵坐标为0,y 轴上点的横坐标为0.14.(2018·河南省)如图,以正六边形ABCDEF 的中心O 为原点建立平面直角坐标系,过点A 作AP 1⊥OB 于点P 1,再过P 1作P 1P 2⊥OC 于点P 2,再过P 2作P 2P 3⊥OD 于点P 3,依次进行……若正六边形的边长为1,则点P 2019的横坐标为_____.【答案】【解析】由题意得出,推出OP n=,得出OP2019=,推出OP2019在第三象限,由点P2019的横坐标的长为:OP2019即可得出结果.【详解】解:∵正六边形ABCDEF的中心O为原点建立平面直角坐标系,AP1⊥OB,P1P2⊥OC,P2P3⊥OD,∴△OAB为等边三角形,∠OAP1=30°,∴OP1=,同理:∠P2P1O=30°,∴OP2=,∠P3P2O=30°,∴OP3=,即OP n=,∴OP2019=,∵2019÷6=336…3,∴OP2019在第三象限,点P2019的横坐标的长为:=,∴点P2019的横坐标为﹣;故答案为:﹣.【点睛】本题考查了正六边形的性质、等边三角形的性质、含30°角的直角三角形的性质以及规律型;熟练掌握正六边形的性质,找出规律是解题的关键.三、解答题(共90分)15.如图所示,在平面直角坐标系中,已知()2,2A 、20()3)( 1B C --,、,.(1)在平面直角坐标系中画出ABC ; (2)ABC 的面积为 .【答案】(1)见解析;(2)5【解析】(1)在平面直角坐标系中画出△ABC 即可;(2)直接利用△ABC 所在矩形面积减去周围三角形面积进而得出答案. 【详解】(1)所作△ABC 如图所示 (2)△ABC 的面积是:111434231315222⨯-⨯⨯-⨯⨯-⨯⨯=. 【点睛】本题主要考查了坐标与图形,三角形面积求法,利用△ABC 所在矩形面积减去周围三角形面积是常用的方法.16.(本题8分)(2019·辽宁省)如图所示,在平面真角坐标系中,点A .B 的坐标分别为A (a ,0),B (b ,0),且a ,b 满足|a+1|+5-b =0,点C 的坐标为(0,3). (1)求a ,b 的值及S △ABC ; (2)若点M 在x 轴上,且S △ACM =13S △ABC ,试求点M 的坐标.【答案】(1)a =﹣1,b =5,S △ABC =9;(2)M 的坐标为(1,0)或(﹣3,0)【解析】(1)由5-b =0结合绝对值、算术平方根的非负性即可得出a 、b 的值,再结合三角形的面积公式即可求出S △ABC 的值;(2)设出点M 的坐标,找出线段AM 的长度,根据三角形的面积公式结合S △ACM =13S △ABC ,即可得出点M 的坐标.【详解】解:(1)由5-b 0,|a+1|≥05-b 0 ∴a+1=0,b ﹣5=0, ∴a =﹣1,b =5,∴点A (﹣1,0),点B (5,0). 又∵点C (0,3),∴AB =|﹣1﹣5|=6,CO =3, ∴S △ABC =12AB •CO =12×6×3=9. (2)设点M 的坐标为(x ,0),则AM =|x ﹣(﹣1)|=|x+1|,又∵S △ACM =13S △ABC , ∴12AM •OC =13×9, ∴12|x+1|×3=3, ∴|x+1|=2, 即x+1=±2, 解得:x =1或﹣3,故点M 的坐标为(1,0)或(﹣3,0).【点睛】此题考查的是非负性的应用、求点的坐标和根据点的坐标求面积,掌握绝对值和算术平方根的非负性和点的坐标与各线段长的关系是解决此题的关键.17.(2020·广东省铁一中学)如图,()23A -,,()43B ,,()13C --,.(1)点C 到x 轴的距离为:______;(2)ABC ∆的三边长为:AB =______,AC =______,BC =______; (3)当点P 在y 轴上,且ABP ∆的面积为6时,点P 的坐标为:______. 【答案】(1)3;(2)63761;(3)0,1,0,5 【解析】(1)点C 的纵坐标的绝对值就是点C 到x 轴的距离解答; (2)利用A ,C ,B 的坐标分别得出各边长即可;(3)设点P 的坐标为(0,y ),根据△ABP 的面积为6,A (−2,3)、B (4,3),所以12×6×|x−3|=6,即|x−3|=2,所以x =5或x =1,即可解答. 【详解】(1)∵C (−1,−3), ∴|−3|=3,∴点C 到x 轴的距离为3;(2)∵A (−2,3)、B (4,3)、C (−1,−3), ∴AB =4−(−2)=6,AC 221637+BC 225661+ (3)(3)设点P 的坐标为(0,y ),∵△ABP 的面积为6,A (−2,3)、B (4,3), ∴12。
(完整版)平方根和立方根经典讲义
内容基本要求略高要求较高要求平方根、算术平方根了解平方根及算术平方根的概念,会用根号表示非负数的平方根及算术平方根 会用平方运算求某些非负数的平方根立方根 了解立方根的概念,会用根号表示数的立方根会用立方根运算求某些数的立方根 实数了解实数的概念会进行简单的实数运算实数可按下图进行详细分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数与数轴上的点一一对应.(以下概念均在实数域范围内讨论) 平方根的定义及表示方法:如果一个数的平方等于a,那么这个数叫做a 的平方根. 也就是说,若2x a=,则x就叫做a 的平方根.一个非负数a 的平方根可用符号表示为“a”.算术平方根:一个正数a有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为a ;有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.知识点睛中考要求平方根和立方根一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥0a .平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.通过验算我们可以知道:⑴ 当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵ 平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2()a a =;②不管a 2(0)||(0)a a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<1a 2a 之间,即:120a a a ≤<范围.立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根, 一个数a 的立方根可用符号表3a ,其中“3”叫做根指数,不能省略. 前面学习的a 其实省略了根指数“2”2a a 3a “三次根号a ”2a “二次根号a ”a “根号a ”.任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.通过归纳我们可以知道:⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍. 33a a =,33()a a =⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<, 31a 32a 33312a a a < 利用这个结论我们可以来估算一个数的立方根的大致范围.重、难点难点:平方根的性质【例1】 判断下列各题,并说明理由819±. ( ) a ( ) ⑶2a 的算术平方根是a . ( ) ⑷ 2()5a -,则5a =-. ( ) 93=±. ( ) ⑹ 6-是2(6)-的平方根. ( ) ⑺ 2(6)-的平方根是6-.( )⑻ 若236x =,则366x =±=±. ( ) ⑼ 若两个数平方后相等,则这两个数也一定相等. ( ) ⑽ 如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) ⑾ 算术平方根一定是正数. ( ) ⑿ 2a -没有算术平方根. ( ) ⒀ 64的立方根是4±. ( )⒁ 1-是16-的立方根. ( )⒂ 33x x . ( ) ⒃ 互为相反数的两个数的立方根互为相反数. ( ) ⒄ 正数有两个互为相反数的偶数次方根,任何数都有唯一的奇数次方根. ( )【例2】 ⑴ 若22(2)a =-,则a = ;若22()(3)x -=-,则x = .⑵ 22x +,则(25)x +的平方根是 ;若25x =,则x = .⑶ 21a =-,则a ;若20a a =,则a . ⑷ 当0m <,2m 的算术平方根是 .⑸ 2()a b -算术平方根是a b -,则a b .⑹ 若一个自然数的一个平方根是m ,那么比它大1的自然数的平方根是 .⑺ 平方根等于本身的数是 ,算术平方根等于它本身的数是,立方根等于它本身的数是 ;平方根与立方根相等的数是 .例题精讲⑴21(51)30x --=; ⑵3(100.2)0.027x -=-3312573511164168---33321600010.125-【例4】 已知某正数的两个平方根是35a -与1a +,求这个正数.【例5】 已知3(2)27a b +=-235a b -=,求21(3)n a b ++的值(n 为正整数).【例6】 求22221995199519961996+⋅+的平方根.【例7】 (人大附单元测试)已知a 为实数,且满足200201a a a --=,求2200a -的值.【练习1】若22(3)x =-,33(2)y =-,求x y +所有可能值.【练习2】一个数的平方根是22a b +和4613a b -+,求这个数.【练习3】(101数学实验班单元练习)已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的平方根.【练习4】(2007年成都)22(5)0a b -+=,那么a b +的值为 .【练习5】22111a ab -+-+=,求a ,b 的值.课堂作业【练习6】若a 、b 为实数,且|1|20a ab --,求1111(1)(1)(2)(2)(1993)(1993)ab a b a b a b +++++++++的值.1. ⑴ (安顺市中考题)16的平方根是 ;2( 2.5)-的平方根是 ;2(2)-的平方根是 .⑵ (威海中考题38的相反数是 ;64的立方根是 .⑶ 平方根等于本身的数是 ,算术平方根等于它本身的数是 ,立方根 等于它本身的数是 ;平方根与立方根相等的数是 . ⑷ (江西省中考题)20n n 为( )A .2B .3C .4D .5 ⑸ (上海市中考题)12x -=的根是 . 31.815848 1.2231815848- _____. 2. 若一正数的平方根是36a +与29a +,求这个正数.3. 已知x y +的负的平方根是3-,x y -的立方根是3,求25x y -的平方根. 4. 243a b x a -+=+3a +的算术平方根,323b a y b -+=-3b -的立方根,求y x -的立方根.5.已知:|1|2340a b a b -+--.求:24a b +的立方根. 家庭作业。
平方根与立方根讲义(含答案)
平方根与立方根二、知识点+例题+练习知识点一:平方根与算术平方根1.平方根2.算术平方根3.平方根与算术平方根的区别(1)定义不同;(2)个数不同,一个正数有两个平方根,它们互为相反数,而一个正数的算术平方根只有一个; (3)表示方法不同,正数a 的平方根表示为a (4)取值范围不同,正数的算术平方根一定是正数,正数的平方根为一正一负.一、求平方根和算术平方根若求一个算式的算术平方根,一般是先求出算式的值,再求出它的算术平方根,有时也可通过简单的变形化成一个正数的平方的形式,从而提高运算的速度和准确率.【例1】(1)求下列各数的平方根和算术平方根:①4964;②0.0001;③5;④2(3)-(2)平方根等于本身的数是________,算术平方根等于它本身的数是________.(3)一个数的平方根是22a b +和4613a b -+,则这个数是________.【例2】求下列各式的值(1)(2(3(4(5(6(1)2612=⨯=;(27512+=;(30.30.80.5=-=-;(429 0.91365 =⨯=;(520==;(6110.8250.25 5.2 45=⨯+⨯=+=;【答案】(1)12;(2)12;(3)0.5-;(4)965;(5)20;(6)5.2.【变式训练1-1】9的算术平方根是A B.-3 C.±3 D.3【答案】D【解析】∵32=9,∴9的算数平方根是3,故选D.【变式训练1-2】(-2)2的算术平方根是A.2 B.±2 C.-2 D【答案】A【解析】∵(-2)2=4,4的算术平方根是2,∴(-2)2的算术平方根是2,故选A.【名师点睛】求一个式子的算术平方根时,先把这个式子化简,再按算术平方根的定义求化简所得数的算术平方根即可.【变式训练1-3】25的平方根是A.5 B.-5 C.D.±5【答案】D【解析】∵(±5)2=25,∴25的平方根为±5,故选D.【变式训练1-4】设a-3是一个数的算术平方根,那么A .a ≥0B .a >0C .a >3D .a ≥3【答案】D【解析】∵3a -是一个数的算术平方根,∴30a -≥,解得3a ≥,故选D .【名师点睛】本题考查的是算术平方根的“非负性”,即非负数a0≥. 【变式训练1-5】下列说法正确的是是2的一个平方根②–4的算术平方根是2 的平方根是±2 ④0没有平方根 A.①②③ B .①④C .①③D .②③④【答案】C是2的一个平方根,正确;②–4没有算术平方根,错误; 的平方根是±2,正确;④0有平方根,是0,错误;故选C . 【变式训练1-6】求下列各式的值:(12)3);(4 【解析】(1. (2)=-0.9. (3)=1114±. (4.二、利用平方根的知识解方程先将方程转化为一个式子的平方等于一个非负数的形式,再利用开平方发求解. 【例1】求下列各式中的x .(1)x 2=17;(2)212149x -=0.【解析】(1)因为2(17=,所以x =. (2)2121049x -=, 212149x =, x =117±. 【例2】求下列各式中x 的值:(1)4(x -1)2-16=0; (2)8(2x +1)3-1=0.【解析】(1)4(x -1)2-16=0, 4(x -1)2=16, (x -1)2=4, x -1=±2, x =-1或x =3.(2)8(2x +1)2-1=0, 8(2x +1)2=1, (2x +1)2=18,2x +1=±4,2x =-1±4,x =-128-或x =-12+8.【变式训练2--1】求下列等式中的x :(1)若x 2=1.21,则x =______; (2)x 2=169,则x =______;(3)若294x =,则x =______; (4)若x 2=2(2)-,则x =______. 【解析】一个正数的平方根有两个,且互为相反数.【答案】(1) 1.1x =±;(2)x =±13;(3)32x =±;(4)x 2=±.【变式训练2-2】求下列各式中x 的值.(1)29x =; (2)22500x -=(3)21(51)303x --= (4)2(100.2)0.64x -=【解析】本题考察的是平方根,正数的平方根有两个,且互为相反数.(1)3x =±; (2)225,5x x ==±;(3)221(51)3,(51)9,513,5133x x x x -=-=-=±=+;或513x =-,解得45x =或25x =-.(4)100.20.8,0.2100.8,0.210.8x x x -=±=±=或0.29.2x =解得54x =或x =46.【答案】(1)3x =±; (2)5x =±;(3)45x =或25x =-; (4)54x =或x =46.三、对定义和性质的考察【例1】判断下列各题,并说明理由(19±. ( ) (2)算术平方根一定是正数.( )(3 ( ) (4)2a -没有算术平方根. ( )(53=±. ( )(6)若236x =,则6x ==±. ( ) (7)6-是2(6)-的平方根. ( ) (8)2(6)-的平方根是6-. ( ) (9)2a 的算术平方根是a .( )(105,则5a =-.( )(11)若两个数平方后相等,则这两个数也一定相等. ( ) (12)如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( )【解析】(6)(7)(12)正确. 【变式训练3-1】判断题:(1 ( ) (2)2a 的算术平方根是a . ( )(36,则6a =-.( )(4)若264x =,则8x =±.( )(58±. ( ) (6)若两个数平方后相等,则这两个数也一定相等. ( ) (7)如果一个数的平方根存在,那么必有两个,且互为相反数. ( ) (8)2a -没有平方根. ( ) (9)如果两个非负数相等,那么他们各自的算术平方根也相等. ( ) 【解析】 (1)×;(2)×;(3)×;(4)√;(5)×;(6)×;(7)×;(8)×;(9)√.【例2】x 为何值时,下列各式有意义?(1;(2(3(4);(5);(6;【解析】略【答案】(1)0x≥;(2)x=0;(3)2x≤;(4)x为任意数;(5)x>1;(6)112x-≤≤.【变式训练3-2】若A=A的算术平方根是_________.【解析】A22(16)a+,故A的算术平方根为216a+.【答案】216a+【变式训练3-3】设a a的值是________.【解析】a48a必须是完全平方数,因为24843=⨯整数的整数a为3.【答案】3四、算术平方根非负性的应用常用的三类非负性的表示形式:绝对值、偶次幂、算术平方根,当几个非负数的和为0时,则每一个非负数均为0,这一结论在解答许多数学问题中起着关键的作用.【例1】a的取值为A.0 B.−12C.–1 D.1【答案】B【解析】∵2a+1≥02a+1=0,∴a的取值为–12.故选B.【例2】若实数x,y20(y+-=,则xy的值为__________.【答案】【解析】根据题意得:20xy⎧-=⎪⎨-=⎪⎩,解得2xy⎧=⎪⎨=⎪⎩,则xy=【例3】x、y0,则xy=__________.【答案】–6【解析】由题意可知:x+2=0,y–3=0,∴x=–2,y=3,∴xy=–6,故答案为:–6.【变式训练4-1】如果3a b-+【解析】由绝对值和算术平方根的非负性及相反数的定义解题.有题可知30220a ba b-+=⎧⎨+-=⎩解得4353ab⎧=-⎪⎪⎨⎪=⎪⎩3==.【答案】3【变式训练4-2】已知2b=,求11a b+的平方根.【解析】由题可知940490aa-≥⎧⎨-≥⎩,49a∴=,b=2,==【答案】【变式训练4-3】已知x,y,z满足21441()02x y z-+-=,求()x z y-的值.【解析】由题可知44102012x yy zz⎧⎪-+=⎪+=⎨⎪⎪-=⎩,解得121412xyz⎧=-⎪⎪⎪=-⎨⎪⎪=⎪⎩,()x z y-1111()()22416=--⨯-=.【答案】1 161.立方根的概念和性质2.开立方(1)定义:求一个数的立方根的运算,叫做开立方.(2)性质:①正数的立方根是正数,负数的立方根是负数,0的立方根是0;=③3==a .(3)开立方是一种运算,正如开平方与平方互为逆运算一样,开立方与立方也互为逆运算.开立方所得的结果就是立方根.3.平方根和立方根的区别和联系1.被开方数的取值范围不同在a 是非负数,即a ≥0中,被开方数a 是任意数.2.运算后的数量不同一个正数有两个平方根,负数没有平方根,而一个正数有一个正的立方根,负数有一个负的立方根.一、求立方根和开立方根据开立方与立方互为逆运算的关系,我们可以求一个数的立方根,或者检验一个数是不是某个数的立方根.【例1】-64的立方根是 A .-4B .4C .±4D .不存在【答案】A【解析】∵(−4)3=−64,∴−64的立方根是−4,故选A .【例2 A .-1B .0C .1D .±1【答案】C-1-1,故选A .【名师点睛】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【变式训练1-1】下列计算中,错误的是AB 34=-C 112= D .25=- 【答案】D【解析】A .正确;B .正确;C .正确;D D . 【变式训练1-2】求下列各数的立方根:(1)-343;(2)8125. 【解析】(1)因为3(7)343-=-, 所以-343的立方根是-7. (2)因为328()5125=, 所以8125的立方根是25. 【变式训练1-3】求下列各式的值:(123)【解析】(1(2(3【例3】求下列各式的值(1(2(3) (4)3(5(6(7【答案】(1)0.4;(2)2-;(3)25-;(4)64;(5)43;(6)9;(7)6.【变式训练1-4】(1)填表:(2)由上你发现了什么规律?用语言叙述这个规律.(3) 根据你发现的规律填空:① 1.442== ,= ;① 7.696=,= .【答案】(1)0.01; 0.1; 1; 10; 100.(2)当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍(3) ①14.42; 0.01442; ①0.7696.二、利用立方根的知识解方程只含有未知数或某个关于未知数的整体的三次方的方程,可以先通过“移项、合并同类项、系数化为1”等变形为x 3=m 或(ax +b )3=m 的形式,再利用开立方的方法求解.【例1】若a 3=–8,则a =__________.【答案】–2【解析】∵a 3=–8,∴a =–2.故答案为:–2.【例2】求下列各式中的x :(1)8x 3+125=0;(2)(x +3)3+27=0. 【解析】因为381250x +=, 所以38125x =-,(2)因为3(3)270x ++=,所以3(3)27x +=-, 所以33x +=-,所以6x =-.【变式训练2-1】求下列等式中的x :(1)若x 3=0.729,则x =______; (2)x 3=6427-,则x =______;(3)若52,则x =______; (4)若x 3=3(2)--,则x =______. 【答案】(1)0.9;(2)43-;(3)1258;(4)2. 三、对立方根定义和性质的考察【例1】(1)下列说法中,不正确的是 ( )A . 8的立方根是2B . 8-的立方根是2-C . 0的立方根是0D . a(2)61164-的立方根是( )A . -B .114±C . 114D .114- (3)某数的立方根是它本身,这样的数有( )A . 1个B . 2个C . 3个D . 4个(4)下列说法正确的是( )① 正数都有平方根;① 负数都有平方根,① 正数都有立方根;① 负数都有立方根;A .1个B .2个C .3个D .4个(5)若a 立方比a 大,则a 满足( )A . a <0B . 0< a <1C . a >1D . 以上都不对(6)下列运算中不正确的是( )A . =B . 3=C 1-D .4【答案】(1)D ;(2)D ;(3)C ;(4)C ;(5)D ;(6)B .【变式训练3-1】(1)若x 的立方根是4,则x 的平方根是______.(2)3311-+-x x 中的x 的取值范围是______,11-+-x x 中的x 的取值范围是______.(3)-27______.(40+则x 与y 的关系是______.(54=那么(66)2a -⋅的值是______.(6则x =______.(7)若m <0,则m .(8)若59x +的立方根是4,则34x +的平方根是______.【答案】 (1)8±;(2)任意数; x =1;(3)1-或5-;(4)互为相反数;(5)-12;(6)x =1; (7)0; (8) 四、平方根和立方根的综合应用在解决立方运算与开立方运算时,遵循的原则为正数的立方和立方根为正数,负数的立方和立方根为负数.【例1】64的平方根和立方根分别是A .8,4B .8,±4C .±8,±4D .±8,4【答案】D【解析】因为(±8)2=64,43=64,所以64的平方根和立方根分别是±8,4,故选D .【例9】已知2a -1的平方根是±3,3a +b -1的立方根是4,求a +b 的平方根.【名师点睛】此题主要考查了立方根和平方根的意义的应用,关键是根据平方根,求出2a -1=9,根据立方根求出3a +b -1=64,转化为解方程得问题解决.【例2】已知x +122x +y -6的立方根是2.(1)求x ,y 的值;(2)求3xy 的平方根.【解析】(1)∵x +12的算术平方根是,2x +y -6的立方根是2.∴x +12=2=13,2x +y -6=23=8,∴x =1,y =12.(2)当x =1,y =12时,3xy =3×1×12=36,∵36的平方根是±6,∴3xy 的平方根±6.【名师点睛】本题考查了算术平方根、立方根的性质,解决本题的关键是熟记平方根、立方根的定义,能熟练运用它们的逆运算是解本题的关键.【变式训练4-1】2(27)b +的立方根.【解析】由题可知80270a b +=⎧⎨+=⎩,解得827a b =-⎧⎨=-⎩,235,+= 【答案】1【变式训练4-2】已知2x -的平方根是±2,27x y ++的立方根是3,求22x y +的平方根.【解析】2(2)=±,6x ∴=;3=,8y ∴=,10==±.【答案】101.在,,0,-2这四个数中,是无理数的为()A.0 B. C. D.-22. 下列无理数中,与最接近的是()A. B. C. D.3. ±3是9的()A.平方根B.相反数C.绝对值D.算术平方根答案与解析1.【答案】 C.【解析】根据无理数的概念: 无限不循环的小数,就是无理数;无理数主要有三类: ①开方开不尽的, ②π及含π的倍分等, ③如:0.1010010001…这类的无规律的数.2.【答案】C.【解析】根据算数平方根的意义,4=16, 再根据算术平方根的性质,被开方数越大, 其算术根越大,通过观察发现17的被开方数最接近16的被开方数,从而得出答案.3.【答案】A.【解析】解: ∵ 9)3(2=±, 3±∴是9的平方根. 故选A.1. 若9.28,89.233==ab a ,则b 等于( )A. 1000000B. 1000C. 10D. 100002. 若2,3==b a ,且0<ab ,则:b a -= .3. 下列语句正确是( )A .无限小数是无理数B .无理数是无限小数C .实数分为正实数和负实数D .两个无理数的和还是无理数答案与解析1.【答案】B.【解析】 被开方数扩大2n 10倍,开方后结果扩大10n 倍;根据开方与乘法互逆运算可得.2.【答案】 -7. 【解析】2,3==b a a 3, 4.b ∴=±= 又0<ab ,a 3, 4.b ∴=-=则a-b = -7.3.【答案】B.【解析】 解: A.无限不循环小数是无理数, 故A 不符合题意;B.无理数是无限小数, 符合题意. C.实数分为正实数、负实数和0, 故C 不符合题意 D.互为相反数的两个无理数的和是0,不是无理数, 故D 不符合题意. 故答案为:B.1. 已知:A=y x y x -++3是3++y x 的算术平方根,B=322+-+y x y x 是y x 2+的立方根,求A -B 的平方根.2. 已知4+11的小数部分为a ,411-的小数部分为b .求:(1)a+b 的值;(2)a-b 的值.1.【答案】A=y x y x -++3是3++y x 的算术平方根,∴x-y=2; 又B=322+-+y x y x 是y x 2+的立方根,∴x-2y+3=3,得方程组x y 2x 2y 33-=⎧⎨-+=⎩,解得:x 42y =⎧⎨=⎩,∴A=3,B=2 ∴A-B=1.【解析】根据算术平方根的概念和立方根的概念解题.2.【答案】3114<<,∴411+的小数部分a=4+11-7=11-3411-的小数部分b=4-11;(1)a+b=11-3+4-11=1;(2)a-b=11-3-(4-11)=-7.【解析】首先估算出11的取值范围:3<11<4,进一步确定a 、b 的数值,代入求得(1)(2)即可.基础1. 下列说法不正确的是( )A .8的立方根是2B .-8的立方根是-2C .0的立方根是0D .125的立方根是±5四、课后作业2. 所有和数轴上的点组成一一对应的数组成( )A .整数B .有理数C .无理数D .实数3. 若2m-1没有平方根,则m 的取值范围是________.答案与解析1.【答案】D.【解析】 125的立方根是5,D 选项错误.根据立方根的定义,因为一个数的立方根只有一个,一个正数的立方根是正数,一个负数的立方根仍是负数.2.【答案】D.【解析】数轴上的点和实数是一一对应的关系.3.【答案】21≥m 【解析】 解: 负数没有平方根. 012≥-∴m , 21≥m . 故答案为:21≥m .1. 估计38的值在( )A .4和5之间B .5和6之间C .6和7之间D .7和8之间2. 化简式子 )4(2-结果正确的是( )A .±4B .4C .-4D .±23. 一个正数x 的平方根是3a -4和1-6a ,求a 及x 的值.答案与解析1.【答案】C .【分析】因为6的平方是36, 7的平方是49.而38在36和49 的中间,所以38的值在6和7之间. 故选:C .2.【答案】B.【分析】应先算16)4(2=- , 再将求16的算数平方根即可.3.【答案】 解: 由题意得3a-4+1-6a=0, 解得a=-1则3a-4=-7, 4972==x .答:a 的值是-1,x 的值是49.1. 如图,矩形OABC 的边OA 长为2,边AB 长为1,OA 在数轴上,以原点O 为圆心,对角线OB 的长为半径画弧,交正半轴于一点,则这个点表示的实数是( )A .3B .8C .5D .2.52. 已知x+12平方根是±13,2x+y ﹣6的立方根是2,求3xy 的算术平方根.3. 已知2a ﹣1的平方根是±3,3a+b ﹣1的立方根是4,求a+b 的平方根.答案与解析1.【答案】C .【分析】解答:2<5<2.5<,2与离的最近,故选C.由图可知这个点与2离的最近,而其中四个选项中的数与2离的最近且大于1的数是.2.【答案】解: 由题意可知: X+12=13,2X+y-6=8,∴ x=1,y=13×y=3×1×12=36. 36的算术平方根为6.3.【答案】∵ 2a﹣1的平方根是±3,∴ 2a﹣1=9,∴ a=5,∵ 3a+b﹣1的立方根是4,∴ 3a+b﹣1=64,∴ b=50,∴ a+b=55,.∴ a+b的平方根是55。
(完整版)平方根立方根知识点归纳及常见题型
“平方根”与“立方根”知识点小结一、知识要点1、平方根:⑴、定义:如果x 2=a ,则x 叫做a 的平方根,记作“(a 称为被开方数)。
⑵、性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。
⑶、算术平方根:正数a 的正的平方根叫做a ”。
2、立方根:⑴、定义:如果x 3=a ,则x 叫做a ”(a 称为被开方数)。
⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。
3、开平方(开立方):求一个数的平方根(立方根)的运算叫开平方(开立方)。
二、规律总结:1、平方根是其本身的数是0;算术平方根是其本身的数是0和1;立方根是其本身的数是0和±1。
2、每一个正数都有两个互为相反数的平方根,其中正的那个是算术平方根;任何一个数都有唯一一个立方根,这个立方根的符号与原数相同。
30a ≥0。
4、公式:⑴2=a (a ≥0)(a 取任何数)。
5、非负数的重要性质:若几个非负数之和等于0,则每一个非负数都为0例1 求下列各数的平方根和算术平方根(1)64;(2)2)3(-; (3)49151; ⑷ 21(3)- 例2 求下列各式的值(1)81±; (2)16-; (3)259; (4)2)4(-.(5)44.1,(6)36-,(7)4925±(8)2)25(-例3、求下列各数的立方根:⑴ 343; ⑵10227-; ⑶ 0.729二、巧用被开方数的非负性求值.当a ≥0时,a 的平方根是±a ,即a 是非负数. 例4、若,622=----y x x 求y x 的立方根.练习:已知,21221+-+-=x x y 求y x 的值.三、巧用正数的两平方根是互为相反数求值.当a ≥0时,a 的平方根是±a ,而.0)()(=-++a a例5、已知:一个正数的平方根是2a-1与2-a ,求a 的平方的相反数的立方根.练习:若32+a 和12-a 是数m 的平方根,求m 的值.四、巧解方程例6、解方程(1)(x+1)2=36 (2)27(x+1)3=64五、巧用算术平方根的最小值求值. 0≥a ,即a=0时其值最小,换句话说a 的最小值是零.例4、已知:y=)1(32++-b a ,当a 、b 取不同的值时,y 也有不同的值.当y 最小时,求b a 的非算术平方根.23(2)0y z -++=,求xyz 的值。
(完整版)平方根和立方根专题(比较难)
平方根和立方根【知识归纳】1.平方根:(1)若x 2=a (a >0),那么a 叫做x 的 , 我们把 称为算术平方根,记为 。
规定,0的算术平方根为 。
(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。
(3)两个公式:(a )2= ( );=2a 2.立方根:1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ;2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。
3)立方根的性质:(1)()33a = ,(2)33a = .4).已知某数有两个平方根分别是a +3与2a -15,求这个数.5).已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.6).已知a <0,b <0,求4a 2+12ab +9b 2的算术平方根.7)甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案:甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1. 乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5. 哪一个解答是正确的?错误的解答错在哪里?为什么?【巩固练习】:1、16的算术平方根是_______,平方根是_______;2、若x 2=16,则5-x 的算术平方根是 ;3、3664-的平方根是 ,算术平方根是 ;4、若4a +1的平方根是±5,则a 2的算术平方根是 ;5、0)2(12=-+-b a ,则b a +的平方根为 .6.第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长. 平方根立方根的综合应用1、若x 、y 为实数,且20x y y ++-=,则2010()x y的值为 2、若22-a 与|b +2|互为相反数,则(a -b )2=__________3、若2x +1+|y -1|=0,则x 2+y 2=__________4、已知x 、y 为实数,且499+---=x x y .求y x +的值5、已知,,a b c 实数在数轴上的对应点如图所示,化简22()a a b c a b c --+-+-6、已知实数,,a b c 满足2112()022a b b c c -+++-=,求()a b c +的值7、已知51024a a b -+-=+,求,a b 的值8、已知20092010a a a -+-=,求22009490a -+的值9、如果22a a b +=--,且3b a m =+,求m 的值是多少?10、已知120a ab -+-=,1111(1)(1)(2)(2)(1998)(1998)ab a b a b a b +++++++++求的值11、一个三角形的两边长为3,2,则它的第三边长可能是( )A.0.2 B.1 C. 32+ D.512、一个三角形的三边分别是,,a b c ,则2()a b c +-=______________,2()a b c --=________________13、求下列各式中的x(1)(x-2)2-4=0 (2)(x+3)3 +27=0 (3) 271253+x =0 (4) (2x-1)2=2514、已知x 是10 的整数部分,y 是10 的小数部分,求 110x y --()的平方根。
平方根和立方根知识点总结
平方根和立方根知识点总结平方根和立方根是数学中非常重要的概念,它们在解决各种数学问题以及实际应用中都有着广泛的用途。
接下来,咱们就详细地聊聊这两个重要的知识点。
一、平方根(一)定义如果一个数的平方等于a,那么这个数叫做a 的平方根。
也就是说,若 x²= a,则 x 叫做 a 的平方根。
(二)表示方法一个正数 a 的正的平方根记作“√a”,读作“根号a”;a 的负的平方根记作“ √a ”,读作“负根号a”。
(三)性质1、正数有两个平方根,它们互为相反数。
比如 9 的平方根是 ±3,因为 3²= 9,(-3)²= 9 。
2、 0 的平方根是 0 。
这是个比较特殊的情况,要牢记。
3、负数没有平方根。
(四)开平方求一个数 a 的平方根的运算,叫做开平方。
开平方与平方互为逆运算。
(五)算术平方根正数 a 的正的平方根叫做 a 的算术平方根,记作√a 。
0 的算术平方根是 0 。
例如,√4 = 2 ,这里的 2 就是 4 的算术平方根。
(六)平方根的应用在实际生活中,平方根常用于计算直角三角形的边长、求解一些几何图形的面积和体积等问题。
比如,已知一个正方形的面积是 25 平方厘米,那么它的边长就是√25 = 5 厘米。
二、立方根(一)定义如果一个数的立方等于 a,那么这个数叫做 a 的立方根。
即若 x³=a,则 x 叫做 a 的立方根。
(二)表示方法数 a 的立方根记作“³√a”,读作“三次根号a”。
(三)性质1、正数的立方根是正数。
比如 8 的立方根是³√8 = 2 。
2、负数的立方根是负数。
例如,-8 的立方根是³√ 8 = 2 。
3、 0 的立方根是 0 。
(四)开立方求一个数 a 的立方根的运算,叫做开立方。
开立方与立方互为逆运算。
(五)立方根的应用在物理学、工程学等领域,立方根常用于计算物体的体积、密度等问题。
比如,已知一个正方体的体积是 27 立方米,那么它的棱长就是³√27 = 3 米。
(完整版)平方根和立方根专题(比较难)
平方根和立方根【知识归纳】1.平方根:(1)若x 2=a (a >0),那么a 叫做x 的 , 我们把 称为算术平方根,记为 。
规定,0的算术平方根为 。
(2)一个 的平方根有2个,它们互为 ; 只有1个平方根,它是0本身; 没有平方根。
(3)两个公式:(a )2= ( );=2a 2.立方根:1)若x 3=a (a >0),那么a 叫做x 的 ,记为 ;2)一个正数 的立方根有 个,0的个立方根为 ,负数有 个立方根。
3)立方根的性质:(1)()33a = ,(2)33a = .4).已知某数有两个平方根分别是a +3与2a -15,求这个数.5).已知:2m +2的平方根是±4,3m +n +1的平方根是±5,求m +2n 的值.6).已知a <0,b <0,求4a 2+12ab +9b 2的算术平方根.7)甲乙二人计算a +221a a +-的值,当a =3的时候,得到下面不同的答案:甲的解答:a +221a a +-=a +2)1(a -=a +1-a =1. 乙的解答:a +221a a +-=a +2)1(-a =a +a -1=2a -1=5. 哪一个解答是正确的?错误的解答错在哪里?为什么?【巩固练习】:1、16的算术平方根是_______,平方根是_______;2、若x 2=16,则5-x 的算术平方根是 ;3、3664-的平方根是 ,算术平方根是 ;4、若4a +1的平方根是±5,则a 2的算术平方根是 ;5、0)2(12=-+-b a ,则b a +的平方根为 .6.第一个正方体纸盒的棱长为6 cm ,第二个正方体纸盒的体积比第一个纸盒的体积大127 cm 3,求第二个纸盒的棱长. 平方根立方根的综合应用1、若x 、y 为实数,且20x y y ++-=,则2010()x y的值为 2、若22-a 与|b +2|互为相反数,则(a -b )2=__________3、若2x +1+|y -1|=0,则x 2+y 2=__________4、已知x 、y 为实数,且499+---=x x y .求y x +的值5、已知,,a b c 实数在数轴上的对应点如图所示,化简22()a a b c a b c --+-+-6、已知实数,,a b c 满足2112()022a b b c c -+++-=,求()a b c +的值7、已知51024a a b -+-=+,求,a b 的值8、已知20092010a a a -+-=,求22009490a -+的值9、如果22a a b +=--,且3b a m =+,求m 的值是多少?10、已知120a ab -+-=,1111(1)(1)(2)(2)(1998)(1998)ab a b a b a b +++++++++求的值11、一个三角形的两边长为3,2,则它的第三边长可能是( )A.0.2 B.1 C. 32+ D.512、一个三角形的三边分别是,,a b c ,则2()a b c +-=______________,2()a b c --=________________13、求下列各式中的x(1)(x-2)2-4=0 (2)(x+3)3 +27=0 (3) 271253+x =0 (4) (2x-1)2=2514、已知x 是10 的整数部分,y 是10 的小数部分,求 110x y --()的平方根。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题01 平方根和立方根(专题强化-基础)一、单选题(共40分)1.(本题4分)(2020·浙江七年级期末)表示5的算术平方根的是()2A B.C.D.【答案】A【分析】根据算术平方根的定义即可求解.【详解】解:5故选:A.【点睛】本题考查了算术平方根的定义,熟知算术平方根的定义是解题的关键,注意一个正数的算术平方根是正数,0的算术平方根是0.2.(本题4分)(2021·的平方根为()A.8B.8-C.D.±【答案】D【分析】=,再根据平方根的定义,即可解答.8【详解】=,8的平方根是±8故选:D.【点睛】=.83.(本题4分)(2020·河北邢台市·金华中学八年级期中)已知实数a的一个平方根是2-,则此实数的算术平方根是()A .2±B .2-C .2D .4【答案】C【分析】 根据平方根的概念从而得出a 的值,再利用算术平方根的定义求解即可.【详解】∵-2是实数a 的一个平方根,∴4a =,∴4的算术平方根是2,故选:C .【点睛】本题主要考查了平方根以及算术平方根,在解题时要注意一个正数有两个平方根,它们互为相反数.一个正数的算术平方根是它的正的平方根.4.(本题4分)(2021·江苏南京市·八年级期末)若方程2(1)5x -=的解分别为,a b ,且a b >,下列说法正确的是( )A .a 是5的平方根B .b 是5的平方根C .1a -是5的算术平方根D .1b -是5的算术平方根【答案】C【分析】根据方程解的定义和算术平方根的意义判断即可.【详解】∵方程2(1)5x -=的解分别为,a b ,∴2(1)5a -=, 2(1)5b -=,∴a-1,b-1是5的平方根,∵a b >,∴11a b ->-,∴a-1是5的算术平方根,故选C.【点睛】本题考查了方程解的定义,算术平方根的定义,熟记定义,灵活运用定义是解题的关键.5.(本题4分)(2020·广东深圳市东升学校八年级月考)已知|a|=57,则a−b 的值为( ) A .2或12 B .2或−12 C .±2或±12 D .−2或−12【答案】C【分析】根据绝对值的性质和算术平方根的定义求出a 、b 的值,然后分情况讨论求解.【详解】解:∵|a|=5,∴a=±5,b=±7,当a=5,b=7时,a-b=5-7=-2,当a=5,b=-7时,a-b=5-(-7)=12,当a=-5,b=7时,a-b=(-5)-7=-12,当a=-5,b=-7时,a-b=(-5)-(-7)=2,综上所述,a+b 的值是±2或±12.故选:C .【点睛】本题考查了算术平方根,绝对值的性质和有理数的加法,难点在于要分情况讨论.6.(本题4分)(2020·武威第九中学七年级期中)下列各式中,正确的是( )A =±2B .2=C 2=-D 4=-【答案】D【分析】根据平方根及立方根的定义依次计算各项后即可解答.【详解】选项A ,选项A 错误;选项B ,2=±,选项B 错误;选项C =,选项C 错误;选项D 4=-,选项D 正确.故选D .【点睛】本题考查了平方根及立方根的定义,熟练运用平方根及立方根的定义是解决问题的关键.7.(本题4分)(2020·曲阳县教育和体育局教研室八年级期中)下列说法中,正确的是( )A 5B .-42的平方根是±4C .64的立方根是±4D .0.01的算术平方根是0.1 【答案】D【分析】根据平方根、算术平方根及立方根的定义逐一判断即可得答案.【详解】,故该选项错误,不符合题意,B.-42=-16,负数没有平方根,故该选项错误,不符合题意,C.64的立方根是4,故该选项错误,不符合题意,D. 0.01的算术平方根是0.1,故该选项正确,符合题意,故选:D .【点睛】此题主要考查了平方根、算术平方根、立方根的含义和求法,要熟练掌握,解答此题的关键是要明确:(1)一个正数有两个平方根,这两个平方根互为相反数;(2)一个正数或0只有一个算术平方根;(3)一个数的立方根只有一个.8.(本题4分)(2020·邢台市开元中学八年级月考)下列运算中:5112=;2==-;3=8=,错误的个数有( )A .1个B .2个C .3个D .4个 【答案】D【分析】对每个选项依次计算判断即可.【详解】2131=,故该项错误;3=-,故该项错误;4=,故该项错误.共4个错误的,故选:D.【点睛】此题考查平方根、立方根的化简,熟记平方根、立方根的性质即可正确化简.9.(本题4分)(2020·四川遂宁市·射洪中学八年级月考)下列说法中,正确的个数是( ).(1)64-的立方根是4-;(2)49的算术平方根是7±;(3)2;(4是7的平方根.A .1B .2C .3D .4 【答案】C【解析】4=-,故(1)对;根据算术平方根的性质,可知49的算术平方根是7,故(2)错;根据立方根的意义,可知23)对;是7的平方根.故(4)对;故选C.10.(本题4分)(2020·浙江杭州市·≈2.872约等于( )A .287.2B .28.72C .13.33D .133.3 【答案】C【分析】【详解】1.3331013.33==≈⨯=.故答案为:C .【点睛】本题考查了立方根的定义,正确变形、熟练掌握立方根的概念是关键.二、填空题(共20分)11.(本题5分)(2019·西安市铁一中学八年级月考)2-_______的算术平方根是______________.21214【分析】根据绝对值的性质进行求绝对值,利用算术平方根和立方根,倒数的定义求解. 【详解】解:因为2根据负数的绝对值等于它的相反数,所以2-2;因为211= 416⎛⎫⎪⎝⎭,14,又因为211= 24⎛⎫⎪⎝⎭,的算术平方根是1 2 ;因为4的立方是64,=4,因为4的倒数是1 4 ,的倒数是1 4 .故答案为: 2;12;14.【点睛】本题主要考查绝对值,算术平方根,立方根的定义,解决本题的关键是要熟练掌握绝对值,算术平方根,立方根的定义.12.(本题5分)(2020·安徽芜湖市·)若一个正数的平方根是2a +1和﹣a +2,则a =_____,这个正数是_____.【答案】-3 25【分析】根据已知得出方程2a +1﹣a +2=0,求出即可.【详解】解:∵一个正数的平方根是2a +1和﹣a +2,∴2a +1﹣a +2=0,解得:a =﹣3,即这个正数是[2×(﹣3)+1]2=25,故答案为:﹣3;25.【点睛】本题考查了对平方根的应用,注意:正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.13.(本题5分)(2020·江西南昌市·七年级期中)已知a b 、是有理数,若2364,64a b ==,则+a b 的所有值为____________.【答案】12或4-【分析】根据平方和立方的意义求出a 与b 的值,然后代入原式即可求出答案.【详解】解:∵a 2=64,b 3=64,∴a=±8,b=4,∴当a=8,b=4时,∴a+b=8+4=12,当a=-8,b=4时,∴a+b=-8+4=-4,故答案为:12或-4【点睛】本题考查有理数,解题的关键是熟练运用有理数的运算法则,本题属于基础题型.14.(本题5分)(2020·浙江杭州市·七年级期末)以下几种说法:①正数、负数和零统称为有理数;②近似数1.70所表示的准确数a 的范围是1.695 1.705a <4±;④立方根是它本身的数是0和1;其中正确的说法有:_____.(请填写序号)【答案】②【分析】根据有理数、近似数字、平方根、立方根等概念即可判断.【详解】解:①正有理数、负有理数和零统称为有理数,故原说法错误;②根据四舍五入可知,近似数1.70所表示的准确数a的范围是1.695 1.705a<,说法正确;164=的平方根是2±,原说法错误;④立方根是它本身的数是0和±1,原说法错误;故答案为:②.【点睛】本题考查学生对概念的理解,解题的关键是正确理解有理数、近似数字、平方根、立方根等概念,本题属于基础题型.三、解答题(共90分)15.(本题8分)(2019·全国七年级课时练习)下列各数是否有平方根?若有,求出它的平方根;若没有,请说明理由.(1)(-3)2;(2)-42.【答案】(1)有,±3;(2)没有平方根,因为-42是负数.【分析】根据正数有两个平方根,负数没有平方根,可得答案.【详解】解:(1) (-3)2=9,有平方根,平方根为±3;(2) -42=-16,没有平方根,因为-42是负数.【点睛】本题考查了平方根的定义,解题的关键是熟练掌握平方根的定义进行解题.16.(本题8分)(2020·山东济南市·八年级月考)求下列各数的平方根.(1)0.09 (2)49121(3)410-(4256【答案】(1)0.3±;(2)711±;(3)210-±;(4)4±.【分析】(1)根据平方根的定义即可得;(2)根据平方根的定义即可得;(3)根据平方根的定义即可得;(4【详解】(1)因为()20.30.09±=,所以0.09的平方根是0.3±;(2)因为274911121⎛⎫±= ⎪⎝⎭, 所以49121的平方根是711±;(3)因为()2241010--±=,所以410-的平方根是210-±;(416=,()2416±=,4±.【点睛】本题考查了平方根,掌握理解定义是解题关键.17.(本题8分)(2019·全国七年级课时练习)求下列各数的值:(1(2)(3).【答案】(1)100;(2)-0.1;(3)-2.【分析】(1)根据开方运算的方法解答即可;(2)根据开方运算的方法解答即可;(3)根据开方运算的方法解答即可.【详解】解:(1;(2)-0.1;(3)=-2.【点睛】此题考查了求一个数的平方根,掌握平方与开平方是互逆运算是解题的关键.18.(本题8分)(2018·广东省东城春晖学校八年级期末)计算;(-3)2-(0.5)-1+(0.2)0【答案】8【分析】根据平方根的性质,负整数指数幂,零指数幂,进行运算即可.【详解】原式=9-2+1=8,故答案为:8.【点睛】此题考查平方根,负整数指数幂,零指数幂,解题关键在于掌握运算法则.19.(本题10分)(2020·余干县第二中学七年级月考)如果一个正数m 的两个平方根分别是2a -3和a -9,求m+2的立方根.【答案】3【分析】根据一个正数的两个平方根互为相反数求出a 的值,利用平方根和平方的关系求出m ,再求出m +2的值,再求其立方根.【详解】解:∵一个正数的两个平方根互为相反数,∴(2a -3)+(a -9)=0,解得:a =4,∴这个正数为22(23)525m a =-==,∴+225+227m ==,3=,故答案为:3.【点睛】本题考查了平方根的性质,平方根和平方的关系,立方根的性质.解决本题的关键是求出a .平方根的性质:一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.20.(本题10分)(2020·浙江宁波市·七年级期中)已知8-的平方等于a ,b 立方等于27-,2c +的算术平方根为3.(1)写出a ,b ,c 的值; (2)求21252a b c -+的平方根. 【答案】(1)64,3,7a b c ==-=;(2)7±. 【分析】(1)根据乘方、开方以及算术平方根的概念即可求得a 、b 、c 的值; (2)将(1)中求得的a 、b 、c 的值代入21252a b c -+,再求平方根即可. 【详解】(1)64,3,7a b c ==-= (2)当64,3,7a b c ==-=时,21252a b c -+=21`642(3)572⨯-⨯-+⨯ =4921252a b c -+的平方根为7± 【点睛】本题考查乘方和开平方的概念以及求一个数的平方根,难度不大,熟练掌握各个知识点是解题关键.21.(本题12分)(2020·浙江锦绣育才教育科技集团有限公司七年级月考)(1,z 是9的平方根,求2x+y-5z 的值.(2)已知a ,b 互为相反数且a≠0,c ,d 互为倒数,m 是最大的负整数,求m 2-a b +20122013a b +()-cd 的值 【答案】(1)-13或17;(2)1 【分析】(1)根据平方根和立方根的意义求出x 、y 、z 的值,然后代入题中代数式求值;(2)根据已知条件可以得到a=-b ,a+b=0,cd=1,m=-1,然后代入题中代数式求值 . 【详解】解:(1)由已知得:()35283x y z ===-=-==±,,,所以:①当z=3时,2x+y-5z=10+(-8)-15=-13; ②当z=-3时,2x+y-5z=10+(-8)+15=17; (2)由已知得:a=-b ,a+b=0,cd=1,m=-1, ∴原式=()()22012011112013⨯---+-=.【点睛】本题考查实数的运算,熟练掌握有关概念和运算方法是解题关键.22.(本题12分)(2020·北京市第十三中学分校)对于结论:当a+b =0时,a 3+b 3=0也成立.若将a 看成a 3的立方根,b 看成b 3的立方根,由此得出这样的结论:“如果两数的立方根互为相反数,那么这两个数也互为相反数”(1)举一个具体的例子来判断上述结论是否成立;(2互为相反数,且x+5的平方根是它本身,求x+y 的立方根. 【答案】(1)成立,例子见解析;(2)﹣2 【分析】(1(2)根据互为相反数的和为0,列等式可得y 的值,根据平方根的定义得:x+5=0,计算x+y 并计算它的立方根即可. 【详解】解:(10,则2+(﹣2)=0,即2与﹣2互为相反数; 所以“如果两数的立方根互为相反数,那么这两个数也互为相反数”成立;(2)=0, ∴8﹣y+2y ﹣5=0, 解得:y =﹣3,∵x+5的平方根是它本身,∵x+5=0,∴x=﹣5,∴x+y=﹣3﹣5=﹣8,∴x+y的立方根是﹣2.【点评】本题考查立方根和平方根的知识,难度一般,注意互为相反数的和为0,知道这一知识是本题的关键.23.(本题14分)(2020·山东威海市·七年级期末)本学期第四章《实数》中,我们学习了平方根和立方根,下表是平方根和立方根的部分内容:今天我们类比平方根和立方根的学习方法学习四次方根.(类比探索)(1)探索定义:填写下表类比平方根和立方根,给四次方根下定义:.(2)探究性质:①1的四次方根是;②16的四次方根是;③8116的四次方根是 ;④12的四次方根是 ; ⑤0的四次方根是 ;⑥625- (填“有"或"“没有”)四次方根. 类比平方根和立方根的性质,归纳四次方根的性质: ;(3)在探索过程中,你用到了哪些数学思想?请写出两个: . (拓展应用)(1)(2= ;(3【答案】【类比探索】(1)依次为:±1,±2,±3;一般地,如果一个数x 的四次方等于a ,即4x a =,那么这个数x 就叫做a 的四次方根;(2)①±1;②2±;③32±;④;⑤0;⑥没有;一个正数有两个四次方根,它们互为相反数;0的四次方根是0;负数没有四次方根;(3)类比、分类讨论、从特殊到一般等.【拓展应用】(1)4±;(2)25;(3)>. 【分析】(1)先计算填表,在类比平方根,立方根的定义,即可给四次方根下定义;(2)根据四次方根的定义求解,类比平方根,立方根的的性质即可得到四次方根的性质特征;(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想,利用四次方根的定义求解,再计算并比较两个数的四次方,进而得出答案. 【详解】(1)类比平方根,立方根的定义,当41x =时1x =±,当416x =时2x =±,当481x =时3x =±,所以填表如下:结合上述表格,类比平方根和立方根的定义,则四次方根的定义为:一般地,如果一个数的四次方根等于a ,那么这个数叫做a 的四次方根,这就是说,如果4x a =,那么x 叫做 a 的四次方根.(2)根据四次方根的定义计算:①1的四次方根是±1;②16的四次方根是2±;③8116的四次方根是32±;④12的四次方根是⑤0的四次方根是0;⑥625-没有四次方根;类比平方根,立方根的性质可得四次方根的性质为:一个正数由两个四次方根,他们互为相反数;0的四次方根是0;负数没有四次方根.(3)探索四次方根的定义和性质时,运用了类比,分类讨论的和由特殊到一般的思想, 【拓展应用】根据四次方根的定义计算得:(1)4=±;(225=(3)49=,48=,98>,>【点睛】本题考查了方根的定义,类比平方根,立方根的定义和性质,学习四次方根,解题关键是在求四次方根时,注意正数的四次方根有2个,它们互为相反数.。