理论物理基础教程刘连寿第五篇第一章答案
理论力学课后答案第五章(周衍柏)上课讲义
理论力学课后答案第五章(周衍柏)第五章思考题5.1虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2 为什么在拉格朗日方程中,a θ不包含约束反作用力?又广义坐标与广义力的含义如何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量a p 和广义速度a q 是不是只相差一个乘数m ?为什么a p 比a q 更富有意义?5.4既然a q T ∂∂是广义动量,那么根据动量定理,⎪⎪⎭⎫ ⎝⎛∂∂αq T dt d 是否应等于广义力a θ?为什么在拉格朗日方程()14.3.5式中多出了aq T ∂∂项?你能说出它的物理意义和所代表的物理量吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式()13.3.5得出式()14.3.5?5.6平衡位置附近的小振动的性质,由什么来决定?为什么22s 个常数只有2s 个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9 dL 和L d 有何区别?a q L ∂∂和aq L ∂∂有何区别? 5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号δ可置于积分号内也可移到积分号外?又全变分符号∆能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿-雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程()15.5.5与()10.10.5及()11.10.5之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作.用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的.即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从∑⋅=iii r F W δδ可知:虚功与选用的坐标系无关,这正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分.在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果.虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力.故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答 因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,αθ不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故αθ不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故αθ不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正.广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由W q r F s i ni i δδθδααα==⋅∑∑==11 知,ααδθq 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲.若αq 是长度,则αθ一定是力,若αθ是力矩,则αq 一定是角度,若αq 是体积,则αθ一定是压强等.5.3 答 αp 与αq 不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
理论物理基础教程刘连寿第五篇第二章答案
∴
∂ 2ψ 1 ( x) + λ2 xψ 1 ( x) = 0 2 ∂x
由边界条件得ψ 1 ( x) = A sin( λ x x) , A sin( λ x a) = 0 ,
λx = n1π a
( n1 = 1,2,3........ )
2 a
本征函数ψ 1 ( x) = A sin( n1π
a
x) ,归一化后得 A =
nπ nπ nπ 8 sin( 1 z ) sin( 2 y ) sin( 3 z ) abc a b c
2 n2 λ 2 h 2π 2 n12 n2 = ( 2 + 2 + 3 ) 2m 2m a b c2 2
2 2 h ∵ λ2 = λ2 x + λ y + λz ∴ E =
n1 , n 2 , n3 = 1,2,3........
其中 k =
2 mE / h 2
。
2
x) 2m( E − U ) + ψ ( x) = 0 解:由定态薛定谔方程 d ψ ( 2 2 dx h
∴
′′( x) + ψ1 ′′ ( x ) + ψ2 ′′( x ) + ψ3
2m( E − U 1 ) ψ 1 ( x) = 0 h2 2mE ψ 2 ( x) = 0 h2
∴
ψ 1 ( x) =
nπ 2 sin( 1 x ) a a nπ 2 sin( 3 z ) c c
同理可得ψ 2 ( y) =
nπ 2 sin( 2 y ) ,ψ 3 ( z ) = b b
PDF 文件使用 "pdfFactory" 试用版本创建
ψ ( x, y, z ) =
理论物理基础教程刘连寿第五篇第一章答案
PDF 文件使用 "pdfFactory" 试用版本创建
ˆ+F ˆ + ]vdτ = v[( F ˆ + )u ]* d τ , F ˆ +F ˆ + 是厄米算符。 所以 ∫ u * [ F ∫ ˆ +F
* ˆ −F ˆ + )]vdτ 同理, ∫ u [i( F + * ˆ ˆvdτ − i u * F ˆ u ) * dτ = i∫ u * F vdτ − i ∫ v( F ∫ ˆ vdτ = i ∫ u F
Axe − λx = ∫ c ( p x )ψ p x dp x
x
( x) =
1 e ipx x / h 2πh
其中
v c ( p x ) = ∫ψ ψ ( x)d r =
* px 3
∫ (e 2πh
0
1
∞
ip x x / h *
) Axe −λx dx
= =
A xe −( λx +ipx x / h ) dx ∫ 2πh 0 h [− xe − ( λ +ip x / h ) x 2πh λh + ip x x
P305
1. 计算下列各种频率的谐振子的能量子: (a)υ = 50HZ 的带电谐振子; (b)υ = 1010 HZ 的微波; (c)υ = 1015 HZ 的光波, 进而指出为什么普通振子的能量不显分立性。 答:(a)
hυ = 6.63 *10 −34 J ⋅ S * 50 HZ = 3.31 * 10 −32 J
因为在 z → ±∞ 时, u , v 都趋于 0,所以第一项和第三项都为 0,所以,上式变为
PDF 文件使用 "pdfFactory" 试用版本创建
chap1-1
换为 变为标量方程
。
(功 ) 即
(能 )
2. 由
得
则
对
中的
作形式上的降阶
注:数学上
分别为二阶和一阶导数,而物理上分
别为加速度和速度。 又 ,则 (函数和反函数)。于是
(I) 式中的右边
因而
注:
因
则
将 (1)、(2)、(3) 代入标量方程 (I) 得到
由于 dq1、dq2、dq3 互相独立,所以
分析力学
教材:理论物理基础教程 (刘连寿主编)
——分析力学部分
讲授:吴少平 办公室:9 –email:wsp@ QQ:997682735 2014 年 2 月
参考书 1.力学
朗道 栗弗席兹
高等教育出版社
(2007年4月第5版)
2.Analytical Mechanics
3.
和
的计算:
(速度
和
的关系)
将
对
求导得到
(
只是
的函数,不是
的函数)
上两式代入 (4),得到
4.粒子的动能:
则
5.代入 (5) 式,得到
6.保守力场: 则
由上两式得
因而
令 L = T – U,则
说明:
① 拉格朗日方程是力学系统的基本运动方程。运动方程 在牛顿力学中为牛顿第二定律,在分析力学中为拉格 朗日方程。牛顿方程:矢量方程;拉格朗日方程:标 量方程。
分析力学是理论物理的第一门课程,具有以下理论
思维的一些特点:
理论物理思维方法
实验观察到的现象 例:光的折射定律
理论家问: 工程师问:
为什么? 理论物理思维方法
唯象规律
做什么? 从现象到本质
理论力学 周衍柏第三版 习题答案
即 沿位矢方向加速度
a r r2
垂直位矢方向加速度 对③求导 对④求导
a r 2r
r r 2r
r2
r
r
r
把③④⑦⑧代入⑤⑥式中可得
a//
2r
2 2 r
y
p , p
2
O
x
p , p 2
题1.10.1图
则质点切向加速度
at
dv dt
法向加速度 a n
v2
,而且有关系式
dv
v2
2k
①
dt
又因为
1 y
3
1 y2 2
② y2 2px
- - 6 - -- - 6 - -
所以
y p ③ y
r
得
4y 2 r2
x2
a2
y2 2x r2
a2 y2
1
得
3y2 x2 a2 r2 2x a2 y2
化简整理可得
4x2 a2 y2 x2 3y2 a2 r 2 2
(2)要求 C 点的速度,分别求导
此即为 C 点的轨道方程.
其中 又因为
同理可得
a r 2r
1.8 解 以焦点 F 为坐标原点,运动如题 1.8.1 图所示]
y
M
OF
x
题1.8.1图
则 M 点坐标 对 x, y 两式分别求导
x r cos
y
大学物理学__下_答案
大学物理学下 吴柳 第十二章12.1 一封闭的立方体形的容器,部空间被一导热的、不漏气的、可移动的隔板分为两部分,开始其为真空,隔板位于容器的正中间(即隔板两侧的长度都为l 0),如图12-30所示.当两侧各充以p 1,T 1与 p 2,T 2的相同气体后,比是多少)?解: 活塞两侧气体的始末状态满足各自的理想气体状态方程左侧: T pV T V p 111= 得, T pT Vp V 111=右侧:T pV T V p 222= 得, T pT Vp V 222=122121T p T p V V = 即隔板两侧的长度之比 122121T p T p l l = 12.2 已知容器有某种理想气体,其温度和压强分别为T =273K,p =1.0×10-2atm ,密度32kg/m 1024.1-⨯=ρ.求该气体的摩尔质量.解:nkT p = (1)nm =ρ (2)A mN M = (3) 由以上三式联立得:12352232028.010022.610013.1100.12731038.11024.1----⋅=⨯⨯⨯⨯⨯⨯⨯⨯⨯==mol kg N p kT M A ρ 12.3 可用下述方法测定气体的摩尔质量:容积为V 的容器装满被试验的气体,测出其压力为p 1,温度为T ,并测出容器连同气体的质量为M 1,然后除去一部分气体,使其压力降为p 2,温度不变,容器连同气体的质量为M 2,试求该气体的摩尔质量.解:()V V -2 2p T )(21M M - V 1p T 1M V 2p T 2M 221V p V p = (1) ()()RT MM MVV p 2122-=- (2)(1)、(2)式联立得: ()()()Vp p RT M M V p Vp p RTM M M 212121221--=⎪⎪⎭⎫ ⎝⎛--=12.4在实验室中能够获得的最佳真空相当于大约10-14atm (即约为10-10mmHg 的压强),试问在室温(300K )下在这样的“真空”中每立方厘米有多少个分子? 解: 由nkT p = 得,35311235141045.21045.21038.130010013.110----⨯=⨯=⨯⨯⨯⨯==cm m kT p n 12.5已知一气球的容积V =8.7m 3,充以温度t 1=150C 的氢气,当温度升高到370C 时,维持其气压p 及体积不变,气球中部分氢气逸出,而使其重量减轻了0.052kg ,由这些数据求氢气在00C,压力p 下的密度. 解:V p 1t m V p 2t ()V V -2 p 2t m ∆3V p 3t m 由221t V t V = (1)mmV V V ∆=-22 (2)331t V t V = (3) 3V m=ρ (4) 由以上四式联立得: 3231122109.815.2737.815.288052.02215.310--⋅⨯=⨯⨯⨯=∆-=m kg Vt t m t t t ρ 12.6真空容器中有一氢分子束射向面积2cm 0.2=S 的平板,与平板做弹性碰撞.设分子束中分子的速度13s m 100.1-⋅⨯=v ,方向与平板成60º夹角,每秒有23100.1⨯=N 个氢分子射向平板.求氢分子束作用于平板的压强. [2.9×103Pa] 解: AN M m =Pa SNm S F p 323433230109.210022.6100.223100.110210260sin 2⨯=⨯⨯⨯⨯⨯⨯⨯⨯⨯===--v12.7 下列系统各有多少个自由度:⑴在一平面上滑动的粒子;⑵可以在一平面上滑动并可围绕垂直于该平面的轴转动的硬币;⑶一弯成三角形的金属棒在空间自由运动. 解:(1) 2 (2) 3 (3) 612.8 容器贮有氧气,其压强Pa 101.013atm 15⨯==p ,温度t =270C,求: (1)单位体积的分子数;(2)分子的质量m ;(3)氧气的密度ρ;(4)分子的方均根速率;(5)分子的平均平动能;(6)在此温度下,4g 氧的能. 解:(1) 由 nkT p = 得,3252351045.215.3001038.110013.1--⨯=⨯⨯⨯==m kT p n (2) kg N M m A 262331031.510022.61032--⨯=⨯⨯== (3) 3262530.11031.51045.2--⋅=⨯⨯⨯==m kg nm ρ(4) 12321084.4103215.30031.833--⋅⨯=⨯⨯⨯==s m M RTv (5) J kT k 21231021.615.3001038.12323--⨯=⨯⨯⨯==ε (6) J RT M m 21079.715.30031.82532425⨯=⨯⨯⨯==ε12.9 1mol 氢气,在温度270C 时,求⑴具有若干平动动能;⑵具有若干转动动能;⑶温度每升高10C 时增加的总动能是多少? 解: (1) J RT 311074.315.30031.82323⨯=⨯⨯==ε (2) J RT 321049.215.30031.822⨯=⨯==ε(3) J R 8.2025==∆ε12.10 试求1mol 氢气分别在0℃和500℃时的能.解: J RT 3111067.515.27331.82525⨯=⨯⨯==ε J RT 4221061.115.77331.82525⨯=⨯⨯==ε12.11 (1)求在相同的T 、p 条件下,各为单位质量的 H 2气与He 气的能之比.(2)求在相同的T 、p 条件下,单位体积的H 2气与He 气的能之比. 解:(1) RT E H 25102132⨯⨯=- RT E eH 2310413⨯⨯=-3102=eH H E E (2) 由nkT p =, 相同的T 、p 条件,可知: e H H n n =2 kT n E H H 2522= kT n E e e H H 23=352=eH H E E 12.12 设山顶与地面的温度均为273K,空气的摩尔质量为0.0289kg ·mol -1.测得山顶的压强是地面压强的3/4,求山顶相对地面的高度为多少? 解:依题意有,340=p p 由气压公式有:m p p g RT h 301030.234ln 81.90289.027331.8ln ⨯=⨯⨯==μ 12.13 求速率大小在p v 与1.01p v 之间的气体分子数占总分子数的百分率. 解:速率间隔在p p 1.01v ~v ,即p v v 01.0=∆1==p W v v 01.0=∆=∆pW v v在p p v v 01.1~间隔的分子数占总分子数的百分数为()%83.0422=∆=∆=∆-W e W W W f N N W π12.14 求00C 的氢气分子和氧气分子的平均速率、方均根速率和最概然速率. 解: 氢气分子相对应的各种速率为1331071.110215.27331.860.160.1--⋅⨯=⨯⨯⨯==s m M RT v 13321084.110215.27331.873.173.1--⋅⨯=⨯⨯⨯==s m M RT v 1331050.110215.27331.841.141.1--⋅⨯=⨯⨯⨯==s m M RT p v 由于三种速率均与分子的摩尔质量平方根成反比4122=o H M M 所以氧气分子的三种速率为氢气分子相应速率的四分之一 121026.4-⋅⨯=s m o v 1221061.4-⋅⨯=s m o v ()121076.3-⋅⨯=s m opv12.15 如图12-31所示.两条曲线分别表示氧气和氢气在同样温度下的速率分布曲线.试问哪条曲线对应氧(氢)气的分布曲线? 氧气和氢气的最概然速率各是多少? 方均根速率各是多少? 解: 由 MRT p 2=v 可知,温度相同时,p v 与M 成反比又由图可知,12p p v v > 因此 可得,21M M > 所以, (1)为氧气的速率分布曲线 (2)为氢气的速率分布曲线()()()()2222H M O M O H p p =v v ()12500-⋅=s m O p v()()()()122222000232500-⋅===s m O H M O M H p p v v由 MRT32=v MRT p 2=v 得, p v v 232= ()12261250023-⋅=⨯=s m O v))(v f 图12-31 习题12.14图()1222450200023-⋅=⨯=s m H v12.16 设质量为m 的N 个分子的速率分布曲线如图12-32所示.(1)由N 和0v 求a 值.(2)在速率2/0v 到30v /2间隔的分子数;(3)分子的平均平动能. 解:(1)在区间内0~0v ()v v v 0aNf = 在区间内002~v v ()a Nf =v 在区间内02~0v ,分子总数为N()0202002023200000v v v v v v v v v v v v v v a a a ad d a N =+⎪⎪⎭⎫ ⎝⎛=+=⎰⎰ 032v Na =(2)()N a a a ad d a N 12787202322023200000000==+⎪⎪⎭⎫ ⎝⎛=+=∆⎰⎰v v v v v v v v v v v v v v v v 0 (3) ()v v v v v d f ⎰=02022202020022022363191461211121210v v v v v v v v v v v v v m m ad Nd a Nm m =⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+==⎰⎰ε 12.17 设N 个粒子系统的速度分布函数为⎩⎨⎧>>>=)0),0(d d 00v v v v v (为常量K K N v⑴画出分布函数图;⑵用N 和v 0定出常数K ;⑶用v 0表示出平均速率和方均根速率. 解:(1)KO )(v Nf 0图12-32习题12.15图0v v (2) 00v v v K Kd N ==⎰ 0v NK =(3) 211000000v v v v v v vv v ===⎰⎰d d NNv00254.032383v v v v ===ππ 12.18 试从麦克斯韦速率分布律出发推写出如下分布律:(a )以最概然速率mkTp 2=v 作为分子速率单位的分子速率p x v v =的分布律;(b )分子动能221v m k =ε的分布律.并求出最概然动能kp ε,它是否就等于221p m v ? 解:麦克斯韦速率分布律 ()2223224v v v kTm e kT m f -⎥⎦⎤⎢⎣⎡=ππ(a ) m kT p 2=v px v v= ()2224x e x kTm x f -=π (b)221v m k =ε()k kTk ke kT mf επεε-⎪⎭⎫ ⎝⎛=23124()0112423=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛=-kT e kT m d f k kT k k kεπεεε得, 01=⎪⎭⎫⎝⎛-kT k ε 221p kp m kT v ==ε12.19 设容器盛两种不同单原子气体,原子质量分别为m 1和m 2的此混合气体处于平衡状态时能相等,均为U ,求这两种气体平均速率1v 和2v 的比值以及混合气体的压力.设容器体积为V .解: RT M m U 231'= RT M m U 232''= 得,2''1'M m M m =21'''M M mm = 118m kT π=v 228m kTπ=v 则 1221m m =v v RT pV ν= RTUM m M m M m 3421'2''1'==+=ν 得, VU V RT RT U p 3434==12.20 求在标准状态下一秒分子的平均自由程和平均碰撞次数.已知氢分子的有效直径为2.0×10-10 m.解:3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n ()m nd 72521021009.21069.2100.22121--⨯=⨯⨯⨯==ππλ1331070.110215.27331.888--⋅⨯=⨯⨯⨯==s m m RT ππv 19731013.81009.21070.1--⨯=⨯⨯==s z λv12.21 在足够大的容器中,某理想气体的分子可视为d=4.0×10-10 m 的小球,热运动的 平均速率为2100.5⨯=v m/s,分子数密度为n =3.0×1025 /m 3.试求:(1) 分子平均自由程和平均碰撞频率;(2) 气体中某分子在某时刻位于P 点,若经过与其他分子N 次碰撞后,它与P 点的距离近似可表为λN R =,那么此分子约经多少小时与P 点相距10米?(设分子未与容器壁碰撞) 解: (1)()m nd 8252102107.4100.3100.42121--⨯=⨯⨯⨯==ππλ110821006.1107.4100.5--⨯=⨯⨯==s z λv(2) λN R =h R R z N t 1182107.4100.5110018222=⨯⨯⨯⨯==⎪⎭⎫ ⎝⎛==-λυυλλ 12.22 设电子管温度为300K ,如果要管分子的平均自由程大于10cm 时,则应将它抽到多大压力?(分子有效直径约为3.0⨯10-8cm ) 解:nd 221πλ=若使cm 10>λ()3192102105.21.0100.32121--⨯=⨯⨯==m d n πλπ 需使 319105.2-⨯<m nPa nkT p 1.03001038.1105.22319=⨯⨯⨯⨯==- 即需使 Pa p 1.0<12.23 计算⑴在标准状态下,一个氮分子在1s 与其他分子的平均碰撞次数;⑵容积为4L 的容器,贮有标准状况下的氮气,求1s 氮分子间的总碰撞次数.(氮分子的有效直径为3.76⨯10-8cm ) 解: (1) λυ=z 3252351069.215.2731038.110013.1--⨯=⨯⨯⨯==m kT p n()m nd 8252102109.51069.21076.32121--⨯=⨯⨯⨯==ππλ1231054.4102815.27331.888--⋅⨯=⨯⨯⨯==s m M RT ππυ 1982107.7109.51054.4--⨯=⨯⨯=s z (2) mol V V mol 179.04.224===ν AN N ν=132923103.8107.710022.6179.0-⨯=⨯⨯⨯⨯===s z N z N z A ν12.24 实验测知00C 时氧的粘滞系数s)g/(cm 1092.14⋅⨯=-η,试用它来求标准状态下氧分子的平均自由程和分子有效直径. 解:λυρη31=M RT πυ8=nm =ρ 其中 kT p n =, AN M m = 得:RT pM=ρ所以m MRT p RTMpMRT8355105.91032815.27331.810013.111092.1381383---⨯=⨯⨯⨯⨯⨯⨯⨯===ππηπηλpd kT nd 22221ππλ==m p kT d 108523100.3105.910013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.25 今测得氮气在00C 时的导热系数为237103.W m K 11⨯⋅⋅---,计算氮分子的有效直径.已知氮的分子量为28. 解:⎪⎭⎫⎝⎛=M C VM λυρκ31 R C VM 25= RT pM nm ==ρ m RMT p R MRT M pM RT73531069.131.8815.273102810013.11107.235681565283---⨯=⨯⨯⨯⨯⨯⨯⨯⨯===ππκπκλpd kT nd 22221ππλ==m p kT d 107523102.21069.110013.1215.2731038.12---⨯=⨯⨯⨯⨯⨯⨯==πλπ12.26 在270C 时,2mol 氮气的体积为0.1L ,分别用德瓦耳斯方程及理想气体状态方程计算其压强,并比较结果.已知氮气a =0.828atm ⋅L 2⋅mol -2, b =3.05⨯10-2L ⋅mol . 解:RT pV ν=Pa VRTp 731099.4101.015.30031.82⨯=⨯⨯⨯==-ν ()RT b V V a p ννν=-⎪⎭⎫ ⎝⎛+22p 2p 0V 02V V()()PaV a b V RT p 72532221044.91.010013.1828.04101005.321.015.30031.82⨯=⨯⨯⨯-⨯⨯⨯-⨯⨯=--=--ννν 第13章13.1 (1)理想气体经过下述三种途径由初态I (2p 0,V 0)变到终态Ⅱ(p 0,2V 0).试计算沿以下每一路径外界对气体所作的功:(a )先从V 0到2V 0等压膨胀然后等体积降压;(b )等温膨胀;(c )先以V 0等体积降压到p 0后再等压膨胀.(2)对1mol 的氏气体重复以上三个过程的计算? [答案:(1)(a)2p 0V 0,(b) 2p 0V 0ln2,(c)p 0V 0;(2) (a)2p 0V 0, (b)00002002ln ))(( V a b V b V b V V ap ----+,(c)p 0V 0] 解:(1)(a) ()00000222200V p V V p pdV A V V =-==⎰ (b) 200222ln 2ln 00V p RT dV VRTpdV A V V V V ====⎰⎰(c) ()00000220V p V V p pdV A V V =-==⎰(2) 德瓦尔斯方程: ()RT b V V a p mol mol=-⎪⎪⎭⎫ ⎝⎛+2 (a) 00220V p pdV A V V ==⎰(b)()000020000222222ln 22ln 000V ab V b V b V V a p V a V a RT dV V a b V RTpdV A bV b V V V V V ----⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫ ⎝⎛-+=⎪⎭⎫⎝⎛--==--⎰⎰(c) 0020V p pdV A V V ==⎰13.2 由如图13-40所示.一系统由状态a 沿acb 到达状态b ,吸热量80Cal ,而系统做功126J.⑴经adb 过程系统做功42J ,问有多少热量传入系统?⑵当系统由状态b 沿曲线ba 返回状态a 时,外界对系统做功为84J ,试问系统是吸热还是放热?热量是多少? 解:1Cal=4.2J(1) A E Q +∆= J Q 3362.480=⨯=J A Q E 210126336=-=-=∆ 所以经adb 过程传入系统的热量 J A E Q 252422101=+=+∆= (2) J A 84-=029484210<-=--=+∆=J A E Q 所以系统是放热,热量是294J13.3 如图13-41所示.单原子理想气体从状态a 经过程abcd 到状态d ,已知p a =p d =1atm ,p b =p c =2atm ,V a =1L ,V b =1.5L ,V c =3L ,V a =4L .⑴试计算气体在abcd 过程中能的变化、功和热量;⑵如果气体从状态d 保持压力不变到状态a (图中虚线),求以上三项的结果;⑶若过程沿曲线从a 到c 状态,已知该过程吸热257Cal ,求该过程中气体所做的功. 解:(1) b a →()a b m V T T C E -=∆.νa a a RT V p ν= RVp T a a a ν=b b b RT V p ν= RV p T bb b ν=()a a b b a a b b V p V p R V p R V p R E -=⎪⎭⎫ ⎝⎛-=∆2323ννν()J 231004.31010132515.1223⨯=⨯⨯-⨯⨯=- ()J pdV A b aV V 231076.010*******.02121⨯=⨯⨯⨯+⨯==-⎰J A E Q 21080.3⨯=+∆= 同理: c b →()()J V p V p E b b c c 231056.4101013255.12322323⨯=⨯⨯⨯-⨯⨯=-=∆-图13-41 习题13.3图pp 12J pdV A cbV V 231004.3105.11013252⨯=⨯⨯⨯==-⎰J A E Q 21060.7⨯=+∆=d c →()()J V p V p E c c d d 231004.31010132532412323⨯-=⨯⨯⨯-⨯⨯=-=∆- ()J pdV A d cV V 231052.1101013252121⨯=⨯⨯+⨯==-⎰J A E Q 21052.1⨯-=+∆=J E 21056.4⨯=∆总 J A 21032.5⨯=总 J Q 21088.9⨯=总(2) ()()J V p V p E d d a a 231056.410101325412323⨯-=⨯⨯-⨯=-=∆- J pdV A adV V 231004.3103101325⨯-=⨯⨯-==-⎰J A E Q 21060.7⨯-=+∆=(3) c a →()J E 221060.71056.404.3⨯=⨯+=∆J E Q A 221019.31060.72.4257⨯=⨯-⨯=∆-=13.4 如图13-42所示.一定质量的氧气在状态A 时,V 1=3L ,p 1=8.2×105Pa ,在状态B时V 2=4.5L ,p 2=6×105Pa .分别计算气体在下列过程吸收的热量,完成的功和能的改变:⑴经ACB 过程,⑵经ADB 过程. 解:(1) ACB 过程C A → ()()35103102.862525-⨯⨯⨯-⨯=-=∆A A C C V p V p EJ 31065.1⨯-=J A 0=J Q 31065.1⨯-=B C → ()()J V p V p E C C B B 3531025.21061035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 335122109.01035.4106⨯=⨯-⨯⨯=-=- J Q 31015.3⨯=图13-42 习题13,4图J E 3106.0⨯=∆总 J A 3109.0⨯=总 J Q 3105.1⨯=总(2) ADB 过程D A →()()J V p V p E A A D D 35310075.3102.81035.42525⨯=⨯⨯⨯-⨯=-=∆-()()J V V p A 3351211023.11035.4102.8⨯=⨯-⨯⨯=-=- J Q 310305.4⨯=B D → ()()J V p V p E D D B B 33510475.2105.4102.862525⨯-=⨯⨯⨯-⨯=-=∆-J A 0=J Q 310475.2⨯-=J E 3106.0⨯=∆总 J A 31023.1⨯=总 J Q 31083.1⨯=总13.5压强为p =1.01×103Pa,体积为0.0082 m 3的氮气,从初始温度300K 加热到400K. (1)如加热时分别体积不变需要多少热量?(2) 如加热时分别压强不变需要多少热量? [答案: Q V =683J; Q p =957J]解:(1) RT pV ν= RTpV=ν ()J R RT pV T C E m V 6901003000082.01001.125300400255.=⨯⨯⨯⨯=-=∆=∆νJE Q V 690=∆=(2)J T R RTpVT C Q m p p 9661003000082.01001.1271255.=⨯⨯⨯⨯=∆⎪⎭⎫⎝⎛+=∆=ν 13.6 将500J 的热量传给标准状态下2 mol 氢气.(1)若体积不变,问此热量变为什么?氢气的温度变为多少?(2)若温度不变,问此热量变为什么?氢气的压强及体积各变为多少?(3)若压强不变, 问此热量变为什么? 氢气的温度及体积各变为多少?[答案: (1) T=285K; (2)Pa 1007.942⨯=p ,V 2=0.05m 3,(3)T =281.6K; V 2=0.046 m 3] 解:(1) 全部转化为能 T C Q m V V ∆=.ν K R C Q T m V 12252500.=⨯==∆ν K T 15.2851215.2732=+=(2) 全部转化为对外界做功 12lnV V RT Q T ν= 12V e V RTQ T ν= 3310448.0104.222m V =⨯⨯=-3205.0m V =2211V p V p = Pa V V p p 4521121007.905.00448.010013.1⨯=⨯⨯==(3) 一部分用于对外做功,一部分用于能增加 T C Q m p p ∆=.νK R C Q T mp p6.8272500.=⨯==∆ν K T 75.2816.815.2732=+=2211T V T V = 32112046.075.28115.2730448.0m T T V V =⨯==13.7 一定量的理想气体在某一过程中压强按2Vcp =的规律变化,c 是常量.求气体从V 1增加到 V 2所做的功.该理想气体的温度是升高还是降低? [答案: 2121);11(T T V V c A >-= ]解:⎪⎪⎭⎫ ⎝⎛-===⎰⎰212112121V V c dV V cpdV W V V V V 由理想气体状态方程 RT pdV ν= 得,RTV V c ν=2RT V cν= 可知1221V V T T = 因为 12V V > , 所以 21T T > 即气体的温度降低13.8 1mol 氢,在压强为1.0×105Pa,温度为20o C 时体积为0V .今使它分别经如下两个过程达到同一状态:(1)先保持体积不变,加热使其温度升高到80o C,然后令它等温膨胀使体积变为原来的2倍;(2)先等温膨胀至原体积的2倍,然后保持体积不变加热至80o C .试分别计算以上两种过程中吸收的热量、气体做的功和能的增量,并作出p-V 图.[答案: Q 2=2933J,A =1687J,∆U =1246J]解:(1) 定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ 等温过程 J E 0=∆ ()J RT V V RT Q A T 16.20342ln 8015.27331.82ln ln12=⨯+⨯==== J Q 66.3280=总 J A 16.2034=总 J E 50.1246=∆总 (2) 等温过程J E 0=∆J RT Q A T 56.16882ln 15.29331.82ln =⨯⨯===定容过程J A 0=()J R T C Q E m V V 50.1246208025.=-=∆==∆ J Q 06.2935=总 J A 56.1688=总 J E 50.1246=∆总 13.9 某单原子理想气体经历一准静态过程,压强Tcp =,其中c 为常量.试求此过程中该气体的摩尔热容C m . [答案: C m =(7/2)R ] 解:由理想气体状态方程 RT pV ν= 其中 Tc p =得, 2T cRV ν=dT cRTdV ν2=根据热力学第一定律,A E Q +∆= T R R dT c RT T c T R pdV T C Q m V ∆⎪⎭⎫ ⎝⎛+=+∆=+∆=⎰⎰223223.νννν 则可得,R T Q C m 27=∆=ν13.10 为了测定气体的γ=⎛⎝ ⎫⎭⎪C C p V 可用下列方法:一定量的气体初始温度、压强和体积分别为T 0,p 0和V 0,用通有电流的铂丝对它加热,第一次保持气体体积V 0不变,温度和压强各变为T 1和p 1;第二次保持压力,p 0不变,温度和体积各变为T 2和V 1,设两次加热的电流和时间都相同.试证明γ=--()()p p V V V p 100100解: 过程1为定容过程 V 不变,()01T T C T C Q V V -=∆=νν由理想气体状态方程得, 000RT V p ν= R V p T ν000=101RT V p ν= RV p T ν011=即 ()001V p p RC Q V-=(1) 过程2为定压过程 p 不变,()02T T C T C Q p p -=∆=νν由理想气体状态方程得, RV p T ν102=即 ()001p V V R C Q p -= (2)由(1)(2)式即证得, ()()001001p V V V p p C C Vp --==γ13.11气缸有单原子理想气体,若绝热压缩使其容积减半,问气体分子的平均速率变为原来速率的几倍?若为双原子理想气体,又为几倍?[答案:1.26;1.15] 解:由理想气体绝热方程 常量=-T V 1γ 得,212111T V T V --=γγ 12112-⎪⎪⎭⎫ ⎝⎛=γV V T T 其中1221V V =1122-=γT T又由 M RTπυ8= 可知, 2112122-==γυυT T1p 2p 单原子理想气体 R 35=γ, 则 26.123112==υυ双原子理想气体 R 57=γ, 则 15.125112==υυ13.12一定量的理想气体经历如图13-43所示的循环,其中AB 、CD 是等压过程,BC 、DA 是绝热过程,A 、B 、C 、D 点的温度分别为T 1、T 2、T 3、T 4.试证明此循环效率为 231T T -=η. 解:等压过程AB 吸热 ()121T T C Q p -=ν等压过程CD 放热 ()432T T C Q p -=ν BC 、DA 是绝热过程 0=Q 124312111T T T T Q Q Q A---=-==η 利用绝热方程 常量=--γγT p 1 得,γγγγ----=312211T p T p 31122T p p T γγ--⎪⎪⎭⎫⎝⎛=γγγγ----=412111T p T p 41121T p p T γγ--⎪⎪⎭⎫⎝⎛=2311211T T p p -=⎪⎪⎭⎫⎝⎛-=-γγη 13.13设有一理想气体为工作物质的热机循环,如图13-44所示,试证明其效率为1)/(1)/(12121---=p p V V γη.解:b a →为等体升温过程,吸热 ()a b m V T T C Q -=.1νa c →为等压压缩过程, 放热()a c m p T T C Q -=.2ν2 1图13-45习题13.14狄赛尔循环()()a b m V a c m p T T C T T C Q Q ---=-=..1211η 利用理想气体状态方程 RT pV ν=, 得()()222111V p V p RV p V p R T T a a b b a b -=-=-νν 循环效率为 ()()1111212122212212---=---=p p V V V p V p V p V p γγη 13.14 有一种柴油机的循环叫做狄赛尔循环,如图13-45所示.其中BC 为绝热压缩过程,DE 为绝热膨胀过程,CD 为等压膨胀过程,EB 为等容冷却过程,试证明此循环的效率为⎪⎪⎭⎫ ⎝⎛-'⎪⎪⎭⎫⎝⎛-'-=-11)/(121212V V V V V V γγγη 解:CD 为等压膨胀过程, 吸热 ()C D p T T C Q -=ν1EB 为等容冷却过程, 放热 ()B E V T T C Q -=ν2 循环效率 CD BE T T T T Q Q ---=-=γη11112 利用理想气体状态方程 RT pV ν=, 得()B B E E B E V p V p R T T -=-ν1()C C D D C D V p V p RT T -=-ν1()()2'11111V V p p p V V p V p V p V p C B E C C D D B B E E ---=---=γγη 利用绝热方程 常量=γpV , 得γγE E D D V p V p = E D p V V p γ⎪⎭⎫ ⎝⎛='1()()221211V p V p RV p V p R T T a a c c a c -=-=-ννγγB BC C V p V p = B C p VV p γ⎪⎪⎭⎫ ⎝⎛=21 由C D p p =得 γ⎪⎪⎭⎫ ⎝⎛=2'V V p p B E()()⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎭⎫ ⎝⎛---=-⎪⎪⎭⎫ ⎝⎛--=-111111111112'1212'2'122'1V V V V V V V V V V p p p p V V p p p p V B C B EB C B E γγγγγη 13.15 1mol 理想气体在400K-300K 之间完成一卡诺循环,在400K 的等温线上,起始体积为0.001 m 3,最后体积为 0.005 m 3,试计算气体在此循环中所作的功,以及从高温热源吸收的热量和传给低温热源的热量.[答案:A =1.24×103J,Q 2=4.01×103J] 解:J V V RT Q 312111035.5ln⨯==ν 该循环效率为 %254003001112=-=-=T T η 可得 J Q A 311034.1⨯==η由 21Q Q A -=, 得 J A Q Q 3121001.4⨯=-=13.16 1mol 刚性双原子分子理想气体,作如图13-46所示的循环,其中1-2为直线,2-3为绝热线,3-1为等温线,且已知θ=450,T 1=300K,T 2=2T 1,V 3=8 V 1,试求:(1)各分过程中气体做功、吸热及能增量;(2)此循环的效率. 解:(1)21→由理想气体状态方程可得, 111RT V p =222RT V p = 又由图可知,11V p =, 22V p =121RT V= 11RT V =1222RT V = 122RT V =22V V =()J R T T C E V 5.62323002512=⨯=-=∆ ()J RT V V VdV pdV A V V V v 5.12462121121222121==-===⎰⎰J A E Q 7479=+∆= 吸热32→O Q = A E -=∆ 利用绝热方程 γγpV V p =22, 得 13322223232--===⎰⎰γγγV p V p VdVV p pdV A V V V V γγ3322V p V p = 2323p VV p γ⎪⎪⎭⎫ ⎝⎛= J RT V V V p VV V p A 5.62321578212182128157122122223222=-⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=-⎪⎪⎭⎫ ⎝⎛-=-⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=--γγγγ13→0=∆E A Q =J V V RT A 51848ln 30031.8ln131-=⨯⨯-=-= J Q 5184-= 放热(2) 循环效率 %7.30747951841112=-=-=Q Q η *13.17 0.1mol 单原子理想气体,由状态A经直线AB 所表示的过程到状态B,如图13-47所示,已知V A =1L , V B =3L ,p A =3atm .(1)试证A 、B 两状态的温度相等;(2)求AB 过程中气体吸收的热量;(3)求在AB 过程中,温度最高的状态C 的体积和压力(提示:写出过程方程T =T (V ));(4)由(3)的结果分析从A 到B 的过程中温度变化的情况,从A 到C 吸热还是放热?证明Q CB =0.能否由此说从C 到B 的每个微小过程都有δQ =0? 解:(1) 由理想气体状态方程, 得 A A A RT V p ν= B B B RT V p ν=又由已知条件可知 B B A A V p V p = 即证: B A T T =(2) ()0=-=∆A B V T T C E νp (atm)图13-47 习题13.17图J pdV A 25310052.410013.11022221⨯=⨯⨯⨯⎪⎭⎫⎝⎛+⨯⨯==-⎰J A Q 210052.4⨯==(3) 由理想气体状态方程 RT pV ν=, 得R pV T ν=又由图可知: 4+-=V p 即 ()V V R T 412+-=ν 由极值条件:0=dVdT, 得 042=+-V即当 L V 2=, atm p 2= 时T 取到极大值(4) 由 (3) 可知, B A →过程中 温度T 满足函数 ()V V RT 412+-=ν C A →过程中温度升高,到达C 点时取得极大值B C →过程中温度降低,到达点时温度又回到A 点时的值C A →过程 ()0>-=∆A C V T T C E ν0>A0>+∆=A E Q 吸热dA dE dQ +=()()dV V V RC dT C dE VV 63421+-=+-==ννν ()dV V pdV dA 4+-==()dV V dQ 104+-= 即证: ()010432=+-=⎰dV V Q L LCB但不能说从C 到B 的每个微小过程都有0=Q δ13.18一台家用冰箱放在气温为300K 的房间,做—盒-13℃的冰块需从冷冻室中吸出 2.09×105J 的热量.设冰箱为卡诺制冷机,求: (1)做一盒冰块所需之外功;(2)若此冰箱能以2.09×102J·s -1的速率取出热量,求所要求的电功率是多少瓦? (3)做一盒冰块所需之时间. 解:(1)卡诺循环 制冷系数2122T T T A Q e -==abcpVOabcdVOp 代入数据得 5.6260300260=-=eJ e Q A 4521022.35.61009.2⨯=⨯==(2) W e P P 2.325.61009.22'=⨯==(3) h s P Q t 28.0101009.21009.2325'2≈=⨯⨯== 13.19 以可逆卡诺循环方式工作的致冷机,在某种环境下它的致冷系数为w =30.在同样的环境下把它用作热机,问其效率为多少?[答案:%2.3=η]解:卡诺循环 制冷系数AQ w 2=得 wA Q =2 卡诺热机循环效率 1Q A=η 且 A Q Q +=21 ()%2.33011111=+=+=+=w A w A η13.20根据热力学第二定律证明: (1)两条绝热线不能相交;(2) 一条等温线和一条绝热线不能相交两次.解:(1)假设两条绝热线可以相交,如图所示ab 为等温线 bc 、ac 为绝热线此循环过程中 A Q =1 即热全部转化为功, 这与热力学第二定律的开尔文表述相矛盾 所以,即证得:两条绝热线不能相交(2) 假设一条等温线和一条绝热线可以两次相交,如图所示ab 为等温线 cd 为绝热线此循环过程中 A Q =1 即热全部转化为功 这与热力学第二定律的开尔文表述相矛盾, 即证13.21一杯质量180g 温度为100 0C 的水置于270C 的空气中,冷却到室温后水的熵变是多少?空气的熵变是多少?总熵变是多少?[答案:-164J/K ,233J/K ,69J/K]解:熵变的定义:⎰=∆T dQS 热量的计算公式: ⎰=mcdT Q112165300373ln 22.4180ln 21-⋅-=⨯⨯-====∆⎰⎰K J T T mc dT T mc T dQ S T T 水 ()122121853007322.4180-⋅=⨯⨯=-===∆⎰K J T T T mc T Q T dQ S 空气 120165185-⋅=-=∆+∆=∆K J S S S 空气水总13.22 1mol 理想气体经一等压过程,温度变为原来的2倍.该气体的定压摩尔热容为C p ,m ,求此过程中熵的增量. [答案: 2ln Δp C S =] 解:2ln 2121p T T p T T p C TdTC TdT C S ===∆⎰⎰13.23 一房间有N 个分子, 某一宏观态时其中半个房间的分子数为n .⑴写出这种分布的熵的表达式S =k ln Ω; ⑵n =0状态与n =N /2状态之间的熵变是多少? ⑶如果N=6⨯1023,计算这个熵差.解:(1)根据玻耳兹曼熵的表达式 W k S ln =, 得()⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎭⎫⎝⎛==⎪⎭⎫ ⎝⎛--NN n N k eN k n W k S A NN n A 222222ln2ln ln 2(2)熵的变化:k N NN N k N k S S S A AN 2222ln 2ln202=⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡⎪⎭⎫ ⎝⎛-⨯--=-=∆ (3) 23106⨯=N 时, 熵差为1232314.421038.1106--⋅=⨯⨯⨯=∆K J S第14章14.1 作简谐运动的质点,速度最大值为3cm/s ,振幅A =2cm ,若速度为正最大值时开始计时.(1)求振动的周期;(2)求加速度的最大值;(3)写出振动的表达式. 解: (1) 由2/m A A T ωπ==v ,可得2/20.02/0.03 4.2m T A s ππ==⨯⨯=v(2) 22222/0.03/0.02 4.510/m m a A A m s ω-====⨯v(3) 由于0t =时,m =+v v ,可知/2ϕπ=-,而10.03/0.02 1.5ms Aω-===v ,所以有cos()0.02cos(1.5/2)x A t t ωϕπ=+=-14.2 一水平弹簧振子的振幅A =2cm,周期T =0.50s.当t =0时 (1)物体过x =1cm 处且向负方向运动;(2)物体过x =-1cm 处且向正方向运动.分别写出以上两种情况下的振动表达式. 解: (1) 22cos() 2.010cos(4)3x A t t T ππϕπ-=+=⨯+(2) 22.010cos(42/3)x t ππ-=⨯-14.3 设一物体沿x 轴作简谐振动,振幅为12cm ,周期为2.0s ;在t =0时位移为6.0cm ,且向x 轴正方向运动.试求:(1)初相位;(2)t =0.5s 时该物体的位置、速度和加速度;(3)在x =-6.0cm 且向x 轴负方向运动时,物体的速度和加速度以及它从这个位置到达平衡位置所需要的时间. 解: (1) 001cos 23x A πϕϕ==∴=±又∵00>v ,即0sin 0A ωϕ->00sin 03πϕϕ∴<=-(2) 12cos()()0.53x t cm t s ππ=-=时0.5t s x cm ==10.52220.512sin()6312cos()3t s t st cm s a t cm sπππππππ-=-==--=-⋅=--=-⋅v(3) 12cos x ϕ=习题14.3图2Ao当6x cm =-时1cos2ϕ=-∵30sin ϕ<∴=v12212sin 6365566cm s a x cm t t sπϕπωππϕϕωωπ-=-=-⋅=-=∆∆=⋅∆∆===v 14.4 两个谐振子作同频率、同振幅的简谐振动.第一个振子的振动表达式为)cos(1φω+=t A x ,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰在正方向位移的端点.求:(1)第二个振子的振动表达式和二者的相位差;(2)若t =0时,21Ax -=并向x 负方向运动,画出二者的x-t 曲线及旋转矢量图.解: (1) 用旋转矢量法分析,当第一个振子从振动的正方向回到平衡位置时,第二个振子恰好在正方向端点。
理论物理基础教程答案_刘连寿
O
X
那么
L m( X a cos ) MX X L 0 X
则对应的拉格朗日方程为
d m( X a cos ) MX 0 dt d maX cos ma 2 ma sin X mga sin dt
N
Lz e ra Az
a 1 N
N
Lz e xa Aya ya Axa
a 1
2.质量为M 半径为a 的半球形碗,放在光滑的水平桌面上,如图1 。 有一个质量为 m的滑块沿碗的内壁无摩擦的滑下。用 表示滑块位 置与球心连线和竖直方向的夹角。这个系统起始时静止且 0 。 求滑块滑到 1时 的值。
解:系统具有xy平面内的平移对称性,所以动量的x,y分量守恒:
p1x p2 x , p1y p1y
又系统的能量守恒,则有
2 p12 p2 E1 E2 U0 2m 2m
那么,则有
而散射前后动量与z轴的 夹角之比为
sin 1 p1 p2 p2 1 U0 / E sin 2 p2 p1 p1
csc2 2 g cot
m 2 J (Constant)
(3) (4)
L 0
由(4)式可得
J m 2
2
(1)
带入(3)式可得
J2 2 csc 2 4 g cot 0 m
d d d d dt d dt d
1 M 1 m 2 1 m a cos m a sin M a cos 2 mM 2 mM 2
理论力学(周衍柏)的习题集答案,第五章.doc
第五章习题解答5.1解如题5.1.1图杆受理想约束,在满足题意的约束条件下杆的位置可由杆与水平方向夹角所唯一确定。
杆的自由度为1,由平衡条件:即mg y =0①变换方程y=2rcos sin-= rsin2②故③代回①式即因在约束下是任意的,要使上式成立必须有:rcos2-=0④又由于cos=故cos2=代回④式得5.2解如题5.2.1图三球受理想约束,球的位置可以由确定,自由度数为1,故。
得由虚功原理故①因在约束条件下是任意的,要使上式成立,必须故②又由得:③由②③可得5.3解如题5.3.1图,在相距2a的两钉处约束反力垂直于虚位移,为理想约束。
去掉绳代之以力T,且视为主动力后采用虚功原理,一确定便可确定ABCD的位置。
因此自由度数为1。
选为广义坐。
由虚功原理:w①又取变分得代入①式得:化简得②设因在约束条件下任意,欲使上式成立,须有:由此得5.4解自由度,质点位置为。
由①由已知得故②约束方程③联立②③可求得或又由于故或5.5解如题5.5.1图按题意仅重力作用,为保守系。
因为已知,故可认为自由度为1.选广义坐标,在球面坐标系中,质点的动能:由于所以又由于故取Ox为零势,体系势能为:故力学体系的拉氏函数为:5.6解如题5.6.1图.平面运动,一个自由度.选广义坐标为,广义速度因未定体系受力类型,由一般形式的拉格朗日方程①在广义力代入①得:②在极坐标系下:③故将以上各式代入②式得5.7解如题5.7.1图又由于所以①取坐标原点为零势面②拉氏函数③代入保守系拉格朗日方程得代入保守系拉格朗日方程得5.8解:如图5.8.1图.(1)由于细管以匀角速转动,因此=可以认为质点的自由度为1.(2)取广义坐标.(3)根据极坐标系中的动能取初始水平面为零势能面,势能:拉氏函数①(4),代入拉氏方程得:(5)先求齐次方程的解.②特解为故①式的通解为③在时:④⑤联立④⑤得将代回式③可得方程的解为:5.9解如题5.9.1图.(1)按题意为保守力系,质点被约束在圆锥面内运动,故自有度数为2. (2)选广义坐标,.(3)在柱坐标系中:以面为零势能面,则:拉氏函数-①(4)因为不显含,所以为循环坐标,即常数②对另一广义坐标代入保守系拉氏方程③有得④所以此质点的运动微分方程为(为常数)所以5.10解如题5.10.1图.(1)体系自由度数为2.(2)选广义坐标(3)质点的速度劈的速度故体系动能以面为零势面,体系势能:其中为劈势能.拉氏函数①(4)代入拉格郎日方程得:②代入拉格郎日方程得③联立②,③得5.11 解如题5.11.1图(1)本系统内虽有摩擦力,但不做功,故仍是保守系中有约束的平面平行运动,自由度(2)选取广义坐标(3)根据刚体力学其中绕质心转动惯量选为零势面,体系势能:其中C为常数.拉氏函数(4)代入保守系拉氏方程得:对于物体,有5.12解如题5.12.1图.(1)棒作平面运动,一个约束,故自由度. (2)选广义坐标(3)力学体系的动能根据运动合成又故设为绕质心的回转半径,代入①得动能②(4)由③(其中)则④因为、在约束条件下任意且独立,要使上式成立,必须:⑤(5)代入一般形式的拉氏方程得:⑥又代入一般形式的拉氏方程得:⑦⑥、⑦两式为运动微分方程(6)若摆动角很小,则,代入式得:,代入⑥⑦式得:⑧又故代入⑧式得:(因为角很小,故可略去项)5.13解如题5.13.1图(1)由于曲柄长度固定,自由度.(2)选广义坐标,受一力矩,重力忽略,故可利用基本形式拉格朗日方程:①(3)系统动能②(4)由定义式③(5)代入①得:得5.14.解如题5.14.1图.(1)因体系作平面平行运动,一个约束方程:(2)体系自由度,选广义坐标.虽有摩擦,但不做功,为保守体系(3)体系动能:轮平动动能轮质心转动动能轮质心动能轮绕质心转动动能.①以地面为零势面,体系势能则保守系的拉氏函数②(1)因为不显含,得知为循环坐标.故=常数③开始时:则代入得又时,所以5.15解如题5.15.1图(1)本系统作平面平行运动,干限制在球壳内运动,自由度;选广义坐标,体系摩擦力不做功,为保守力系,故可用保守系拉氏方程证明①(2)体系动能=球壳质心动能+球壳转动动能+杆质心动能+杆绕中心转动动能②其中代入②得以地面为零势面,则势能:(其中为常数)(3)因为是循环坐标,故常熟③而代入①式得④联立③、④可得(先由③式两边求导,再与④式联立)⑤⑤试乘并积分得:又由于当5.16解如题图5.16.1.(1)由已知条件可得系统自由度.(2)取广义坐标.(3)根据刚体力学,体系动能:①又将以上各式代入①式得:设原点为零势能点,所以体系势能体系的拉氏函数②(1)因为体系只有重力势能做工,因而为保守系,故可采用③代入③式得即(5)解方程得5.17解如题5.17.1图(1)由题设知系统动能①取轴为势能零点,系统势能拉氏函数②(2)体系只有重力做功,为保守系,故可采用保守系拉氏方程.代入拉氏方程得:又代入上式得即③同理又代入上式得④令代入③④式得:欲使有非零解,则须有解得周期5.18解如题5.18.1图(1)系统自由度(2)取广义坐标广义速度(3)因为是微震动,体系动能:以为势能零点,体系势能拉氏函数(4)即①同理②同理③设代入①②③式得欲使有非零解,必须解之又故可得周期5.19解如题5.19.1图(1)体系自由度(2)取广义坐标广义速度(3)体系动能体系势能体系的拉氏函数(4)体系中只有弹力做功,体系为保守系,可用①将以上各式代入①式得:②先求齐次方程③设代入③式得要使有非零,必须即又故通解为:其中又存在特解有②③式可得式中及为积分常数。
理论物理基础教程刘连寿第五篇第二章答案
第七篇第一章统计理论基础1.试求理想气体的定压膨胀系数和等温压缩系数。
1.解:假设我们考察的系统是n mol的理想气体,由于理想气体状态方程为:(1)(2)故定压膨胀系数:而等压压缩系数:综上有理想气体(n mol):2.某气体的定压膨胀系数和等温压缩系数,,其中都是常数,试求此气体的状态方程。
2.解:根据题意:把体积看成是数并微分有:两边同时积分有:由极限情况下:,故:得到:3.一弹性棒的热力学状态可用它的长度L,应力描述f和温度T关系,即为其状态方程,今设此弹性棒发生一微小变化,从一平衡态变到另一平衡态,试证明:其中为棒横截面积,为线膨胀系数,为杨氏模量。
3.证明:杨氏模量的定义:与类比线胀系数:对长度积分有:证毕4.对气体的膨胀系数和压缩系数进行测量的结果得到一下方程:,其中是常数,只是的函数.证明:(a)(b) 状态方程:4.证明:(a)由:(1)又由:(2)(2)式两边对求导(T一定时):此式与比较可知:f(P)=(因与T无关也与P无关)(b) 将带入(1)式有:当时,,故5.试给出半径为的维球体积:5.证明:在半径为1的维球区域内积分为:以另一种方式求上述积分有:由两式可知:证毕6.利用附录给出的斯特林公式:证明上题中的系数满足下式:6.证明:第一部分:只要将上题中解答过程的(3)式中的换成即得。
故关键是证明第二部分由于(1)由于:即有(1)式成立,故待证命题成立。
证毕第二章统计热力学基础1.单原子晶体中可占据一个格点或一个间隙点。
原子占据格点时的能量比占据间隙点时高。
设格点数和间隙点数相等。
且等于晶体中的原子数。
(a)考虑有个原子占据间隙点的宏观态,计算系统处于此宏观态的熵(b)设系统达到平衡,问晶体在此态的温度是多少?(c)若,晶体的温度时300K,处于间隙点的原子所占的比例是多少?解:(a)根据题意假设一个原子占据间隙点时能量,则占据格点时能量。
现有个原子占据间隙点故有个占据格点。
物理学第三版(刘克哲 张承琚)课后习题答案第1章到第十章
[第1章习题解答]1-3 如题1-3图所示,汽车从A地出发,向北行驶60 km到达B地,然后向东行驶60 km到达c地,最后向东北行驶50km到达D地。
求汽车行驶的总路程和总位移。
解汽车行驶的总路程为S=AB十BC十CD=(60十60十50)km=170 km;汽车的总位移的大小为Δr=AB/Cos45°十CD=(84.9十50)km=135km,位移的方向沿东北方向,与方向一致。
1-4 现有一矢量是时阃t在一般情况下是否相等?为什么?在一般情况下是不相等的。
因为前者是对矢量的绝对值(大小或长度)求导,表示矢量的太小随时间的变化率;而后者是对矢量的大小和方向两者同时求导,再取绝对值,表示矢量大小随时问的变化和矢量R方向随时同的变化两部分的绝对值。
如果矢量R方向不变,只是大小变化,那么这两个表示式是相等的。
1-5 一质点沿直线L运动,其位置与时间的关系为r =6t2-2t3,r 和t的单位分别是米和秒。
求:(1)第二秒内的平均速度;(2)第三秒末和第四秒末的速度,(3)第三秒末和第四秒末的加速度。
解:取直线L 的正方向为x 轴,以下所求得的速度和加速度,若为正值,表示该速度或加速度沿x 轴的正方向,若为负值,表示该速度或加速度沿x 轴的反方向。
(1)第二秒内的平均速度11121220.412)26()1624(--⋅=⋅----=--=s m s m t t x x v ; (2)第三秒末的速度 因为2612t t dtdxv -==,将t=3 s 代入,就求得第三秒末的速度为v 3=18m ·s -1;用同样的方法可以求得第口秒末的速度为 V 4=48m s -1; (3)第三秒末的加速度因为t dtxd 1212a 22-==,将t=3 s 代入,就求得第三秒末的加速度为a 3= -24m ·s -2;用同样的方法可“求得第四秒末的加速度为 a 4= -36m ·s -21-6 一质点作直线运动,速度和加速度的大小分别为dt d v s =和dtd v a =,试证明: (1)vdv=ads :(2)当a 为常量时,式v 2=v 02+2a(s-s 0)成立。
新编物理基础学上册第5章课后习题(每题都有)详细答案
新编物理基础学上册第5章课后习题(每题都有)详细答案第五章5-1有一弹簧振子,振幅A2.0102m,周期T1.0,初相3/4.试写出它的振动位移、速度和加速度方程。
分析根据振动的标准形式得出振动方程,通过求导即可求解速度和加速度方程。
解:振动方程为:某Aco[t]Aco[代入有关数据得:某0.02co[2t振子的速度和加速度分别是:vd某/dt0.04in[2tad2某/dt20.082co[2t2t]T3](SI)43](SI)43](SI)45-2若简谐振动方程为某0.1co[20t/4]m,求:(1)振幅、频率、角频率、周期和初相;(2)t=2时的位移、速度和加速度.分析通过与简谐振动标准方程对比,得出特征参量。
解:(1)可用比较法求解.根据某Aco[t]0.1co[20t/4]得:振幅A0.1m,角频率20rad/,频率/2101,周期T1/0.1,/4rad(2)t2时,振动相位为:20t/4(40/4)rad由某Aco,Ain,aA2co2某得某0.0707m,4.44m/,a279m/25-3质量为2kg的质点,按方程某0.2in[5t(/6)](SI)沿着某轴振动.求:(1)t=0时,作用于质点的力的大小;(2)作用于质点的力的最大值和此时质点的位置.分析根据振动的动力学特征和已知的简谐振动方程求解,位移最大时受力最大。
解:(1)跟据fmam2某,某0.2in[5t(/6)]将t0代入上式中,得:f5.0N(2)由fm2某可知,当某A0.2m时,质点受力最大,为f10.0N5-4为了测得一物体的质量m,将其挂到一弹簧上并让其自由振动,测得振动频率11.0Hz;而当将另一已知质量为m'的物体单独挂到该弹簧上时,测得频率为22.0Hz.设振动均在弹簧的弹性限度内进行,求被测物体的质量.分析根据简谐振动频率公式比较即可。
解:由12k/m,对于同一弹簧(k相同)采用比较法可得:1m'2m解得:m4m'5-5一放置在水平桌面上的弹簧振子,振幅A2.0102m,周期T=0.5,当t=0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在某1.0102m处,向负方向运动;(4)物体在某1.0102m处,向负方向运动.求以上各种情况的振动方程。
理论力学课后答案第五章(周衍柏)
第五章思考题5.1 虚功原理中的“虚功”二字作何解释?用虚功原理理解平衡问题,有何优点和缺点?5.2为什么在拉格朗日方程中,不包含约束反作用力?又广义坐标与广义力的含义如a何?我们根据什么关系由一个量的量纲定出另一个量的量纲?5.3广义动量p a和广义速度q a是不是只相差一个乘数m?为什么p a比q a更富有意义?5.4既然T是广义动量,那么根据动量定理,d T是否应等于广义力?为什么q a dt q a在拉格朗日方程5.3.14 式中多出了T项?你能说出它的物理意义和所代表的物理量q a吗?5.5为什么在拉格朗日方程只适用于完整系?如为不完整系,能否由式 5.3.13得出式5.3.14?5.6平衡位置附近的小振动的性质,由什么来决定?为什么2 s2个常数只有 2 s个是独立的?5.7什么叫简正坐标?怎样去找?它的数目和力学体系的自由度之间有何关系又每一简正坐标将作怎样的运动?5.8多自由度力学体系如果还有阻尼力,那么它们在平衡位置附近的运动和无阻尼时有何不同?能否列出它们的微分方程?5.9dL 和dL有何区别?L 和L有何区别?q a q a5.10哈密顿正则方程能适用于不完整系吗?为什么?能适用于非保守系吗?为什么?5.11哈密顿函数在什么情况下是整数?在什么情况下是总能量?试祥加讨论,有无是总能量而不为常数的情况?5.12何谓泊松括号与泊松定理?泊松定理在实际上的功用如何?5.13哈密顿原理是用什么方法运动规律的?为什么变分符号可置于积分号内也可移到积分号外?又全变分符号能否这样?5.14正则变换的目的及功用何在?又正则变换的关键何在?5.15哈密顿 - 雅可比理论的目的何在?试简述次理论解题时所应用的步骤.5.16正则方程5.5.15与 5.10.10及5.10.11之间关系如何?我们能否用一正则变换由前者得出后者?5.17在研究机械运动的力学中,刘维定理能否发挥作用?何故?5.18 分析力学学完后,请把本章中的方程和原理与牛顿运动定律相比较,并加以评价.第五章思考题解答5.1 答:作 .用于质点上的力在任意虚位移中做的功即为虚功,而虚位移是假想的、符合约束的、无限小的 .即时位置变更,故虚功也是假想的、符合约束的、无限小的.且与过程无关的功,它与真实的功完全是两回事.从W F i r i可知:虚功与选用的坐标系无关,这i正是虚功与过程无关的反映;虚功对各虚位移中的功是线性迭加,虚功对应于虚位移的一次变分 .在虚功的计算中应注意:在任意虚过程中假定隔离保持不变,这是虚位移无限小性的结果 .虚功原理给出受约束质点系的平衡条件,比静力学给出的刚体平衡条件有更普遍的意义;再者,考虑到非惯性系中惯性力的虚功,利用虚功原理还可解决动力学问题,这是刚体力学的平衡条件无法比拟的;另外,利用虚功原理解理想约束下的质点系的平衡问题时,由于约束反力自动消去,可简便地球的平衡条件;最后又有广义坐标和广义力的引入得到广义虚位移原理,使之在非纯力学体系也能应用,增加了其普适性及使用过程中的灵活性.由于虚功方程中不含约束反力 .故不能求出约束反力,这是虚功原理的缺点.但利用虚功原理并不是不能求出约束反力,一般如下两种方法:当刚体受到的主动力为已知时,解除某约束或某一方向的约束代之以约束反力;再者,利用拉格朗日方程未定乘数法,景观比较麻烦,但能同时求出平衡条件和约束反力.5.2 答因拉格朗日方程是从虚功原理推出的,而徐公原理只适用于具有理想约束的力学体系虚功方程中不含约束反力,故拉格朗日方程也只适用于具有理想约束下的力学体系,不含约束力;再者拉格朗日方程是从力学体系动能改变的观点讨论体系的运动,而约束反作用力不能改变体系的动能,故不含约束反作用力,最后,几何约束下的力学体系其广义坐标数等于体系的自由度数,而几何约束限制力学体系的自由运动,使其自由度减小,这表明约束反作用力不对应有独立的广义坐标,故不含约束反作用力.这里讨论的是完整系的拉格朗日方程,对受有几何约束的力学体系既非完整系,则必须借助拉格朗日未定乘数法对拉格朗日方程进行修正 .广义坐标市确定质点或质点系完整的独立坐标,它不一定是长度,可以是角度或其他物理量,如面积、体积、电极化强度、磁化强度等.显然广义坐标不一定是长度的量纲.在完整约束下,广义坐标数等于力学体系的自由度数;广义力明威力实际上不一定有力的量纲可以是力也可以是力矩或其他物理量,如压强、场强等等,广义力还可以理解为;若让广义力对应的广义坐标作单位值的改变,且其余广义坐标不变,则广义力的数值等于外力的功由nsi 1F i r i1qW 知,q 有功的量纲,据此关系已知其中一个量的量纲则可得到另一个量的量纲 .若 q 是长度,则一定是力,若是力矩,则 q 一定是角度,若 q 是体积,则 一定是压强等 .5.3答p 与 q 不一定只相差一个常数m ,这要由问题的性质、坐标系的选取形式及广义坐标的选用而定。
《物理学基本教程》课后答案第五章刚体的转动
第五章 刚体的转动5-1 一个匀质圆盘由静止开始以恒定角加速度绕过中心而垂直于盘面的定轴转动.在某一时刻,转速为10 r/s ,再转60转后,转速变为15 r/s ,试计算:(1)角加速度;(2)由静止达到10 r/s 所需时间;(3)由静止到10 r/s 时圆盘所转的圈数.分析 绕定轴转动的刚体中所有质点都绕轴线作圆周运动,并具有相同的角位移、角速度和角加速度,因此描述运动状态的物理量与作圆周运动的质点的相似.当角加速度恒定时,绕定轴转动的刚体用角量表示的运动学公式与匀加速直线运动的公式类似.解 (1) 根据题意,转速由rad/s 1021⨯=πω变为rad/s 1522⨯=πω期间的角位移rad 260πθ⨯=,则角加速度为22222122rad/s 54.6rad/s 2602)102()152(2=⨯⨯⨯-⨯=-=πππθωωα (2) 从静止到转速为rad/s 1021⨯=πω所需时间为s 9.61s 54.61021=⨯==παωt (3) t 时间内转的圈数为48261.91022122121=⨯⨯⨯===ππωππθt N 5-2 唱片在转盘上匀速转动,转速为78 r/min ,由开始到结束唱针距转轴分别为15 cm 和7.5 cm ,(1)求这两处的线速度和法向加速度;(2)在电动机断电以后,转盘在15 s 内停止转动,求它的角加速度及转过的圈数.分析 绕定轴转动的刚体中所有质点具有相同的角位移、角速度和角加速度,但是线速度、切向加速度和法向加速度等线量则与各质点到转轴的距离有关.角量与线量的关系与质点圆周运动的相似.解 (1) 转盘角速度为rad/s 8.17rad/s 60278=⨯=πω,唱片上m 15.01=r 和m 075.02=r 处的线速度和法向加速度分别为m /s 1.23m /s 15.017.811=⨯==r ωv222121n m /s 10.0m /s 15.017.8=⨯==r ωam /s .6130m /s 075.017.822=⨯==r ωv222222n m /s .015m /s 075.017.8=⨯==r ωa(2) 电动机断电后,角加速度为22rad/s 545.0rad/s 1517.800-=-=-=t ωα 转的圈数为 75.921517.8212212=⨯⨯===πωππθt N 5-3 如图5-3所示,半径r 1 = 30 cm 的A 轮通过皮带被半径为r 2 = 75 cm 的B 轮带动,B 轮以π rad/s 的匀角加速度由静止起动,轮与皮带间无滑动发生,试求A 轮达到3000 r/min 所需要的时间. 分析 轮与皮带间无滑动,则同一时刻,两轮边缘的线速度相同,均等于皮带的传送速度;两轮边缘的切向加速度也相同,均等于皮带的加速度.解 设A 、B 轮的角加速度分别为A α、B α,由于两轮边缘与皮带连动,切向加速度相同,即2B 1A r r αα=B A r 1 r 2图5-3则 B 12A ααr r = A 轮角速度达到rad/s 6030002⨯=πω所需要的时间为 s 40s 75.06030.0300022B 1A =⨯⨯⨯⨯===ππαωαωr r t 5-4 在边长为b 的正方形的顶点上,分别有质量为m 的四个质点,求此系统绕下列转轴的转动惯量:(1)通过其中一质点A ,平行于对角线BD 的转轴,如图5-4所示.(2)通过A 垂直于质点所在平面的转轴.分析 由若干质点组成的质点系对某转轴的转动惯量等于各质点对该转轴转动惯量的叠加.每一质点对转轴的转动惯量等于它的质量与其到转轴的垂直距离平方的乘积. 解 (1)因质点B 和D 到转轴的垂直距离A 2B 和A 1D 为a 22,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 点平行于BD 的转轴的转动惯量为()222132222ma am a m J =+⎪⎪⎭⎫ ⎝⎛=(2) 因质点B 和D 到转轴的垂直距离AB 和AD 为a ,质点C 到转轴的垂直距离AC 为a 2,而质点A 位于转轴上,则系统对通过A 垂于质点所在平面转轴的转动惯量为()2222422ma a m ma J =+= AA 2B图5-45-5 求半径为R ,质量为m 的均匀半圆环相对于图5-5中所示轴线的转动惯量.分析 如果刚体的质量连续分布在一细线上,可用质量线密度描述其分布情况,如果分布是均匀的,则质量线密度λ为常量.在刚体上取一小段线元l d ,质量为l d λ,对转轴的转动惯量为l r d 2λ,其中该线元到转轴的距离r 与线元在刚体上的位置有关.整个刚体的转动惯量就是刚体上所有线元转动惯量的总和,即所取线元的转动惯量对刚体分布的整个区域积分的结果.解 均匀半圆环的质量线密度为Rm πλ=,在半圆环上取一小段圆弧作为线元θd d R l =,质量为θπθπλd d d d m R R m l m === 此线元到转轴的距离为θsin R r =,对轴线的转动惯量为m r d 2,则整个半圆环的转动惯量为2022221d sin d mR m R m r J =⋅==⎰⎰θπθπ 5-6 一轻绳跨过滑轮悬有质量不等的二物体A 、B ,如图5-6(a)所示,滑轮半径为20 cm ,转动惯量等于2m kg 50⋅,滑轮与轴间的摩擦力矩为m N 198⋅.,绳与滑轮间无相对滑动,若滑轮的角加速度为2rad/s 362.,求滑轮两边绳中张力之差. 分析 由于定轴转动的刚体的运动规律遵从转动定律,因此对于一个定轴转动的滑轮来说,仅当其质量可以忽略,转动惯量为零,滑R图5-5 fF T1 F T2(a) (b)图5-6轮加速转动时跨越滑轮的轻绳两边的张力才相等.这就是在质点动力学问题中通常采用的简化假设.在掌握了转动定律后,不应该再忽略滑轮质量,通常将滑轮考虑为质量均匀分布的圆盘,则跨越滑轮的轻绳两边的张力对转轴的合力矩是滑轮产生角加速度的原因.解 滑轮所受力和力矩如图5-6(b)所示,其中跨越滑轮的轻绳两边的张力分别为F T1和F T2,轴的支承力F N 不产生力矩,由转动定律可得αJ M R F F =--f T2T1)()(1f T2T1M J R F F +=-α N 101.08N )1.9836.250(2.01 3⨯=+⨯⨯= 5-7 如图5-7(a )所示的系统中,m 1 = 50 kg ,m 2 = 40 kg ,圆盘形滑轮质量m = 16 kg ,半径R = 0.1 m ,若斜面是光滑的,倾角为30°,绳与滑轮间无相对滑动,不计滑轮轴上的摩擦,(1)求绳中张力;(2)运动开始时,m 1距地面高度为1 m ,需多少时间m 1到达地面?分析 由于存在物体运动和滑轮定轴转动,而且必须考虑圆盘形滑轮的质量,这是一个质点动力学和刚体动力学的综合问题,应该采用隔离物体法,分别对运动物体作受力分析,对转动的滑轮作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.m αF ’T1 F T1m 2 m 1 F F T2a︒30m 2g m 1g(a ) (b )图5-7解 (1)各物体与滑轮受力情况如图5-7(b )所示,其中F T1= F ’T1,F T2= F ’T2,轴对滑轮的支承力F N 不产生力矩,选取物体运动方向为坐标轴正向,分别应用牛顿第二定律和转动定律,可得a m F g m 1T11=-a m g m F 22T230sin =︒-α2T2T121)(mR R F F =- 由于物体的加速度等于滑轮边缘的线速度,则αR a =,与以上各式联立解得22121rad/s 3021)(30sin =++︒-=g mR R m m m m α N 340)(1T1=-=αR g m FN 316)30sin (2T2=+︒=αR g m F2m/s 3==αR a(2) m 1到达地面的时间为s 0.816s 3122=⨯==a h t 5-8 飞轮质量为60 kg ,半径为0.25 m ,当转速为1000 r/min 时,要在5 s 内令其制动,求制动力F ,设闸瓦与飞轮间摩擦系数μ=0.4,飞轮的转动惯量可按匀质圆盘计算,闸杆尺寸如图5-8所示.分析 制动力F 作用在闸杆上,闸杆在制动力和飞轮的正压力的力矩作用下达到平衡,转动轴在墙上,这是刚体在力矩作用下的平衡问题.由于二力的力臂已知,应该求出闸杆与飞轮之间的正压力.飞轮受到闸杆的正压F图5-8力、闸瓦与飞轮间摩擦力和轴的支承力作用,其中闸杆的正压力和轴的支承力的力矩为零,在闸瓦与飞轮间摩擦力的力矩作用下制动,应用转动定律可以求出摩擦力矩,然后由摩擦力与正压力关系可以求出闸杆与飞轮之间的正压力.解 以飞轮为研究对象,飞轮的转动惯量为221mR J =,制动前角速度为rad/s 6010002⨯=πω,制动时角加速度为tωα-=.制动时闸瓦对飞轮的压力为F N ,闸瓦与飞轮间的摩擦力N f F F μ=,应用转动定律,得αα2f 21mR J R F ==- 则 t mR F μω2N =以闸杆为研究对象.在制动力F 和飞轮对闸瓦的压力-F N 的力矩作用下闸杆保持平衡,两力矩的作用力臂分别为m )75.050.0(+=l 和m 50.01=l ,则有01N =-l F FlN 157N 6054.021000225.06075.050.050.021N 1=⨯⨯⨯⨯⨯⨯⨯+===πμωt mR l l F l l F 5-9 一风扇转速为900 r/min ,当马达关闭后,风扇均匀减速,止动前它转过了75转,在此过程中制动力作的功为44.4 J ,求风扇的转动惯量和摩擦力矩.分析 合外力矩对刚体所作的功等于刚体的转动动能的增量.制动过程中风扇只受摩擦力矩作用,而且由于风扇均匀减速,表明摩擦力矩为恒定值,与风扇角位移的乘积就是所作的功.解 设制动摩擦力矩为M ,风扇转动惯量为J ,止动前风扇的角位移N πθ2=,摩擦力矩所作的功为N M M W πθ2⋅-=-=摩擦力矩所作的功应等于风扇转动动能的增量,即2210ωJ W -= 则 2222m kg 01.0m kg )60/2900()4.44(22⋅=⋅⨯-⨯-=-=πωW J m N 0.0942m N 7524.442⋅=⋅⨯--=-=ππN W M 5-10 如图5-10(a )所示,质量为24 kg 的鼓形轮,可绕水平轴转动,一绳缠绕于轮上,另一端通过质量为5 kg 的圆盘形滑轮悬有10 kg 的物体,当重物由静止开始下降了0.5 m 时,求:(1)物体的速度;(2)绳中张力.设绳与滑轮间无相对滑动.分析 这也是一个质点动力学和刚体动力学的综合问题,鼓形轮和滑轮都视为圆盘形定轴转动的刚体,应该采用隔离物体法,分别对运动物体作受力分析,对刚体作所受力矩的分析,然后分别应用牛顿第二定律和转动定律.解 各物体受力情况如图5-10(b )所示,其中F T1= F ’T1,F T2= F ’T2,鼓形轮的转动惯量为2121R m ,圆盘形滑轮的转动惯量为2221r m ,分别应用牛顿第二定律和转动定律,可得ma F mg =-T2222T1T221)(αr m r F F =- 121T121αR m R F =(1) 绳与滑轮间无相对滑动,物体的加速度等于鼓形轮和滑轮边缘的切向加αT1 F 2α ’T2 a F T2m g(a ) (b )图5-10速度,即12ααR r a ==.重物由静止开始下降了h = 0.5 m 时,速度ah 2=v ,由以上各式得m/s 2m/s )524(21105.08.9102)(212221=+⨯+⨯⨯⨯=++==m m m mgh ah v (2)绳中张力为N 48N 5241028.924102211T1=++⨯⨯⨯=++=m m m g mm F N 85N 5241028.9)524(102)(2121T2=++⨯⨯+⨯=+++=m m m g m m m F 5-11 一蒸汽机的圆盘形飞轮质量为200 kg ,半径为1 m ,当飞轮转速为120 r/min 时关闭蒸汽阀门,若飞轮在5 min 内停下来,求在此期间飞轮轴上的平均摩擦力矩及此力矩所作的功.分析 制动过程中飞轮只受摩擦力矩作用,该摩擦力矩不一定为恒定值,但是由于只需求平均摩擦力矩,因此可以假设飞轮均匀减速,由已知条件求出平均角加速度,再应用转动定律求出平均摩擦力矩.解 飞轮转动惯量为221mR J =,关闭蒸汽阀门后t = 5 min 内的平均角加速度为t00ωα-=,应用转动定律,平均摩擦力矩 m N 194m N 60560/212012002121202⋅-=⋅⨯⨯⨯⨯⨯-=-==.t mR J M πωα 在此期间平均摩擦力矩所作的功等于飞轮转动动能的增量J 7896J )60/2120(12002121 21212102220220-=⨯⨯⨯⨯⨯-=⋅-=-=πωωmR J W 负号表示平均摩擦力矩作负功,方向与飞轮旋转方向相反.5-12 长为85 cm 的均匀细杆,放在倾角为45°的光滑斜面上,可以绕过上端点的轴在斜面上转动,如图5-12(a)所示,要使此杆实现绕轴转动一周,至少应给予它的下端多大的初速度?分析 细杆在斜面上转动,斜面的支承力与转轴平行,转轴的支承力通过转轴,它们的力矩都为零,只有重力在转动平面内分量的力矩作功.解 如图5-12(b)所示,杆所受重力在转动平面内的分量为︒45sin mg ,当杆与初始位置的夹角为θ时,重力分量对转轴的力矩为θsin 2145sin l mg ⋅︒,此时若杆有角位移θd ,则重力矩所作的元功为θθd sin 2145sin d ⋅⋅︒=l mg W 杆从最低位置到最高位置重力矩所作的功为︒-=⋅⋅︒-==⎰⎰45sin d sin 2145sin d 0mgl l mg W W πθθ 重力矩所作的功等于此期间杆的转动动能的增量2021045sin ωJ mgl -=︒- 其中231ml J =,t 00v =ω,则 m/s 5.94m/s 45sin 85.08.9645sin 60=︒⨯⨯⨯=︒=gl v5-13 如图5-13(a)所示,滑轮转动惯量为0.012m kg ⋅,半径为7 cm ,物体质量为5 kg ,由一绳与倔强系数k=200 N/m 的弹簧相连,若绳与滑轮间无相对滑动,滑轮轴上的摩擦忽略不计,求:(1)当绳拉直弹簧无伸长时,使物体由v 0 ︒45 (a) (b) 图5-12静止而下落的最大距离;(2)物体速度达最大值的位置及最大速率.分析 下面的5-17题中将证明,如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,则由刚体和地球组成的系统机械能守恒.如果将滑轮、地球和物体与弹簧组成一个弹性系统和重力系统合成的系统,当无重力和弹性力以外的力作功的情况下,整个系统的机械能守恒,可以应用机械能守恒定律.下面的解则仅应用功能原理和力矩所作的功与刚体转动动能的关系进行计算.解 (1) 物体由静止而下落到最低点时,速度为零,位移为1x ,在此期间重力所作的功完全转换为弹簧弹性势能的增量,即21121kx mgx = m 0.49m 2008.95221=⨯⨯==k mg x (2)物体与滑轮受力如图5-13(b)所示,设物体的最大速率为0v ,此时的位移为0x ,加速度00=a ,滑轮的角加速度000==R a α,分别应用牛顿第二定律和转动定律ma F mg =-T1αJ R F F =-)(T2T1可得此时T1F mg =,F T1= F T2,又因对于轻弹簧有0T2kx F =,则得m 0.245m 2008.950=⨯==k mg xT1aF ’T1m m g(a) (b)图5-13在此过程中,重力所作之功等于弹性势能的增量、物体动能和滑轮转动动能的增量的和,即2020200212121ωJ m kx mgx ++=v 因R 00v =ω,得 m/s 31.1m/s 9.85)07.001.05(2001)(122=⨯⨯+⨯=+=mg R J m k v5-14 圆盘形飞轮A 质量为m ,半径为r ,最初以角速度ω0转动,与A 共轴的圆盘形飞轮B 质量为4m ,半径为2r ,最初静止,如图5-14所示,两飞轮啮合后,以同一角速度ω转动,求ω及啮合过程中机械能的损失.分析 当物体系统所受的合外力矩为零时,系统的角动量守恒,在此过程中,由于相互作用的内力作功,机械能一般不守恒.解 以两飞轮组成的系统为研究对象,由于运动过程中系统无外力矩作用,角动量守恒,有 ωωω2202)2(4212121r m mr mr += 得 0171ωω= 初始机械能为2022021412121ωωmr mr W =⋅=啮合后机械能为 2022222241171)2(421212121ωωωmr r m mr W =⋅+⋅=则机械能损失为 A图5-141202211716411716W mr W W W ==-=∆ω 5-15 一人站在一匀质圆板状水平转台的边缘,转台的轴承处的摩擦可忽略不计,人的质量为m ’,转台的质量为10 m ’,半径为R .最初整个系统是静止的,这人把一质量为m 的石子水平地沿转台的边缘的切线方向投出,石子的速率为v (相对于地面).求石子投出后转台的角速度与人的线速度.分析 应用角动量守恒定律,必须考虑定律的适用条件,即合外力矩为零.此外还应该注意到,定律表达式中的角动量和角速度都必须是对同一惯性参考系选取的,而转动参考系不是惯性参考系.解 以人、转台和石子组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,设转台角速度ω的转向与投出的石子速度v 方向一致,初始时系统角动量为零,得0=+v mR J ω 人和转台的转动惯量为221021R m R m J '+'=,代入上式后得 Rm m '-=6v ω 人的线速度 m m R '-=='6v v ω 其中负号表示转台角速度转向和人的线速度方向与假设方向相反.5-16 一人站立在转台上,两臂平举,两手各握一个m = 4 kg 的哑铃,哑铃距转台轴r 0 = 0.8 m ,起初,转台以ω0 = 2π rad/s 的角速度转动,然后此人放下两臂,使哑铃与轴相距r = 0.2 m ,设人与转台的转动惯量不变,且J = 52m kg ⋅,转台与轴间摩擦忽略不计,求转台角速度变为多大?整个系统的动能改变了多少?分析 角动量守恒定律是从定轴转动的刚体导出的,却不但适用与刚体,而且适用于绕定轴转动的任意物体和物体系统.解 以人、转台和哑铃组成的系统为研究对象,由于系统无外力矩作用,角动量守恒,有ωω)2()2(2020mr J mr J +=+rad/s 12.0rad/s 22.04258.042522220220=⨯⨯⨯+⨯⨯+=++=πωωmr J mr J 动能的增量为J183 J )2()8.0425(21J 12)2.0425(21 )2(21)2(2122222020220=⨯⨯⨯+⨯-⨯⨯⨯+⨯=+-+=-=∆πωωmr J mr J W W W 5-17 证明刚体中任意两质点相互作用力所作之功的和为零.如果绕定轴转动的刚体除受到轴的支承力外仅受重力作用,试证明它的机械能守恒.分析 在刚体动力学中有很多涉及重力矩作功的问题,如果能证明当只有重力矩作功时刚体和地球组成的系统机械能守恒,就能应用机械能守恒定律,而且还可以用刚体的质心的势能代替整个刚体中所有质点势能的总和,使求解过程大大简化. 证 刚体中任意两质点相互作用力沿转轴方向的分量对定轴转动不起作用,而在垂直于转轴的平面内的分量F 和-F 大小相等,方向相反,作用在一条直线上,如图5-17所示.设F 与转轴的垂直距离为ϕsin r ,则当刚体有微小角位移θd 时,力F 所作的功为θϕd sin Fr ,而其反作用力-F 所作的功为θϕd sin Fr -,二者之和为零,即刚体中任意两质点相互作用力所作之功的和为零.绕定轴转动的刚体除受到轴的支承力外仅受重力作用,刚体中任意质点则受-F图5-17到内力和重力作用,当刚体转动时,因为已经证明了任意两质点相互作用内力所作之功的和为零,则刚体中各质点相互作用力所作的总功为零,而且轴的支承力也不作功,就只有重力作功,因此机械能守恒.5-18 一块长m 50.0=L ,质量为m '=3.0 kg 的均匀薄木板竖直悬挂,可绕通过其上端的水平轴无摩擦地自由转动,质量m =0.1kg 的球以水平速度m/s 500=v 击中木板中心后又以速度m/s 10=v 反弹回去,求木板摆动可达到的最大角度.木板对于通过其上端轴的转动惯量为231L m J '= . 分析 质点的碰撞问题通常应用动量守恒定律求解,有刚体参与的碰撞问题则通常应用角动量守恒定律求解.质点对一点的角动量在第四章中已经讨论过,当质点作直线运动时,其角动量的大小是质点动量和该点到质点运动直线的垂直距离的乘积.解 对球和木板组成的系统,在碰撞瞬间,重力对转轴的力矩为零,且无其他外力矩作用,系统角动量守恒,碰撞前后球对转轴的角动量分别为021v mL 和v mL 21-,设碰后木板角速度为ω,则有 ωJ mL mL +-=v v 21210 设木板摆动可达到的最大角度为θ,如图5-18所示,木板摆动过程中只有重力矩作功,重力矩所作的功应等于木板转动动能的增量,即)1(cos 21d sin 2121002-'=⋅'-=-⎰θθθωθgL m L g m J (1) 由以上两式得 388.050.08.90.34)1050(1.0314)(31cos 2222202=⨯⨯⨯+⨯⨯-='+-=gL m m v v θv mm ’g图5-18︒==19.67)388.0arccos(θ根据5-17的结果,由于木板在碰撞后除受到轴的支承力外仅受重力作用,它的机械能守恒,取木板最低位置为重力势能零点,达到最高位置时它的重力势能应等于碰撞后瞬间的转动动能,也可以得到(1)式.5-19 半径为R 质量为m '的匀质圆盘水平放置,可绕通过圆盘中心的竖直轴转动.圆盘边缘及R /2处设置了两条圆形轨道,质量都为m 的两个玩具小车分别沿二轨道反向运行,相对于圆盘的线速度值同为v .若圆盘最初静止,求二小车开始转动后圆盘的角速度.分析 当合外力矩为零时,应用角动量守恒定律应该注意到表达式中的角动量和角速度都是对同一惯性参考系选取的.转动参考系不是惯性参考系,所以小车对圆盘的速度和角动量必须应用相对运动速度合成定理转换为对地面的速度和角动量.解 设两小车和圆盘的运动方向如图5-19所示,以圆盘的转动方向为正向,外轨道上小车相对于地面的角动量为)(v -ωR mR ,内轨道上小车相对于地面的角动量为)21(21v +ωR R m ,圆盘的角动量为ωω221R m J '=.对于两小车和圆盘组成的系统,外力对转轴的力矩为零,角动量守恒,得ωωω221)21(21)(R m R R m R mR '+++-v v R m m m )25(2'+=v ω vωv图5-19。
大学物理知识总结习题答案(第一章)
, 带入已知数据,解得
1-10 下面是一个测定农药、叶肥等液体黏滞系数的简易方法。在 一个宽大玻璃容器底部连接一根水平的细玻璃管,测定单位时间内由细 管流出的液体质量即可知h 。若已知细管内直径d=0.1cm,细管长l= 10cm,容器内液面高h=5cm,液体密度为1.9×103kg·m-3,测得1min内 自细管流出的液体质量m=0.66×10-3kg,问该液体的h为多少?
1-7 在自然界中经常会发现一种现象,在傍晚时地面是干燥的,而 在清晨时地面却变得湿润了。试解释这种现象的成因。
答:根据对毛细现象的物理分析可知,由于水的表面张力系数与温 度有关,毛细水上升的高度会随着温度的变化而变化,温度越低,毛细 水上升的高度越高。在白天,由于日照的原因,土壤表面的温度较高, 土壤表面的水分一方面蒸发加快,另一方面土壤颗粒之间的毛细水会因 温度升高而下降,这两方面的原因使土壤表层变得干燥。相反,在夜 间,土壤表面的温度较低,而土壤深层的温度变化不大,使得土壤颗粒 间的毛细水上升;另一方面,空气中的水汽也会因为温度下降而凝结, 从而使得清晨时土壤表层变得较为湿润。
解:若钢丝绳的半径为,绳内部某截面上的应力s 为 设钢的弹性极限为,则达到拉伸极限时
由此解出
钢丝绳的最小直径为
1-2 某人的一条腿骨长为0.4m,横截面积平均为5×10-4m2。用此骨支 承整个体重(相当 500N的力),其长度缩短多少?占原长的百分之 几?(骨的杨氏模量按1×1010N·m-2计算)
解:根据表面张力的定义可知,在长为的液面上作用的表面张力为 当将金属细圆环从液面缓慢拉出时,将沿圆环拉出一个环形的液膜。由 于液膜有两个与空气接触的表面,因此,金属细圆环内外均受到液体表 面张力的作用。拉出圆环时,外力与表面张力相平衡,即
大学物理基础教程全一册答案
大学物理基础教程全一册答案1. 光的干涉和衍射不仅说明了光具有波动性,还说明了光是横波。
[单选题] *对错(正确答案)2. 拍摄玻璃橱窗内的物品时,往往在镜头前加一个偏振片以增加透射光的强度。
[单选题] *对错(正确答案)3. 爱因斯坦提出的光子说否定了光的波动说。
[单选题] *对错(正确答案)4. 太阳辐射的能量主要来自太阳内部的裂变反应。
[单选题] *对错(正确答案)5. 全息照片往往用激光来拍摄,主要是利用了激光的相干性。
[单选题] *对(正确答案)错6. 卢瑟福的α粒子散射实验可以估测原子核的大小。
[单选题] *对(正确答案)错7. 紫光光子的能量比红光光子的能量大。
[单选题] *对(正确答案)错8. 对于氢原子,量子数越大,其电势能也越大。
[单选题] *对(正确答案)错9. 雨后天空出现的彩虹是光的衍射现象。
[单选题] *对错(正确答案)10. 光的偏振现象说明光是横波。
[单选题] *对(正确答案)错11. 爱因斯坦提出光是一种电磁波。
[单选题] *对错(正确答案)12. 麦克斯韦提出光子说,成功地解释了光电效应。
[单选题] *对错(正确答案)13. 不同色光在真空中的速度相同但在同一介质中速度不同。
[单选题] *对(正确答案)错14. 当原子处于不同的能级时,电子在各处出现的概率是不一样的。
[单选题] *对(正确答案)错15. 同一种放射性元素处于单质状态或化合物状态,其半衰期相同 [单选题] *对(正确答案)错16. 原子核衰变可同时放出α、β、「射线,它们都是电磁波。
[单选题] *对错(正确答案)17. 治疗脑肿瘤的“「刀”是利用了r射线电离本领大的特性。
[单选题] *对错(正确答案)18. β射线的电子是原子核外电子释放出来而形成的。
[单选题] *对错(正确答案)19. 玻尔理论是依据α粒子散射实验分析得出的。
[单选题] *对错(正确答案)20. 氢原子核外电子从小半径轨道跃迁到大半径轨道时,电子的动能减小,电势能增大,总能量增大。
数学物理方法chapter-1
不妨让引用科学家柯朗在《数学物理方法》一书
(德文版 序言)中的一段话加以描述,柯朗写道:
“从17世纪以来,物理的直观,对于数学问题和方法
是富有生命力的根源,然而近年来的趋向和时尚,已
将数学与物理间的联系减弱了,数学家离开了数学的 直观根源,而集中推理精致和着重于数学的公设方面,
甚至有时忽视数学与物理学以及其他科学领域的整体 性.而且在许多情况下,物理学家也不再体会数学家的 观点,这种分裂,无疑地对于整个科学界是一个严重的 威胁,科学发展的洪流, 可能逐渐分裂成为细小而又细 小的溪渠,以至于干涸,因此,有必要引导我们的努力转
z r(cos i sin )
称为复数的三角表示式. 即为
z r cos ir sin r(cos isin) z cosArgz isinArgz
定义 1.2.6 复数的指数表示 利用欧拉(Euler) 公式
ei cos i sin 我们可以把任意非零复数 z x iy r cos i sin 表示
第一章 复数与复变函数
要求掌握:
1. 复数:复数运算和复数的各种表示方法; 模与幅角; 2. 曲线和区域的判断:简单曲线、简单闭曲 线;单、复(或多)连通区域;有、无界区 域;区域(开、闭区域);映射的概念; 3. 复变函数的极限和连续; 4. 复球面与无穷远点概念;
重点:复数的运算和各种表示法; 复变函数极限的概念;
《数学物理方法》
参考资料:
第一部分 复变函数论 (含积分变换)
第二部分 数学物理方程 第三部分 特殊函数
参考资料(教材)
第四部分 计算机仿真
数学物理思想
数学思想是人类创造性思维最具活力的体现
爱因斯坦相对论的建立便是最有力的佐证。将数学思 想方法应用于现代高科技各专业技术领域,并构建成典 型的(物理)模型和解决问题的方法是数学思维和现代 专业技术领域的结晶,从而形成科学研究中实用性很强 的数学物理方法。它既利用精妙的数学思想,又联系具 体的研究任务和研究目标, 建立数学物理模型,给出解决 方法,是思维和研究任务、数学和物理模型有机结合的 方法,是统一数学思想和物理模型的系统化理论。脱离 了数学思维,具体研究任务失去了理论指导方法;脱离 了所研究的物理模型,作为最具生命力根源的数学思维 没有发挥其解决实际问题的巨大潜能。既非数学思想, 也非物理模型本身能达到尽善尽美,只有两者的有机结 合才能形成推动人类科学技术赖以发展的最有成效的动 力之源。
理论物理基础教程答案
理论物理基础教程答案【篇一:物理学教程(第二版)上册课后答案7】7 -1 处于平衡状态的一瓶氦气和一瓶氮气的分子数密度相同,分子的平均平动动能也相同,则它们( )(a) 温度,压强均不相同 (b) 温度相同,但氦气压强大于氮气的压强(c) 温度,压强都相同(d) 温度相同,但氦气压强小于氮气的压强分析与解理想气体分子的平均平动动能k?3kt/2,仅与温度有关.因此当氦气和氮气的平均平动动能相同时,温度也相同.又由物态方程p?nkt,当两者分子数密度n 相同时,它们压强也相同.故选(c).7-2 三个容器a、b、c 中装有同种理想气体,其分子数密度n相同,方均根速率之比?:??:??21/2a21/2b21/2c?1:2:4,则其压强之比pa:pb:pc为( )(a) 1∶2∶4 (b) 1∶4∶8 (c) 1∶4∶16 (d) 4∶2∶1 分析与解分子的方均根速率为2?3rt/m,因此对同种理想气体有同时,得p1:p2:p3?t1:t2:t3?1:4:16.故选(c).7-3 在一个体积不变的容器中,储有一定量的某种理想气体,温度为t0时,气体分子的平均速率为0,分子平均碰撞次数为0,平均自由程为0,当气体温度升高为4t0时,气体分子的平均速率、平均碰撞频率和平均自由程分别为( ) (a) ?40,?40,?40 (b) ?20,?20,?0 (c)?20,?20,?40 (d)?40,?20,?0碰撞频率变为20;而平均自由程?1,n不变,则?也不变.因此正确答案为(b). 27-4 图示两条曲线分别表示在相同温度下氧气和氢气分子的速率分布曲线.如果(vp)o2和(vp)h2分别表示氧气和氢气的最概然速率,则( )(a) 图中a表示氧气分子的速率分布曲线且(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h(vp)o(vp)h2?4 ?1 41 42(b) 图中a表示氧气分子的速率分布曲线且22(c) 图中b表示氧气分子的速率分布曲线且2?2(d) 图中b表示氧气分子的速率分布曲线且2?42分析与解由vp?2rt可知,在相同温度下,由于不同气体的摩尔质量不同,它们的m 最概然速率vp也就不同.因mh2?mo,故氧气比氢气的vp要小,由此可判定图中曲线a2应是对应于氧气分子的速率分布曲线.又因(b).mhmo2?2(vp)o1?,所以16(vp)h22mhmo2?21.故选4题 7-4 图7-5 有一个体积为1.0?105m3的空气泡由水面下50.0m深的湖底处(温度为4.0oc)升到湖面上来.若湖面的温度为17.0oc,求气泡到达湖面的体积.(取大气压强为p0?1.013?105pa)分析将气泡看成是一定量的理想气体,它位于湖底和上升至湖面代表两个不同的平衡状态.利用理想气体物态方程即可求解本题.位于湖底时,气泡内的压强可用公式解设气泡在湖底和湖面的状态参量分别为(p1,v1,t1 )和(p2 ,v2,t2 ).由分析知湖底处压p1v1p2v2?t1t2可得空气泡到达湖面的体积为v2?p1t2v1?p0??gh?t2v1??6.11?10?5m3 p2t1p0t17-6 一容器内储有氧气,其压强为1.01?105pa,温度为27 ℃,求:(1)气体分子的数密度;(2) 氧气的密度;(3) 分子的平均平动动能;(4) 分子间的平均距离.(设分子间均匀等距排列)分析在题中压强和温度的条件下,氧气可视为理想气体.因此,可由理想气体的物态方程、密度的定义以及分子的平均平动动能与温度的关系等求解.又因可将分子看成是均匀等距排列的,故每个分子占有的体积为v0?3,由数密度的含意可知v0?1/n,即可求出.解 (1) 单位体积分子数n?(2) 氧气的密度p?2.44?1025m3 kt??m/v?(3) 氧气分子的平均平动动能pm?1.30kg?m-3 rtk?3kt/2?6.21?10?21j(4) 氧气分子的平均距离?/n?3.45?10?9m通过对本题的求解,我们可以对通常状态下理想气体的分子数密度、平均平动动能、分子间平均距离等物理量的数量级有所了解.分析理想气体的温度是由分子的平均平动动能决定的,即k?3kt/2.因此,根据题中m?给出的条件,通过物态方程pv =rt,求出容器内氢气的温度即可得k.m解由分析知氢气的温度t?mpv,则氢气分子的平均平动动能为 mr323pvmk?3.89?10?22j2m?rk?kt?分析将组成恒星的大量质子视为理想气体,质子可作为质点,其自由度i=3,因此,质子的平均动能就等于平均平动动能.此外,由平均平动动能与温度的关系m/2?3kt/2,可得方均根速率2.解 (1) 由分析可得质子的平均动能为2k?2/2?3kt/2?2.07?10?15j(2) 质子的方均根速率为2?63kt?1.58?106m?s-1 m3kt?9.5?106m?s?1 me平均动能k?3kt/2?4.1?10?17j222mirt,对刚性双原子分子而言,i=5.由上述内能m2公式和理想气体物态方程pv =?rt可解出气体的压强.(2)求得压强后,再依据题给数据可求得分子数密度,则由公式p=nkt可求气体温度.气体分子的平均平动动能可由k?3kt/2求出.i解 (1) 由e??rt和pv=?rt可得气体压强2p?2e?1.35?105pa iv(2) 分子数密度n =n/v,则该气体的温度t?p/?nk??pv/?nk??3.62?102k气体分子的平均平动动能为k?3kt/2?7.49?10?21j7-11 当温度为0?c时,可将气体分子视为刚性分子,求在此温度下:(1)氧分子的平?3均动能和平均转动动能;(2)4.0?10能.kg氧气的内能;(3)4.0?10?3kg氦气的内分析(1)由题意,氧分子为刚性双原子分子,则其共有5个自由度,其中包括3个平动自由3度和2个转动自由度.根据能量均分定理,平均平动动能kt?kt,平均转动动能2kr?kt?kt.(2)对一定量理想气体,其内能为e?22m?irt,它是温度的单值函m2数.其中i为分子自由度,这里氧气i=5、氦气i=3.而m?为气体质量,m为气体摩尔质量,其中氧气m的内能.解根据分析当气体温度为t=273 k时,可得(1)氧分子的平均平动动能为?32?10?3kg?mol?1;氦气m?4.0?10?3kg?mol?1.代入数据即可求解它们kt?kt?5.7?10?21j氧分子的平均转动动能为32kr?kt?3.8?10?21j(2)氧气的内能为22【篇二:物理实验习题答案(第二版教材)(1)】什么是基本单位和导出单位? 2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比较可以知道
ρ f = cf
2
,而且 ∫ ρ f df
= ∫ c f df = 1
2
PDF 文件使用 "pdfFactory" 试用版本创建
6.一维运动粒子的状态是
Axe − λx ψ ( x) = 0 x≥0 x<0
其中 λ > 0 ,求:(a)粒子动量的概率分布函数 (b)粒子的平均动量 解:一维运动粒子的动量算符的本征函数为ψ p 在 x ≥ 0 时将波函数用本征函数展开
o
, λ = h / p = h / mv p
= 1.78 *10 −10 m = 1.78 A
o
在普通条件下,实物粒子的波长很小,所以不表现出波 动性。
P336
v ˆ = − ih r ˆ 1.证明动量算符 L × ∇ 和哈密顿算符 H v v ˆ 2 / 2m + U (r =P ) 是厄
米算符。 证明:
(b) hυ = 6.63 *10 −34 *1010 = 6.63 *10 −24 J (c)
hυ = 6.63 *10 −34 *1015 = 6.63 *10 −19 J
普通振子的能量子很小,它的能量变化很小,近似是连 续变化的。 2. 计算下列粒子的德布罗意波长 (a)能量为 100eV 的自由电子; (b)被1015 V 电子差加速的质子; (c)以速度 1m·S-1 运动的质量为 1Kg 的质点; (d)
+ * *
PDF 文件使用 "pdfFactory" 试用版本创建
ˆ+F ˆ + ]vdτ = v[( F ˆ + )u ]* d τ , F ˆ +F ˆ + 是厄米算符。 所以 ∫ u * [ F ∫ ˆ +F
* ˆ −F ˆ + )]vdτ 同理, ∫ u [i( F + * ˆ ˆvdτ − i u * F ˆ u ) * dτ = i∫ u * F vdτ − i ∫ v( F ∫ ˆ vdτ = i ∫ u F
h e −( λ +ipx / h ) x dx = ∫ 2πh λh + ip x 0
2
2
其概率分布函数 ∵
1 = ∫ψ *ψdx
A2 1 P = c( p x ) = 2 2 2 2πh λ + p / h x
∴ A 2 = 4λ3
2λ3 1 P= 2 2 2 πh λ + p x / h
v
v
两边同时乘以,并对全空间积分,可得
∫ψ
* f
v v v v v v ′ 3 (r ) ψ ( r , t ) d 3 r = ∫ψ * f ( r ) ∫ c f ′ (t )ψ f ′ ( r )df d r v v 3v ′ = ∫ c f ′ (t ) ∫ψ f ′ (r )ψ * f ( r )d r df = ∫ c f ′ (t )δ ( f − f ′)df ′ = c f ′ (t ) ∫ δ ( f − f ′)df ′ = c f (t )
ˆ −F ˆ ∫ v[( F ˆu ) − i∫ v(F
+ *
+ * ++ ˆ u ) * dτ + i v ( F ˆ u ) * dτ + i u * F )iu ]* dτ = ( − i ) ∫ v ( F ∫ ˆ u ) dτ = −i ∫ v ( F ∫ ˆ vd τ =
ˆ vd τ dτ + i ∫ u * F
* + + * ˆ ˆvdτ + u * F ˆ u ) * dτ ]vdτ = ∫ u * F vdτ + ∫ v( F ∫ ˆ vdτ = ∫ u F * * * * ˆ ++ ˆ + u ) * dτ = v ( F dτ + ∫ v ( F vd τ = ∫ ˆu ) dτ + ∫ u F
ˆ+F ˆ )u ] d τ = v ( F ∫ v[( F ∫ ˆu ) ˆu ) dτ + u F ∫ v(F ∫ ˆvd τ
无限趋近于光速。因为总能量远大于静能 mc 2 ,此时 m 可以 忽略, E ≈ pc , λ = h / p = hc / E = hc / uq = 1.24 *10 −21 m
PDF 文件使用 "pdfFactory" 试用版本创建
(c) (d)
λ = h / p = h / mv = 6.63 *10 −34 m = 6.63 *10 − 24 A vp = 2k B T m
∴ ∵ 而
v v 3v c f = ∫ψ * f ( r )ψ ( r , t ) d r f = ∫ ρ f f df
∫ρ
f
df = 1
ρf ≥ 0
v v 3v ˆψ df = c * ψ * (r f = ∫ψ * f ∫ ∫ f ′ f ′ )df f′ˆ ∫ c f ψ f (r )dfd r v v * v ˆ ′ 3 = ∫ ∫ ∫ c* f ′ c f ψ f ′ ( r ) fψ f ( r ) df dfd r v v v ′ 3 = ∫ ∫ ∫ c *f ′ c f ψ * f ′ ( r ) f ψ f ( r ) df dfd r v v 3v ′ ∫ψ * = ∫ ∫ c *f ′ c f fdf df f ′ ( r )ψ f ( r ) d r = ∫ ∫ c *f ′ c f fdf ′ dfδ ( f − f ′) = ∫ cf
。
3.利用在宽为 a 的势箱中形成驻波的条件——势箱宽度等于 半波长的整数倍,求势箱中粒子的能谱。 解:
4.波尔原子模型假定,氢原子中的电子在绕核的圆形轨道上 运动。将电子看成在这圆形轨道上传播的波。利用波的稳定 性条件(即驻波条件)求氢原子的基态能量。
v , t ) 中测 F 得值 5.证明力学量 F 有连续谱的情况下, 在状态ψ (r f
Axe − λx = ∫ c ( p x )ψ p x dp x
x
( x) =
1 e ipx x / h 2πh
其中
v c ( p x ) = ∫ψ ψ ( x)d r =
* px 3
∫ (e 2πh
0
1
∞
ip x x / h *
) Axe −λx dx
= =
A xe −( λx +ipx x / h ) dx ∫ 2πh 0 h [− xe − ( λ +ip x / h ) x 2πh λh + ip x x
ˆ +,H ˆ + 也一样。 同理可得 H y z ˆ+ 所以, H ˆ =H
,哈密顿算符也是厄米算符。
ˆ 不是厄米的,证明 F ˆ +F ˆ + 和 i( F ˆ −F ˆ + ) 是厄米的,并且可 2.若 F ˆ+F ˆ+ ˆ −F ˆ+ F F ˆ F = + i 写成 2 2 ˆ 不是厄米的,但是 证明: F ˆ +F ˆ ∫ u [F
P305
1. 计算下列各种频率的谐振子的能量子: (a)υ = 50HZ 的带电谐振子; (b)υ = 1010 HZ 的微波; (c)υ = 1015 HZ 的光波, 进而指出为什么普通振子的能量不显分立性。 答:(a)
hυ = 6.63 *10 −34 J ⋅ S * 50 HZ = 3.31 * 10 −32 J
v
v v ˆ 2 / 2m + U (r ˆ 来说 H ˆ =P ˆ 2 / 2m + U ( x) ˆ =P H ) ,对于一个分量 H x x x && * = P ˆ+ = P ˆ ,动量为厄米算符 因为 P ˆ+ 所以 H x ˆ 2 / 2m + U ( x)]+ = P ˆ 2 / 2m + U ( x) = H ˆ = [P x x x ~
的概率密度函数 ρ f 的公式:
v v 3v c f = ∫ψ * f ( r )ψ ( r , t ) d r ρ f = cf
2
∫ρ
f
df = ∫ c f df = 1
2
PDF 文件使用 "pdfFactory" 试用版本创建
证明:
F 有连续谱时ψ (r , t ) = ∫ c f ′ (t )ψ f ′ ( r )df ′
2
fdf
又∵
v v v 3v ′ 1 = ∫ψ *ψ d 3 r = ∫ ∫ c *f ′ψ * f ′ ( r ) df ∫ c f ψ f ( r ) dfd r v v v ′ 3 = ∫ ∫ ∫ c *f ′ c f ψ * f ′ ( r )ψ f ( r ) df dfd r v v 3v ′ ∫ψ * = ∫ ∫ c *f ′ c f df df f ′ ( r )ψ f ( r ) d r = ∫ ∫ c *f ′ c f df ′ dfδ ( f − f ′) = ∫ c f df
( λ + ip x / h ) x
∞
A
∞ 0
+ ∫ e −( λ +ipx / h ) x dx ]
0
∞
∵ ∴
λ >0
∴ Lim x→∞
A
e
= Lim
x →∞ ∞
e
( λ + ip x / h ) x
1 =0 (λ + ip x / h) A h 2πh λh + ip x
2
c( p x ) =
∂ ∂ v ˆ = − ih r ˆ =y ˆp ˆz − z ˆ y = −ih( y − z ) ˆp L × ∇ ,所以 L x ∂z ∂y ˆ = −ih( z ∂ − x ∂ ) L y ∂x ∂z ˆ = −ih ( x ∂ − y ∂ ) L z ∂y ∂x ˆ 来说 对于一个分量 L x ˆ vdτ = u * [ −ih ( y ∂ − z ∂ )]vdτ = −ih u * ( y ∂v − z ∂v ) dτ u L x ∫ ∫ ∫ ∂z ∂y ∂z ∂y −∞ −∞ −∞