华师大版七年级数学全册教案
华师大版七年级数学下册精品教案全册
华师大版七年级数学下册精品教案全册一、教学内容1. 第五章:相交线与平行线详细内容:平行线的判定与性质,相交线的性质,平行公理及推论。
2. 第六章:数据的收集与整理详细内容:数据的收集,数据的整理,频数与频率,条形统计图与折线统计图。
3. 第七章:平面几何图形详细内容:三角形,四边形,圆的基本概念及相关性质。
二、教学目标1. 知识与技能:(1)理解并掌握相交线与平行线的性质及判定方法;(2)学会数据的收集与整理,能绘制条形统计图与折线统计图;(3)掌握平面几何图形的基本概念及相关性质。
2. 过程与方法:(1)通过观察、实践,培养学生的空间想象能力;(2)通过数据分析,培养学生的逻辑思维能力和解决问题的能力。
3. 情感态度与价值观:(2)培养学生的团队协作精神,提高沟通能力。
三、教学难点与重点1. 教学难点:(1)平行线的判定与性质;(2)数据的整理与统计图的绘制;(3)平面几何图形的性质。
2. 教学重点:(1)平行线与相交线的性质;(2)数据的收集与整理;(3)平面几何图形的基本概念。
四、教具与学具准备1. 教具:(1)直尺、圆规、量角器;(2)多媒体教学设备。
2. 学具:(1)直尺、圆规、量角器;(2)练习本、草稿纸。
五、教学过程1. 引入:(1)通过生活中的实例,引出相交线与平行线的概念;(2)提出问题,引导学生思考如何收集与整理数据;(3)展示几何图形,让学生观察并描述其特征。
2. 知识讲解:(1)讲解平行线的判定与性质;(2)介绍数据的收集与整理方法;(3)讲解平面几何图形的基本概念及相关性质。
3. 例题讲解:(1)相交线与平行线的性质应用题;(2)数据分析与统计图绘制题;(3)平面几何图形的性质应用题。
4. 随堂练习:(1)平行线的判定与性质练习题;(2)数据的收集与整理练习题;(3)平面几何图形的性质练习题。
六、板书设计1. 华师大版七年级数学下册教案2. 内容:(1)平行线与相交线的性质;(2)数据的收集与整理方法;(3)平面几何图形的基本概念及相关性质。
华师大版七年级数学下册全册教案
华师大版七年级数学下册全册教案一、教学内容本教案依据华师大版七年级数学下册,全册内容包括:1. 第一章实数1.1 无理数1.2 实数的运算2. 第二章代数式2.1 多项式2.2 合并同类项2.3 一元二次方程3. 第三章函数3.1 一次函数3.2 一次函数的图像3.3 一次函数的性质4. 第四章四边形4.1 矩形4.2 菱形4.3 正方形二、教学目标1. 理解并掌握实数、代数式、函数和四边形的基本概念和性质。
2. 学会运用实数进行运算,解决实际问题。
3. 培养学生的逻辑思维能力和空间想象力。
三、教学难点与重点1. 教学难点:无理数的理解、一元二次方程的解法、一次函数的图像与性质。
2. 教学重点:实数的运算、合并同类项、四边形的基本性质。
四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔、几何模型。
2. 学具:练习本、草稿纸、直尺、圆规。
五、教学过程1. 导入:通过生活中的实例,引入无理数的概念,激发学生的学习兴趣。
2. 新课导入:讲解无理数、实数的运算、多项式、合并同类项、一元二次方程、一次函数、四边形等内容。
3. 例题讲解:针对每个知识点,选取典型例题进行讲解,分析解题思路和方法。
4. 随堂练习:布置相关练习题,让学生巩固所学知识,并及时给予反馈。
6. 课后作业布置:布置适量的作业,巩固所学知识。
六、板书设计1. 板书左侧:列出本节课的知识点,突出重点、难点。
2. 板书右侧:展示例题及解题步骤,方便学生理解。
3. 适当添加图表、模型等,提高视觉效果。
七、作业设计1. 作业题目:(1)计算题:实数的加减乘除运算。
(2)填空题:合并同类项,求解一元二次方程。
(3)解答题:一次函数的图像与性质,四边形的性质。
八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行反思,分析学生的掌握程度,调整教学方法。
2. 拓展延伸:针对学有余力的学生,提供一些拓展题目,提高学生的思维能力和解题技巧。
例如:研究实数的幂运算、一次函数的图像变换、四边形的特殊性质等。
2024年华师大版数学七年级下册全册精彩教案教学设计
2024年华师大版数学七年级下册全册精彩教案教学设计一、教学内容1. 第五章:数的性质5.1 数的概念与分类5.2 有理数的性质5.3 绝对值与相反数2. 第六章:方程与不等式6.1 方程的解法6.2 一元一次方程的应用6.3 不等式及其性质6.4 不等式的解法3. 第七章:图形的观察与认识7.1 平面几何图形的认识7.2 线段、射线与直线7.3 角的认识二、教学目标1. 知识目标:使学生掌握数的性质、方程与不等式、图形的观察与认识等基本知识,提高数学素养。
2. 能力目标:培养学生运用数学知识解决实际问题的能力,提高学生的逻辑思维和分析能力。
三、教学难点与重点1. 教学难点:5.2 负数的运算规则6.2 方程在实际问题中的应用7.3 角的度量与计算2. 教学重点:数的性质与分类方程与不等式的解法基本几何图形的认识四、教具与学具准备1. 教具:多媒体设备、黑板、粉笔、直尺、圆规等。
2. 学具:学生用书、练习本、圆规、直尺、三角板等。
五、教学过程1. 导入:利用实际问题引入数的性质、方程与不等式、图形的认识等内容。
2. 新课讲解:采用讲解、例题、随堂练习等形式,详细讲解各章节知识点。
3. 例题讲解:选取典型例题,讲解解题思路和方法,引导学生运用所学知识解决问题。
4. 随堂练习:设计针对性强、难度适中的练习题,巩固所学知识。
梳理本章知识点,强调重点、难点。
六、板书设计1. 2024年华师大版数学七年级下册全册精彩教案2. 内容:各章节知识点、典型例题、解题步骤、随堂练习等。
七、作业设计1. 作业题目:数的性质:填空、选择题,计算题等;方程与不等式:应用题、解答题等;图形的观察与认识:作图题、计算题等。
八、课后反思及拓展延伸1. 课后反思:关注学生个体差异,提高教学效果。
2. 拓展延伸:针对学有余力的学生,设计难度较大的拓展题目,提高学生的数学素养;鼓励学生参加数学竞赛,激发学习兴趣。
重点和难点解析1. 教学内容的章节和详细内容;2. 教学目标的知识目标、能力目标和情感目标;3. 教学难点与重点的负数运算规则、方程在实际问题中的应用、角的度量与计算;5. 作业设计中的题目类型和答案;6. 课后反思及拓展延伸的关注学生个体差异和拓展题目设计。
(华东师大版)七年级上册数学全册教案
第一章走进数学世界1.1 与数学交朋友学习目标:1、使学生初步到数学与现实世界的密切联系,懂得数学的价值,形成用数学的意识;2、使学生初步体验到数学是一个充满着观察、实验、归纳、类比和猜测的探索过程。
学习重难点:重点:加强数学意识;难点:数学能力的培养。
学习过程:一、与数学交朋友1、数学伴我们成长人来到世界上的第一天就遇到数学,数学将哺育着你的成长。
数学知识开阔了你的视野,改变了你的思维方式,使你变得更聪明了。
从生活的一系列人生活动中,我们会逐渐意识到这一切的一切都和数、数的运算、数的比较、图形的大小、图形的形状、图形的位置有关。
另外,数学知识开阔了你的视野,改变了你的思维方式,使我们变得更聪明。
2、人类离不开数学自然界中的数学不胜枚举。
如:蜜蜂营造的峰房;电子计算机等等。
从生活中的常见的天气预报图,从经济生活中的股票指数,到某些图案的组成:3、人人都能学会数学数学并不神秘,不是只有天才才能学好数学,只要通过努力,人人都能学会数学。
学好数学要对数学有兴趣,要有刻苦钻研的精神,要善于发现和提出问题,要善于独立思考。
学好数学还要关于把数学应用于实际问题。
二、激发训练:三、作业巩固:第一章走进数学世界1.2 让我们来做数学学习目标:1、使学生对数学产生一定的兴趣,获得学好数学的自信心;2、使学生学会与他人合作,养成独立思考与合作交流的习惯;3、使学生在数学活动中获得对数学良好的感性认识,初步体验到什么是“做数学”。
学习重难点:重点:如何培养学生对数学的兴趣;难点:学生对数学的感性认识。
学习过程:一、让我们来做数学:1、跟我学要正确地解数学题,需要掌握数学题的方法。
例:如图所示的33 的方格图案中多少个正方形?2、试试看例:在如图中,填入1、2、3、4、5、6、7、8、9这9个数,使每行、每列及对角线上各数的和都为15。
例:在上图中,已经填入了1至16这16个数中的一些数,请将剩下的数填入空格中,使每行、每列及对角线上各数的和都为34。
2024年华师大版七年级数学下册全套教案
2024年华师大版七年级数学下册全套教案一、教学内容1. 第五章:数据的收集与整理5.1 数据的收集5.2 数据的整理与表示二、教学目标1. 让学生掌握数据的收集与整理方法,并能应用于实际问题。
2. 培养学生运用图表、统计图等工具展示数据,提高数据分析能力。
3. 培养学生的观察能力、逻辑思维能力和合作意识。
三、教学难点与重点1. 教学难点:数据的整理与表示方法,特别是复式条形图、折线图的绘制。
2. 教学重点:数据的收集方法、数据整理与表示的方法及其在实际问题中的应用。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件、数据收集与整理案例。
2. 学具:直尺、圆规、铅笔、橡皮、统计图表模板。
五、教学过程1. 导入:通过展示某班级学生身高、体重的数据,引发学生思考如何进行数据的收集与整理。
2. 讲解:a. 讲解数据的收集方法,如问卷调查、观察法等。
b. 讲解数据整理与表示的方法,如表格、条形图、折线图等。
3. 实践:a. 让学生分组,每组收集本班同学的身高、体重数据。
b. 各组整理数据,绘制条形图、折线图等。
4. 课堂讨论:让学生展示自己的成果,讨论各种数据整理与表示方法的优缺点。
5. 例题讲解:讲解如何利用统计图进行数据分析,提高学生的数据分析能力。
6. 随堂练习:布置一些数据收集与整理的练习题,让学生巩固所学知识。
六、板书设计1. 数据收集与整理的意义、方法。
2. 条形图、折线图的绘制方法。
3. 例题及解答过程。
七、作业设计1. 作业题目:a. 收集本班同学的年龄、性别、兴趣爱好等信息,制作统计表。
b. 根据收集到的数据,绘制复式条形图和折线图。
2. 答案:根据学生收集的数据,给出相应的统计表、条形图和折线图。
八、课后反思及拓展延伸1. 反思:本节课的教学效果,学生的掌握程度,教学过程中的不足之处。
2. 拓展延伸:让学生尝试收集其他类型的数据,如家庭月收入、日常消费等,运用所学知识进行整理与分析,提高学生的实践能力。
华师大版七年级下册数学全册教案设计
华师大版数学七年级下册全册教案设计清风染绿叶第6章 一元一次方程6.1 从实际问题到方程1.掌握如何设未知数.2.掌握如何找等式来列方程.3.了解尝试法、代入法寻找方程的解.重点1.确定所有的已知量和确定“谁”是未知数x.2.列方程.难点找出问题中的相等关系.一、创设情境,问题引入在现实生活中,有很多问题都跟数学有关,例如下面的问题:问题1:某校初一年级有328名师生乘车外出春游,已有2辆校车乘坐了64人,还需租用44座的客车多少辆?这个问题用数学中的什么方法来解决呢?二、探索问题,引入新知1.在小学里,我们学过方程,你还能记得什么样的式子是方程吗?含有未知数的等式叫方程.2.讲解导入中的问题:根据小学所学的列方程,按照问题问“什么”就设这个“什么”为未知数x的方法来解决这个问题.分析:设需租用客车x辆,则客车可以乘坐44x人,加上2辆校车上的64人,就是328人.列方程为44x+64=328.解:设还需租用44座的客车x辆,则共可乘坐44x人.根据题意列方程得:44x+64=328.设问:你们谁会解这个方程?请大家自己试一试.问题2:张老师发现同学们的年龄大多是13岁,就问同学:“我今年45岁,几年后你们的年龄是我年龄的三分之一?”方法一:我们可以按年龄的增长依次去试.1年后,老师的年龄是46岁,同学的年龄是14岁,不是老师年龄的三分之一;2年后,老师的年龄是47岁,同学的年龄是15岁,也不是老师年龄的三分之一;3年后,老师的年龄是48岁,同学的年龄是16岁,恰好是老师年龄的三分之一.方法二:也可以用列方程的办法来解.解:设x 年后同学的年龄是老师年龄的三分之一,x 年后同学的年龄是(13+x)岁,老师年龄是(45+x)岁.根据题意,列出方程得13+x =(45+x).13这个方程不太好解,大家可以用尝试、检验的方法找出它的解,即只要将x =1,2,3,4,…代入方程的左右两边,看哪个数能使左右两边的值相等,这样得到方程的解为 x =3.结论:使方程左右两边的值相等的未知数的值,就是方程的解.要检验一个数是否为方程的解,只要把这个数代入方程的左右两边,看能否使左右两边的值相等.如果左右两边的值相等,那么这个数就是方程的解.3.由上面的两个问题,你能总结出列方程解决实际问题的步骤吗?结论:设未知数x ;找出相等关系;根据相等关系列方程.【例】 某校组织爱心捐书活动,准备将一批捐赠的书打包寄往贫困地区,其中每包书的数目相等.第一次他们领来这批书的,结果打了16个包还多40本;第二次他们把剩下23的书全部取来,连同第一次打包剩下的书一起,刚好又打了9个包,那么这批书共有多少本?(列方程不必求解)分析:设这批书共有3x 本,根据每包书的数目相等,即可得出关于x 的方程,解之即可得出结论.解:设这批书共有3x 本,根据题意列方程得:=.2x -4016x +409点评:本题考查了方程的应用,根据每包书的数目相等,列出关于x 的一元一次方程是解题的关键.三、巩固练习1.下列各式中,是方程的是( )A .3+5B .x +1=0C .4+7=11D .x +3>02.下列方程中,解为x =-3的是( )A .x +1=0B .2x -1=8-x 13C .-3x =1D .x +=0133.下列四个数中,方程x +2=0的解为( )A .2B .-2C .4D .-44.已知甲数比乙数的2倍大1,如果设甲数为x ,那么乙数可表示为________;如果设乙数为y ,那么甲数可表示为________.5.一根细铁丝用去后还剩2 m ,若设铁丝的原长为x m ,可列方程为23________________.6.检验下列各数是不是方程=x -2的解.3x(1)x =2; (2)x =-1.7.小明今年12岁,他爸爸今年36岁,几年后爸爸的年龄是小明年龄的2倍?(列方程并估计问题的解)四、小结与作业小结这节课主要讲了下面两个问题:1.复习了用列方程的方法来解应用题;2.检验一个数是否为方程的解的方法.作业1.教材第4页“习题6.1”中第1,3题.2.完成练习册中本课时练习.现代数学教学观念要求学生从“学会”向“会学”转变,本课从探究到应用都有意识地营造一个较为自由的空间,让学生能积极地动手、动口、动脑,使学生在学知识的同时形成方法.整个教学过程突出了三个注重:①注重学生参与知识的形成过程,体验应用数学知识解决简单问题的乐趣. ②注重师生间、同学间的互动协作、共同提高.③注重知能统一,让学生在获取知识的同时,掌握方法,灵活应用.6.2 解一元一次方程6.2.1 等式的性质与方程的简单变形第1课时 等式的性质1.借助天平的操作活动,发现并理解等式的性质.2.应用等式的性质进行等式的变换.3.经历观察、比较、抽象、归纳等思维活动,发展学生的数学思维能力.重点等式的性质和运用.难点引导学生发现并概括出等式的性质.一、创设情境,问题引入同学们,你们还记得“曹冲称象”的故事吗?请同学说说这个故事.小时候的曹冲是多么地聪明啊!随着社会的进步,科学水平的发达,我们有越来越多的方法测量物体的重量.最常见的方法是用天平测量一个物体的质量.我们来做这样一个实验,测一个物体的质量(设它的质量为x).首先把这个物体放在天平的左盘内,然后在右盘内放上砝码,并使天平处于平衡状态,此时两边的质量相等,那么砝码的质量就是所要称的物体的质量.二、探索问题,引入新知请同学来做这样一个实验:如下图,天平处于平衡状态,它表示左右两个盘内物体的质量a ,b 是相等的.得到:a =b.1.若在平衡天平两边的盘内都添上(或都拿去)质量相等的物体,则天平仍然平衡.得到:a +c =b +c a -c =b -c2.若把平衡天平两边盘内物体的质量都扩大(或缩小)相同的倍数,则天平仍然平衡.得到:ac =bc(c ≠0) =(c ≠0)a c b c观察上面的实验操作过程,回答下列问题:(1)从这个变形过程,你发现了什么一般规律?(2)这几个等式两边分别进行了什么变化?等式有何变化?(3)通过上面的操作活动,你能说一说等式有什么性质吗?结论:等式的基本性质:性质1:等式的两边都加上(或减去)同一个数或同一个整式,等式仍然成立.如果a =b ,那么a +c =b +c ,a -c =b -c.性质2:等式两边都乘或除以同一个数(除数不为0),等式仍然成立.如果a =b ,那么ac =bc ,=(c ≠0).a c b c【例1】 用适当的数或整式填空,使所得结果仍是等式,并说明是根据等式的哪一条性质,以及怎样变形的:(1)如果2x +7=10,那么2x =10-________________________________________;(2)如果=2,那么a =________________________________________;a 4(3)如果2a =1.5,那么6a =________________________________________;(4)如果-5x =5y ,那么x =________________________________________.分析:根据等式的基本性质进行填空.解:(1)根据等式的性质1,若2x +7=10,则2x =10-7(等式的两边同时减去7,等式仍成立);故填:7(等式的两边同时减去7,等式仍成立);(2)根据等式性质2,若=2,则a =8(等式的两边同时乘以4,等式仍成立);故填:a 48(等式的两边同时乘以4,等式仍成立);(3)根据等式性质2,若2a =1.5,则6a =4.5(等式的两边同时乘以3,等式仍成立);故填:4.5(等式的两边同时乘以3,等式仍成立);(4)根据等式性质2,若-5x =5y ,则x =-y(等式的两边同时除以-5,等式仍成立);故填:-y(等式的两边同时除以-5,等式仍成立).点评:等式性质:1.等式的两边同时加上或减去同一个数或同一个整式,等式仍成立;2.等式的两边同时乘以或除以同一个不为0数或整式,等式仍成立.三、巩固练习1.下列说法正确的是( )A .等式两边都加上一个数或一个整式,所得结果仍是等式B .等式两边都乘以一个数,所得结果仍是等式C .等式两边都除以同一个数,所得结果仍是等式D .一个等式的左、右两边分别与另一个等式的左、右两边分别相加,所得结果仍是等式2.对于数x ,y ,c ,下列结论正确的是( )A .若x =y ,则x +c =y -cB .若x =y ,则xc =ycC .若x =y ,则=x c y cD .若=,则2x =3y x 2c y 3c3.在方程的两边都加上4,可得方程x +4=5,那么原方程是________.4.在方程x -6=-2的两边都加上________,可得x =________.5.方程5+x =-2的两边都减5得x =______.6.如果-7x =6,那么x =________.7.只列方程,不求解.某制衣厂接受一批服装订货任务,按计划天数进行生产,如果每天平均生产20套服装,就比订货任务少100套,如果每天平均生产32套服装,就可以超过订货任务20套,问原计划几天完成?四、小结与作业小结通过及时的练习对所学新知进行巩固和深化,在练习中,要求学生说出计算的依据,帮助学生巩固等式性质的同时,也提升了说理能力.作业1.教材第5页“练习”.2.完成练习册中本课时练习.本节课教学中,充分利用原有的知识,探索、验证,从而获得新知,给每个学生提供思考、表现、创造的机会,使他成为知识的发现者、创造者,培养学生自我探究和实践能力.通过两次实践活动,学生亲自参与了等式的性质发现的过程,真正做到“知其然,知其所以然”,而且思维能力、空间感受能力、动手操作能力都得到锻炼和提高.第2课时 方程的简单变形1.理解并掌握方程的两个变形规则;2.使学生了解移项法则,即移项后变号,并且能熟练运用移项法则解方程;3.运用方程的两个变形规则解简单的方程.重点运用方程的两个变形规则解简单的方程.难点运用方程的两个变形规则解简单的方程.一、创设情境、复习引入1.等式有哪些性质?2.在4x -2=1+2x 两边都减去________,得2x -2=1,两边再同时加上________,得2x =3,变形依据是________.3.在x -1=2中两边乘以________,得x -4=8,两边再同时加上4,得x =12,变14形依据分别是________.二、探索问题、引入新知1.方程是不是等式?2.你能根据等式的性质类比出方程的变形依据吗?结论:方程的两边都加上(或都减去)同一个数或同一个整式,方程的解不变.方程两边都乘以(或都除以)同一个不为零的数,方程的解不变.3.你能根据这些规则,对方程进行适当的变形吗?【例1】 解下列方程:(1)x -5=7; (2)4x =3x -4.分析:(1)利用方程的变形规律,在方程x -5=7的两边同时加上5,即x -5+5=7+5,可求得方程的解.(2)利用方程的变形规律,在方程4x =3x -4的两边同时减去3x ,即4x -3x =3x -3x -4,可求得方程的解.像上面,将方程中的某些项改变符号后,从方程的一边移到另一边的变形叫做移项.点评:(1)上面两小题方程变形中,均把含未知数x 的项,移到方程的左边,而把常数项移到了方程的右边.(2)移项需变号.【例2】 解下列方程:(1)-5x =2; (2)x =;3213分析:(1)利用方程的变形规律,在方程-5x =2的两边同除以-5,即-5x÷(-5)=2÷(-5)(或=,也就是x =) 可求得方程的解.-5x -52-52-5(2)利用方程的变形规律,在方程x =的两边同除以或同乘以,即x÷=÷(或321332233232133232x ×=×),可求得方程的解.231323解: (1)方程两边都除以-5,得x =-.25(2)①方程两边都除以,得x =÷=×,即x =.②方程两边同乘以,得x =×321332132329231323=,即x =.2929结论:(1)上面两题的变形通常称作“将未知数的系数化为1”.(2)上面两个解方程的过程,都是对方程进行适当的变形,得到x =a 的形式.根据上面的例题,你能总结出解一元一次方程的一般步骤吗?点评:解方程的一般步骤是:(1)移项;(2)合并同类项;(3)系数化为1.三、巩固练习1.下面是方程x +3=8的三种解法,请指出对与错,并说明为什么?(1)x +3=8=x =8-3=5;(2)x +3=8,移项得x =8+3,所以x =11;(3)x +3=8,移项得x =8-3,所以x =5.2.下列方程的变形是否正确?为什么?(1)由3+x =5,得x =5+3.(2)由7x =-4,得x =-.74(3)由y =0,得y =2.12(4)由3=x -2,得x =-2-3.3.解下列方程.(1)4x -3=2x -2;(2)1.3x +1.2-2x =1.2-2.7x ;(3)3y -2=y +1+6y.4.方程 2x +1=3和方程2x -a =0 的解相同,求a 的值.四、小结与作业小结先小组内交流收获和感想然后以小组为单位派代表进行总结.教师加以补充.作业1.教材第9页“习题6.2.1”中第1 、2 、3题.2.完成练习册中本课时练习.本节课是在等式基本性质的基础上总结出方程的变形规则,再根据方程的变形规则,通过移项、系数化为1来解简单的方程.学生掌握的较好.6.2.2 解一元一次方程第1课时 一元一次方程的解法(1)1.一元一次方程的定义.2.了解如何去括号解方程.3.了解去分母解方程的方法.重点1.一元一次方程的定义;2.解一元一次方程的步骤.难点灵活使用变形解方程.一、创设情境、复习引入上两堂课讨论了一些方程的解法,那么那些方程究竟是什么类型的方程呢?先看下面几个方程:每一行的方程各有什么特征?(主要从方程中所含未知数的个数和次数两方面分析)4+x =7;3x +5=7-2x ;y -=+1;26y3x +y =10;x +y +z =6;x 2-2x -3=0;x 3-1=0.二、探索问题、引入新知1.比较一下,第一行的方程(即前3个方程)与其余方程有什么区别?(学生答)可以看出,前一行方程的特点是:(1)只含有一个未知数;(2)未知数的次数都是一次的.“元”是指未知数的个数,“次”是指方程中含有未知数的项的最高次数,根据这一命名方法,上面各方程是什么方程呢?(学生答)结论:只含有一个未知数,并且含有未知数的式子都是整式,未知数的次数是1,这样的方程叫做一元一次方程.2.上两堂课我们探讨的方程都是一元一次方程,并且得出了解一元一次方程的一些步骤.下面我们继续通过解一元一次方程来探究方程中含有括号的一元一次方程的解法.【例1】 解方程:3(x -2)+1=x -(2x -1).分析:方程中有括号,先去括号,转化成上节课所讲方程的特点,然后再解方程.解:去括号3x -6+1=x -2x +1,合并同类项 3x -5=-x +1,移项 3x +x =1+5,合并同类项4x =6,系数化为1,x =1.5.【例2】 解方程:-=1.x -322x +13分析:只要把分母去掉,就可将方程化为上节课的类型.和-的分母为2和x -322x +133,最小公倍数是6,方程两边都乘以6,则可去分母.解:去分母3(x -3)-2(2x +1)=6,去括号3x -9-4x -2=6,合并同类项-x -11=6,移项-x =17,系数化为1,x =-17.回顾上面的解题过程,总结一下:解一元一次方程通常有哪些步骤?结论:解一元一次方程通常的一般步骤为:去分母,去括号,移项,合并同类项,系数化为1.三、巩固练习1.下列方程为一元一次方程的是( )A .y +3=0 B .x +2y =3C .x 2=2xD .+y =21y2.若代数式x +2的值为1,则x 等于________.3.解下列一元一次方程.(1)2-3x =6-5x ;(2)2(x -2)-3(1-2x)=0;(3)(a -1)-2-a =2;4314(4)-=1.x -324x -153.y 取何值时,2(3y +4)的值比5(2y -7)的值大3?4.当x 为何值时,代数式与x -1互为相反数?18+x 3四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第11页“练习”.2.完成练习册中本课时练习.从学生的作业中反馈出:对去分母的第一步还存在较大的问题,是不是说明过程的叙述不太清楚,部分学生模棱两可,自己做的时候就会暴露出不懂的,这也提醒我今后的教学中在关键的知识点上要下“功夫”,切不可轻易的解决问题(想当然).备课时应该多多思考学生的具体情况,然后再修改初备的教案,尽量完善,尽量完美.第2课时 一元一次方程的解法(2)1.掌握分母中含有小数的一元一次方程的解法,灵活运用解方程的步骤解方程.2.通过练习使学生灵活的解一元一次方程.重点使学生灵活的解一元一次方程.难点使学生灵活的解一元一次方程.一、创设情境、复习引入通过前面的学习,得出了解一元一次方程的一般步骤,任何一个一元一次方程都可以通过去分母、去括号、移项、合并同类项等步骤转化成x =a 的形式.因此当一个方程中的分母含有小数时,应首先考虑化去分母中的小数,然后再求解这个方程.二、探索问题,引入新知【例1】 解方程:--=10.09x +0.020.073+2x 30.3x +1.40.2分析:此方程的分母中含有小数,通常将分母中的小数化为整数,然后再按解方程的一般步骤求解.解:--=10.09x +0.020.073+2x 30.3x +1.40.2利用分数的基本性质,将方程化为:--=19x +273+2x 33x +142去分母,得6(9x +2)-14(3+2x)-21(3x +14)=42,去括号,得54x +12-42-28x -63x -294=42,移项,得54x -28x -63x =42-12+42+294,合并同类项,得-37x =366,系数化为1,得x =-.36637点评:解此方程时一定要注意区别:将分母中的小数化为整数根据的是分数的基本性质,分数的分子和分母都乘以(或除以)同一个不等于零的数,分数的值不变,所以等号右边的1不变.去分母是方程的两边都乘以各分母的最小公倍数42,所以等号右边的1也要乘以42,才能保证所得结果仍成立.【例2】 解下列方程:(1)3(2x -1)+4=1-(2x -1);(2)++=1.4x +364x +324x +33分析:我们已经学习了解方程的一般步骤,具体解题时,要观察题目的结构特征,灵活应用步骤.第(1)小题中可以把(2x -1)看成一个整体,先求出(2x -1)的值,再求x 的值;第(2)小题,应注意到分子都是4x +3,且++=1,所以如果把4x +3看成一个整161213体,则无需去分母.解:(1)3(2x -1)+4=1-(2x -1) ,3(2x -1)+(2x -1)=1-4,4(2x -1)=-3,2x -1=-,342x =,14x =18(2)++=1,4x +364x +324x +33(++)(4x +3)=1,1612134x +3=1,4x =-2,x =-12点评:解方程时,要注意观察分析题目的结构,根据具体情况合理安排解题的步骤,注意简化运算,这样可以提高解题速度,培养观察能力和决策能力.三、巩固练习1.解方程(1)5x +3=-7x +9;(2)5(x -1)-2(3x -1)=4x -1;(3)=;3x +127+x 6(4)-=1+;x 25x +1162x -43 (5)-=0.75.3+0.2x 0.20.2+0.03x 0.012.m 为何值时,代数式2m -的值与代数式的值的和等于5?5m -137-m23.如下是某同学解方程的过程,请你仔细阅读,然后回答问题.解:-1=2+x +122-x4-1×4=2+×4 ①x +122-x42x +2-4=8+2-x ②2x +x =8+2+2+4 ③3x =16 ④x = ⑤163(1)该同学有哪几步出现错误?(2)请你解题中的方程.4.马虎同学在解方程-m =时,不小心把等式左边m 前面的“-”当做1-3x 21-m3“+”进行求解,得到的结果为x =1,求代数式m 2-2m +1的值.四、小结与作业小结先小组内交流收获和感想,而后以小组为单位派代表进行总结.教师作以补充.作业1.教材第14页“习题6.2.2”中第1,2 题.2.完成练习册中本课时练习.这几堂课我们都在探讨一元一次方程的解法,具体解题时要仔细审题,根据方程的结构特征,灵活选择解法,以简化解题步骤,提高解题速度.对于利用方程的意义解决的有关数学题,仔细领会题目中的信息,应把它转化为方程来求解.第3课时 一元一次方程的实际应用1.使学生掌握用一元一次方程解决实际问题的一般步骤;初步了解用列方程解实际问题(代数方法)比用算术方法解的优越性.2.通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.重点掌握用一元一次方程解决实际问题的一般步骤.难点通过分析找出实际问题中已知量和未知量之间的等量关系,并根据等量关系列出方程.一、创设情境、复习引入在小学算术中,我们学习了用算术方法解决实际问题的有关知识,那么,一个实际问题能否用一元一次方程来解决,若能解决,怎样解?用一元一次方程解应用题与用算术方法解应用题相比较它有什么优越性?某数的3倍减2等于它与4的和,求某数.(用算术方法解由学生回答)解:(4+2)÷(3-1)=3答:某数为3.如果设某数为x,根据题意,其数学表达式为3x-2=x+4,此式恰是关于x的一元一次方程.解之得x=3.上述两种解法,很明显算术方法不易思考,而应用设未知数,列出方程并通过解一元一次方程求得应用题的解有化难为易之感,这就是我们学习运用一元一次方程解应用题的目的之一.我们知道方程是一个含有未知数的等式,而等式表示了一个相等的关系.对于任何一个应用题中所提供的条件应首先找出一个相等的关系,然后再将这个相等的关系表示成方程.下面我们通过实例来说明怎样寻找一个相等的关系和把这个相等关系转化为方程的方法和步骤.二、探索问题,引入新知【例1】如图,天平的两个盘内分别盛有51 g,45 g盐,问应该从盘A内拿出多少盐放到盘B内,才能使两者所盛盐的质量相等?分析:设应从盘A内拿出盐x g,可列出下表.盘A盘B原有盐(g)5145现有盐(g)(51-x)(45+x) 等量关系:盘A中现有的盐=盘B中现有的盐.解:设应从盘A内拿出盐x g,放到盘B内,则根据题意,得51-x=45+x,解这个方程,得x=3.经检验,符合题意.答:应从盘A内拿出盐3 g放到盘B内.【例2】学校团委组织65名团员为学校建花坛搬砖.女同学每人搬6块,男同学每人搬8块,每人各搬4次,总共搬了1800块.问有多少名男同学?分析:设男同学有x人,可列出下表.(完成下表)男同学女同学总数参加人数(名)x65每人搬砖数(块)6×4共搬砖数(块)1800 解:设男同学有x 人,根据题意,得32x +24(65-x)=1800,解这个方程得x =30.经检验,符合题意.答:这些团员中有30名男同学.3.根据上面两道例题的解答过程,你能总结出用一元一次方程解实际问题的过程吗?结论:用一元一次方程解答实际问题,关键在于抓住问题中有关数量的相等关系,列出方程.求得方程的解后,经过检验,就可得到实际问题的解答.这一过程也可以简单地表述为:问题方程解答――→分析抽象――→求解检验其中分析和抽象的过程通常包括:(1)弄清题意和其中的数量关系,用字母表示适当的未知数;(2)找出能表示问题含义的一个主要的等量关系;(3)对这个等量关系中涉及的量,列出所需的表达式,根据等量关系,得到方程.在设未知数和解答时,应注意量的单位要统一.三、巩固练习1.某车间有27名工人,生产某种由一个螺栓套两个螺母的产品,每人每天生产螺母16个或螺栓22个,若分配x 名工人生产螺栓,其他工人生产螺母,恰好使每天生产的螺栓和螺母配套,则下面所列方程中正确的是( )A .22x =16(27-x)B .16x =22(27-x)C .2×16x =22(27-x)D .2×22x =16(27-x)2.一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x 双,列出方程( )A .10%x =330B .(1-10%)x =330C.(1-10%)2x=330 D.(1+10%)x=3303.一台空调标价2000元,若按6折销售仍可获利20%,则这台空调的进价是________元.4.某种商品每件的进价为80元,标价为120元,后来由于该商品积压,将此商品打七折销售,则该商品每件销售利润为________元.四、小结与作业小结先小组内交流收获和感想,然后以小组为单位派代表进行总结,最后教师作以补充.作业1.教材第14页“习题6.2.2”中第4,5 题.2.完成练习册中本课时练习.本节课我始终把分析题意、寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.但学生在学习的过程中,却不能很好地掌握这一要领,经常会出现一些意想不到的错误.如,数量之间的相等关系找得不清楚;列方程忽视了解设的步骤等.在教学中我始终把分析题意与寻找数量关系作为重点来进行教学,不断地对学生加以引导、启发,努力使学生理解、掌握解题的基本思路和方法.针对学生在学习过程中不重视分析等量关系的现象,在教学过程中我要求学生仔细审题,认真阅读例题的内容提要,弄清题意,找出能够表示应用题全部含义的相等关系.在课堂练习的安排上适当让学生通过模仿例题的思想方法,加强学生解应用题的能力,通过一元一次方程应用题的教学,学生能够比较正确的理解和掌握解应用题的方法,初步养成正确思考问题的良好习惯.6.3 实践与探索第1课时 体积和面积问题1.使学生能够找出简单应用题中的已知量、未知量和相等关系,然后列出一元一次方程来解简单应用题,并会根据应用题的实际意义,检查求得的结果是否合理.2.能够利用一元一次方程解决图形面积、体积等相关问题.重点利用一元一次方程解决图形面积、体积等相关问题.难点找问题中的等量关系.一、创设情境、复习引入我们学过一些图形的相关公式,你能回忆一下,有哪些公式?回忆一些图形的有关公式,为本节课学习用一元一次方程解决图形相关问题,找等量关系起到帮助作用.二、探索问题,引入新知问题:用一根长60厘米的铁丝围成一个长方形:(1)如果长方形的宽是长的,求这个长方形的长和宽;23(2)如果长方形的宽比长少4厘米,求这个长方形的面积;(3)比较(1),(2)所得两个长方形面积的大小.还能围出面积更大的长方形吗?解:(1)设长方形的长为x 厘米,则宽为x 厘米.根据题意,得 2(x +x)=60,解这2323个方程, 得x =18,所以长方形的长为18厘米,宽为12厘米.(2)设长方形的长为x 厘米,则宽为(x -4)厘米,根据题意,得2(x +x -4)=60,解这个方程, 得x =17,所以S =13×17=221(平方厘米).(3)在(1)的情况下S =12×18=216(平方厘米);在(2)的情况下S =13×17=221(平方厘米).还能围出面积更大的长方形,当围出的长方形的长宽相等时,即为正方形,其面积最大,此时其边长为15厘米,面积为225平方厘米.讨论:在第(2)小题中,能不能直接设面积为x 平方厘米?如不能,怎么办?如果直接设长方形的面积为x 平方厘米,则如何才能找出相等关系列出方程呢?诱导学生积极探索:不能直接设面积为未知数,则需要设谁为未知数呢?那么设未知。
华师大版七年级上册数学全册教案
华师大版七年级上册数学全册教案
课程介绍
本教案是针对华师大版七年级上册数学课程的全册教案。
该教材旨在帮助学生建立数学基本概念、培养数学思维能力,并提供适当的数学实践操作。
教学目标
通过本课程的教学,学生将能够:
- 掌握七年级上册数学基础知识;
- 发展解决实际问题的数学思维能力;
- 训练和提高数学推理和证明的能力;
- 培养合作与交流的数学研究惯。
教学内容
本教案包括七年级上册数学的全部课程内容,主要包括以下模块:
1. 数与式
2. 分式
3. 方程与不等式
4. 图形与几何
5. 数据分析与概率
每个模块都配有详细的教学计划、教学目标和教学方法,以及相关的教学资源和活动建议。
教学方法
本教案采用多种教学方法,以满足不同学生的研究需求。
教学方法包括:
- 讲授与演示
- 小组合作研究
- 问题解决与发现
- 探究式研究
- 数学实践操作
教学评估
为了评估学生的研究情况和教学效果,本教案包含了各个章节的教学评估方式和评分标准。
评估方式主要包括作业、小测验和期中期末考试等形式。
总结
本教案为华师大版七年级上册数学课程提供了全册教学指南。
通过采用多种教学方法和评估方式,目标是帮助学生全面提高数学素养,并培养良好的数学研究惯和思维能力。
希望本教案能够对学生的数学研究和教师的教学工作有所帮助。
华师大版七年级下册数学全册教案设计
华师大版七年级下册数学全册教案设计一、教学内容1. 第五章:数的运算小数与分数的混合运算比例与百分比乘方与幂的运算2. 第六章:几何图形平面图形的识别与分类观察与认识三角形观察与认识四边形3. 第七章:数据的收集、整理与表示数据的收集数据的整理与表示统计图的选择与应用二、教学目标1. 知识与技能:熟练掌握小数、分数的混合运算规则,并运用其解决实际问题;理解比例与百分比的概念,能够运用其进行问题分析;掌握乘方与幂的运算方法,并能解决相关问题;识别和分类平面图形,了解三角形和四边形的性质;学会数据的收集、整理与表示方法,能够绘制并解读统计图。
2. 过程与方法:通过实例分析,培养学生的逻辑思维能力和解决问题的能力;结合实际情境,提高学生运用数学知识解决实际问题的能力;通过小组合作,培养学生的团队协作能力。
3. 情感态度与价值观:培养学生的观察能力和创新意识,提高审美观念。
三、教学难点与重点1. 教学难点:小数与分数的混合运算规则;乘方与幂的运算方法;数据的整理与表示方法。
2. 教学重点:熟练掌握各种运算方法,解决实际问题;识别和分类平面图形,了解其性质;学会数据的收集、整理与表示方法。
四、教具与学具准备1. 教具:数学教材;黑板、粉笔;多媒体设备;统计图模板。
2. 学具:笔记本;铅笔、橡皮;尺子、圆规。
五、教学过程1. 实践情景引入:通过生活实例,引导学生思考小数、分数混合运算在实际生活中的应用;通过观察图形,让学生感受几何图形的美,激发学习兴趣。
2. 例题讲解:通过实际案例,讲解比例与百分比的应用;介绍乘方与幂的运算方法,举例说明;分析平面图形的性质,讲解三角形和四边形的识别与分类;演示数据的收集、整理与表示方法。
3. 随堂练习:让学生进行小数、分数混合运算的练习;让学生根据实际情境,运用比例与百分比解决问题;进行乘方与幂的运算练习;让学生绘制并解读统计图。
4. 小组合作:合作完成数据收集、整理与表示的任务。
2024年华师大版初中数学七年级下册全册教案
2024年华师大版初中数学七年级下册全册教案一、教学内容1. 第一章:有理数的乘方与幂运算1.1 有理数的乘方1.2 幂的运算法则1.3 应用题举例2. 第二章:一元一次方程2.1 方程的概念2.2 一元一次方程的解法2.3 应用题举例3. 第三章:不等式与不等式组3.1 不等式的概念3.2 不等式的解法3.3 不等式组及其解法3.4 应用题举例二、教学目标1. 掌握有理数的乘方和幂运算的法则,并能熟练运用。
2. 学会解一元一次方程,理解方程的解的概念。
3. 掌握不等式与不等式组的解法,并能解决实际问题。
三、教学难点与重点1. 教学难点:有理数的乘方与幂运算、一元一次方程的解法、不等式与不等式组的解法。
2. 教学重点:培养学生的运算能力,提高解决实际问题的能力。
四、教具与学具准备1. 教具:黑板、粉笔、教学课件。
2. 学具:练习本、铅笔、直尺。
五、教学过程1. 实践情景引入通过生活中的实例,引导学生了解有理数乘方、幂运算、方程和不等式的概念。
2. 例题讲解(1)有理数的乘方与幂运算:讲解例题,引导学生运用法则进行计算。
(2)一元一次方程:讲解例题,引导学生学会解方程。
(3)不等式与不等式组:讲解例题,引导学生学会解不等式和不等式组。
3. 随堂练习设计有针对性的练习题,让学生巩固所学知识。
4. 课堂小结5. 课后作业布置布置适量的作业,巩固所学知识。
六、板书设计1. 有理数的乘方与幂运算2. 一元一次方程3. 不等式与不等式组4. 各类题型的解法步骤七、作业设计1. 作业题目:(1)计算题:有理数的乘方与幂运算。
(2)解方程题:一元一次方程。
(3)解不等式题:不等式与不等式组。
八、课后反思及拓展延伸1. 反思:对本节课的教学过程进行反思,找出不足之处,改进教学方法。
2. 拓展延伸:(1)探讨有理数乘方与幂运算在实际问题中的应用。
(2)研究一元一次方程与不等式在生活中的应用,提高学生的实际问题解决能力。
2024年华师大版七年级下册数学全册教案设计
2024年华师大版七年级下册数学全册教案设计一、教学内容详细内容如下:1. 整式的乘除:单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,整式的除法。
2. 因式分解:提取公因式法,平方差公式,完全平方公式,十字相乘法。
3. 分式与分式方程:分式的概念与性质,分式的乘除法,分式的化简,分式方程的解法。
4. 数据与统计图:条形图,折线图,扇形图,频数与频率,加权平均数。
二、教学目标1. 理解并掌握整式的乘除法则,能够熟练地进行计算。
2. 学会因式分解的各种方法,能够解决实际问题中的因式分解问题。
3. 掌握分式的概念、性质与运算,能够解决分式方程问题。
4. 能够根据数据绘制并解读各种统计图,求解加权平均数。
三、教学难点与重点1. 教学难点:整式的乘除运算,因式分解方法,分式的化简与方程求解。
2. 教学重点:熟练掌握整式的乘除法则,灵活运用因式分解方法,解决分式方程问题。
四、教具与学具准备1. 教具:多媒体教学设备,PPT课件,黑板,粉笔。
2. 学具:教材,练习册,文具。
五、教学过程1. 实践情景引入:通过生活中的实例,引出整式的乘除、因式分解、分式方程等概念。
2. 例题讲解:详细讲解整式的乘除、因式分解、分式方程的解题步骤和技巧。
3. 随堂练习:让学生独立完成练习题,巩固所学知识,并及时给予反馈。
4. 小组讨论:针对难点问题,组织学生进行小组讨论,培养合作能力。
六、板书设计1. 整式的乘除法则、例题、练习题。
2. 因式分解方法、例题、练习题。
3. 分式的概念、性质、运算、例题、练习题。
4. 统计图的绘制与解读方法。
七、作业设计1. 作业题目:(1)计算题:整式的乘除运算。
(2)分解题:因式分解。
(3)解答题:分式方程的求解。
2. 答案:详细解答每个题目的答案。
八、课后反思及拓展延伸1. 反思:对本节课的教学效果进行自我评价,分析优点和不足,提出改进措施。
2. 拓展延伸:(1)探索整式的乘除法则在实际问题中的应用。
2024年新华师大版七年级数学下册全册教案
2024年新华师大版七年级数学下册全册教案一、教学内容1. 第五章:概率初步5.1 随机事件5.2 概率的计算5.3 概率的性质2. 第六章:平面几何6.1 直线、射线和线段6.2 角6.3 多边形6.4 平行线与相交线3. 第七章:一元一次不等式与方程7.1 不等式及其解集7.2 不等式的性质7.3 一元一次方程的解法7.4 实际问题与一元一次方程二、教学目标1. 理解并掌握概率的基本概念和性质,能够运用概率知识解决实际问题。
2. 掌握平面几何的基本概念,能够正确绘制图形,并解决简单的几何问题。
3. 学会解一元一次不等式与方程,能够将实际问题转化为数学模型并求解。
三、教学难点与重点1. 教学难点:概率的计算与应用平行线与相交线的性质一元一次不等式与方程的解法2. 教学重点:概率的基本概念与性质平面几何图形的认识与绘制实际问题与一元一次不等式、方程的转化四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规、三角板等。
2. 学具:学生用书、练习本、铅笔、直尺、圆规、三角板等。
五、教学过程1. 实践情景引入:通过抛硬币、抽签等游戏,引导学生理解随机事件和概率的概念。
通过观察生活中常见的几何图形,引入平面几何的学习。
以实际生活中的问题为例,引出一元一次不等式与方程的学习。
2. 例题讲解:选取典型例题,讲解概率的计算方法。
选取平面几何的典型图形,讲解图形的性质和绘制方法。
选取实际问题,讲解一元一次不等式与方程的解法。
3. 随堂练习:设计相关练习题,巩固概率的计算和应用。
设计几何图形绘制题,巩固平面几何的知识。
设计实际问题求解题,巩固一元一次不等式与方程的解法。
4. 课堂小结:六、板书设计1. 概率初步:随机事件、概率的计算和性质2. 平面几何:直线、射线、线段、角、多边形、平行线与相交线3. 一元一次不等式与方程:不等式及其解集、不等式的性质、一元一次方程的解法七、作业设计1. 作业题目:计算:抛硬币5次,求出现正面朝上的概率。
2024年华师大版七年级下册数学全册教案设计
2024年华师大版七年级下册数学全册教案设计一、教学内容1. 第1章实数1.1 有理数的复习1.2 无理数1.3 实数的分类2. 第2章代数式2.1 代数式的概念2.2 代数式的运算2.3 代数式的化简3. 第3章方程与不等式3.1 一元一次方程3.2 一元一次不等式3.3 方程与不等式的应用二、教学目标1. 让学生掌握实数的概念及其分类,理解有理数和无理数的性质。
2. 培养学生熟练运用代数式进行运算和化简的能力。
3. 使学生掌握一元一次方程和一元一次不等式的解法,并能应用于解决实际问题。
三、教学难点与重点1. 教学难点:无理数的概念及其运算代数式的化简方程与不等式的应用2. 教学重点:实数的分类及性质代数式的运算与化简方法一元一次方程和一元一次不等式的解法四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、教鞭等。
2. 学具:数学课本、练习本、铅笔、尺子等。
五、教学过程1. 引入:通过生活中的实际情景,如购物、计算面积等,引出实数、代数式、方程与不等式的概念。
2. 新课导入:讲解实数的分类、性质,结合例题进行讲解。
演示代数式的运算和化简方法,让学生进行随堂练习。
介绍一元一次方程和一元一次不等式的解法,并通过例题进行讲解。
3. 课堂讲解:结合教材内容,详细讲解每个知识点,注重讲解与实际应用的联系。
4. 课堂练习:设计不同难度的题目,让学生进行随堂练习,巩固所学知识。
5. 课堂小结:六、板书设计1. 实数的分类及性质2. 代数式的运算与化简方法3. 一元一次方程和一元一次不等式的解法4. 例题解答步骤5. 课堂练习题目七、作业设计1. 作业题目:课本第1章、第2章、第3章练习题,每章选5题。
附加题目:根据课堂所学,编写一道实际应用题并解答。
2. 答案:八、课后反思及拓展延伸1. 教学反思:分析本节课的教学效果,针对学生的掌握情况,调整教学方法与策略。
2. 拓展延伸:引导学生探索实数的更多性质,如乘方、开方等。
2024年华师大版数学七年级下册全册教案教学设计
2024年华师大版数学七年级下册全册教案教学设计一、教学内容1. 第一章《整式的乘除》:整式的乘法法则、整式的除法法则、多项式乘多项式、平方差公式、完全平方公式。
2. 第二章《几何图形》:平面图形的认识、线段、射线、直线、角的度量、角的分类、平行线和垂线、多边形的内角和与外角和。
3. 第三章《概率初步》:事件的确定性和不确定性、概率的定义、计算简单事件的概率、概率的加法规则、条件概率。
二、教学目标1. 知识与技能:使学生掌握整式的乘除法则,能熟练进行整式的乘除运算;理解几何图形的基本概念,培养学生的空间想象能力;了解概率的基本概念,能计算简单事件的概率。
2. 过程与方法:通过实践情景引入和例题讲解,培养学生的逻辑思维能力和解决问题的能力;通过随堂练习,提高学生的运算速度和准确度。
3. 情感态度价值观:激发学生对数学学习的兴趣,培养学生主动探究、合作交流的良好学习习惯。
三、教学难点与重点1. 教学难点:整式的乘除法则、几何图形的性质、概率的计算。
2. 教学重点:整式的乘除法则的运用、几何图形的认识、概率的定义和计算方法。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、直尺、圆规等。
2. 学具:学生用书、练习本、计算器、直尺、圆规等。
五、教学过程1. 导入:通过实践情景引入,激发学生学习兴趣,为新课的学习做好铺垫。
2. 新课讲解:详细讲解整式的乘除法则、几何图形的性质、概率的计算方法,结合例题进行分析。
3. 随堂练习:设计有针对性的练习题,巩固所学知识,提高学生的运算速度和准确度。
5. 课堂反馈:了解学生的学习情况,及时解答学生的疑问,提高课堂教学效果。
六、板书设计1. 板书内容:整式的乘除法则、几何图形的性质、概率的计算方法、例题解析。
2. 板书要求:条理清晰,重点突出,字迹工整。
七、作业设计1. 作业题目:(1)计算:2(x+3) 3(x2);(2)判断:下列图形中,哪些是平行四边形?哪些是矩形?(3)计算:从一副52张的扑克牌中,随机抽取一张,求抽到红桃的概率。
完整版华师大版七年级数学下册教案全册
完整版华师大版七年级数学下册教案全册一、教学内容1. 第五章:相交线与平行线详细内容:平行线的判定与性质,相交线的性质,同位角、内错角、同旁内角的概念。
2. 第六章:平面直角坐标系详细内容:坐标系的建立,坐标的表示方法,坐标与图形的关系。
3. 第七章:三角形详细内容:三角形的分类,三角形的性质,三角形的判定,等腰三角形的性质与判定。
4. 第八章:实际问题与一次方程详细内容:一次方程的应用,列一次方程解决实际问题。
二、教学目标1. 理解并掌握相交线、平行线的性质与判定,能运用相关知识解决实际问题。
2. 学会建立平面直角坐标系,理解坐标的意义,能利用坐标系解决几何问题。
3. 掌握三角形的性质与判定,了解等腰三角形的特殊性质,并能在实际问题中运用。
4. 学会运用一次方程解决实际问题,提高解决实际问题的能力。
三、教学难点与重点1. 教学难点:(1)平行线的判定与性质(2)平面直角坐标系的建立与应用(3)一次方程在实际问题中的应用2. 教学重点:(1)相交线与平行线的性质与判定(2)三角形的性质与判定(3)一次方程的实际应用四、教具与学具准备1. 教具:黑板、粉笔、直尺、圆规、三角板、多媒体设备。
2. 学具:直尺、圆规、三角板、练习本。
五、教学过程1. 实践情景引入:(1)通过生活中的实例,让学生了解平行线在实际中的应用。
(2)通过观察坐标系中的点、线,让学生认识坐标系的重要性。
2. 例题讲解:(1)讲解平行线的判定与性质,通过例题使学生理解并掌握。
(2)以实际问题为例,让学生学会建立平面直角坐标系,并解决几何问题。
(3)讲解三角形的性质与判定,以等腰三角形为例,让学生掌握特殊三角形的性质。
3. 随堂练习:(1)让学生完成相关习题,巩固所学知识。
(2)针对难点、重点进行针对性练习。
六、板书设计1. 知识点梳理:(1)相交线与平行线的性质与判定(2)平面直角坐标系(3)三角形的性质与判定(4)一次方程的实际应用2. 例题展示:(1)平行线的判定与性质例题(2)坐标系中的几何问题例题(3)三角形性质与判定例题七、作业设计1. 作业题目:(1)完成教材课后习题。
2024年华师大版七年级数学下册教案全册
2024年华师大版七年级数学下册教案全册一、教学内容1. 第一章《整式的乘除》:1.1单项式乘以单项式,1.2单项式乘以多项式,1.3多项式乘以多项式,1.4平方差公式,1.5完全平方公式,1.6整式的除法。
2. 第二章《等式与不等式》:2.1等式与不等式的性质,2.2一元一次方程的解法,2.3一元一次不等式的解法。
3. 第三章《函数》:3.1函数的概念,3.2函数的表示方法,3.3一次函数的性质与图像,3.4反比例函数的性质与图像。
4. 第四章《几何图形》:4.1平行线与相交线,4.2三角形的基本性质,4.3全等三角形,4.4等腰三角形与直角三角形。
二、教学目标1. 让学生掌握整式的乘除、等式与不等式的性质、一元一次方程与不等式的解法、函数的概念及表示方法,以及几何图形的基本性质。
2. 培养学生的逻辑思维能力和解题技巧,能熟练运用所学的数学知识解决实际问题。
3. 培养学生的空间想象能力,提高学生对数学学科的兴趣。
三、教学难点与重点1. 教学难点:整式的乘除法则、一元一次方程与不等式的解法、函数的图像与性质、几何图形的性质与判定。
2. 教学重点:整式的乘除、等式与不等式的性质、一元一次方程与不等式的解法、函数的表示方法、几何图形的基本性质。
四、教具与学具准备1. 教具:多媒体教学设备、黑板、粉笔、几何模型。
2. 学具:课本、练习册、文具。
五、教学过程1. 引入:通过实际情景引入,激发学生的学习兴趣。
2. 新课导入:讲解新课内容,结合例题进行分析。
3. 随堂练习:设计有针对性的练习题,巩固所学知识。
5. 课后作业:布置适量的作业,巩固所学知识。
六、板书设计1. 板书内容:章节、重要公式、性质、定理、例题、练习题。
2. 板书要求:字迹清晰、条理分明、重点突出。
七、作业设计1. 作业题目:(1)计算题:整式的乘除运算。
(2)应用题:一元一次方程与不等式的实际应用。
(3)函数题:求函数的值、图像、性质。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
华师大七年级数学教案集§2.1数怎么不够用了(1)§2.1数怎么不够用了(2)§2.2数轴(1)§2.2数轴(2)§2.3绝对值(1)§2.3绝对值(2)§2.4有理数的加法(1)§2.4有理数的加法(2)§2.4有理数的减法§2.6有理数的加减混合运算(1)§2.6有理数的加减混合运算(2)单元测验课试卷评讲课§2.8有理数的乘法(1)§2.4有理数的乘法(2)§2.9有理数的除法§2.10有理数的乘方(1)§2.10有理数的乘方(2)§2.11有理数的混合运算(1)§2.11有理数的混合运算(2)§2.11有理数复习课§3.1代数式§3.2列代数式§3.3代数式求值§3.4去括号(一)§3.4去括号(2)§4.1线段、射线、直线§4.2比较线段的长短§4.3角的度量与表示§4.4角的比较§4.5平行§4.6垂直§4.7有趣的七巧板§5.1一元一次方程(1)§5.1一元一次方程(2)§5.1一元一次方程(3)§5.1一元一次方程(4)§5.1一元一次方程(5)§5.1一元一次方程(6)§5.1一元一次方程(7)§5.2一元一次方程的应用(1)§5.2一元一次方程的应用(1)§5.2一元一次方程的应用(3)§5.2一元一次方程的应用(4)§5.2一元一次方程的应用(5)§5.2一元一次方程的应用(6)§5.2一元一次方程的应用(7)§5.2一元一次方程的应用(8)§复习(1)§复习(2)§复习(3)第十四课时§2.1数怎么不够用了(1)二、教学目标1.使学生了解正数与负数是从实际需要中产生的;2.使学生理解正数与负数的概念,并会判断一个数是正数还是负数;3.初步会用正负数表示具有相反意义的量;4.在负数概念的形成过程中,培养学生的观察、归纳与概括的能力.三、教学重点和难点重点难点负数的意义.负数的意义.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题大家知道,数学与数是分不开的,它是一门研究数的学问.现在我们一起来回忆一下,小学里已经学过哪些类型的数?学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的.为了表示一个人、两只手、……,我们用到整数1,2,……4.87、……为了表示“没有人”、“没有羊”、……,我们要用到0.但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示.(二)、师生共同研究形成正负数概念某市某一天的最高温度是零上5℃,最低温度是零下5℃.要表示这两个温度,如果只用小学学过的数,都记作5℃,就不能把它们区别清楚.它们是具有相反意义的两个量.现实生活中,像这样的相反意义的量还有很多.例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.和“运出”,其意义是相反的.同学们能举例子吗?学生回答后,教师提出:怎样区别相反意义的量才好呢?待学生思考后,请学生回答、评议、补充.教师小结:同学们成了发明家.甲同学说,用不同颜色来区分,比如,红色5℃表示零下5℃,黑色5℃表示零上5℃;乙同学说,在数字前面加不同符号来区分,比如,△5℃表示零上5℃,×5℃表示零下5℃…….其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”.如今这种方法在记账的时候还使用.所谓“赤字”,就是这样来的.现在,数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).这样,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了.让学生用同样的方法表示出前面例子中具有相反意义的量:高于海平面8848米,记作+8848米;低于海平面155米,记作-155米;教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量.并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号.三、运用举例变式练习例所有的正数组成正数集合,所有的负数组成负数集合.把下列各数中的正数和负数分别填在表示正数集合和负数集合的圈里:此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分.然后,指出不仅可以用圈表示集合,也可以用大括号表示集合.课堂练习任意写出6个正数与6个负数,并分别把它们填入相应的大括号里:正数集合:{…},负数集合:{…}.(四)、小结由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数.正数是大于0的数,负数就是在正数前面加上“-”号的数.0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0℃.七、练习设计1.北京一月份的日平均气温大约是零下3℃,用负数表示这个温度.2.在小学地理图册的世界地形图上,可以看到亚洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的?3.在下列各数中,哪些是正数?哪些是负数?-3.6,-4,9651,-0.1.4.如果-50元表示支出50元,那么+200元表示什么?5.河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么?6.如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么?7.一物体可以左右移动,设向右为正,问:(1)向左移动12米应记作什么?(2)“记作8米”表明什么?八、板书设计2.1数怎么不够用了(1)(一)知识回顾(四)例题解析(六)课堂小结(二)观察发现例1、例2(三)解方程(五)课堂练习练习设计九、教学后记这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的.从内容上讲,负数比非负数要抽象、难理解.因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高.对有理数的深入理解将在以后的学习中逐步加强.在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感.所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主.同时,教师的语言要尽量儿童化第十五课时§2.1数怎么不够用了(2)二、教学目标1.使学生理解有理数的意义,并能将给出的有理数进行分类;2.培养学生树立分类讨论的思想.三、教学重点和难点重点难点有理数包括哪些数.有理数的分类及其分类的标准.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1.什么是正、负数?2.如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明.3.任何一个正数都比0大吗?任何一个负数都比0小吗?4.什么是整数?什么是分数?根据学生的回答引出新课.(二)、讲授新课1.给出新的整数、分数概念引进负数后,数的范围扩大了.过去我们说整数只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即2.给出有理数概念整数和分数统称为有理数,即有理数是英语“Rational number”的译名,更确切的译名应译作“比3.有理数的分类为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数.有理数还有没有其他的分类方法?待学生思考后,请学生回答、评议、补充.教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即并指出,在有理数范围内,正数和零统称为非负数.并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类.(三)、运用举例变式练习例1 将下列数按上述两种标准分类:例2 下列各数是正数还是负数,是整数还是分数:课堂练习25,-100按两种标准分类.2.下列各数是正数还是负数,是整数还是分数?(四)、小结教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题?七、练习设计1.把下列各数填在相应的括号里(将各数用逗号分开):正整数集合:{…};负整数集合:{…};正分数集合:{…};负分数集合:{…}.2.填空题:的数是______,在分数集合里的数是______;(2)整数和分数合起来叫做______,正分数和负分数合起来叫做______.3.选择题(1)-100不是[ ]A.有理数B.自然数C.整数D.负有理数(2)在以下说法中,正确的是[ ]A.非负有理数就是正有理数B.零表示没有,不是有理数C.正整数和负整数统称为整数D.整数和分数统称为有理数八、板书设计2.1数怎么不够用了(2)(一)知识回顾(三)例题解析(五)课堂小结(二)观察发现例1、例2(四)课堂练习练习设计九、教学后记在传授知识的同时,一定要重视数学基本思想方法的教学.关于这一点,布鲁纳有过精彩的论述.他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力.不但使数学学习变得容易,而且会使得别的学科容易学习.显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力.为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授.本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点:1.分类的标准不同,分类的结果也不相同;2.分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属于不同的两类.第十六课时§2.2数轴(1)二、教学目标1.使学生正确理解数轴的意义,掌握数轴的三要素;2.使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来;3.使学生初步理解数形结合的思想方法.三、教学重点和难点重点难点初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数.正确理解有理数与数轴上点的对应关系.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有认知结构提出问题1.小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗?2.用“射线”能不能表示有理数?为什么?3.你认为把“射线”做怎样的改动,才能用来表示有理数呢?待学生回答后,教师指出,这就是我们本节课所要学习的内容——数轴.(二)、讲授新课让学生观察挂图——放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度.在0上10个刻度,表示10℃;在0下5个刻度,表示-5℃.与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零.具体方法如下(边说边画):1.画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0℃);2.规定直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0℃以上为正,0℃以下为负);3.选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,…从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3,…提问:我们能不能用这条直线表示任何有理数?(可列举几个数)在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴.进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢?通过上述提问,向学生指出:数轴的三要素——原点、正方向和单位长度,缺一不可.三、运用举例变式练习例1 画一个数轴,并在数轴上画出表示下列各数的点:例2 指出数轴上A,B,C,D,E各点分别表示什么数.课堂练习说出下面数轴上A,B,C,D,O,M各点表示什么数?最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示.(四)、小结指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法.本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究.七、练习设计1.在下面数轴上:(1)分别指出表示-2,3,-4,0,1各数的点.(2)A,H,D,E,O各点分别表示什么数?2.在下面数轴上,A,B,C,D各点分别表示什么数?3.下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点:(1){-5,2,-1,-3,0};(2){-4,2.5,-1.5,3.5};八、板书设计2.2数轴(1)(一)知识回顾(三)例题解析(五)课堂小结例1、例2(二)观察发现(四)课堂练习练习设计九、教学后记从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.第十七课时§2.2数轴(2)二、教学目标1.使学生进一步掌握数轴概念;2.使学生会利用数轴比较有理数的大小;3.使学生进一步理解数形结合的思想方法.三、教学重点和难点重点:会比较有理数的大小.难点:如何比较两个负数(尤其是两个负分数)的大小.四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认识结构提出问题1.数轴怎么画?它包括哪几个要素?2.大于0的数在数轴上位于原点的哪一侧?小于0的数呢?(二)、师生共同探索利用数轴比较有理数大小的法则在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5℃在-2℃上边,5℃高于-2℃;-1℃在-4℃上边,-1℃高于-4℃.下面的结论引导学生把温度计与数轴类比,自己归纳出来:在数轴上表示的两个数,右边的数总比左边的数大.(三)、运用举例变式练习通过此例引导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律.要提醒学生,用“<”连接两个以上数时,小数在前,大数在后,不能出现5>0<4这样的式子.例2 观察数轴,找出符合下列要求的数:(1)最大的正整数和最小的正整数;(2)最大的负整数和最小的负整数;(3)最大的整数和最小的整数;(4)最小的正分数和最大的负分数.在解本题时应适时提醒学生,直线是向两边无限延伸的.课堂练习2.在数轴上画出表示下列各数的点,并用“<”把它们连接起来:(四)、小结教师指出这节课主要内容是利用数轴比较两个有理数的大小,进而要求学生叙述比较的法则.七、练习设计1.比较下列每对数的大小:2.把下列各组数从小到大用“<”号连接起来:(1)3,-5,-4;(2)-9,16,-11;3.下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列.八、板书设计2.2数轴(2)(一)知识回顾(三)例题解析(五)课堂小结例3、例4(二)观察发现(四)课堂练习练习设计九、教学后记从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则.小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念.教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识.直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的.例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等.第十八课时§2.3绝对值(1)二、教学目标1、使学生掌握有理数的绝对值概念及表示方法;2、使学生熟练掌握有理数绝对值的求法和有关的简单计算;3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力三、教学重点和难点正确理解绝对值的概念四、教学手段现代课堂教学手段五、教学方法启发式教学六、教学过程(一)、从学生原有的认知结构提出问题1、下列各数中:+7,-2,,-83,0,+001,- ,1 ,哪些是正数?哪些是负数?哪些是非负数?2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数:-3,4,0,3,-15,-4,,23、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点?4、怎样表示一个数的相反数?(二)、师生共同研究形成绝对值概念例1两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米这样,利用有理数就可以明确表示每辆汽车在公路上的位置了我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向当不考虑方向时,两辆汽车行驶的距离就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值例2两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是101米,乙侧得的结果是098米甲测量的差额即多出的数记作+0 01米,乙测量的差额即减少的数记作-002米如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差分别是0 01和002这里所说的测量误差也就是测量结果所多出来或减少了的数+001和-0 02和7-002的绝对值如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以值是0现在我们撇开例题的实际意义来研究有理数的绝对值,那么,有+5的绝对值是5,在数轴上表示+5的点到原点的距离是5;-4的绝对值是4,在数轴上表示-4的点到原点的距离是4;+001的绝对值是001,在数轴上表示+001的点到原点的距离是001;-002的绝对值是002,在数轴上表示-002的点它到原点的距离是002;0的绝对值是0,表明它到原点的距离是0一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离为了方便,我们用一种符号来表示一个数的绝对值约定在一个数的两旁各画一条竖线来表示这个数的绝对值如+5的绝对值记作+5,显然有+5=5;-002的绝对值记作-002,显然有-002=002;0的绝对值记作0,也就是0=0a的绝对值记作a,(提醒学生a可以是正数,也可以是负数或0)例3 利用数轴求5,32,7,-2,-71,-05的绝对值由例3学生自己归纳出:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0这也是绝对值的代数定义把绝对值的代数定义用数学符号语言如何表达?把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步1、用a表示一个数,如何表示a是正数,a是负数,a是0?由有理数大小比较可以知道:a是正数:a>0;a是负数:a<0;a是0:a=02、怎样表示a的本身,a的相反数?a的本身是自然数还是a.a的相反数为-a.现在可以把绝对值的代数定义表示成如果a>0,那么=a;如果a<0,那么=-a;如果a=0,那么=0由绝对值的代数定义,我们可以很方便地求已知数的绝对值了例4 求8,-8,,- ,0,6,-π,π-5的绝对值(三)、课堂练习1、下列哪些数是正数?-2,,,,- ,-(-2),- 2、在括号里填写适当的数:=( );=( );- =( );- =( );=1,=0;- =-23、计算下列各题:|-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|- |×|- |;|- |÷|-2|;÷|- |。