抽象函数习题精选精讲1
抽象函数的题型与解法
抽象函数
1具有抽象函数关系式特点的具体函数叫抽象函数的特征函数。
分析下列抽象关系式的特点,填出其特征函数:
2已知函数f(2x-1)的定义域是【0,2】,则函数f(2x-2x)的定义域是_____________________
3 已知定义域是R+的函数f(x)满足f(xy)=f(x)+f(y),
(1)求f(1)的值
(2)证:f(1
x
)=-f(x)
(3)若x>1,f(x)<0,判断函数的单调性并证明。
4已知R+上恒有f(xy)=f(x)f(y),当x>1时f(x)<1,且f(2)=1 4
(1)求证:f(x)>0
(2)求证:f(1
x
)=
1
()
f x
(3)求证:f(x)在R+上是减函数
(4)若f(k)=4,求k的值
5已知 f(x)在R上是减函数,且满足f(x+y)=f(x)f(y),f(2)=1 9
求使f(x)f(3x-1)<1
27
成立的x的范围
6 f(x)在R+上是增函数,且f(x
y
)=f(x)-f(y)
(1)求f(1)的值
(2)若f(6)=1,解不等式f(x+3)-f(1
x
)<2
7已知f(x)是定义在【-1,1】上的奇函数,且f(1)=1
若a,b属于【-1,1】,a+b≠0时
()()
f a f b
a b
+
+
>0
(1)判断函数的单调性
(2)解不等式f(x+1
2
)<f(
1
1
x-
)。
抽象函数专题练习题
抽象函数专题(1)抽象函数是指没有明确给出具体的函数表达式,只是给出一些特殊条件的函数 抽象函数知识点:1、抽象函数的定义域:①已知()f x 的定义域,求[]()f g x 的定义域②已知[]()f g x 的定义域,求()f x 的定义域2、抽象函数表达式与函数值3、抽象函数的模型构造①线性函数型抽象函数f (x )=kx (k ≠0)----f (x ±y )=f (x )±f (y )②指数函数型的抽象函数f (x )=a x ---- f (x +y )=f (x )f (y );f (x -y )=)()(y f x f ③对数函数型的抽象函数f (x )=lo g a x (a >0且a ≠1)-f (x ·y )=f (x )+f (y );f (yx )= f (x )-f (y ) ④幂函数型的抽象函数2()f x x = ---------()()()f xy f x f y =,()()()xf x f y f y =; 练习题:1、已知函数)(x f 对任意实数x ,y ,均有)()()(y f x f y x f +=+,且当0>x 时,0)(>x f ,2)1(-=-f ,求)(x f 在区间[-2,1]上的值域。
2、定义在R 上的函数)(x f 满足:对任意实数,m n ,总有)()()(n f m f n m f ⋅=+,且当0x >时,1)(0<<x f .(1)试求)0(f 的值;(2)判断)(x f 的单调性并证明你的结论;(3)试举出一个满足条件的函数)(x f .3、已知函数)(x f 满足定义域在),0(+∞上的函数,对于任意的),0(,+∞∈y x ,都有)()()(y f x f xy f +=,当且仅当1>x 时,0)(<x f 成立,(1)设),0(,+∞∈y x ,求证)()()(x f y f xy f -=; (2)设),0(,21+∞∈x x ,若)()(21x f x f <,试比较1x 与2x 的大小;(3)解关于x 的不等式[]01)1(2>+++-a x a x f4.已知定义在()()-,00,+∞⋃∞上的函数f(x)对任何x,y 都有f(xy)=f(x)f(y),且f(x)>0,当x>1时,有f(x)<1.(1)判断f(x)的奇偶性(2)判断并证明f(x)在(0,+∞)上的单调性.(3)求解不等式f (23-4x x )≥1抽象函数问题(2)1、下列结论:①函数y =2y =是同一函数;②函数(1)f x -的定义域为[1,2],则函数2(3)f x 的定义域为;③函数22log (23)y x x =+-的递增区间为(1,)-+∞;④若函数(21)f x -的最大值为3,那么(12)f x -的最小值就是3-其中正确的个数为 ( )A. 0个B. 1个C. 2个D. 3个2、定义在R 上的函数()f x 满足1(0)0,()(1)1,()()52xf f x f x f f x =+-==,且当1201x x ≤<≤时,12()()f x f x ≤,则1()2007f 等于( ) A. 12 B. 116 C. 132 D. 1643、已知()f x 是定义在R 上的函数,且3()[1()]1()2f x f x f x +-=+,(2)2f =,则()2009f 值为( )A. 2+B. 22 D. 2-4、已知(1)(1),()(2)f x f x f x f x +=-=-+,方程()0f x =在[0,1]内有且只有一个根12x =,则()0f x =在区间[]0,2013内根的个数为( ) A. 2011 B. 1006 C. 2013 D. 1007 5、已知函数()f x 对任意实数x ,y 满足()()()f x y f x f y +=+,且(1)2f ≥.若存在整数m ,使得2(2)40f m m ---+= ,则m 取值的集合为______.6、定义在R 上的函数()f x 满足:(2)()0f x f x ++=,且函数(1)f x +为奇函数,对于下列命题:①函数()f x 满足(4)()f x f x +=;②函数()f x 图象关于点(1,0)对称;③函数()f x 的图象关于直线2x =对称;④函数()f x 的最大值为(2)f ;⑤(2009)0f =. 其中正确的序号为_________.7、定义在R 上的函数()f x ,(0)0f ≠,当0x >时,()1f x >,且对任意实数,a b ,有()()()f a b f a f b +=⋅,求证:(1)(0)1f = (2)证明:()f x 是R 上的增函数;(3)若2()(2)1f x f x x ⋅->,求x 的取值范围.8、已知()f x 是定义在(0,)+∞上的增函数,且满足 ()()()f xy f x f y =+, 1()12f =- (1)求证:(2)1f = (2)求不等式()(3)1f x f x -->的解集.9、已知函数f (x )对任意实数x 、y 均有f (x +y )+2=f (x )+f (y ),且当x >0时,f (x )>2,f (3)= 5,求不等式3)22(2<--a a f 的解.。
抽象函数的对称性、奇偶性与周期性总结及习题资料
抽象函数的对称性、奇偶性与周期性总结及习题一.概念: 抽象函数是指没有给出具体的函数解析式或图像,只给出一些函数符号及其满足的条件的函数,如函数的定义域,解析递推式,特定点的函数值,特定的运算性质等,它是高中函数部分的难点,也是大学高等数学函数部分的一个衔接点,由于抽象函数没有具体的解析表达式作为载体,因此理解研究起来比较困难,所以做抽象函数的题目需要有严谨的逻辑思维能力、丰富的想象力以及函数知识灵活运用的能力1、周期函数的定义:对于()f x 定义域内的每一个x ,都存在非零常数T ,使得()()f x T f x +=恒成立,则称函数()f x 具有周期性,T 叫做()f x 的一个周期,则kT (,0k Z k ∈≠)也是()f x 的周期,所有周期中的最小正数叫()f x 的最小正周期。
分段函数的周期:设)(x f y =是周期函数,在任意一个周期内的图像为C:),(x f y = []a b T b a x -=∈,,。
把)()(a b K KT x x f y -==轴平移沿个单位即按向量)()0,(x f y kT ==平移,即得在其他周期的图像:[]b kT a kT x kT x f y ++∈-=,),(。
[][]⎩⎨⎧++∈-∈=b kT a,kT x )(b a, x )()(kT x f x f x f 2、奇偶函数:设[][][]b a a b x b a x x f y ,,,),( --∈∈=或①若为奇函数;则称)(),()(x f y x f x f =-=-②若为偶函数则称)()()(x f y x f x f ==-。
分段函数的奇偶性3、函数的对称性:(1)中心对称即点对称:①点对称;关于点与),()2,2(),(b a y b x a B y x A -- ②对称;关于与点),(),(),(b a y b x a B y b x a A ++--③成中心对称;关于点与函数),()2(2)(b a x a f y b x f y -=-= ④成中心对称;关于点与函数),()()(b a x a f y b x a f y b +=+-=-⑤成中心对称。
抽象函数模型归纳总结(八大题型)(解析版)
抽象函数模型归纳总结目录01方法技巧与总结02题型归纳总结题型一:一次函数模型题型二:二次函数模型题型三:幂函数模型题型四:指数函数模型题型五:对数函数模型题型六:正弦函数模型题型七:余弦函数模型题型八:正切函数模型03过关测试20一次函数(1)对于正比例函数f x =kx k≠0,与其对应的抽象函数为f x±y=f x ±f y .(2)对于一次函数f x =kx+b k≠0,与其对应的抽象函数为f x±y=f x ±f y ∓b.二次函数(3)对于二次函数f x =ax2+bx+c a≠0,与其对应的抽象函数为f x+y=f x +f y +2axy-c幂函数(4)对于幂函数f x =x n,与其对应的抽象函数为f xy=f x f y .(5)对于幂函数f x =x n,其抽象函数还可以是fxy=f x f y.指数函数(6)对于指数函数f x =a x,与其对应的抽象函数为f x+y=f x f y .(7)对于指数函数f x =a x,其抽象函数还可以是f x -y =f xf y.其中(a >0,a ≠1)对数函数(8)对于对数函数f x =log a x ,与其对应的抽象函数为f xy =f x +f y .(9)对于对数函数f x =log a x ,其抽象函数还可以是fxy=f x -f y .(10)对于对数函数f x =log a x ,其抽象函数还可以是f x n=nf x .其中(a >0,a ≠1)三角函数(11)对于正弦函数f x =sin x ,与其对应的抽象函数为f x +y f x -y =f 2x -f 2y 注:此抽象函数对应于正弦平方差公式:sin 2α-sin 2β=sin α+β sin α-β(12)对于余弦函数f x =cos x ,与其对应的抽象函数为f x +f y =2fx +y 2 f x -y2注:此抽象函数对应于余弦和差化积公式:cos α+cos β=2cos α+β2cosα-β2(13)对于余弦函数f x =cos x ,其抽象函数还可以是f x f y =12f x +y +f x -y注:此抽象函数对应于余弦积化和差公式:cos αcos β=cos α+β +cos α-β2(14)对于正切函数f x =tan x ,与其对应的抽象函数为f x ±y =f x ±f y1∓f x f y注:此抽象函数对应于正切函数和差角公式:tan α±β =tan α±tan β1∓tan αtan β题型一:一次函数模型1已知f x +y =f x +f y -1且f 1 =2,则f 1 +f 2 +⋯+f n 不等于A.f 1 +2f 1 +⋯+nf 1 -n n -12B.f n n +1 2+n -1C.n 2+3n2 D.n n +1【答案】D【解析】∵f x +y =f x +f y -1,∴f x +y -1=f x -1 +f y -1 ,构造函数g x =f x -1,则g x +y =g x +g y ,且g 1 =f 1 -1=1,令a n =g n =f n -1,则a 1=f 1 -1=1,令x =n ,y =1,得g n +1 =g n +g 1 ,∴a n +1=a n +a 1=a n +1,即a n +1-a n =1,所以,数列a n 为等差数列,且首项为1,公差为1,∴a n =1+n -1 ×1=n ,∴f n -1=n ,则f n =n +1.f 1 +f 2 +⋯+f n =2+3+⋯+n +1 =n 2+n +1 2=n n +3 2=n 2+3n 2,f 1 +2f 1 +⋯+nf 1 -n n -1 2=n n +1 2f 1 -n n -1 2=n n +1 -n n -1 2=n 2+3n2,合乎题意;f n n +1 2 +n -1=n n +1 2+1+n -1=n 2+3n 2,合乎题意;故选D .2已知函数f x 的定义域为R ,且f 12≠0,若f (x +y )+f (x )f (y )=4xy ,则下列结论错误的是()A.f -12=0 B.f 12=-2C.函数f x -12是偶函数 D.函数f x +12是减函数【答案】C【解析】对于A ,令x =12、y =0,则有f 12 +f 12 ×f 0 =f 121+f 0 =0,又f 12≠0,故1+f 0 =0,即f 0 =-1,令x =12、y =-12,则有f 12-12 +f 12 f -12 =4×12×-12,即f 0 +f 12 f -12 =-1,由f 0 =-1,可得f 12 f -12 =0,又f 12 ≠0,故f -12=0,故A 正确;对于C ,令y =-12,则有f x -12 +f x f -12 =4x ×-12,则f x -12 =-2x ,故函数f x -12是奇函数,故C 错误;对于D ,有f x +1-12 =-2x +1 =-2x -2,即f x +12=-2x -2,则函数f x +12 是减函数,故D 正确;对于B ,由f x -12 =-2x ,令x =1,有f 12=-2×1=-2,故B 正确.故选:C 3(2024·河南新乡·一模)已知定义在R 上的函数f x 满足∀x ,y ∈R ,f 2xy -1 =f x ⋅f y +f y +2x -3,f 0 =-1,则不等式f x >3-2x 的解集为()A.1,+∞B.-1,+∞C.-∞,1D.-∞,-1【答案】A【解析】令x =y =0,得f (-1)=f (0)⋅f (0)+f (0)-3=-3.令y =0,得f (-1)=f (x )f (0)+f (0)+2x -3,解得f (x )=2x -1,则不等式f (x )>3-2x 转化为2x +2x -4>0,因为y =2x +2x -4是增函数,且2×1+21-4=0,所以不等式f (x )>3-2x 的解集为(1,+∞).故选:A4已知定义在R 上的单调函数f x ,其值域也是R ,并且对于任意的x ,y ∈R ,都有f xf y =xy ,则f 2022 等于()A.0B.1C.20222D.2022【答案】D【解析】由于f x 在R 上单调,且值域为R ,则必存在y 0∈R ,使得f y 0 =1,令y =y 0得,f xf y 0 =xy 0,即f x =y 0x ,于是∀x ,y ∈R ,f xf y =f xy 0y =y 0xy 0y =y 20xy =xy ,则y 0=±1,从而f x =±x ,有f 2022 =2022.故选:D题型二:二次函数模型1(2024·高三·河北保定·期末)已知函数f (x )满足:∀x ,y ∈Z ,f (x +y )=f (x )+f (y )+2xy +1成立,且f (-2)=1,则f 2n n ∈N * =()A.4n +6B.8n -1C.4n 2+2n -1D.8n 2+2n -5【答案】C【解析】令x =y =0,则f 0 =f 0 +f 0 +1,所以f 0 =-1,令x =y =-1,则f -2 =f -1 +f -1 +2+1=2f -1 +3=1,所以f -1 =-1,令x =1,y =-1,则f 0 =f 1 +f -1 -2+1=f 1 -2=-1,所以f 1 =1,令x =n ,y =1,n ∈N *,则f n +1 =f n +f 1 +2n +1=f n +2n +2,所以f n +1 -f n =2n +2,则当n ≥2时,f n -f n -1 =2n ,则f n =f n -f n -1 +f n -1 -f n -2 +⋯+f 2 -f 1 +f 1=2n +2n -2 +⋯+4+1=2n +4 n -12+1=n 2+n -1,当n =1时,上式也成立,所以f n =n 2+n -1n ∈N * ,所以f 2n =4n 2+2n -1n ∈N * .故选:C .2(2024·山东济南·三模)已知函数f x 的定义域为R ,且yf x -xf y =xy x -y ,则下列结论一定成立的是()A.f 1 =1B.f x 为偶函数C.f x 有最小值D.f x 在0,1 上单调递增【答案】C【解析】由于函数f x 的定义域为R ,且yf x -xf y =xy x -y ,令y =1,则f x -xf 1 =x x -1 ,得f x =x 2+f 1 -1 x ,x =1时,f 1 =12+f 1 -1 恒成立,无法确定f 1 =1,A 不一定成立;由于f 1 =1不一定成立,故f x =x 2+f 1 -1 x 不一定为偶函数,B 不确定;由于f x =x 2+f 1 -1 x 的对称轴为x =-12⋅f 1 -1 与0,1 的位置关系不确定,故f x 在0,1 上不一定单调递增,D 也不确定,由于f x =x 2+f 1 -1 x 表示开口向上的抛物线,故函数f x 必有最小值,C 正确,故选:C3(2024·陕西西安·模拟预测)已知函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,则下列结论正确的是()A.f (4)=12B.方程f (x )=x 有解C.f x +12 是偶函数D.f x -12是偶函数【答案】C【解析】对于A ,因为函数f (x )的定义域为R ,且满足f (x )+f (y )=f (x +y )-2xy +2,f (1)=2,取x =y =1,得f (1)+f (1)=f (2)-2+2,则f (2)=4,取x =y =2,得f (2)+f (2)=f (4)-8+2,则f (4)=14,故A 错误;对于B ,取y =1,得f (x )+f (1)=f (x +1)-2x +2,则f (x +1)-f (x )=2x ,所以f (x )-f (x -1)=2(x -1),f (x -1)-f (x -2)=2(x -2),⋯,f (2)-f (1)=2,以上各式相加得f (x )-f (1)=2(x -1)+2 ⋅(x -1)2=x 2-x ,所以f (x )=x 2-x +2,令f (x )=x 2-x +2=x ,得x 2-2x +2=0,此方程无解,故B 错误.对于CD ,由B 知f (x )=x 2-x +2,所以f x +12 =x +12 2-x +12 +2=x 2+74是偶函数,f x -12 =x -12 2-x -12 +2=x 2-2x +114不是偶函数,故C 正确,D 错误.故选:C .4(2024·河南·三模)已知函数f x 满足:f 1 ≥3,且∀x ,y ∈R ,f x +y =f x +f y +6xy ,则9i =1f i 的最小值是()A.135 B.395C.855D.990【答案】C【解析】由f x +y =f x +f y +6xy ,得f x +y -3x +y 2=f x -3x 2+f y -3y 2,令g x =f x -3x 2,得g x +y =g x +g y ,令x =n ,y =1,得g n +1 -g n =g 1 ,故g n =g n -g n -1 + g n -1 -g n -2 +⋅⋅⋅+ g 2 -g 1 +g 1 =ng 1 ,又g n =f n -3n 2,所以f n =g n +3n 2=3n 2+f 1 -3 n ,所以9i =1f i =39i =1i 2+f 1 -3 9i =1i =855+45f 1 -3 ,因为f 1 ≥3,当f 1 =3时,9i =1f i 的最小值为855.故选:C .题型三:幂函数模型1已知函数f x 的定义域为-∞,0 ∪0,+∞ ,且xf x =y +1 f y +1 ,则()A.f x ≥0B.f 1 =1C.f x 是偶函数D.f x 没有极值点【答案】D【解析】令g x =xf x ,则g y +1 =y +1 f y +1 ,所以g x =g y +1 ,且x ,y +1为定义域内任意值,故g x 为常函数.令g x =k ,则f x =kx,为奇函数且没有极值点,C 错,D 对;所以f x ≥0不恒成立,f 1 =1不一定成立,A 、B 错.故选:D2(2024·河北·模拟预测)已知定义在-∞,0 ∪0,+∞ 上的函数f x 满足f xy =f -x y +f -yx+1xy,则()A.f x 是奇函数且在0,+∞ 上单调递减B.f x 是奇函数且在-∞,0 上单调递增C.f x 是偶函数且在0,+∞ 上单调递减D.f x 是偶函数且在-∞,0 上单调递增【答案】A【解析】令x =y =-1,则f 1 =-2f 1 +1,所以f 1 =13,令x =y =1,则f 1 =2f -1 +1,所以f -1 =-13,令y =-1,则f -x =-f -x +f 1 x -1x =-f -x +13x -1x =-f -x -23x,所以f -x =-13x,令y =1,则f x =f -x +f -1 x +1x =-13x -13x +1x =13x ,所以f x =13x,因为f -x =-13x=-f x ,且定义域关于原点对称,所以函数f x 是奇函数,由反比例函数的单调性可得函数f x =13x在0,+∞ 上单调递减.故选:A .题型四:指数函数模型1(多选题)(2024·山西晋中·三模)已知函数f x 的定义域为R ,满足f x +y =f x f y +f x +f y ,且f 0 ≠-1,f 1 >-1,则下列说法正确的是()A.f 0 =0B.f x 为非奇非偶函数C.若f 1 =1,则f 4 =15D.f x >-1对任意x ∈N *恒成立【答案】ACD【解析】我们有恒等式:f x +y +1=f x f y +f x +f y +1=f x +1 f y +1 .对于A ,由恒等式可得f 0 +1=f 0 +1 f 0 +1 ,而f 0 ≠-1,故f 0 +1≠0,所以1=f 0 +1,即f 0 =0,故A 正确;对于B ,由于f x =0满足条件且是偶函数,所以f x 有可能是偶函数,故B 错误;对于C ,由恒等式可得f x +1 +1=f x +1 f 1 +1 ,故f 4 +1=f 3 +1 f 1 +1 =f 2 +1 f 1 +12=f 1 +1 4.若f 1 =1,则f 4 =f 1 +1 4-1=24-1=15,故C 正确;对于D ,由恒等式可得f x +1 +1=f x +1 f 1 +1 .而f 1 +1>0,故f x +1 +1和f x +1同号(同为正数,或同为负数,或同为0),从而再由f 1 +1>0可知f x +1>0x ∈N * ,即f x >-1x ∈N * ,故D 正确.故选:ACD .2已知函数f x 满足,f p +q =f p ⋅f q ,f 1 =3,则f 21 +f 2 f 1 +f 22 +f 4f 3+f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10f 9 的值为()A.15B.30C.60D.75【答案】B【解析】∵f p +q =f p ⋅f q ,∴f n +1 =f n ⋅f 1 ,∵f 1 =3∴f n +1 =3f n ∴f n =3×3n -1=3n因此f 21 +f 2 f 1 +f 22 +f 4 f 3 +f 23 +f 6 f 5 +f 24 +f 8 f 7 +f 25 +f 10 f 9=32+323+34+3433+36+3635+38+3837+310+31039=6+6+6+6+6=30故选:B3如果f a +b =f a f b 且f 1 =2,则f 2 f 1 +f 4 f 3 +f 6f 5=()A.125B.375C.6D.8【答案】C【解析】∵f 1 =2,f a +b =f a f b ,∴f 2 =f 1 f 1 ,f 4 =f 3 f 1 ,f 6 =f 5 f 1 ,∴f 2 f 1 =f 1 ,f 4 f 3 =f 1 ,f 6 f 5 =f 1 ,∴f 2 f 1 +f 4 f 3 +f 6 f 5 =3f 1 =6,故选:C .4已知函数f x 对一切实数a ,b 满足f a +b =f a ⋅f b ,且f 1 =2,若a n =f n2+f 2n f 2n -1n ∈N *,则数列a n 的前n 项和为()A.nB.2nC.4nD.8n【答案】C【解析】∵函数f x 对一切实数a,b满足f a+b=f a ⋅f b ,且f1 =2∴f n+1=f n ⋅f1 =2f n∴数列f n是等比数列,首项为2,公比为2∴f n =2n,n∈N*所以a n=f n2+f2nf2n-1=22n+22n22n-1=4所以数列a n的前n项和为4n.故选:C.题型五:对数函数模型1(多选题)已知函数f x 的定义域为R,f xy=y2f x +x2f y ,则( ).A.f0 =0 B.f1 =0C.f x 是偶函数D.x=0为f x 的极小值点【答案】ABC【解析】方法一:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,不妨令f(x)=0,显然符合题设条件,此时f(x)无极值,故D错误.方法二:因为f(xy)=y2f(x)+x2f(y),对于A,令x=y=0,f(0)=0f(0)+0f(0)=0,故A正确.对于B,令x=y=1,f(1)=1f(1)+1f(1),则f(1)=0,故B正确.对于C,令x=y=-1,f(1)=f(-1)+f(-1)=2f(-1),则f(-1)=0,令y=-1,f(-x)=f(x)+x2f(-1)=f(x),又函数f(x)的定义域为R,所以f(x)为偶函数,故C正确,对于D,当x2y2≠0时,对f(xy)=y2f(x)+x2f(y)两边同时除以x2y2,得到f(xy)x2y2=f(x)x2+f(y)y2,故可以设f(x)x2=ln x (x≠0),则f(x)=x2ln x ,x≠00,x=0,当x>0肘,f(x)=x2ln x,则f x =2x ln x+x2⋅1x=x(2ln x+1),令f x <0,得0<x<e-12;令f x >0,得x>e-12;故f(x)在0,e-1 2上单调递减,在e-12,+∞上单调递增,因为f(x)为偶函数,所以f(x)在-e-1 2,0上单调递增,在-∞,e-12上单调递减,显然,此时x =0是f (x )的极大值,故D 错误.故选:ABC .2.已知定义在0,+∞ 上的函数f x ,满足f xy +1=f x +f y ,且f 12=0,则f 211 =()A.1B.11C.12D.-1【答案】C【解析】令x =y =1,则f 1 +1=f 1 +f 1 ,解得f 1 =1,令x =2,y =12,则f 1 +1=f 2 +f 12,解得f 2 =2,令x =y =2,则f 22 +1=f 2 +f 2 ,解得f 22 =3,令x =22,y =2,则f 23 +1=f 22 +f 2 ,解得f 23 =4,⋯⋯,依次类推可得f 211 =12。
重难点2-4-抽象函数及其性质8大题型(解析版) (1)
重难点2-4 抽象函数及其性质8大题型抽象函数是指没有给出函数的具体解析式,只给出了一些体现函数特征的式子的一个函数,由抽象函数构成的数学问题叫做抽象函数问题。
抽象函数问题能综合考查学生对函数概念和各种性质的理解,但由于其表现形式的抽象性和多变性,学生往往无从下手,这类问题是高考的一个难点,也是近几年高考的热点之一。
一、抽象函数的赋值法赋值法是求解抽象函数问题最基本的方法,复制规律一般有以下几种: 1、……-2,-1,0,1,2……等特殊值代入求解; 2、通过()()12-f x f x 的变换判定单调性;3、令式子中出现()f x 及()-f x 判定抽象函数的奇偶性;4、换x 为+x T 确定周期性. 二、判断抽象函数单调性的方法:(1)凑:凑定义或凑已知,利用定义或已知条件得出结论;(2)赋值:给变量赋值要根据条件与结论的关系.有时可能要进行多次尝试.①若给出的是“和型”抽象函数() =+y x f ,判断符号时要变形为:()()()()111212)(x f x x x f x f x f -+-=-或()()()()221212)(x x x f x f x f x f +--=-;②若给出的是“积型”抽象函数() =xy f ,判断符号时要变形为:()()()112112x f x x x f x f x f -⎪⎪⎭⎫ ⎝⎛⋅=-或()()()⎪⎪⎭⎫ ⎝⎛⋅-=-212212x x x f x f x f x f . 三、常见的抽象函数模型1、()()()+=+f x y f x f y 可看做()=f x kx 的抽象表达式;2、()()()+=f x y f x f y 可看做()=x f x a 的抽象表达式(0>a 且1≠a );3、()()()=+f xy f x f y 可看做()log =a f x x 的抽象表达式(0>a 且1≠a );4、()()()=f xy f x f y 可看做()=a f x x 的抽象表达式. 四、抽象函数中的小技巧1、很多抽象函数问题都是以抽象出某一类函数的共同特征而设计出来的,在解决问题时,可以通过类比这类函数中一些具体函数的性质去解决抽象函数的性质;2、解答抽象函数问题要注意特殊赋值法的应用,通过特殊赋值法可以找到函数的不变性质,这个不变性质往往是解决问题的突破口;3、抽象函数性质的证明是一种代数推理,和几何推理一样,要注意推理的严谨性,每一步推理都要有充分的条件,不可漏掉一些条件,更不要臆造条件,推理过程要层次分明,书写规范。
高考数学 抽象函数习题精选精讲
含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1x f x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x xx+=+,求()f x 解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数练习题高三复习
抽象函数练习题高三复习抽象函数是高中数学中的一个重要概念,对于高三学生来说,熟练掌握抽象函数的相关知识是非常关键的。
本文将为大家介绍一些抽象函数的练习题,帮助大家巩固复习,提高解题能力。
题目1:已知函数$f(x)=x^2-2x+1$,求$f(x+1)$的解析式。
解析:首先,将$x+1$代入函数$f(x)$的解析式中,即可求得$f(x+1)$的解析式。
将$x+1$代入$f(x)$中的$x$,得到:$f(x+1)=(x+1)^2-2(x+1)+1$展开括号并化简,得到:$f(x+1)=x^2+2x+1-2x-2+1$合并同类项,得到最终的解析式:$f(x+1)=x^2+1$题目2:已知函数$g(x)=3x-2$,求$g(2x+1)$的解析式。
解析:类似地,将$2x+1$代入函数$g(x)$的解析式中,即可求得$g(2x+1)$的解析式。
将$2x+1$代入$g(x)$中的$x$,得到:$g(2x+1)=3(2x+1)-2$展开并化简,得到:$g(2x+1)=6x+3-2$合并同类项,得到最终的解析式:$g(2x+1)=6x+1$通过这两道题的练习,我们可以加深对于抽象函数的理解。
在解题过程中,将给定的表达式代入函数的解析式中,根据运算规则进行化简求解,最终得到新的解析式。
题目3:已知函数$h(x)=\frac{1}{x}$,求$h\left(\frac{1}{x}\right)$的解析式。
解析:将$\frac{1}{x}$代入函数$h(x)$的解析式中,即可求得$h\left(\frac{1}{x}\right)$的解析式。
将$\frac{1}{x}$代入$h(x)$中的$x$,得到:$h\left(\frac{1}{x}\right)=\frac{1}{\frac{1}{x}}$将分子分母取倒数,得到最终的解析式:$h\left(\frac{1}{x}\right)=x$在这道题中,我们使用了取倒数的运算规则,将原函数中的$x$的倒数代入得到新的解析式。
抽象函数的性质及解题技巧
抽象函数(二)抽象函数常出题型1、定义域问题 --------多为简单函数与复合函数的定义域互求。
评析:已知f(x)的定义域是A ,求()()x f ϕ的定义域问题,相当于解内函数()x ϕ的不等式问题。
例:已知函数f(x)的定义域是[]2,1- ,求函数()⎪⎪⎭⎫ ⎝⎛-x f 3log 21 的定义域。
评析: 已知函数()()x f ϕ的定义域是A ,求函数f(x)的定义域。
相当于求内函数()x ϕ的值域。
2、求值问题-----抽象函数的性质是用条件恒等式给出的,可通过赋特殊值法使问题得以解决。
怎样赋值?需要明确目标,细心研究,反复试验;例.对任意实数x,y ,均满足f(x+y 2)=f(x)+2[f(y)]2且f(1)≠0,则f(2001)=_______.解析:这种求较大自变量对应的函数值,一般从找周期或递推式着手: ,)]1([2)()1(,1,2f n f n f y n x +=+==得令 令x=0,y=1,得f(0+12)=f(0)+2f[(1)]2, 令x=y=0,得:f(0)=0, ∴f(1)=21,.22001)2001(f ,2n )n (f ,21f (n)-1)f (n =∴==+故即 ②R 上的奇函数y=f(x)有反函数y=f -1(x),由y=f(x+1)与y=f -1(x+2)互为反函数,则f(2009)= . 解析:由于求的是f(2009),可由y=f -1(x+2)求其反函数y=f(x)-2,所以f(x+1)= f(x)-2,又f(0)=0,通过递推可得f(2009)=-4918.练习:函数f(x)为R 上的偶函数,对x R ∈都有(6)()(3)f x f x f +=+成立,若(1)2f =,则(2005)f =( )A . 2005 B. 2 C.1 D.03、值域问题例.设函数f(x)定义于实数集上,对于任意实数x 、y ,f(x+y)=f(x)f(y)总成立,且存在21x x ≠,使得)()(21x f x f ≠,求函数f(x)的值域。
抽象函数经典综合题33例(含详细解答)
抽象函数经典综合题33例(含详细解答)抽象函数,是指没有具体地给出解析式,只给出它的一些特征或性质的函数,抽象函数型综合问题,一般通过对函数性质的代数表述,综合考查学生对于数学符号语言的理解和接受能力,考查对于函数性质的代数推理和论证能力,考查学生对于一般和特殊关系的认识,是考查学生能力的较好途径。
抽象函数问题既是教学中的难点,又是近几年来高考的热点。
本资料精选抽象函数经典综合问题33例(含详细解答)1.定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1)求证:f(0)=1;(2)求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
解 (1)令a=b=0,则f(0)=[f(0)]2∵f(0)≠0 ∴f(0)=1 (2)令a=x ,b=-x 则 f(0)=f(x)f(-x) ∴)(1)(x f x f =- 由已知x>0时,f(x)>1>0,当x<0时,-x>0,f(-x)>0 ∴0)(1)(>-=x f x f 又x=0时,f(0)=1>0 ∴对任意x ∈R ,f(x)>0(3)任取x 2>x 1,则f(x 2)>0,f(x 1)>0,x 2-x 1>0 ∴1)()()()()(121212>-=-⋅=x x f x f x f x f x f ∴f(x 2)>f(x 1) ∴f(x)在R 上是增函数(4)f(x)·f(2x-x 2)=f[x+(2x-x 2)]=f(-x 2+3x)又1=f(0), f(x)在R 上递增∴由f(3x-x 2)>f(0)得:3x-x 2>0 ∴ 0<x<3 2.已知函数()f x ,()g x 在R 上有定义,对任意的,x y R ∈有()()()()()f x y f x g y g x f y -=- 且(1)0f ≠(1)求证:()f x 为奇函数(2)若(1)(2)f f =, 求(1)(1)g g +-的值解(1)对x R ∈,令x=u-v 则有f(-x)=f(v-u)=f(v)g(u)-g(v)f(u)=f(u-v)=-[f(u)g(v)- g(u)f(v)]=-f(x)(2)f(2)=f{1-(-1)}=f(1)g(-1)-g(1)f(-1)=f(1)g(-1)+g(1)f(1)=f(1){g(-1)+g(1)} ∵f(2)=f(1)≠0∴g(-1)+g(1)=13.已知函数)(x f 对任意实数y x ,恒有)()()(y f x f y x f +=+且当x >0,.2)1(.0)(-=<f x f 又(1)判断)(x f 的奇偶性;(2)求)(x f 在区间[-3,3]上的最大值; (3)解关于x 的不等式.4)()(2)(2+<-ax f x f ax f解(1)取,0==y x 则0)0()0(2)00(=∴=+f f f取)()()(,x f x f x x f x y -+=--=则)()(x f x f -=-∴对任意R x ∈恒成立 ∴)(x f 为奇函数. (2)任取2121),(,x x x x <+∞-∞∈且, 则012>-x x0)()()(1212<-=-+∴x x f x f x f),()(12x f x f --<∴ 又)(x f 为奇函数 )()(21x f x f >∴ ∴)(x f 在(-∞,+∞)上是减函数. ∴对任意]3,3[-∈x ,恒有)3()(-≤f x f而632)1(3)1()2()12()3(-=⨯-==+=+=f f f f f 6)3()3(=-=-∴f f ∴)(x f 在[-3,3]上的最大值为6(3)∵)(x f 为奇函数,∴整理原式得 )2()()2()(2-+<-+f ax f x f ax f进一步可得)2()2(2-<-ax f x ax f而)(x f 在(-∞,+∞)上是减函数,222->-∴ax x ax.0)1)(2(>--∴x ax∴当0=a 时,)1,(-∞∈x当2=a 时,}1|{R x x x x ∈≠∈且当0<a 时,}12|{<<∈x ax x当20<<a 时, }12|{<>∈x a x x x 或 当a>2时,}12|{><∈x ax x x 或4.已知f (x )在(-1,1)上有定义,f (21)=-1,且满足x ,y ∈(-1,1)有f (x )+f (y )=f (xyy x ++1) ⑴证明:f (x )在(-1,1)⑵对数列x 1=21,x n +1=212nn x x +,求f (x n ); ⑶求证252)(1)(1)(121++->+++n n x f x f x f n(Ⅰ)证明:令x =y =0,∴2f (0)=f (0),∴f (0)=0令y =-x ,则f (x )+f (-x )=f (0)=0 ∴f (x )+f (-x )=0 ∴f (-x )=-f (x )∴f (x )为奇函数 (Ⅱ)解:f (x 1)=f (21)=-1,f (x n +1)=f (212n n x x +)=f (nn n n x x x x ⋅++1)=f (x n )+f (x n )=2f (x n ) ∴)()(1n n x f x f +=2即{f (x n )}是以-1为首项,2为公比的等比数列∴f (x n )=-2n -1 (Ⅲ)解:)2121211()(1)(1)(11221-++++=+++n nx f x f x f 2212)212(21121111->+-=--=---=--n n n而2212)212(252-<+--=++-=++-n n n n ∴252)(1)(1)(121++->+++n n x f x f x f n5.已知函数N x f N x x f y ∈∈=)(,),(,满足:对任意,,,2121x x N x x ≠∈都有)()()()(12212211x f x x f x x f x x f x +>+;(1)试证明:)(x f 为N 上的单调增函数; (2)n N ∀∈,且(0)1f =,求证:()1f n n ≥+;(3)若(0)1f =,对任意,m n N ∈,有1)())((+=+n f m f n f ,证明:∑=<-ni if 141)13(12. 证明:(1)由①知,对任意*,,a b a b ∈<N ,都有0))()()((>--b f a f b a ,由于0<-b a ,从而)()(b f a f <,所以函数)(x f 为*N 上的单调增函数. (2)由(1)可知n N ∀∈都有f(n+1)>f(n),则有f(n+1)≥f(n)+1 ∴f(n+1)-f(n)1≥, ∴f(n)-f(n-1)1≥ ∙∙∙ ∴ f(2)-f(1)1≥∴f(1)-f(0)1≥由此可得f(n)-f(0)≥n ∴f(n)≥n+1命题得证(3)由任意,m n N ∈,有1)())((+=+n f m f n f 得()1f m = 由f(0)=1得m=0 则f(n+1)=f(n)+1,则f(n)=n+121)311(21311)311(31313131)13(121<-=--=+∙∙∙++=-∑=n n n ni if6.已知函数()f x 的定义域为[]0,1,且同时满足:(1)对任意[]0,1x ∈,总有()2f x ≥; (2)(1)3f =(3)若120,0x x ≥≥且121x x +≤,则有1212()()()2f x x f x f x +≥+-. (I)求(0)f 的值; (II)求()f x 的最大值;(III)设数列{}n a 的前n 项和为n S ,且满足*12(3),n n S a n N =--∈.求证:123112332()()()()2n n f a f a f a f a n -⨯++++≤+-.解:(I )令120x x ==,由(3),则(0)2(0)2,(0)2f f f ≥-∴≤由对任意[]0,1x ∈,总有()2,(0)2f x f ≥∴= (II )任意[]12,0,1x x ∈且12x x <,则212101,()2x x f x x <-≤∴-≥22112111()()()()2()f x f x x x f x x f x f x ∴=-+≥-+-≥max ()(1)3f x f ∴==(III)*12(3)()n n S a n N =--∈1112(3)(2)n n S a n --∴=--≥1111133(2),10n n n n a a n a a --∴=≥=≠∴= 111112113333333()()()()()23()4n n n n n n nn f a f f f f f -∴==+≥+-≥-+ 111143333()()n n f f -∴≤+,即11433())(n n f a f a +≤+。
抽象函数解题-题型大全(例题-含答案)
高考抽象函数技巧总结由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下: 一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知 ()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u -=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x+=+-+=++-又∵11||||1||x x x x +=+≥ ∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
抽象函数专题讲解
解:令 x=y=0,得:f(0)=0,令 x=0,y=1,得 f(0+12)=f(0)+2f[(1)]2,
f ( x) 的定义域.
2 例 2 已知函数 f ( x 2 x 2) 的定义域为 0, 3 ,求函数 f ( x) 的定义域.
解:由 0 ≤ x ≤ 3 ,得 1≤ x 2 x 2 ≤ 5 .
2
令 u x 2 x 2 ,则 f ( x2 2x 2) f (u) ,1 ≤ u ≤ 5 .
解: f ( x) 的定义域为 15 , ,1≤ 3x 5 ≤ 5 , 故函数 f (3x 5) 的定义域为 , . 3 3ຫໍສະໝຸດ 4 10 ≤ x≤ . 3 3
4 10
2、已知 f g ( x) 的定义域,求 f ( x ) 的定义域 其解法是: 若 f g ( x) 的定义域为 m ≤ x ≤ n , 则由 m ≤ x ≤ n 确定的 g ( x) 的范围即为
1 1 2 f (1) 0,f (1) .令x n, y 1, 得f (n 1) f (n) 2[f (1)] f (n) , 2 2
1 n 2017 即 f(n 1) - f(n) ,故f(n ) , f(2001) . 2 2 2
三、抽象函数常见模型
抽象函数专题讲解
抽象函数初步
• 抽象函数:没有给出具体解析式的函数。 • 在高考中,常以抽象函数为载体,考查函数的定义域、值域、单 调性、奇偶性、周期性及图象问题。
高三数学抽象函数习题精选精讲
高三数学抽象函数习题精选精讲含有函数记号“由于函数概念比较抽象,学生对解有关函数记号f(某)”有关问题解法f(某)的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式:1.换元法:即用中间变量的灵活性及变形能力。
表示原自变量某的代数式,从而求出f(某),这也是证某些公式或等式常用的方法,此法解培养学生某)2某1,求f(某).某1某uu2uu,则某1解:设∴f(u)2某11u1u1u 例1:已知f(∴f(某)2某1某2.凑合法:在已知f(g(某))h(某)的条件下,把h(某)并凑成以g(u)表示的代数式,再利用代换即可求f(某).此解法简洁,还能进一步复习代换法。
例2:已知11f(某)某33某某,求f(某)解:∵1111111f(某)(某)(某212)(某)((某)23)又∵|某||某|1某某某某某某|某|∴f(某)某(某23)某33某,(|某|≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3.已知解:设f(某)二次实函数,且f(某1)f(某1)某2+2某+4,求f(某).f(某)=a某2b某c,则f(某1)f(某1)a(某1)2b(某1)ca(某1)2b(某1)c2(ac)4131322a,b1,c∴f(某)某2某=2a某2b某2(ac)某2某4比较系数得2a122222b24.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式.例4.已知解:∵y=f(某)为奇函数,当某>0时,f(某)lg(某1),求f(某)f(某)为奇函数,∴f(某)的定义域关于原点对称,故先求某<0时的表达式。
∵-某>0,∴f(某)lg(某1)lg(1某),∵lg(1某),某0f(某)为奇函数,∴lg(1某)f(某)f(某)∴当某<0时f(某)lg(1某)∴f(某)lg(1某),某0f(某)为偶函数,g(某)为奇函数,且有f(某)+g(某)1,求f(某),g(某).某1例5.一已知解:∵f(某)为偶函数,g(某)为奇函数,∴f(某)f(某),g(某)g(某),f(某)+g(某)=不妨用-某代换∴1………①中的某,某111f(某)g(某)即f(某)-g(某)……②某1某1显见①+②即可消去g(某),求出函数f(某)1某g(某)再代入①求出某21某215.赋值法:给自变量取特殊值,从而发现规律,求出例6:设解:∵f(某)的表达式f(某)的定义域为自然数集,且满足条件f(某1)f(某)f(y)某y,及f(1)=1,求f(某)f(某)的定义域为N,取y=1,则有f(某1)f(某)某1∵f(1)=1,∴f(2)=f(1)+2,f(3)f(2)3……f(n)f(n1)nn(n1)1以上各式相加,有f(n)=1+2+3+……+n=∴f(某)某(某1),某N 22二、利用函数性质,解f(某)的有关问题1.判断函数的奇偶性:例7已知f(某y)f(某y)2f(某)f(y),对一切实数某、y都成立,且f(0)0,求证f(某)为偶函数。
必修一数学抽象函数习题精选含答案
抽象函数单调性和奇偶性1.抽象函数的图像判断单调性例1.如果奇函数f(x)在区间[3, 7]上是增函数且有最小值为5,那么f (x)在区间[7,3]上是()A.增函数且最小值为5B.增函数且最大值为5C.减函数且最小值为 5D.减函数且最大值为5分析:画出满足题意的示意图,易知选Bo2、抽象函数的图像求不等式的解集例2、已知定义在R上的偶函数f (x)满足f(2) 0,并且f (x)在(,0)上为增函数。
若(a 1)f(a) 0 ,则实数a的取值范围二、抽象函数的单调性和奇偶性1.证明单调性例3.已知函数f(x)= ,且f(x),g(x)定义域都是R,且g(x)>0,g(x) 1g(1) =2,g(x) 是增函数.g(m)g(n) g(m n)(m,n R)求证:f(x)是R上的增函数.解:设X1>X2因为,g(x)是R上的增函数,且g(x)>0。
故g(x 1) > g(x 2) >0 o g(X1)+1 > g(x 2)+1 >0 ,2 22> 2>0g(X2)1 g(xj 1g(x2) 1 g(xj 1>0 o增函数。
2.证明奇偶性例5.已知f(x)的定义域为R,且对任意实数x,y 满足f(xy) f(x) 求证:f(x)是偶函数。
分析:在 f(xy) f (x) f(y)中,令 x y 1,得 f(1) f (1) f (1) f (1) 0 令 x y 1,得 f (1) f( 1) f( 1) f( 1) 0于是 f( x) f( 1 x) f( 1) f (x) f (x),故 f (x)是偶函数。
三、求参数范围这类参数隐含在抽象函数给出的运算式中, 关键是利用函数的奇 偶性和它在定义域内的增减性,去掉“ f ”符号,转化为代数不等式 组求解,但要特别注意函数定义域的作用。
f(x 1)- f(x 2)=皿Jg(xj 1gg) 1 g%) 122=1——2——(1-2)g(xj 1 gg) 1>0 g(xj 1可以推出: f(x 1)>f(x 2),所以 f(x)是 R 上的上为减函数。
抽象函数经典习题(含详细解答)
抽象函数经典习题经典习题11. 若函数(21)f x +的定义域为31,2⎛⎫- ⎪⎝⎭,则函数2(log )f x 的定义域为( )A.1,22⎛⎫⎪⎝⎭B.1,22⎡⎤⎢⎥⎣⎦C.12⎛ ⎝ D.12⎡⎢⎣ 2. 若*(1)()1(f n f n n N +=+∈),且f(1)=2,则f(100)的值是( )A .102B .99C .101D .100 3. 定义R 上的函数()f x 满足:()()(),(9)8,f xy f x f y f f =+==且则()AB .2C .4D .64. 定义在区间(-1,1)上的减函数()f x 满足:()()f x f x -=-。
若2(1)(1)0f a f a -+-<恒成立,则实数a 的取值范围是___________________.5. 已知函数()f x 是定义在(0,+∞)上的增函数,对正实数,x y ,都有:()()()f xy f x f y =+成立.则不等式2(log )0f x <的解集是__________.6. 已知函数()f x 是定义在(-∞,3]上的减函数,已知22(sin )(1cos )f a x f a x -≤++对x R ∈恒成立,求实数a 的取值范围。
7. 已知()f x 是定义在R 上的不恒为零的函数,且对于任意的,,a b R ∈都满足:()()()f a b af b bf a •=+.(1)求(0),(1)f f 的值;(2)判断()f x 的奇偶性,并证明你的结论; (3)若(2)2f =,*(2)()n n f u n N n-=∈,求数列{n u }的前n 项和n s .8. 定义在R 上的函数y=f(x),f(0)≠0,当x>0时,f(x)>1,且对任意的a 、b ∈R ,有f(a+b)=f(a)f(b), (1) 求证:f(0)=1;(2) 求证:对任意的x ∈R ,恒有f(x)>0; (3)证明:f(x)是R 上的增函数;(4)若f(x)·f(2x-x 2)>1,求x 的取值范围。
抽象函数精选例题
1第04讲抽象函数一、知识纵横1.抽象函数是指一些没有给出明确解析式的函数,通常用函数性质或函数方程来描述.2.定义域:多为抽象函数()f x 和复合函数定义域互求.3.求值:由函数方程给出的抽象函数通常用赋特殊值法求值.4.单调性抽象函数通常需要用定义法来判断单调性,在比较()1f x 和()2f x 大小时常用作差或作商法.*单调性:设函数的定义域为D ,区间I D ⊆;任取12x x I <∈,(1)若恒满足()()12f x f x <,则称()f x 在I 上是增函数;(2)若恒满足()()12f x f x >,则称()f x 在I 上是减函数.5.奇偶性(1)如果对于函数()y f x =的定义域D 内任意一个x ,都有x D -∈,且()()f x f x -=-,那么函数()f x 就叫做奇函数;(2)如果对于函数()y f x =的定义域D 内任意一个x ,都有x D -∈,且()()f x f x -=,那么函数()f x 就叫做偶函数.6.对称性中心对称:(1)若()()f x a f x a +=---,则()f x 函数图象关于()0,0对称,()f x 为奇函数;(2)若()()f x a f x a +=--+,则()f x 函数图象关于(),0a 对称,()f x a +为奇函数;轴对称:(1)若()()f x a f x a +=--,则()f x 函数图象关于0x =轴对称,()f x 为偶函数;(2)若()()f x a f x a +=-+,则()f x 函数图象关于x a =轴对称,则有()f x a +为偶函数;7.周期性:对于任意的x D ∈有()()f x T f x +=,则T 为函数()f x 的周期.特别提醒4:抽象函数的要点是函数方程的形式,同号看周期,异号看对称.二、题型突破【题型1抽象函数定义域问题】例1.(1)若()f x 的定义域为[],m n ,且0mn <,0m n +>,则函数()()()g x f x f x =+-的定义域为()A .[],n m -B .[],n n -C .[],m m -D .[],m n -(2)已知函数()2y f x =-的定义域为(]2,4,则函数()y f x =的定义域为________;(3)若函数()f x 的定义域是[]1,1-,则函数()21f x x-的定义域为__________.答案:(1)由题可得0m <、0n >且m n -<,从而()g x 的定义域为[],m m -;(2)由题()f x 的定义域为[)2,0-;(3)由题()21f x -的定义域为[]0,1,从而()21f x x -的定义域为(]0,1.2【题型2抽象函数求值问题】例2.(1)设函数()f x 为定义在R 上的奇函数,()112f =,且满足对任意的实数x ∈R ,有()()()22f x f x f +=+,则()5f =_________;(2)函数()f x 的定义域为D ,若对于任意12,x x D ∈,当12x x <时,都有()()12f x f x ≤,则称函数()f x 在D 上为非减函数,设函数()f x 在[]0,1上为非减函数,且满足以下三个条件:①()00f =;②()132x f f x ⎛⎫= ⎪⎝⎭;③()()11f x f x -=-,则1138f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭____________;(3)函数()f x 满足:()114f =,()()()()4f x f y f x y f x y =++-,则()2010f =_________;(4)函数()f x 是定义在R 的函数,若对于任意x 恒有()()33f x f x +≤+和()()22f x f x +≥+,且()11f =,则()2005f =_________.答案:(1)()()()()()532221f f f f f =+=+,且()()()112f f f =-+,从而()21f =,代入可得()552f =.(2)由①③可得()11f =,令12x =可知1122f ⎛⎫= ⎪⎝⎭,由②可得当1x =时有1132f ⎛⎫= ⎪⎝⎭,当12x =有1164f ⎛⎫= ⎪⎝⎭,当13x =时1194f ⎛⎫= ⎪⎝⎭,由函数非减可得1184f ⎛⎫= ⎪⎝⎭,从而113384f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭.(3)令0x y ==,有()00f =或12,若()00f =,令0y =,则()f x 恒为0,与题目矛盾,从而()102f =,令1y =得()()()11f x f x f x =-++,将x 代为1x +可得()()()12f x f x f x +=++,两式叠加可得()()120f x f x -++=,将x 代为3x +可得()()250f x f x +++=,两式相减可得()()15f x f x -=+,从而可知()()1201002f f ==.(4)由()()33f x f x +≤+可知()()66f x f x +≤+,由()()22f x f x +≥+可知()()66f x f x +≥+,从而()()66f x f x +=+,()()200511f f ==.【题型3抽象函数求解析式】例3.(1)()f x 定义域为R ,若()01f =,且对,x y ∈R 恒有()()()21f x y f x y x y -=--+,则()f x =__________________;(2)()f x 定义域为R ,若()01f =,且对,x y ∈R 恒有()()()()12f xy f x f y f y x +=--+,则()f x =__________________.答案:(1)令0x =,可得()()11f y y y -=--+,从而()()2111f x x x x x =++=++;(2)令1y =,0x =,可得()12f =,令0y =,可得()()111f x x f x =+-=+.【题型4抽象函数单调性问题】3例4.(1)设()f x 是定义在R 上的奇函数,且对任意a 、b ,当0a b +≠,都有()()0f a f b a b +>+;若a b >,试比较()f a 和()f b 的大小.(2)奇函数()f x 在(),0-∞上单调递减,且()20f =,则()()110x f x -+>的解集为________.答案:(1)将b 代为b -可得()()0f a f b a b ->-,从而函数为奇函数,有()()f a f b >;(2)当10x ->时,()10f x +>可以解得()(),31,1x ∈-∞-- ,此时无解;当10x -<时,()10f x +<可以解得()()3,11,x ∈--+∞ ,此时()3,1x ∈--.【题型5抽象函数奇偶性问题】例5.(1)()f x 的定义域为{}|11D x x =-<<,对于任意的,x y D ∈,均有()()1x y f x f y f xy ⎛⎫++= ⎪+⎝⎭,证明:()f x 为奇函数;(2)()f x 的定义域为R ,对于任意的,x y ∈R ,均有()()()()11f x y f x y f x f y ++=-+-,()12f =,判断()f x 的奇偶性.答案:(1)令0x y ==,可得()00f =,令y x =-,可得()()0f x f x +-=,从而为奇函数;(2)令1x y ==,可得()32f =-,令1x =,1y =-,可得()()()()1311f f f f =--,从而()12f -=-,令1x =-,可得()()f y f y -=-,从而()f x 为奇函数.【题型6抽象函数综合性问题】例6.设()f x 的定义域为R ,满足以下条件:(1)对任意,a b ∈R 有()()()f a b f a f b +=+;当0a >时()0f a >;()21f =.求:(1)证明:()f x 是奇函数;(2)证明:()f x 在R 上单调递增;(3)若()()232f x f x +-<,求x 的取值范围.答案:以下四个题皆为函数方程入门问题,注意函数的特殊值和函数的性质.(1)可以解得()00f =,令b a =-可得函数为奇;(2)易证;(3)()42f =,从而()()234f x x f -<,由单调性可得234x x -<,解得()1,4x ∈-.例7.设()f x 的定义域为R ,满足以下条件:对任意,a b ∈R 有()()()f a b f a f b +=⋅,当0a >时,()1f a >,求:(1)求证:()01f =(2)判断()f x 的单调性,并证明;4(3)若()()221f x f x x ->,求x 的取值范围.答案:(1)令0a b ==可得()01f =或0,若()00f =,令0b =有()0f a =,与题目不符,从而()01f =;(2)易证函数为增函数;(3)由题可得()()230f x x f ->,从而230x x ->,解得()0,3x ∈.例8.设()f x 的定义域为{}0D x x =≠,满足以下条件:对任意a ,b D ∈有()()()f a b f a f b ⋅=+,当1x >时,()0f x >;(3)()21f =;求:(1)判断()f x 的奇偶性;(2)判断()f x 在定义域上的单调性,并证明;(3)解不等式:()()23f x f x -->.答案:(1)由题可知()()110f f =-=,从而令1a =-,函数为偶函数;(2)易证函数在()0,+∞单调递增,在(),0-∞上单调递减;(3)可得()83f =,从而不等式可化为()()816f x f x >-,解得1616,22,97x ⎛⎫⎛⎫∈ ⎪ ⎪⎝⎭⎝⎭.例9.设()f x 的定义域为R ,满足以下条件:对任意a 、b ∈R 都有()()()f ab f a f b =;当01x ≤<时,()01f x ≤<.③()11f -=,()279f =,求:(1)判断()f x 的奇偶性;(2)判断()f x 在()0,+∞上的单调性,并证明;(3)若0a ≥且()1f a +≤,求a 的取值范围.答案:(1)令1a =-可得函数为偶;(2)易证函数在()0,+∞上为增;(3)由题可得()2333f =,从而13a +≤解得[]0,2a ∈.【题型7对称性与周期性综合】例10.(1)函数()f x 的定义域为R ,若()()213f x f x ⋅+=,且()12f =,则()99f =___________;(2)函数()201138f x x ax bx =++-,且()210f -=,则()2f =______________;(3)函数()1f x +是R 上的偶函数,当01x ≤≤时,()1f x x =+,则()1.4f =___________;(4)函数()1f x +是奇函数,()1f x -是偶函数,且()02f =,则()4f =_______;答案:(1)将x 代为2x +,可得()()2413f x f x ++=,从而()()4f x f x =+,则()()139932f f ==;5(2)由题()8f x +为奇函数,从而()()()2828f f +=--+,解得()226f =-;(3)由题可得()()11f x f x +=-+,令0.4x =可得()()1.40.6 1.6f f ==;(4)由()1f x +为奇函数可得()()11f x f x +=--+,由()1f x -为偶函数可得()()11f x f x -=--,将x 代为2x +可得()()13f x f x +=--,从而有()()31f x f x --=-+,从而函数的周期为4,()()402f f ==.三、直通高考例11.(2016上海)设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是()A .和均为真命题B .和均为假命题C .为真命题,为假命题D .为假命题,为真命题答案:D .若()0.1f x x =-,()g x x =,则相加为增函数,用类似的方法可以将f ,g ,h 分为三段,每个函数在其中一段上单调递减,从而①为假命题;由题中三个函数相加可得()2f g h ++为周期为T 的函数,从而f g h ++周期为T ,令f g +周期为T ,从而f g --周期为T ,与f g h ++相加可得h 的周期为T ,同理可得②为真.。
抽象函数问题常见题型及解法
抽象函数问题常见题型及解法江苏省赣榆县海头高级中学 222111 胡继缙抽象函数是指仅给出函数的某些性质,而不给出函数解析式的函数,解题时可以根据已有的性质,如:周期性、奇偶性、单调性、图象对称性等,采用灵活的方法,如:换元法、赋值法、等价转化法、构造方程(组)或不等式(组)等方法。
本文就这类题型及解法作一简单介绍。
一、求函数解析式求解此类问题,通常利用换元法或利用函数的周期性,构造方程组.例1 已知对非零实数x ,恒有x xf x f 3)1(2)(=-,求)(x f . 解 由题意得,用x 1代换x ,可得xx f x f 3)(2)1(=- 于是有⎪⎪⎩⎪⎪⎨⎧=-=-x x f xf x x f x f 3)(2)1(3)1(2)( 将)(x f 视作为未知数,解之得xx x f 2)(--=. 例2 已知函数)(x f 是偶函数,)(x g 是奇函数,且满足11)()(-=+x x g x f , 求)(x f 、)(x g 的解析式.解 由题意得,用x -代换x ,得11)()(--=-+-x x g x f ∵)(x f 是偶函数,)(x g 是奇函数 于是有⎪⎪⎩⎪⎪⎨⎧+-=--=+11)()(11)()(x x g x f x x g x f将)(x f 视作为未知数,解之得11)(2-=x x f ,1)(2-=x x x g . 二、求函数定义域例3 已知函数)23(+x f 的定义域为(-2,1),求函数)3()(2+-x f x f 的定 义域.求解此类问题,通常利用换元法.解 令23+=x t ,由)1,2(-∈x ,可得54<<-t∴函数)(x f 的定义域为(-4,5)又由⎩⎨⎧<+<-<<-534542x x , 得25<<-x∴函数)3()(2+-x f x f 的定义域为)2,5(-.三、求函数值求解此类问题,通常利用函数的周期性,将自变量的值化归到给定的区间上.例4 设)(x f 是),(+∞-∞上的奇函数,)()2(x f x f -=+,当10≤≤x 时, x x f =)(,则)5.7(f 等于( ).(A )0.5 (B )-0.5 (C )1.5 (D )-1.5解 由 )()2(x f x f -=+,可得)()4(x f x f =+∴函数)(x f 是周期函数,且函数最小正周期4=T结合函数是奇函数,则)5.0()5.0()85.0()5.7(f f f f -=-=+-= 又∵10≤≤x 时,x x f =)(∴5.0)5.0(=f , ∴5.0)5.7(-=f , 故选(B ).四、求函数最值问题求解此类问题,通常要确定函数在给定的区间上的单调性,利用单调性求最值.例5 设函数)(x f 为奇函数,对任意R y x ∈,,都有)()()(y f x f y x f +=+,且0>x 时,0)(<x f ,2)1(-=f ,求)(x f 在[-3,3]的最大值和最小值.解 设3321≤<≤-x x ,则012>-x x∵)(x f 为奇函数,且当0>x 时,0)(<x f∴0)()()()()(121212<-=-+=-x x f x f x f x f x f∴)()(12x f x f <,∴)(x f 在[-3,3]上是减函数故6)]1()1()1([)]2()1([)3()3(max =++-=+-=-=-=f f f f f f f y 6)3()3(min -=--==f f y .五、求解函数不等式求解此类不等式,通常利用函数的单调性将抽象的函数不等式等价的转化成一般的不等式(组),有时也可借助数形结合的方法.例 6 若)(x f 是定义在),0(+∞上的增函数,且对一切0>x ,满足)()()(y f x f yx f -=.)1(求)1(f 的值. )2(若,1)6(=f 解不等式2)1()3(<-+af a f . 解 )1(令x y =,则0)()()()1(=-==x f x f xx f f . )2(∵对一切0>x ,满足)()()(y f x f yx f -=,且1)6(=f ∴2)1()3(<-+af a f )6(2)()3(f a f a f <++⇔ )6()63()()6()6()3(af a f a f f f a f <+⇔-<-+⇔ 2173300663+-<<⇔⎪⎩⎪⎨⎧><+⇔a a a a . 例7 若)(x f 是奇函数,且在),0(+∞内是增函数,又0)3(=-f ,则不等式 0)(<⋅x f x 的解集是 .解 根据题意,可以作出函数)(x f 的大致图象,如图1. ∵)(x f 是奇函数,且在),0(+∞内是增函数 ∴)3(0)3(f f -==-,∴0)3(=f∴0)(<⋅x f x 03300)(00)(0<<-<<⇔⎩⎨⎧><⎩⎨⎧<>⇔x x x f x x f x 或或 ∴不等式0)(<⋅x f x 的解集为),(),(3003⋃-.。
高一数学抽象函数常见重点题型解析归纳
高一数学抽象函数常见重点题型解析归纳对于刚上高一的学生而言,掌握好抽象函数常见题型的解法,有助于他们在高考数学的考试中发挥的更加出色。
下面是小编为大家整理的高一数学必修1常见题型解法,希望对大家有所帮助!高一数学抽象函数常见题型高一数学填空题解题方法一、直接法从题设条件出发、利用定义、定理、性质、公式等知识,通过变形、推理、运算等过程,直接得到结果。
二、特殊化法当填空题的结论唯一或题设条件中提供的信息暗示答案是一个定值时,可以把题中变化的不定量用特殊值代替,即可以得到正确结果。
三、数形结合法对于一些含有几何背景的填空题,若能数中思形,以形助数,则往往可以简捷地解决问题,得出正确的结果。
四、等价转化法将问题等价地转化成便于解决的问题,从而得出正确的结果。
解决恒成立问题通常可以利用分离变量转化为最值的方法求解。
高一数学复习答疑问题1:我的基础还可以,上课老师讲的也都能听懂,但是一到自己做就做不出来了,帮忙分析一下原因。
答:数学这个东西是靠着逻辑吃饭的,是靠着逻辑演绎向前推进和发展的。
当一个老师把你抱到了逻辑的起点上,告诉你这个逻辑关系是怎样的,比如说饿了就应该找饭吃,下雨了就应该找伞来打,告诉你了这个逻辑规则,你自己肯定会按照逻辑的顺序往前跑,这就叫为什么上课听得懂。
为什么课下自己不会做了呢?是因为课下你找不到逻辑的起点,就像一个运动员空有一身本领,跑得飞快,没有找到起点,没有到起点做好认真的准备,结果人家一发令,你没反应。
有两种学习的模式,一种是靠效仿,老师给我变一个数,出两道类似的练习题,照老师的模子描下来,结果做对了,好象我学会了,这就是效仿的方式来学数学,这种方式在小学是主要手段,在初中,这种手段还占着百分之六七十的分量,但是到了高中就不行了,靠模仿能得到的分数也就是五六十分,其他的分数都要靠你的理解。
所谓理解就是听了老师的一段讲解,看了老师的一个解题过程,你要把他提炼、升华成理性认识,在你的头脑中,应该存下老师讲解的这一段知识和解答的这一道题,他所体现出来的规律性的东西。
抽象函数常见模型习题归纳
抽象函数常见模型归纳汇编1、正比例函数型正比例函数型函数特征式为:()()()y f x f y x f +=+例1、已知()x f 是定义在R 上的函数,对任意的x 、∈y R 都有()()()y f x f y x f +=+,且当x >0时,()x f <0,()21-=f 。
问当33≤≤-x 时,函数()x f 是否存在最大值?若存在,请求出最大值;若不存在,请说明理由。
分析:我们知道,正比例函()()0≠=k kx x f 满足()()()y f x f y x f ±=±。
根据题设,我们可推知本题是以正比例函数,于是,用赋值法令x=y=0再从()x f 的奇偶性、单调性入手解。
解:令,0==y x 则()()()0000f f f +=+,解得()00=f又因为()()()()00==-=-+f x x x f x f ,所以()()x f x f -=-,即函数()x f 为奇函数。
设1x 、12,x R x ∈<2x ,则21x x ->0,依题意,有21f x x -()<0()()()()()0121212<-=-+=-x x f x f x f x f x f ,所以,()()12x f x f <即函数()x f 在R 上是减函数。
因此,函数()x f 当33≤≤-x 时有最大值()3-f ,且()()()[]()()()62313213=-•-=-=+-=-f f f f例2、已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。
分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。
解:设,∵当,∴,∵,∴,即,∴f (x )为增函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
含有函数记号“()f x ”有关问题解法由于函数概念比较抽象,学生对解有关函数记号()f x 的问题感到困难,学好这部分知识,能加深学生对函数概念的理解,更好地掌握函数的性质,培养灵活性;提高解题能力,优化学生数学思维素质。
现将常见解法及意义总结如下:一、求表达式: 1.换元法:即用中间变量表示原自变量x 的代数式,从而求出()f x ,这也是证某些公式或等式常用的方法,此法解培养学生的灵活性及变形能力。
例1:已知()211xf x x =++,求()f x . 解:设1x u x =+,则1u x u =-∴2()2111u u f u u u-=+=--∴2()1xf x x-=- 2.凑合法:在已知(())()f g x h x =的条件下,把()h x 并凑成以()g u 表示的代数式,再利用代换即可求()f x .此解法简洁,还能进一步复习代换法。
例2:已知3311()f x x x x+=+,求()f x解:∵22211111()()(1)()(()3)f x x x x x x x x x x +=+-+=++-又∵11||||1||x x x x +=+≥∴23()(3)3f x x x x x =-=-,(|x |≥1)3.待定系数法:先确定函数类型,设定函数关系式,再由已知条件,定出关系式中的未知系数。
例3. 已知()f x 二次实函数,且2(1)(1)f x f x x ++-=+2x +4,求()f x .解:设()f x =2ax bx c ++,则22(1)(1)(1)(1)(1)(1)f x f x a x b x c a x b x c ++-=+++++-+-+=22222()24ax bx a c x x +++=++比较系数得2()41321,1,2222a c a abc b +=⎧⎪=⇒===⎨⎪=⎩∴213()22f x x x =++ 4.利用函数性质法:主要利用函数的奇偶性,求分段函数的解析式. 例4.已知y =()f x 为奇函数,当 x >0时,()lg(1)f x x =+,求()f x解:∵()f x 为奇函数,∴()f x 的定义域关于原点对称,故先求x <0时的表达式。
∵-x >0,∴()lg(1)lg(1)f x x x -=-+=-,∵()f x 为奇函数,∴lg(1)()()x f x f x -=-=-∴当x <0时()lg(1)f x x =--∴lg(1),0()lg(1),0x x f x x x +≥⎧=⎨--<⎩例5.一已知()f x 为偶函数,()g x 为奇函数,且有()f x +1()1g x x =-, 求()f x ,()g x . 解:∵()f x 为偶函数,()g x 为奇函数,∴()()f x f x -=,()()g x g x -=-,不妨用-x 代换()f x +()g x =11x - ………①中的x ,∴1()()1f x g x x -+-=--即()f x -1()1g x x =-+……②显见①+②即可消去()g x ,求出函数21()1f x x =-再代入①求出2()1xg x x =-5.赋值法:给自变量取特殊值,从而发现规律,求出()f x 的表达式例6:设()f x 的定义域为自然数集,且满足条件(1)()()f x f x f y xy +=++,及(1)f =1,求()f x解:∵()f x 的定义域为N ,取y =1,则有(1)()1f x f x x +=++∵(1)f =1,∴(2)f =(1)f +2,(3)(2)3f f =+……()(1)f n f n n =-+以上各式相加,有()f n =1+2+3+……+n =(1)2n n +∴1()(1),2f x x x x N =+∈二、利用函数性质,解()f x 的有关问题1.判断函数的奇偶性: 例7 已知()()2()()f x y f x y f x f y ++-=,对一切实数x 、y 都成立,且(0)0f ≠,求证()f x 为偶函数。
证明:令x =0, 则已知等式变为()()2(0)()f y f y f f y +-=……①在①中令y =0则2(0)f =2(0)f ∵ (0)f ≠0∴(0)f =1∴()()2()f y f y f y +-=∴()()f y f y -=∴()f x 为偶函数。
2.确定参数的取值范围 例8:奇函数()f x 在定义域(-1,1)内递减,求满足2(1)(1)0f m f m -+-<的实数m 的取值范围。
解:由2(1)(1)0f m f m -+-<得2(1)(1)f m f m -<--,∵()f x 为函数,∴2(1)(1)f m f m -<-又∵()f x 在(-1,1)内递减,∴221111110111m m m m m -<-<⎧⎪-<-<⇒<<⎨⎪->-⎩3.解不定式的有关题目 例9:如果()f x =2ax bx c ++对任意的t 有(2)2)f t f t +=-,比较(1)(2)(4)f f f 、、的大小解:对任意t 有(2)2)f t f t +=-∴x =2为抛物线y =2ax bx c ++的对称轴又∵其开口向上∴f(2)最小,f(1)=f(3)∵在[2,+∞)上,()f x 为增函数∴f(3)<f(4),∴f(2)<f(1)<f(4)五类抽象函数解法1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。
例1、已知函数f (x )对任意实数x ,y ,均有f (x +y )=f (x )+f (y ),且当x >0时,f (x )>0,f (-1)=-2,求f (x )在区间[-2,1]上的值域。
分析:由题设可知,函数f (x )是的抽象函数,因此求函数f (x )的值域,关键在于研究它的单调性。
解:设,∵当,∴,∵,∴,即,∴f(x)为增函数。
在条件中,令y=-x,则,再令x=y=0,则f(0)=2 f(0),∴f(0)=0,故f(-x)=f(x),f (x)为奇函数,∴f(1)=-f(-1)=2,又f(-2)=2 f(-1)=-4,∴f(x)的值域为[-4,2]。
例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2 + f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。
分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。
解:设,∵当,∴,则,即,∴f(x)为单调增函数。
∵,又∵f(3)=5,∴f(1)=3。
∴,∴,即,解得不等式的解为-1 < a < 3。
2、指数函数型抽象函数例3、设函数f(x)的定义域是(-∞,+∞),满足条件:存在,使得,对任何x和y,成立。
求:(1)f(0);(2)对任意值x,判断f(x)值的正负。
分析:由题设可猜测f(x)是指数函数的抽象函数,从而猜想f(0)=1且f(x)>0。
解:(1)令y=0代入,则,∴。
若f(x)=0,则对任意,有,这与题设矛盾,∴f(x)≠0,∴f(0)=1。
(2)令y=x≠0,则,又由(1)知f(x)≠0,∴f(2x)>0,即f(x)>0,故对任意x,f(x)>0恒成立。
例4、是否存在函数f(x),使下列三个条件:①f(x)>0,x∈N;②;③f(2)=4。
同时成立?若存在,求出f(x)的解析式,如不存在,说明理由。
分析:由题设可猜想存在,又由f(2)=4可得a=2.故猜测存在函数,用数学归纳法证明如下:(1)x=1时,∵,又∵x∈N时,f(x)>0,∴,结论正确。
(2)假设时有,则x=k+1时,,∴x=k+1时,结论正确。
综上所述,x为一切自然数时。
3、对数函数型抽象函数对数函数型抽象函数,即由对数函数抽象而得到的函数。
例5、设f(x)是定义在(0,+∞)上的单调增函数,满足,求:(1)f(1);(2)若f(x)+f(x-8)≤2,求x的取值范围。
分析:由题设可猜测f(x)是对数函数的抽象函数,f(1)=0,f(9)=2。
解:(1)∵,∴f(1)=0。
(2),从而有f(x)+f(x-8)≤f(9),即,∵f(x)是(0,+∞)上的增函数,故,解之得:8<x≤9。
例6、设函数y=f(x)的反函数是y=g(x)。
如果f(ab)=f(a)+f(b),那么g(a+b)=g(a)·g(b)是否正确,试说明理由。
分析: 由题设条件可猜测y=f(x)是对数函数的抽象函数,又∵y=f(x)的反函数是y=g(x),∴y=g(x)必为指数函数的抽象函数,于是猜想g(a+b)=g(a)·g(b)正确。
解:设f(a)=m,f(b)=n,由于g(x)是f(x)的反函数,∴g(m)=a,g(n)=b,从而,∴g(m)·g(n)=g(m+n),以a、b分别代替上式中的m、n即得g(a +b)=g(a)·g(b)。
4、三角函数型抽象函数三角函数型抽象函数即由三角函数抽象而得到的函数。
例7、己知函数f(x)的定义域关于原点对称,且满足以下三条件:①当是定义域中的数时,有;②f(a)=-1(a>0,a是定义域中的一个数);③当0<x<2a时,f(x)<0。
试问:(1)f(x)的奇偶性如何?说明理由。
(2)在(0,4a)上,f(x)的单调性如何?说明理由。
分析: 由题设知f(x)是的抽象函数,从而由及题设条件猜想:f(x)是奇函数且在(0,4a)上是增函数(这里把a看成进行猜想)。
解:(1)∵f(x)的定义域关于原点对称,且是定义域中的数时有,∴在定义域中。
∵,∴f(x)是奇函数。
(2)设0<x1<x2<2a,则0<x2-x1<2a,∵在(0,2a)上f(x)<0,∴f(x1),f(x2),f(x2-x1)均小于零,进而知中的,于是f(x1)<f(x2),∴在(0,2a)上f(x)是增函数。
又,∵f(a)=-1,∴,∴f(2a)=0,设2a<x<4a,则0<x-2a<2a,,于是f(x)>0,即在(2a,4a)上f(x)>0。
设2a<x1<x2<4a,则0<x2-x1<2a,从而知f(x1),f(x2)均大于零。
f(x2-x1)<0,∵,∴,即f(x1)<f(x2),即f(x)在(2a,4a)上也是增函数。
综上所述,f(x)在(0,4a)上是增函数。
5、幂函数型抽象函数幂函数型抽象函数,即由幂函数抽象而得到的函数。
例8、已知函数f(x)对任意实数x、y都有f(xy)=f(x)·f(y),且f(-1)=1,f(27)=9,当时,。