2021年上海市16区中考数学一模考点分类汇编专题06 几何证明(解答题23题)(逐题详解版)

合集下载

2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】

2023年中考数学压轴题专题23 二次函数推理计算与证明综合问题【含答案】

专题23二次函数推理计算与证明综合问题【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线,抛物线与y轴的交点坐标为;(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.15.(2022•长春二模)在平面直角坐标系中,抛物线y=x2﹣2mx+m2与y轴的交点为A,过点A作直线l垂直于y轴.(1)求抛物线的对称轴(用含m的式子表示);(2)将抛物线在y轴右侧的部分沿直线l翻折,其余部分保持不变,组成图形G,点M(x1,y1),N(x2,y2)为图形G上任意两点.①当m=0时,若x1<x2,判断y1与y2的大小关系,并说明理由;②若对于x1=m﹣1,x2=m+1,都有y1>y2,求m的取值范围;(3)当图象G与直线y=m+2恰好有3个公共点时,直接写出m的取值范围.16.(2022•开福区校级一模)已知:抛物线C1:y=ax2+bx+c(a>0).(1)若顶点坐标为(1,1),求b和c的值(用含a的代数式表示);(2)当c<0时,求函数y=﹣2022|ax2+bx+c|﹣1的最大值;(3)若不论m为任何实数,直线与抛物线C1有且只有一个公共点,求a,b,c的值;此时,若k≤x≤k+1时,抛物线的最小值为k,求k的值.17.(2022•安徽模拟)已知二次函数y=ax2﹣x+c的图象经过点A(﹣2,2),该图象与直线x=2相交于点B.(1)求点B的坐标;(2)当c>0时,求该函数的图象顶点纵坐标的最小值;(3)点M(m,0)、N(n,0)是该函数图象与x轴的两个交点.当m>﹣2,n<3时,结合函数图象分析a的取值范围.18.(2022•江都区一模)对某一个函数给出如下定义:如果存在实数M,对于任意的函数值y,都满足y≤M,那么称这个函数是有上界函数.在所有满足条件的M中,其最小值称为这个函数的上确界.例如,函数y=﹣(x﹣3)2+2是有上界函数,其上确界是2.(1)函数①y=x2+2x+1和②y=2x﹣3(x≤5)中是有上界函数的为(只填序号即可),其上确界为;(2)若反比例函数y=(a≤x≤b,a>0)的上确界是b+1,且该函数的最小值为2,求a、b的值;(3)如果函数y=﹣x2+2ax+2(﹣1≤x≤3)是以6为上确界的有上界函数,求实数a的值.19.(2022•亭湖区校级一模)已知抛物线y=ax2﹣(3a﹣1)x﹣2(a为常数且a≠0)与y 轴交于点A.(1)点A的坐标为;对称轴为(用含a的代数式表示);(2)无论a取何值,抛物线都过定点B(与点A不重合),则点B的坐标为;(3)若a<0,且自变量x满足﹣1≤x≤3时,图象最高点的纵坐标为2,求抛物线的表达式;(4)将点A与点B之间的函数图象记作图象M(包含点A、B),若将M在直线y=﹣2下方的部分保持不变,上方的部分沿直线y=﹣2进行翻折,可以得到新的函数图象M1,若图象M1上仅存在两个点到直线y=﹣6的距离为2,求a的值.20.(2022•义安区模拟)已知抛物线的图象经过坐标原点O.(1)求抛物线解析式.(2)若B,C是抛物线上两动点,直线BC:y=kx+b恒过点(0,1),设直线OB为y=k1x,直线OC为y=k2x.①若B、C两点关于y轴对称,求k1k2的值.②求证:无论k为何值,k1k2为定值.【例1】(2022•北京)在平面直角坐标系xOy中,点(1,m),(3,n)在抛物线y=ax2+bx+c (a>0)上,设抛物线的对称轴为直线x=t.(1)当c=2,m=n时,求抛物线与y轴交点的坐标及t的值;(2)点(x0,m)(x0≠1)在抛物线上.若m<n<c,求t的取值范围及x0的取值范围.【分析】(1)将点(1,m),(3,n)代入抛物线解析式,再根据m=n得出b=﹣4a,再求对称轴即可;(2)再根据m<n<c,可确定出对称轴的取值范围,进而可确定x0的取值范围.【解答】解:(1)将点(1,m),(3,n)代入抛物线解析式,∴,∵m=n,∴a+b+c=9a+3b+c,整理得,b=﹣4a,∴抛物线的对称轴为直线x=﹣=﹣=2;∴t=2,∵c=2,∴抛物线与y轴交点的坐标为(0,2).(2)∵m<n<c,∴a+b+c<9a+3b+c<c,解得﹣4a<b<﹣3a,∴3a<﹣b<4a,∴<﹣<,即<t<2.当t=时,x0=2;当t=2时,x0=3.∴x0的取值范围2<x0<3.【例2】(2022•绍兴)已知函数y=﹣x2+bx+c(b,c为常数)的图象经过点(0,﹣3),(﹣6,﹣3).(1)求b,c的值.(2)当﹣4≤x≤0时,求y的最大值.(3)当m≤x≤0时,若y的最大值与最小值之和为2,求m的值.【分析】(1)将图象经过的两个点的坐标代入二次函数解析式解答即可;(2)根据x的取值范围,二次函数图象的开口方向和对称轴,结合二次函数的性质判定y 的最大值即可;(3)根据对称轴为x=﹣3,结合二次函数图象的性质,分类讨论得出m的取值范围即可.【解答】解:(1)把(0,﹣3),(﹣6,﹣3)代入y=﹣x2+bx+c,得b=﹣6,c=﹣3.(2)∵y=﹣x2﹣6x﹣3=﹣(x+3)2+6,又∵﹣4≤x≤0,∴当x=﹣3时,y有最大值为6.(3)①当﹣3<m≤0时,当x=0时,y有最小值为﹣3,当x=m时,y有最大值为﹣m2﹣6m﹣3,∴﹣m2﹣6m﹣3+(﹣3)=2,∴m=﹣2或m=﹣4(舍去).②当m≤﹣3时,当x=﹣3时y有最大值为6,∵y的最大值与最小值之和为2,∴y最小值为﹣4,∴﹣(m+3)2+6=﹣4,∴m=或m=(舍去).综上所述,m=﹣2或.【例3】(2022•青岛)已知二次函数y=x2+mx+m2﹣3(m为常数,m>0)的图象经过点P (2,4).(1)求m的值;(2)判断二次函数y=x2+mx+m2﹣3的图象与x轴交点的个数,并说明理由.【分析】(1)将(2,4)代入解析式求解.(2)由判别式Δ的符号可判断抛物线与x轴交点个数.【解答】解:(1)将(2,4)代入y=x2+mx+m2﹣3得4=4+2m+m2﹣3,解得m1=1,m2=﹣3,又∵m>0,∴m=1.(2)∵m=1,∴y=x2+x﹣2,∵Δ=b2﹣4ac=12+8=9>0,∴二次函数图象与x轴有2个交点.【例4】(2022•杭州)设二次函数y1=2x2+bx+c(b,c是常数)的图象与x轴交于A,B两点.(1)若A,B两点的坐标分别为(1,0),(2,0),求函数y1的表达式及其图象的对称轴.(2)若函数y1的表达式可以写成y1=2(x﹣h)2﹣2(h是常数)的形式,求b+c的最小值.(3)设一次函数y2=x﹣m(m是常数),若函数y1的表达式还可以写成y1=2(x﹣m)(x ﹣m﹣2)的形式,当函数y=y1﹣y2的图象经过点(x0,0)时,求x0﹣m的值.【分析】(1)根据A、B两点的坐标特征,可设函数y1的表达式为y1=2(x﹣x1)(x﹣x2),其中x1,x2是抛物线与x轴交点的横坐标;(2)把函数y1=2(x﹣h)2﹣2,化成一般式,求出对应的b、c的值,再根据b+c式子的特点求出其最小值;(3)把y1,y2代入y=y1﹣y2求出y关于x的函数表达式,再根据其图象过点(x0,0),把(x0,0)代入其表达式,形成关于x0的一元二次方程,解方程即可.【解答】解:(1)∵二次函数y1=2x2+bx+c过点A(1,0)、B(2,0),∴y1=2(x﹣1)(x﹣2),即y1=2x2﹣6x+4.∴抛物线的对称轴为直线x=﹣=.(2)把y1=2(x﹣h)2﹣2化成一般式得,y1=2x2﹣4hx+2h2﹣2.∴b=﹣4h,c=2h2﹣2.∴b+c=2h2﹣4h﹣2=2(h﹣1)2﹣4.把b+c的值看作是h的二次函数,则该二次函数开口向上,有最小值,∴当h=1时,b+c的最小值是﹣4.(3)由题意得,y=y1﹣y2=2(x﹣m)(x﹣m﹣2)﹣(x﹣m)=(x﹣m)[2(x﹣m)﹣5].∵函数y的图象经过点(x0,0),∴(x0﹣m)[2(x0﹣m)﹣5]=0.∴x0﹣m=0,或2(x0﹣m)﹣5=0.即x0﹣m=0或x0﹣m=.【例5】(2022•安顺)在平面直角坐标系中,如果点P的横坐标和纵坐标相等,则称点P为和谐点.例如:点(1,1),(,),(﹣,﹣),……都是和谐点.(1)判断函数y=2x+1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点(,).①求a,c的值;②若1≤x≤m时,函数y=ax2+6x+c+(a≠0)的最小值为﹣1,最大值为3,求实数m 的取值范围.【分析】(1)设函数y=2x+1的和谐点为(x,x),可得2x+1=x,求解即可;(2)将点(,)代入y=ax2+6x+c,再由ax2+6x+c=x有且只有一个根,Δ=25﹣4ac =0,两个方程联立即可求a、c的值;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,则3≤m≤5时满足题意.【解答】解:(1)存在和谐点,理由如下,设函数y=2x+1的和谐点为(x,x),∴2x+1=x,解得x=﹣1,∴和谐点为(﹣1,﹣1);(2)①∵点(,)是二次函数y=ax2+6x+c(a≠0)的和谐点,∴=a+15+c,∴c=﹣a﹣,∵二次函数y=ax2+6x+c(a≠0)的图象上有且只有一个和谐点,∴ax2+6x+c=x有且只有一个根,∴Δ=25﹣4ac=0,∴a=﹣1,c=﹣;②由①可知y=﹣x2+6x﹣6=﹣(x﹣3)2+3,∴抛物线的对称轴为直线x=3,当x=1时,y=﹣1,当x=3时,y=3,当x=5时,y=﹣1,∵函数的最大值为3,最小值为﹣1;当3≤m≤5时,函数的最大值为3,最小值为﹣1.一.解答题(共20题)1.(2022•瑞安市校级三模)已知抛物线y=ax2﹣2ax﹣2+a2(a≠0).(1)求这条抛物线的对称轴;若该抛物线的顶点在x轴上,求a的值;(2)设点P(m,y1),Q(4,y2)在抛物线上,若y1<y2,求m的取值范围.【分析】(1)把解析式化成顶点式,根据顶点式求得对称轴和顶点坐标,根据顶点在x轴上得到关于a的方程,解方程求得a的值;(2)根据二次函数的性质,分两种情况即可求出m的范围.【解答】解:(1)∵抛物线y=ax2﹣2ax﹣2+a2=a(x﹣1)2+a2﹣a﹣2,∴抛物线的对称轴为直线x=1.若抛物线的顶点在x轴上,则a2﹣a﹣2=0,∴a=2或﹣1.(2)∵抛物线的对称轴为直线x=1,则Q(4,y2)关于直线x=1对称点的坐标为(﹣2,y2),∴当a>0时,若y1<y2,m的取值范围为:﹣2<m<4;当a<0时,若y1<y2,m的取值范围为:m<﹣2或m>4.2.(2022•西城区校级模拟)在平面直角坐标系xOy中,点A(x1,y1)、点B(x2,y2)为抛物线y=ax2﹣2ax+a(a≠0)上的两点.(1)求抛物线的对称轴;(2)当﹣2<x1<﹣1且1<x2<2时,试判断y1与y2的大小关系并说明理由;(3)若当t<x1<t+1且t+2<x2<t+3时,存在y1=y2,求t的取值范围.【分析】(1)先化抛物线的表达式为y=a(x﹣1)2+1,依此可求抛物线的对称轴;(2)利用二次函数性质即可求得答案;(3)利用二次函数性质存在A到对称轴的距离与B到对称轴的距离相等即可解答.【解答】解:(1)y=ax2﹣2ax+a=a(x﹣1)2,∴抛物线的对称轴为x=1;(2)∵﹣2<x1<﹣1,1<x2<2,∴1﹣x1>1﹣x2,∴A离对称轴越远,若a>0,开口向上,则y1>y2,若a<0,开口向下,则y1<y2,(3)∵t<x1<t+1,t+2<x2<t+3,存在y1=y2,则t+1<1且t+2>1,∴t<0且t>1,∴存在1﹣x1=x2﹣1,即存在A到对称轴的距离与B到对称轴的距离相等,∴1﹣t>t+2﹣1且1﹣(t+1)<t+3﹣1,∴﹣1<t<0.3.(2022•新野县三模)在平面直角坐标系中,已知抛物线y=ax2﹣4ax+2.(1)抛物线的对称轴为直线x=2,抛物线与y轴的交点坐标为(0,2);(2)若当x满足1≤x≤5时,y的最小值为﹣6,求此时y的最大值.【分析】(1)由对称轴方程,将对应系数代入可得,令抛物线解析式中的x=0,求得y,答案可得;(2)利用当x满足1≤x≤5时,y的最小值为﹣6,可求得a的值,再利用二次函数图象的特点可确定y的最大值.【解答】解:(1)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=﹣=2.令x=0,则y=2.∴抛物线y=ax2﹣4ax+2与y轴的交点为(0,2).故答案为:x=2;(0,2).(2)∵抛物线y=ax2﹣4ax+2的对称轴为直线x=2,∴顶点在1≤x≤5范围内,∵当x满足1≤x≤5时,y的最小值为﹣6,∴当a<0时,抛物线开口向下,x=5时y有最小值﹣6,∴25a﹣20a+2=﹣6,解得a=﹣,∴抛物线为y=﹣x2+x+2当x=2时,y=﹣×22+×2+2=,∴此时y的最大值为.当a>0,抛物线开口向上,x=2时y有最小值﹣6,∴4a﹣8a+2=﹣6,解得a=2,∴抛物线为y=2x2﹣8x+2,当x=5时,y=2×25﹣8×5+2=12,∴此时y的最大值12.综上,y的最大值为12.4.(2022•萧山区二模)在平面直角坐标系中,已知二次函数y=ax2+(a﹣1)x﹣1.(1)若该函数的图象经过点(1,2),求该二次函数图象的顶点坐标.(2)若(x1,y1),(x1,y2)为此函数图象上两个不同点,当x1+x2=﹣2时,恒有y1=y2,试求此函数的最值.(3)当a<0且a≠﹣1时,判断该二次函数图象的顶点所在象限,并说明理由.【分析】(1)直接将点(1,2)代入即可求得a的值,然后根据顶点公式求得即可;(2)利用题意,﹣===﹣1求解a,然后把解析式化成顶点式,根据二次函数的性质即可得到结论;(3)利用顶点公式求得x=﹣=﹣+,y==﹣,由a<0且a≠﹣1即可判断x<0,y>0,即可得到该二次函数图象的顶点在第二象限.【解答】解:(1)∵函数图象过点(1,2),∴将点代入y=ax2+(a﹣1)x﹣1,解得a=2,∴二次函数的解析式为y=2x2+x﹣1,∴x=﹣=﹣,∴y=2×﹣﹣1=﹣,∴该二次函数的顶点坐标为(﹣,﹣);(2)函数y=ax2+(a﹣1)x﹣1的对称轴是直线x=﹣,∵(x1,y1),(x2,y2)为此二次函数图象上的两个不同点,且x1+x2=﹣2,则y1=y2,∴﹣===﹣1,∴a=﹣1,∴y=﹣x2﹣2x﹣1=﹣(x+1)2≤0,∴当x=﹣1时,函数有最大值0;(3)∵y=ax2+(a﹣1)x﹣1,∴由顶点公式得:x=﹣=﹣+,y==﹣,∵a<0且a≠﹣1,∴x<0,y>0,∴该二次函数图象的顶点在第二象限.5.(2022•盈江县模拟)抛物线C1:y=x2+bx+c的对称轴为x=1,且与y轴交点的纵坐标为﹣3.(1)求b,c的值;(2)抛物线C2:y=﹣x2+mx+n经过抛物线C1的顶点P.①求证:抛物线C2的顶点Q也在抛物线C1上;②若m=8,点E是在点P和点Q之间抛物线C1上的一点,过点E作x轴的垂线交抛物线C2于点F,求EF长度的最大值.【分析】(1)根据对称轴公式x=﹣,即可求出b的值,由抛物线与y轴交点的纵坐标为﹣3即可求得c的值;(2)①由(1)可得抛物线C1的解析式,从而可得抛物线C1的顶点P的坐标,由抛物线C2经过抛物线C1的顶点可得n=﹣m﹣3,从而可得抛物线C2为:y=﹣x2+mx﹣m﹣3,根据对称轴公式x=﹣,即可求出顶点Q的坐标,再将点Q的横坐标代入抛物线C1的解析式中,即可证明;②先分别求出点P和点Q的横坐标,由①可得n=﹣11,设点E横坐标为x,由点E在抛物线C1上可表示出纵坐标,由题可知点F与点E横坐标相同,代入抛物线C2的解析式中可得点F纵坐标,即可求解.【解答】(1)解:∵抛物线C1:y=x2+bx+c对称轴为x=1,且与y轴交点的纵坐标为﹣3,∴x=﹣=1,c=﹣3,∴b=﹣2;(2)①证明:∵抛物线C1的解析式为:y=x2﹣2x﹣3,∴顶点P的坐标为:(1,﹣4),∵抛物线C2经过抛物线C1的顶点,∴﹣4=﹣12+m+n,∴n=﹣m﹣3,∴抛物线C2为:y=﹣x2+mx﹣m﹣3,∴对称轴为:直线x=﹣=,将x=代入y=﹣x2+mx﹣m﹣3,得:y=﹣m﹣3,∴点Q坐标为:(,﹣m﹣3),将x=代入y=x2﹣2x﹣3,得:y=﹣m﹣3,∴点Q也在抛物线C1上;②解:由①知n=﹣m﹣3,∵m=8,∴n=﹣11,∴抛物线C2的解析式为:y=﹣x2+8x﹣11,对称轴为:直线x==4,设点E横坐标为x,∵点E是在点P和点Q之间抛物线C1上的一点,∴点E坐标为(x,x2﹣2x﹣3),1<x<4,∵过点E作x轴的垂线交抛物线C2于点F,∴点F横坐标为x,∴点F坐标为(x,﹣x2+8x﹣11),∴EF=﹣x2+8x﹣11﹣(x2﹣2x﹣3)=﹣x2+8x﹣11﹣x2+2x+3=﹣2x2+10x﹣8=﹣2(x2﹣5x+4)=﹣2(x2﹣5x+)+=﹣2(x﹣)2+,∴当x=时,EF取得最大值,最大值为,∴EF长度的最大值为.6.(2022•沂水县二模)抛物线y=ax2+bx经过点A(﹣4,0),B(1,5);点P(2,c),Q (x0,y0)是抛物线上的点.(1)求抛物线的顶点坐标;(2)若x0>﹣6,比较c、y0的大小;(3)若直线y=m与抛物线交于M、N两点,(M、N两点不重合),当MN≤5时,求m的取值范围.【分析】(1)利用待定系数法即可求得抛物线解析式,化成顶点式即可求得顶点坐标;(2)根据二次函数的性质判断即可;(3)设M、N的横坐标分别为x1、x2,则x1、x2是方程x2+4x=m的两个根,根据根与系数的关系得到x1+x2=﹣4,x1x2=﹣m,由MN≤5,则(x1﹣x2)2≤25,所以(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得即可.【解答】解:(1)∵抛物线y=ax2+bx经过点A(﹣4,0),B(1,5),∴,解得,∴抛物线为y=x2+4x,∵y=x2+4x=(x+2)2﹣4,∴抛物线的顶点坐标为(﹣2,﹣4);(2)∵抛物线为y=x2+4x的对称轴为直线x=﹣2,且开口向上,∴当x<﹣2时,y随x的增大而减小,∵点P(2,c)关于对称轴的对称点为(﹣6,c),∵x0>﹣6,∴当﹣6<x0<2时,则c>y0;当x0≥2时,则c≤y0;(3)设M、N的横坐标分别为x1、x2,∵直线y=m与抛物线交于M、N两点,(M、N两点不重合),∴x1、x2是方程x2+4x=m的两个根,∴x1+x2=﹣4,x1x2=﹣m,∵MN≤5,∴(x1﹣x2)2≤25,∴(x1+x2)2﹣4x1x2≤25,即16+4m≤25,解得m≤,∵抛物线的顶点坐标为(﹣2,﹣4),∴函数的最小值为﹣4,∴﹣4<m≤.7.(2022•姜堰区二模)设一次函数y1=2x+m+n和二次函数y2=x(2x+m)+n.(1)求证:y1,y2的图象必有交点;(2)若m>0,y1,y2的图象交于点A(x1,a)、B(x2,b),其中x1<x2,设C(x3,b)为y2图象上一点,且x3≠x2,求x3﹣x1的值;(3)在(2)的条件下,如果存在点D(x1+2,c)在y2的图象上,且a>c,求m的取值范围.【分析】(1)证明y1=y2时,方程2x+m+n=x(2x+m)+n有解,进而转化证明一元二次方程的根的判别式非负便可;(2)由y1=y2,求出x1与x2,进而求得b,由b的值,求得x3的值,进而得x3﹣x1的值;(3)把点A(x1,a)、点D(x1+2,c)代入y2=x(2x+m)+n,根据a>c得x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,代入求解即可.【解答】(1)证明:当y1=y2时,得2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,△=(m﹣2)2+8m=(m+2)2≥0,∴方程2x+m+n=x(2x+m)+n有解,∴y1,y2的图象必有交点;(2)解:当y1=y2时,2x+m+n=x(2x+m)+n,化简为:2x2+(m﹣2)x﹣m=0,(2x+m)(x﹣1)=0,∵m>0,x1<x2,∴x1=﹣,x2=1,∴b=2+m+n,当y=2+m+n时,y2=x(2x+m)+n=2+m+n,化简为:2x2+mx﹣m﹣2=0,2x2﹣2+mx﹣m=0,2(x+1)(x﹣1)+m(x﹣1)=0,(2x+m+2)(x﹣1)=0,解得,x=1(等于x2),或x=,∴x3=,∴x3﹣x1=﹣(﹣)=﹣1;(3)解:∵点D(x1+2,c)在y2的图象上,∴c=(x1+2)[2(x1+2)+m]+n=2(x1+2)2+m(x1+2)+n.∵点A(x1,a)在y2的图象上,∴a=x1(2x1+m)+n.∵a>c,∴a﹣c>0,∴x1(2x1+m)+n﹣2(x1+2)2﹣m(x1+2)﹣n>0,化简得4x1+4+m<0,由(2)得x1=﹣,∴4×(﹣)+4+m<0,﹣2m+4+m<0,﹣m+4<0,m>4,∴m的取值范围为m>4.8.(2022•西城区校级模拟)已知抛物线y=x2﹣4mx+4m2﹣1.(1)求此抛物线的顶点的坐标;(2)若直线y=n与该抛物线交于点A、B,且AB=4,求n的值;(3)若这条抛物线经过点P(2m+1,y1),Q(2m﹣t,y2),且y1<y2,求t的取值范围.【分析】(1)将二次函数解析式化为顶点式求解.(2)由二次函数的对称性及AB=4可得点A,B坐标,进而求解.(3)由点P坐标及抛物线对称轴可得点P关于对称轴的对称点P'坐标,由抛物线开口向下可求解.【解答】解:(1)∵y=x2﹣4mx+4m2﹣1=(x﹣2m)2﹣1,∴抛物线顶点坐标为(2m,﹣1).(2)∵点A,B关于抛物线对称轴对称,AB=4,对称轴为直线x=2m,∴抛物线经过(2m+2,n),(2m﹣2,n),将(2m+2,n)代入y=(x﹣2m)2﹣1得n=22﹣1=3.(3)点P(2m+1,y1)关于抛物线对称轴的对称点P'坐标为(2m﹣1,y1),∵抛物线开口向上,∴当2m﹣t>2m+1或2m﹣t<2m﹣1时,且y1<y2,解得t<﹣1或t>1.9.(2022•黄岩区一模)在平面直角坐标系中,已知抛物线y1=ax2+bx+3与直线y2=x+1.(1)当抛物线y1=ax2+bx+3与直线y2=x+1两个交点的横坐标分别为﹣1和2时.①求抛物线解析式;②直接写出当y1>y2,时x的取值范围;(2)设y=y1﹣y2,当x=m时y=M,x=n时y=N,当m+n=1(m≠n)时,M=N.求证:a+b=1.【分析】(1)①由交点横坐标及直线解析式可得交点坐标,然后通过待定系数法求解.②由抛物线开口方向及交点横坐标求解.(2)由y=y1﹣y2,M=N可得m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系进行证明.【解答】解:(1)①将x=﹣1和x=2分别代入y2=x+1得y2=0,y2=3,∴抛物线经过(﹣1,0),(2,3),∴,解得,∴y1=﹣x2+2x+3.②∵抛物线y1=﹣x2+2x+3开口向下,抛物线与直线交点坐标为(﹣1,0),(2,3),∴﹣1<x<2时,y1>y2.(2)∵y=y1﹣y2=ax2+bx+3﹣(x+1)=ax2+(b﹣1)x+2,∴x=m时,M=am2+(b﹣1)m+2,x=n时,N=an2+(b﹣1)n+2,∴m,n为方程ax2+(b﹣1)x+2=0的两个根,由一元二次方程根与系数的关系可得m+n=﹣=1,∴b﹣1=﹣a,∴a+b=1.10.(2022•路桥区一模)在平面直角坐标系中,已知二次函数y=x2﹣(m+2)x+m(m是常数).(1)求证:不论m取何值,该二次函数的图象与x轴总有两个交点;(2)若点A(2m+1,7)在该二次函数的图象上,求该二次函数的解析式;(3)在(2)的条件下,若抛物线y=x2﹣(m+2)x+m与直线y=x+t(t是常数)在第四象限内有两个交点,请直接写出t的取值范围.【分析】(1)由Δ=b2﹣4ac>0证明.(2)将点A坐标代入解析式求解.(3)分类讨论,通过数形结合求解.【解答】解:(1)令x2﹣(m+2)x+m=0,则Δ=(m+2)2﹣4m=m2+4>0,∴方程x2﹣(m+2)x+m=0有两个不相等实数根,∴二次函数的图象与x轴总有两个交点.(2)将(2m+1,7)代入y=x2﹣(m+2)x+m得7=(2m+1)2﹣(m+2)(2m+1)+m,解得m=2或m=﹣2,当m=2时,y=x2﹣4x+2,当m=﹣2时,y=x2﹣2.(3)①当m=2时,y=x2﹣4x+2,令x2﹣4x+2=0,解得x1=2+,x2=2﹣,∴抛物线与x轴交点坐标为(2+,0),(2﹣,0),如图,当直线y=x+t经过(2+,0)时,2++t=0,解得t=﹣2﹣,当直线y=x+t与抛物线y=x2﹣4x+2只有1个公共点时,令x2﹣4x+2=x+t,整理得x2﹣5x+2﹣t=0,则Δ=52﹣4(2﹣t)=17+4t=0,解得t=﹣,∴﹣<t<﹣2﹣满足题意.②同理,当m=﹣2时,y=x2﹣2,将x=0代入y=x2﹣2得y=﹣2,∴抛物线经过(0,﹣2),将(0,﹣2)代入y=x+t得t=﹣2,令x2﹣2=x+t,由Δ=1﹣4(﹣2﹣t)=0可得t=﹣,∴﹣<t<﹣2满足题意.综上所述,﹣<t<﹣2﹣或﹣<t<﹣2.11.(2022•安徽模拟)已知:抛物线y=x2﹣2mx+m2﹣2与直线x=﹣2交于点P.(1)若抛物线经过(﹣1,﹣2)时,求抛物线解析式;(2)设P点的纵坐标为y p,当y p取最小值时,抛物线上有两点(x1,y1),(x2,y2),且x1<x2≤﹣2,比较y1与y2的大小;(3)若线段AB两端点坐标分别是A(0,2),B(2,2),当抛物线与线段AB有公共点时,直接写出m的取值范围.【分析】(1)将(﹣1,﹣2)代入解析式求解.(2)将x=﹣2代入解析式求出点P纵坐标,通过配方可得y p取最小值时m的值,再将二次函数解析式化为顶点式求解.(3)分别将点A,B坐标代入解析式求解.【解答】解:(1)将(﹣1,﹣2)代入y=x2﹣2mx+m2﹣2得﹣2=1+2m+m2﹣2,解得m=﹣1,∴y=x2+2x﹣1.(2)将x=﹣2代入y=x2﹣2mx+m2﹣2得y P=m2+4m+2=(m+2)2﹣2,∴m=﹣2时,y p取最小值,∴y=x2+4x+2=(x+2)2﹣2,∴x<﹣2时,y随x增大而减小,∵x1<x2≤﹣2,∴y1>y2.(3)∵y=x2﹣2mx+m2﹣2=(x﹣m)2﹣2,∴抛物线顶点坐标为(m,﹣2),∴抛物线随m值的变化而左右平移,将(0,2)代入y=x2﹣2mx+m2﹣2得m2﹣2=2,解得m=2或m=﹣2,将(2,2)代入y=x2﹣2mx+m2﹣2得2=4﹣4m+m2﹣2,解得m=0或m=4,∴﹣2≤m≤0时,抛物线对称轴在点A左侧,抛物线与线段AB有交点,2≤m≤4时,抛物线对称轴在点A右侧,抛物线与线段AB有交点.∴﹣2≤m≤0或2≤m≤4.12.(2022•富阳区一模)已知抛物线y=a(x﹣1)(x﹣).(1)若抛物线过点(2,1),求抛物线的解析式;(2)若该抛物线上任意不同两点M(x1,y1)、N(x2,y2)都满足:当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,试判断点(2,﹣9)在不在此抛物线上;(3)抛物线上有两点E(0,n)、F(b,m),当b≤﹣2时,m≤n恒成立,试求a的取值范围.【分析】(1)将(2,1)代入函数解析式求解.(2)由当x1<x2<0时,(x1﹣x2)(y1﹣y2)>0;当0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,可得抛物线对称轴为y轴,从而可得a的值,然后将x=2代入解析式判断.(3)由b≤﹣2时,m≤n恒成立,可得抛物线开口向下,求出点E关于对称轴对称的点坐标,列不等式求解.【解答】解:(1)将(2,1)代入y=a(x﹣1)(x﹣)得1=a(2﹣),解得a=2,∴y=2(x﹣1)(x﹣).(2)∵y=a(x﹣1)(x﹣),∴抛物线与x轴交点坐标为(1,0),(,0),∴抛物线对称轴为直线x=,∵x1<x2<0时,(x1﹣x2)(y1﹣y2)>0,0<x1<x2时,(x1﹣x2)(y1﹣y2)<0,∴抛物线对称轴为值x=0,即1+=0,解得a=﹣3,∴y=﹣3(x﹣1)(x+1),将x=2代入y=﹣3(x﹣1)(x+1)得y=﹣9,∴点(2,﹣9)在抛物线上.(3)∵抛物线对称轴为直线x=,∴点E(0,n)关于对称轴对称的点E'(1+,n),∵当b≤﹣2时,m≤n恒成立,∴抛物线开口向下,即a<0,且﹣2≤1+,解得a≤﹣1.13.(2022•河东区二模)已知抛物线y=a(x+3)(x﹣4)与y轴交于点A(0,﹣2).(Ⅰ)求抛物线y=a(x+3)(x﹣4)的解析式及顶点坐标;(Ⅱ)设抛物线与x轴的正半轴的交点为点B,点P为x轴上一动点,点D满足∠DPA=90°,PD=PA.(i)若点D在抛物线上,求点D的坐标;(ii)点E(2,﹣)在抛物线上,连接PE,当PE平分∠APD时,求出点P的坐标.【分析】(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),即可求解;(Ⅱ)(i)设P(t,0),分两种情况讨论:当D点在点P右侧时,过点D作DN⊥x轴交于点N,通过证明△PND≌△AOP(AAS),可得D(t+2,﹣t),再将D点代入二次函数解析式求出t的值,从而求出D的坐标;当点D在点P的左侧时,同理可得D(t﹣2,t),再将D点代入二次函数解析式求出t的值,即可求解;(ii)分两种情况讨论:当D点在x轴下方时,当PE∥y轴时,∠OAP=45°,P(2,0);当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,可证明△GAF≌△APO(AAS),从而得到GF=2,则E点与G点重合,OP=AF=OA﹣OF=2﹣=,求出P(﹣,0).【解答】解:(Ⅰ)将点A(0,﹣2)代入y=a(x+3)(x﹣4),得﹣12a=﹣2,∴a=,∴y=(x+3)(x﹣4)=x2﹣x﹣2,∵y=x2﹣x﹣2=(x﹣)2﹣,∴顶点为(,﹣);(Ⅱ)(i)令a(x+3)(x﹣4)=0,解得x=4或x=﹣3,∴B(4,0),设P(t,0),如图1,当D点在点P右侧时,过点D作DN⊥x轴交于点N,∵∠APD=90°,∴∠OPA+∠NPD=90°,∠OPA+∠OAP=90°,∴∠NPD=∠OAP,∴△PND≌△AOP(AAS),∴OP=ND,AO=PN,∴D(t+2,﹣t),∴(t+5)(t﹣2)=﹣t,解得t=1或t=﹣10,∴D(3,﹣1)或(﹣8,10);当点D在点P的左侧时,同理可得D(t﹣2,t),∴t=(t﹣2+3)(t﹣2﹣4),解得t=,∴D(,)或(,);综上所述:D点坐标为(3,﹣1)或(﹣8,10)或(,)或(,);(ii)如图2,当D点在x轴下方时,∵PE平分∠APD,∴∠APE=∠EPD,∵∠APD=90°,∴∠APE=45°,当PE∥y轴时,∠OAP=45°,∴P(2,0);如图3,当D点在x轴上方时,过A点作AG⊥PA交PE于点G,过G点作FG⊥x轴,交于点F,∵∠PAF+∠FAG=90°,∠FAG+∠FGA=90°,∴∠PAF=∠FGA,∵PE平分∠APD,∠APD=90°,∴∠APE=∠EPD=45°=∠AGP,∵AP=AG,∴△GAF≌△APO(AAS),∴AF=OP,FG=OA,∵OA=2,∴GF=2,∵E(2,﹣),∴E点与G点重合,∴OP=AF=OA﹣OF=2﹣=,∴P(﹣,0);综上所述:P点坐标为(2,0)或(﹣,0).14.(2022•长春模拟)在平面直角坐标系中,已知抛物线y=x2+bx+c(b、c是常数)经过点(0,﹣1)和(2,7),点A在这个抛物线上,设点A的横坐标为m.(1)求此抛物线对应的函数表达式并写出顶点C的坐标.(2)点B在这个抛物线上(点B在点A的左侧),点B的横坐标为﹣1﹣2m.①当△ABC是以AB为底的等腰三角形时,求OABC的面积.②将此抛物线A、B两点之间的部分(包括A、B两点)记为图象G,当顶点C在图象G 上,记图象G最高点的纵坐标与最低点的纵坐标的差为h,求h与m之间的函数关系式.(3)设点D的坐标为(m,2﹣m),点E的坐标为(1﹣m,2﹣m),点F在坐标平面内,以A、D、E、F为顶点构造矩形,当此抛物线与矩形有3个交点时,直接写出m的取值范围.【分析】(1)用待定系数法求出抛物线的解析式,再将抛物线的解析式化成顶点式,即可求解;(2)①先根据等腰三角形的性质求出A、B、C三点坐标,再根据三角形面积公式求解即可;②按第一种情况:当点A是最高点,可得m>1或m<﹣,第二种情况:当点B是最高点,得m的取值范围,再计算纵坐标的差h即可解答;(3)分情况讨论:①当m<﹣1时,②当﹣1≤m≤1时时,③当1<m<2时,④当2<m<3时,⑤当m=3,⑥当3≤m<4时,⑦当m=4时,⑧当m>4时,分别画出图形求解即可.【解答】解:(1)把(0,﹣1)和(2,7)代入y=x2+bx+c,得:,解得:,∴抛物线对应的函数表达式为:y=x2+2x﹣1,∵y=x2+2x﹣1=(x+1)2﹣2,∴顶点C的坐标为(﹣1,﹣2);(2)①当x=﹣1﹣2m时,y=(﹣1﹣2m+1)2﹣2=4m2﹣2,∴B(﹣1﹣2m,4m2﹣2).当△ABC是以AB为底的等腰三角形时,则AC=BC,又∵点C在抛物线对称轴x=﹣1上,∴点A、点B关于直线x=﹣1对称,∴A(2m﹣1,4m2﹣2),∵点A的横坐标为m,∴2m﹣1=m,解得:m=1,∴A(1,2),B(﹣3,2),∵由(1)得,C(﹣1,﹣2),=[1﹣(﹣3)]×[2﹣(﹣2)]=8;∴S△ABC②∵A(m,(m+1)2﹣2),B(﹣1﹣2m,4m2﹣2).∴当点A是最高点,即m>1或m<﹣时,则h=(m+1)2﹣2﹣(﹣2)=(m+1)2;当点B是最高点,即0≤m<1时,则h=4m2﹣2﹣(﹣2)=4m2,综上,h与m之间的函数关系式为:h=(m+1)2(m>1或m<﹣)或h=4m2(0≤m<1);(3)①当m<﹣1时,则2﹣m>3,1﹣m>2,如图:。

2023学年人教中考数学重难点题型分类 专题06 几何图形初步—角度问题压轴题真题

2023学年人教中考数学重难点题型分类 专题06 几何图形初步—角度问题压轴题真题

专题06 高分必刷题-几何图形初步—角度问题压轴题真题(解析版) 专题简介:本份资料专攻《几何图形初步》这一章中求角度的压轴题,所选题目源自各名校月考、期末试 题中的压轴题真题,大都涉及到角度的旋转问题,难度较大,适合于想挑战满分的学生考前刷题使用,也 适合于培训机构的老师培训尖子生时使用。

1.(明德)已知120AOB ∠=,60COD ∠=,OE 平分∠BOC .(1)如图①,当∠COD 在∠AOB 的内部时.①若∠AOC =40°,则∠COE =_________;∠DOE =_________.②若∠AOC =α,则∠DOE =_________(用含α的代数式表示);(2)如图②,当∠COD 在∠AOB 的外部时①请写出∠AOC 与∠DOE 的度数之间的关系,并说明理由.②在∠AOC 内部有一条射线OF ,满足∠AOC +2∠BOE =4∠AOF ,写出∠AOF 与∠DOE 的度数之间的关系,并说明理由.【解答】解:(1)①∵∠AOB =120°,∠AOC =40°,∴∠BOC =80°,∵OE 平分∠BOC ,∴∠COE =∠BOC =40°,∵∠COD =60°,∴∠DOE =∠COD ﹣∠COE =60°﹣40°=20°. 故答案为:40°,20°.②∵∠AOB =120°,∠AOC =α,∴∠BOC =120°﹣α,∵OE 平分∠BOC , ∴∠COE =∠BOC =60°﹣α,∵∠COD =60°,∴∠DOE =∠COD ﹣∠COE =60°﹣(60°﹣α)=α.故答案为:α.(2)①∵OE 平分∠BOC ,∴∠BOC =2∠COE ,∵∠AOC ﹣∠AOB =∠BOC ,∠DOE ﹣∠COD =∠EOC , ∴∠AOC ﹣∠AOB =2(∠DOE ﹣∠COD ),∵∠AOB =120°,∠COD =60°,∴∠AOC ﹣120°=2(∠DOE ﹣60°),化简得:2∠DOE =∠AOC .②∠DOE ﹣∠AOF =30°,理由如下:∵∠AOC =∠AOB +∠BOC ,∠BOC =2∠BOE ,∠AOC +2∠BOE =4∠AOF ,∴4∠AOF =∠AOB +4∠BOE ,∵∠DOE =∠COD +∠COE ,∠COE =∠BOE ,∴4∠DOE =4∠COD +4∠BOE ,∴4∠AOF ﹣4∠DOE =∠AOB ﹣4∠COD ,∵∠AOB =120°,∠COD =60°,∴4∠AOF ﹣4∠DOE =﹣120°,∴∠DOE ﹣∠AOF =30°.2.(长梅)定义:从一个角的顶点出发,把这个角分成1:2的两个角的射线,叫作这个角的三分钱,显然,一个角的三分线有两条.(1)如图①,已知OC 是∠AOB 的一条三分钱,且BOC AOC ∠>∠,若75AOB AOC ∠=︒∠=, ;(2)如图②,已知90AOB ∠=︒,若OC ,OD 是∠AOB 的两条三分线.①求∠COD 的度数;②在①的基础上,现以O 为中心,将∠COD 顺时针旋转n °得到C OD ''∠.当OA 恰好是C OD ''∠的三分线时,求n 的值.图① 图②【解答】解:(1)已知OC 是∠AOB 的一条三分钱,且∠BOC >∠AOC ,若∠AOB =75°, ∴∠AOC =∠AOB =25°,故答案为:25°.(2)①如图2,∵∠AOB =90°,OC ,OD 是∠AOB 的两条三分线,∴∠COD =∠AOB =30°; ②分两种情况:当OA 是∠C 'OD '的三分线,且∠AOD '>∠AOC '时,∠AOC ′=10°,∴∠DOC '=30°﹣10°=20°,∴∠DOD '=20°+30°=50°;当OA 是∠C ′OD '的三分线,且∠AOD '<∠AOC 时,∠AOC '=20°,∴∠DOC ′=30°﹣20°=10°,∴∠DOD '=10°+30°=40°; 综上所述,n =40°或50°.3.(师大)若A 、O 、B 三点共线,∠BOC =50°,将一个三角板的直角顶点放在点O 处(注:∠DOE =90°,∠DEO =30°).(1)如图1,使三角板的短直角边OD 在射线OB 上,则∠COE = ;(2)如图2,将三角板DOE 绕点O 逆时针方向旋转,若OE 恰好平分∠AOC ,则OD 所在射线是∠BOC 的 ;(3)如图3,将三角板DOE 绕点O 逆时针转动到使∠COD =∠AOE 时,求∠BOD 的度数;(4)将图1中的三角板绕点O 以每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t 秒时,OE 恰好与直线OC 重合,求t 的值.【解答】解:(1)∵∠DOE =90°,∠BOC =50°,∴∠COE =40°,故答案为40°; (2)∵OE 平分∠AOC ,∴∠AOE =∠COE ,∵∠COE +DOC =∠DOE =90°,∴∠AOE +∠DOB =90°, ∴∠DOC =∠DOB ,∴DO 平分∠BOC ,∴DO 是∠BOC 的角平分线,故答案为:角平分线;(3)∵∠COD =∠AOE ,∠COD +∠DOE +∠AOE =130°,∴5∠COD =40°,∴∠COD =8°,∴∠BOD =58°;(4)当OE 与射线OC 的反向延长线重合时,5t +40=180,∴t =28,当OE 与射线OC 重合时, 5t =360﹣40,∴t =64,综上所述:t 的值为28或64.4.(雅礼)如图1,点O 为直线AB 上一点,过点O 作射线OC ,使130BOC ∠=︒。

上海市2019届初三数学一模提升题汇编第23题(几何证明题)(word版含答案)

上海市2019届初三数学一模提升题汇编第23题(几何证明题)(word版含答案)

2019届一模提升题汇编第23题(几何证明题)【2019届一模徐汇】23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分)如图,已知菱形ABCD ,点E 是AB 的中点,AF BC ⊥于点F ,联结EF 、ED 、DF ,DE 交AF 于点G ,且2AE EG ED =⋅.(1) 求证:DE EF ⊥;(2) 求证:22BC DF BF =⋅.∴AEG V ∽DEA V …………………………………(1分)∴EAG ADE ∠=∠……………………………………………………………(1分) ∴EAG EFG ∠=∠……………………………………………………………(1分) ∵EAG ADE ∠=∠(已证),ADE EFG ∠=∠………………………………(1分) ∵在菱形ABCD 中,AD ∥BC, AF ⊥BC ,∴90DAG AFB ∠=∠=︒. ∴90ADE AGD ∠+∠=︒.B(第23题图)∵,AGD EGF ADE EFG ∠=∠∠=∠,∴90EFG EGF ∠+∠=︒.∴90GEF ∠=︒,∴DE EF ⊥……………………………………………(1分) (2) 延长FE 、DA 相交于点M ,∴ME EF = …………………………………(1分)∵DE EF ⊥,∴DF DM =…………………(1分) ∴MDE FDE ∠=∠∵()()BAF EAG MDE ADE ∠∠=∠∠(已证) ∴BAF FDE ∠=∠ …………………………(1分) ∵90AFB DEF ∠=∠=︒∴AFB V ∽DEF V……………………………………………………………(1分)∴22.BC DF BF =………………………………………………………………(1分) 其他证明方法,酌情给分。

】【2019届一模浦东】23. (本题满分12分,其中每小题各6分)已知:如图8,在平行四边形ABCD 中,M 是边BC 的中点,E 是边BA 延长线上的一点,联结EM ,分别交线段AD 于点F 、AC 于点G .(1)求证:GF EF GM EM=; (2)当22BC BA BE =⋅时,求证:∠EMB =∠ACD .FCBA DB【23、(1)证明略;(2)证明略】【2019届一模杨浦】23.(本题满分12分,每小题各6分)已知:如图,在△ABC 中,点D 在边AB 上,点E 在线段CD 上,且∠ACD =∠B =∠BAE. (1)求证:AD DEBC AC=; (2)当点E 为CD 中点时,求证:22AE ABCE AD=.【23.证明:(1)∵∠ACD =∠B ,∠BAC =∠CAD ,∴△ADC ∽△ACB . ·· (2分) ∵∠ACD =∠BAE ,∠ADE =∠CDA ,∴△ADE ∽△CDA . ··· (2分) ∴△ADE ∽△BCA . ··················· (1分)∵点E为CD 中点,∴DE CE =. ················ (1分)(第23题图)BC【2019届一模普陀】23.(本题满分12分)已知:如图9,△ADE 的顶点E 在△ABC 的边BC 上,DE 与AB 相交于点F ,AE AF AB =⋅2,DAF EAC ∠=∠.(1)求证:△ADE ∽△ACB ; (2)求证:DF CEDE CB=.【23.证明:(1)∵AE AF AB =⋅2,又∵FAE EAB ∠=∠,∴△AFE ∽△AEB . ······················ (2分) ∴AEF B ∠=∠. ························ (1分) ∵DAF EAC ∠=∠,∴DAE CAB ∠=∠. ······················ (1分) ∴△ADE ∽△ACB . ······················ (1分) (2)∵△ADE ∽△ACB ,F图9ABCDE∵DAF EAC ∠=∠,∴△ADF ∽△ACE .············ (1分)【2019届一模奉贤】23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)已知:如图9,在△ABC 中,点D 在边AC 上,BD 的垂直平分线交CA 的延长线于点E , 交BD 于点F ,联结BE ,EC EA ED •=2. (1)求证:∠EBA =∠C ;(2)如果BD =CD ,求证:AC AD AB •=2.22.【证明:(1)∵EF 是BD 的垂直平分线,∴EB ED =. ········ (1分)又∵BEA CEB ∠=∠,∴△BEA ∽△CBE . ·············· (2分)∴EBA C ∠=∠. ························· (1分) (2)∵EB =ED ,∴EBD EDB ∠=∠. ·················· (1分) 即EBA ABD C DBC ∠+∠=∠+∠.∴ABD DBC ∠=∠. ······· (1分)∵BD CD =,∴DBC C ∠=∠. ················· (1分) ∴ABD C ∠=∠. ························ (1分) 又BAD CAB ∠=∠,∴△ABD ∽△CAB . ·············· (2分)ABCDEF图9【2019届一模松江】23.(本题满分12分,第(1)小题5分,第(2)小题7分)ADEC B(第23题图)AC·CE=AD·BC.(1)求证:∠DCA=∠EBC;(2)延长BE交AD于F,求证:AB2=AF·AD.【23.证明:(1)∵AD∥BC,∴∠DAC=∠BCA………………………………(1分)∴△ACD∽△CBE………………………………………………………………(1分)∴∠DCA=∠EBC…………………………………………………………………(1分)(2)∵AD∥BC,∴∠AFB=∠EBC……………………………………………(1分)∵∠DCA=∠EBC,∴∠AFB=∠DCA……………………………………………(1分)9∵AD ∥BC ,AB =DCF(第23题图)EDCBA10∴∠BAD =∠ADC ……………………………(2分) ∴△ABF ∽△DAC ………………(1分)∵AB =DC ,∴AD AF AB ⋅=2…………(1分)】【2019届一模嘉定】23.(本题满分12分,每小题6分)如图6,已知点D 在△ABC 的外部,AD //BC ,点E 在边AB 上,AE BC AD AB ⋅=⋅. (1)求证:AED BAC ∠=∠;(2)在边AC 取一点F ,如果D AFE ∠=∠, 求证:ACAFBC AD =.【23.证明(1)∵AD ∥BC∴DAE B ∠=∠ ……1分 ∵AE BC AD AB ⋅=⋅∴△CBA ∽△DAE ……2分∴AED BAC ∠=∠ ……2分图6BCDAE F图6B CDAE F(2)由(1)得△DAE ∽△CBA∵D AFE ∠=∠∴C AFE ∠=∠∴EF ∥BC ……1分 ∵AD ∥BC∴EF ∥AD ……………1分 ∵AED BAC ∠=∠ ∴DE //AC∴四边形ADEF 是平行四边形 ……1分 ∴AF DE= ……1分【2019届一模青浦】23.(本题满分12分,第(1)小题7分,第(2)小题5分)已知:如图,在△ABC 中,点D 、E 分别在边BC 、AC 上,点F 在DE 的延长线上,AD=AF ,AE CE DE EF ⋅=⋅. (1)求证:△ADE ∽△ACD ;(2)如果AE BD EF AF ⋅=⋅,求证:AB=AC .【23.证明:(1)∵AD =AF ,∴∠ADF =∠F . ················ (1分)又∵∠AEF =∠DEC ,∴△AEF ∽△DEC . ····················· (2分)ABCDEF(第23题图)∴∠F =∠C . ························ (1分) ∴∠ADF =∠C . ······················ (1分) 又∵∠DAE =∠CAD ,∴△ADE ∽△ACD . ···················· (1分)∵∠AEF =∠EAD +∠ADE ,∠ADB =∠EAD +∠C ,∴∠AEF =∠ADB . ····················· (1分) ∴△AEF ∽△ADB . ···················· (1分) ∴∠F =∠B ,∴∠C =∠B ,∴AB =AC . (1分)】【2019届一模静安】23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)已知:如图9,在ABC ∆中,点D 、E 分别在边BC 和AB 上,且AD AC =,EB ED =,分别延长ED 、AC 交于点F . (1)求证:ABD ∆∽FDC ∆; (2)求证:2AE BE EF =⋅.图9AC BDEF【证明:(1)∵AD AC =,∴ADC ACD ∠=∠2019届一模提升题汇编目录 ................................................................................................... 错误!未定义书签。

2021年上海市16区中考数学一模考点分类汇编专题15 几何综合(解答题25题压轴题)(逐题详解版)

2021年上海市16区中考数学一模考点分类汇编专题15 几何综合(解答题25题压轴题)(逐题详解版)

2021年上海市16区中考数学一模汇编专题15 几何综合(解答题25题压轴题)1.(2021·上海徐汇区·九年级一模)如图,在Rt ABC 中,90ACB ∠=︒,12AC =,5BC =,点D 是边AC 上的动点,以CD 为边在ABC 外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G . (1)当AE BE ⊥时,求正方形CDEF 的面积;(2)延长ED 交AB 于点H ,如果BEH △和ABG 相似,求sin ABE ∠的值;(3)当AG AE =时,求CD 的长.2.(2021·上海长宁区·九年级一模)己知,在矩形ABCD中,点M是边AB上的一个点(与点A、B不重合),联结CM,作∠CMF=90°,且MF分别交边AD于点E、交边CD的延长线于点F.点G为线段MF的中点,联结DG.(1)如图1,如果AD=AM=4,当点E与点G重合时,求∠MFC的面积;(2)如图2,如果AM=2,BM=4.当点G在矩形ABCD内部时,设AD=x,DG2=y,求y关于x的函数解析式,并写出定义域;(3)如果AM=6,CD=8,∠F=∠EDG,求线段AD的长.(直接写出计算结果)3.(2021·上海宝山区·九年级一模)如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.4.(2021·上海浦东新区·九年级一模)四边形ABCD 是菱形,∠B≤90°,点E 为边BC 上一点,联结AE ,过点E 作EF∠AE ,EF 与边CD 交于点F ,且EC=3CF .(1)如图1,当∠B=90°时,求ABE S 与ECF S 的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值;(3)如图3,联结AF ,当∠AFE=∠B 且CF=2时,求菱形的边长.5.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.6.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且BQ =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.7. (2021黄浦一模)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数;(3)试问:在点M 、N 的运动过程中,线段比PQ MN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置.8.(2021·上海静安区·九年级一模)已知∠MAN是锐角,点B、C在边AM上,点D在边AN上,∠EBD=∠MAN,且CE∠BD,sin∠MAN=35,AB=5,AC=9.(1)如图1,当CE与边AN相交于点F时,求证:DF·CE=BC·BE;(2)当点E在边AN上时,求AD的长;(3)当点E在∠MAN外部时,设AD=x,∠BCE的面积为y,求y与x之间的函数解析式,并写出定义域.9.(2021·上海崇明区·九年级一模)如图,Rt ABC 中,90ACB ∠=︒,6AC =,8BC =,点D 为斜边AB 的中点,ED AB ⊥,交边BC 于点E ,点P 为射线AC 上的动点,点Q 为边BC 上的动点,且运动过程中始终保持PD QD ⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.10.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E 在边AB 上(点E 与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD 的正切值;(2)求y 关于x 的函数解析式,并写出该函数的定义域;(3)连接BG ,当BGE △与DEH △相似时,求x 的值.11.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数;()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.12.(2021·上海普陀区·九年级一模)如图,矩形ABCD 中,1AB =,3BC =,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F .点G 在线段EF 上,满足:1:2FG GE =.设BE x =.(1)求证:AD DF AB BE=; (2)当点G 在ADF 的内部时,用x 的代数式表示ADG ∠的余切;(3)当FGD AFE ∠=∠时,求线段BE 的长.13. (2021虹口一模)如图,在ABC 中,90ABC ∠=︒,3AB =,4BC =,过点A 作射线//AM BC ,点D 、E 是射线AM 上的两点(点D 不与点A 重合,点E 在点D 右侧),连接BD 、BE 分别交边AC 于点F 、G ,DBE C ∠=∠.(1)当1AD =时,求FB 的长(2)设AD x =,FG y =,求y 关于x 的函数关系式,并写出x 的取值范围;(3)联结DG 并延长交边BC 于点H ,如果DBH △是等腰三角形,请直接写出AD 的长.14.(2021宝山一模) 如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长;(3)过点M 作射线CD 的垂线,垂足为点F ,设BD x BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.15. (2021松江一模)如图,已知在等腰ABC 中,AB AC ==,tan 2ABC ∠=,BF AC ⊥,垂足为F ,点D 是边AB 上一点(不与A ,B 重合)(1)求边BC 的长;(2)如图2,延长DF 交BC 的延长线于点G ,如果CG 4=,求线段AD 的长;(3)过点D 作DE BC ⊥,垂足为E ,DE 交BF 于点Q ,连接DF ,如果DQF △和ABC 相似,求线段BD 的长.16.(2021嘉定一模)在矩形ABCD 中,6AB =,8AD =,点E 在CD 边上,1tan 2DAE ∠=.点F 是线段AE 上一点,联结BF ,CF .(1)如图11,如果3tan 4CBF ∠=,求线段AF 的长; (2)如图12,如果12CF BC =, ①求证:∠CFE =∠DAE ;②求线段EF 的长.2021年上海市16区中考数学一模汇编专题15 几何综合(解答题25题压轴题)1.(2021·上海徐汇区·九年级一模)如图,在Rt ABC 中,90ACB ∠=︒,12AC =,5BC =,点D 是边AC 上的动点,以CD 为边在ABC 外作正方形CDEF ,分别联结AE 、BE ,BE 与AC 交于点G .(1)当AE BE ⊥时,求正方形CDEF 的面积;(2)延长ED 交AB 于点H ,如果BEH △和ABG 相似,求sin ABE ∠的值; (3)当AG AE =时,求CD 的长.【答案】(1)494;(2)119169;(3. 【分析】(1)利用勾股定理求出AB 的长,设CD=x ,则AD=12-x ,利用勾股定理得出13²=x²+(12-x)²+(5+x)²+x²,求出x 的值,再利用正方形的面积公式求解即可;(2)先证∠BAC=∠EBF ,设边长为x ,利用三角函数求出x 的值,再求∠ABE 的正弦值即可;(3)设边长为x ,利用∠BCG∠∠EDG ,得出5DE DG x BC GC ==,然后联立512125x AG GC x AE ⎧=-=-⎪+⎨⎪=⎩,根据AG=AE ,求解即可.【详解】解:(1)Rt∠ABC 中,∠ACB=90°,AC=12,BC=5,13= ,设CD=x ,则AD=12-x ,在∠ADE 中,AE²=DE²+AD²=x²+(12-x)²,在∠BFE 中,BE²=BF²+EF²=(5+x)²+x²,在∠ABE 中,AE∠BE ,∠AB²=AE²+BE²,即13²=x²+(12-x)²+(5+x)²+x²,解得x=72,∠正方形CDEF 的面积=CD²=72×72=494; (2)如图:延长ED 交AB 于H ,∠∠BEH∠∠ABG ,且∠ABG=∠EBH ,∠∠BEH=∠BAG , ∠DE∠EF ,∠∠BEH=∠EBF ,∠∠BAC=∠EBF ,设边长为x , 则tan∠EBF=5x x +,tan∠BAC=512,令5x x +=512,则x=257, ∠25125971284HDAH ADBCAB AC-====,∠59767138484AH =⋅=, ∠BH=13-AH=32584,HD=5929558484⋅=, ∠HE=HD+x=59584, 过H 作HM ,与BE 相交于M ,5sin sin 13B M AG HE ∠=∠=,595sin 84s 951419165in 81332HM HE HEM ABE BH BH ⨯⋅∠∠====;(3)∠DE//BC,∠∠BCG∠∠EDG ,设边长为x ,∠5DE DG xBC GC ==, ∠DG+GC=x ,∠DG=25x x +,GC=55x x +,则512125x AG GC x AE ⎧=-=-⎪+⎨⎪=⎩,令AG=AE , 则或(舍去).【点睛】本题考查了勾股定理、相似三角形的性质与判定及利用三角函数求解,解题的关键是熟练掌握相关性质,正确构造辅助线,表示相关线段的长度.2.(2021·上海长宁区·九年级一模)己知,在矩形ABCD 中,点M 是边AB 上的一个点(与点A 、B 不重合),联结CM ,作∠CMF =90°,且MF 分别交边AD 于点E 、交边CD 的延长线于点F .点G 为线段MF 的中点,联结DG .(1)如图1,如果AD =AM =4,当点E 与点G 重合时,求∠MFC 的面积;(2)如图2,如果AM =2,BM =4.当点G 在矩形ABCD 内部时,设AD =x ,DG 2=y ,求y 关于x 的函数解析式,并写出定义域;(3)如果AM =6,CD =8,∠F =∠EDG ,求线段AD 的长.(直接写出计算结果)【答案】(1)20;(2)()4244644x x y x =-+<;(3)AD =或【分析】(1)运用ASA 证明∠AME DFE ≅∆求出FD 的长再运用三角形面积公式即可得到答案;(2)证明FHM MHC △∽△,根据相似三角形的性质列出比例式,代入相关数值即可求出函数关系式;(3)分点G 在矩形内部和外部两种情况求解即可. 【详解】解(1)过M 作MH∠DC ,垂足为H ,如图1易得四边形ADHM 是正方形,∠AE ED =又∠FED=∠MEA∠∠()AME DFE ASA ≅∆ ∠.4AM FD DH ===∠MH FC ⊥∠∠FHM=∠CHM=90°,∠HCM+∠HMC=90° ∠90FMC ∠=︒,∠∠FMH+∠HMC=90°∠∠FMH=∠HCM∠∠FMH∠∠MCH ∠12MH HC FH MH ==∠2CH =,CF 10=∠1202MFC S CF MH =⋅=△ (2)过M 作MH∠DC ,过G 点作GP∠DC ,垂足分别为H ,P ,如图2,∠FG GM =,//GP MH ∠111222GP MH AD x ===,12FP PH FH == ∠MH∠DC ,∠∠MHF=∠MHC=90°,∠HMC+∠ HCM=90° ∠∠FMC=90°,∠∠FMH+∠HMC=90° ∠∠FMH=∠HCM ,∠FHM MHC △∽△∠FH MH MH HC =,即4FH x x =,∠24x FH =∠28x PH =,228x DP =-,12GP x =∠222DG DP GP =+∠424644x x y =-+由00FH DP >⎧⎨>⎩ 可得4x <<∠定义域为4x <<(3)点G 在矩形内部时,延长DG 交AB 于J ,连接AG ,AF ,如图∠EDG EFD MCB ∠=∠=∠∠AD BC =∠ADJ BCM ≌△△, 2AJ BM == ∠1GJ GMDG GF==,∠AG DG =∠∠12=∠∠∠1390+∠=︒∠∠3490+∠=︒ ∠∠90AGE =︒∠AG 垂直平分FM ∠6AF AM ==∠4DF MJ ==∠AD ===点G 在矩形外部时,延长DG 交BA 延长线于L ,连接DM ,如图∠EDG EFD MCB ∠=∠=∠,AD BC =∠ADL BCM ≌△△, ∠2AL BM ==∠∠L CMD =∠,∠FMC 为直角,∠90DGE ∠=︒,DG 垂直平分FM ∠8DM DF ==,6AM =,∠AD =AD =或【点睛】收费题主要考查了三角形全等的判定与性质、垂直平分线的判定与性质,相似三角形的判定与性质,熟练掌握相关定理和性质是解答此题的关键.3.(2021·上海宝山区·九年级一模)如图,已知ABC 中,90ACB ∠=︒,AC BC =,点D 、E 在边AB 上,45DCE ∠=︒,过点A 作AB 的垂线交CE 的延长线于点M ,联结MD .(1)求证:2CE BE DE =⋅;(2)当3AC =,2AD BD =时,求DE 的长; (3)过点M 作射线CD 的垂线,垂足为点F ,设BDx BC=,tan FMD y ∠=,求y 关于x 的函数关系式,并写出定义域.【答案】(1)见解析;(2)DE=6-;(3)).【分析】(1)先证∠B=∠DCE ,再由∠DEC=∠CEB ,得出∠DEC∠∠CEB ,进而得出结论;(2)由∠DEC∠∠CEB 得BC=BE ,再由∠DEC∠∠DCA ,得AD=AC ,最后利用勾股定理求解即可;(3)连接EF ,先证∠BDC∠∠EDF ,得出FD DE CD BD =,进而得出FDMF=y ,然后结合已知条件得出结果. 【详解】解:(1)∠∠ACB=90°,∠∠B=45°,∠∠DCE=45°,∠∠B=∠DCE ,∠∠DEC=∠CEB ,∠∠DEC∠∠CEB ,∠EC DE BE CE=,故CE²=BE·DE ; (2)由题意得∠DCE 是等腰三角形,DC=CE ,由∠DEC∠∠CEB 得BC=BE , 同理可得∠DEC∠∠DCA ,AD=AC ,∠BC=AC ,∠BE=AD=BC=AC ,∠AC=3,∠在Rt∠ABC中,AB²=BC²+AC²=9+9=18,,∠AD=2BD,∠BD=AB-AD=AB-3,-6,-3,∠DE=AB-BD--3)=6-.(3)连接EF,由三角形相似可得∠FED=∠DBC,∠EF∠BC,∠∠EFD=∠BCD,∠∠EDF=∠BDC,∠∠BDC∠∠EDF,∠FD DECD BD=,∠tan∠FMD=y,∠FDMF=y,在Rt∠MFC中,∠MCF=45°,∠MF=CF,∠FD FDCF MF==y,∠BDxBC=,BE=BC,∠BD BDxBE BC==,∠,FD BDy xCF BE==,∠DE=1xBDx-,CD=1yFDx-,∠FD DECD BD=,11y xy x=--,则y(1-y)=x(1-y),y-xy=x-xy,..【点睛】本题考查了相似三角形的性质与判定及勾股定理的应用,解题的关键是灵活运用相似三角形的性质与判定.4.(2021·上海浦东新区·九年级一模)四边形ABCD 是菱形,∠B≤90°,点E 为边BC 上一点,联结AE ,过点E 作EF∠AE ,EF 与边CD 交于点F ,且EC=3CF . (1)如图1,当∠B=90°时,求ABE S与ECFS的比值;(2)如图2,当点E 是边BC 的中点时,求cos B 的值; (3)如图3,联结AF ,当∠AFE=∠B 且CF=2时,求菱形的边长.【答案】(1)94;(2)15;(3)17. 【分析】(1)先证明:,BEA CFE ∽可得:BE ABCF CE=,结合:3,EC CF =可得:3,AB BE =再设,,CF a BE b == 可得3,AB BC b a ==+而3AB b =,建立方程:33,b a b +=可得:3,2b a = 再利用相似三角形的性质可得答案.(2)延长,AE DC 相交于G ,过F 作FHAD ⊥于,H 连接AF ,先证明:,ABE GCE ≌可得:,,AB CG AE GE == 证明:AF FG =, 设,CF a = 再设DH x =, 利用22222,AF AH FH DF DH -==-求解x ,可得cos ,D 从而可得答案;(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG = 证明:6EH EC ==, 设,DF x = ,HG GC y == 证明:,AFE B D ECH H ∠=∠=∠=∠=∠可得:cos ,6EF ycoc AFE H AF ∠==∠=再证明:,FEH AFD ∽利用相似三角形的性质列方程组,解方程组可得答案.【详解】解:(1)四边形ABCD 是菱形,90B ∠=︒, ∴ 四边形ABCD 是正方形,90B C ∴∠=∠=︒,90BAE BEA ∴∠+∠=︒, ,EF AE ⊥ 90BEA CEF ∴∠+∠=︒, ,BAE CEF ∴∠=∠ ,BEA CFE ∴∽ BE AB CF CE ∴=,,BE CFAB CE∴= 3,EC CF =3,AB BE ∴= 设,,CF a BE b == 3,CE a ∴= 3,AB BC b a ∴==+ 而33,AB BE b ==33,b a b ∴+= 3,2b a ∴= 9,2AB a ∴= 22992.34ABE CEFaSAB SCE a ⎛⎫ ⎪⎛⎫∴===⎪ ⎪⎝⎭ ⎪⎝⎭(2)延长,AE DC 相交于G ,过F 作FH AD ⊥于,H 连接AF ,菱形ABCD ,//,AB CD ∴ ,BAE G ∴∠=∠ E 为BC 的中点,,BE CE ∴=,AEB CEG ∠=∠ ()ABE GCE AAS ∴≌,,,AB CG AE GE ∴==,AE EF ⊥ ,AF FG ∴=设,CF a = 则3,CE BE a == 6AB BC DC CG AD a =====,75,FG AF a DF a ∴===, 设,DH x = 22222,AF AH FH DF DH ∴-==-()()()2222765,a a x a x ∴--=- ,x a ∴= ,DH a ∴= 1cos ,55DH a DDF a ∴=== 由菱形ABCD 可得:,B D ∠=∠ 1cos .5B ∴=(3)如图,过E 作EG DC ⊥交DC 的延长线于G ,延长CG 至H ,使,CG HG =,,EC EH H ECH ∴=∠=∠ 23,CF CE CF ==, 6CE EH ∴==,设,DF x = ,HG GC y == 则2,DC AD x ==+ ,6HG y coc H EH ∴∠== 菱形ABCD , ,//,B D AB CD ∴∠=∠ ,B ECH ∴∠=∠ ,AFE B ∠=∠,AFE B D ECH H ∴∠=∠=∠=∠=∠ cos ,6EF y coc AFE H AF ∴∠==∠= ,AFH AFE EFH D DAF ∠=∠+∠=∠+∠ ,EFH DAF ∴∠=∠,FEH AFD ∴∽ ,EH HF EF DF AD AF ∴== 622,26y y x x +∴==+ 361012xy xy y =⎧∴⎨=+⎩,解得:15,2.4x y =⎧⎨=⎩经检验:152.4x y =⎧⎨=⎩是原方程组的解,217,CD x ∴=+= 即菱形ABCD 的边长为:17. 【点睛】本题考查的是三角形全等的判定与性质,线段垂直平分线的性质,勾股定理的应用,菱形,正方形的性质,相似三角形的判定与性质,解直角三角形,解分式方程组,掌握以上知识是解题的关键. 5.(2021·上海杨浦区·九年级一模)如图,已知在Rt ABC 中,90ACB ∠=︒,4AC BC ==,点D 为边BC 上一动点(与点B 、C 不重合),点E 为边AB 上一点,EDB ADC ∠=∠,过点E 作EF AD ⊥,垂足为点G ,交射线AC 于点F .(1)如果点D 为边BC 的中点,求DAB ∠的正切值;(2)当点F 在边AC 上时,设CD x =,CF y =,求y 关于x 的函数解析式及定义域;(3)联结DF 如果CDF 与AGE 相似,求线段CD 的长.【答案】(1)1tan 3DAB ∠=;(2)()2402y x x =-+<≤;(3)-4、8-. 【分析】(1))过点D 作DH AB ⊥于H ,在Rt ACB 中,利用勾股定理解得AD 、AB 的长,再结合等积法,解得DH 、AH 的长即可解题;(2)根据相似三角形对应边成比例的性质,表示()444x EH x -=+, 再证明AFE BDE 由AF AE DB BE =即)4444x y x x --=-+得到与x 的关系; (3)根据相似三角形对应边成比例的性质,结合(2)中y 关于x 的函数解析式联立方程组,继而解得x 、y 的值即可解题.【详解】(1)过点D 作DH AB ⊥于H ,在Rt ACB 中,AD =AB ==142ADB S DB AC ∴=⋅=12ADB S AB DH =⋅DH ∴=AH == 1tan 3DH DAB AH ∴∠==; (2)过E 作EH∠CB 于H∠EDB ADC ∠=∠,90C EHD ∠=∠=︒∠ACD EHD .∠AC EH CD DH = 即44EH x x EH=--.∠()444x EH x -=+ .∠EH∠CB ,90ACB ∠=︒,4AC BC ==∠)44x EB x -==+ ,AB =∠)44x AE x -=+∠EF AD ⊥,90C ∠=︒∠AFG ADC ∠=∠ .∠EDB ADC ∠=∠ ∠AFG EDB ∠=∠.∠45FAE B ∠=∠=︒∠AFE BDE .∠AF AE DB BE =即)4444x y x x --=-+()2402y x x =-+<≤; (3)在Rt∠MDB 中,DB=4-x,所以MD=MB=(4).2x - 在Rt∠ADM 中,AM=AB 一MB=)(4).22x x -=+所以tan∠DAB=44DM x AM x -=⋅+ 按照点F 的位置,分两种情况讨论∠CDF 与∠AGE 相似:①点F 在线段AC 上,此时y=4-2x.如图,如果∠FDC=∠DAB ,由tan∠FDC=tan∠DAB,得44y x x x-=⋅+结合y=4-2x ,整理,得x2+8x+16=0. 解得-4 或--4 (舍去),如果∠CFD=∠DAB ,由tan∠CFD=tan∠DAB ,得4.4x x y x-=+ 结合y=4- -2x,整理,得x 2-16x+16=0.解得8x =-8+②点F 在线段AC 的延长线上,此时y=2x-4如图如果∠FDC=∠DAB,由44y x x x -=+结合y=2x -4,整理,得23160.x -=解得或3-(舍去) 如果∠CFD=∠DAB, 44x x y x-=+与y=2x -4整理,得238160.x x -+=此方程无解.综上,CD 的值为-4、8- 【点睛】本题考查勾股定理、相似三角形的性质,涉及解二元一次方程组等知识,解题关键是根据题意利用相似三角形性质构造方程.6.(2021·上海青浦区·九年级一模)在ABC 中,90C ∠=︒,2AC =,BC =D 为边AC 的中点(如图),点P 、Q 分别是射线BC 、BA 上的动点,且2BQ BP =,联结PQ 、QD 、DP .(1)求证:PQ AB ⊥;(2)如果点P 在线段BC 上,当PQD △是直角三角形时,求BP 的长;(3)将PQD △沿直线QP 翻折,点D 的对应点为点'D ,如果点'D 位于ABC 内,请直接写出BP 的取值范围.【答案】(1)见解析;(2或6;(3)33BP << 【分析】(1)证明∠BPQ∠∠BAC 即可;(2)由∠PQD<90︒,只需要讨论两类情况,当90DPQ ∠=︒时,利用tan3AC B BC ===,求出∠B=30,30DPC ∠=︒,计算tan 30CD CP ︒===,根据BP=BC -CP 求值;当90PDQ ∠=︒时,过Q 作QE∠AC 交AC 于E ,则∠QED=∠PDQ=90C ∠=︒,证明∠EQD∠∠CDP ,得到QE ED CD CP=,设BP t =,过点Q 作QF∠BC 于F ,则四边形CEQF 是矩形,求出1344t QE F t t C +===,1CD =,CP t =,14DE CE CD =-=-,代入比例式求出t 的值; (3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,由'30DD C B ∠=∠=︒求出'CD =,'DP D P =,列得()'2CP D P CP DP m m +=+=+=计算求值即可;②另外一个极限情况时,如图4,当PQ 经过点D 时,求出PC=tan 602CD =︒,即可得到3BP =【详解】解:(1)在ABC 中,90C ∠=︒,2AC =,BC =∠4AB ==,∠BC AB ==,∠BQ BP =,∠BQ BP =∠BQ BC BP AB =,∠QBP CBA ∠=∠, BPQBAC ∴,∠90BQP BCA ∠=∠=︒,PQ AB ∴⊥;(2)90PQD ∠<︒,所以只需要讨论两类情况,当90DPQ ∠=︒时,如图1,在Rt∠ABC中,tan 3AC B BC ===,∠∠B=30, ∠9060QPB B ∠=︒-∠=︒,30DPC ∴∠=︒, ∠2AC =,点D 为边AC 的中点,∠CD=1,∠tan 30CD CP ︒===,BP BC CP ∴=-= 当90PDQ ∠=︒时,如图2,过Q 作QE∠AC 交AC 于E ,则∠QED=∠PDQ=90C ∠=︒,∠∠EQD+∠EDQ=∠EDQ+∠CDP=90︒,EQD CDP ∴,QE ED CD CP∴=, 设BP t =,过点Q 作QF∠BC 于F ,则四边形CEQF 是矩形,∠∠B=30,∠BQP=90︒, ∠PQ=12t ,∠60QPB ∠=︒,∠cos 6014PF PQ t =⋅︒=,sin 60QF PQ =⋅︒=,∠1344t QE F t t C +===,1CD =,CP t =,14DE CE CD t =-=-,134t -∴=t ∴=或t =(舍去), 综上,BP或6;(3)只需考虑BP 的极限情况:①当'D 正好在BC 上时,如图3,设BP=m ,'DD PQ ⊥,'30DD C B ∴∠=∠=︒,'CD ∴=30CDP ∠=︒,又'DP D P =,()'2CP D P CP DP m m ∴+=+=+=3m ∴=; ②另外一个极限情况时,如图4,当PQ 经过点D 时,∠60P ∠=︒,90DCP ∠=︒,CD=1, ∠PC=tan 603CD =︒,∠3BP =BP <<. .【点睛】此题考查相似三角形的判定及性质,锐角三角函数,直角三角形30度角所对的直角边等于斜边的性质,矩形的判定及性质,熟记各定理是解题的关键.7. (2021黄浦一模)如图,四边形ABCD 中,4AB AD ==,3CB CD ==,90ABC ADC ∠=∠=︒,点M 、N 是边AB 、AD 上的动点,且12MCN BCD ∠=∠,CM 、CN 与对角线BD 分别交于点P 、Q .(1)求sin MCN ∠的值:(2)当DN DC =时,求CNM ∠的度数;(3)试问:在点M 、N 的运动过程中,线段比PQ MN的值是否发生变化?如不变,请求出这个值;如变化,请至少给出两个可能的值,并说明点N 相度的位置.【答案】(1)45;(2)45°;(3)不会发生变化,35. 【分析】(1)连接AC,利用垂直平分线性质,构造Rt △ABC ,由正弦三角函数即可求得;(2)证明 △BCG ≌△DCN ,得到角相等,再由角相等,得△GMC ≌△NMC ,由DN DC =解答即可; (3)由D 、C 、N 、P 四点共圆,得到∠CPD=∠CND=∠MNC ,再得△CPQ ∽△CNM ,由此解答即可.【详解】解:(1)连接AC ∵4AB AD ==,3CB CD ==∴AC 垂直平分BD∴∠ACB=∠ACD=12∠BCD=∠MCN 在Rt △ABC 中,AB=4,AC=3∴5== ∴sin MCN ∠=sin ∠ACB=45AB AC = (2)延长AB 至G 点,使BG=DN ,连接CG ,∵CB=CD ∠CBG=∠CBN=90°∴△BCG ≌△DCN ∴∠G=∠CND ,CN=CG ,∠BCG=∠DCN∴∠MCN=12∠BCD ∴∠MCB+∠NCD=12∠BCD ∴∠GCM=∠GCB+∠GCM=12∠BCD=∠MCN ∵CM=CM , ∠G=∠CND,∴△GMC ≌△NMC ∴∠G=∠MNC=∠DNC当DN=NC时∠DNC=∠DCN=45°∴∠DNC=∠CNM=45°(3)连接NP, ∵∠ADC=∠ADO+∠CDO=90°∠ADO+∠CDO=90°∴∠ADO=∠COD=12∠BCD=∠MCN∴∠NDP=∠NCP∴D、C、N、P四点共圆,∴∠NPC+∠NDC=180°∵∠NDC=90°∴∠NPC=90°∴∠CPD=∠CND=∠MNC∴△CPQ∽△CNM∴PQ CP MN CN=在Rt△CPN中,CPCN=cos∠MCN=cos∠ACB=35∴不会发生变化35PQMN=【点睛】本题考查了线段垂直平分线的性质,三角形全等性质与判断,三角形相似等知识点,解题的关键是掌握性质与判定.8.(2021·上海静安区·九年级一模)已知∠MAN是锐角,点B、C在边AM上,点D在边AN上,∠EBD=∠MAN,且CE∠BD,sin∠MAN=35,AB=5,AC=9.(1)如图1,当CE与边AN相交于点F时,求证:DF·CE=BC·BE;(2)当点E在边AN上时,求AD的长;(3)当点E在∠MAN外部时,设AD=x,∠BCE的面积为y,求y与x之间的函数解析式,并写出定义域.【答案】(1)证明见解析;(2)AD=4±(3)224825x y x x =-+.定义域为:44x <<+. 【分析】(1)根据CE∠BD ,得出∠CEB=∠DBE ,∠DBA=∠BCE 结合题干证明出∠ABD∠∠ECB ,进而得到AD EBAB EC=,再等量代换即可得到DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .根据条件先证明出∠CEB∠∠CAE ,得到2CE =CB CA ⋅,代入求出CE ,再根据BD ABCE AC=求出BD ,利用三角函数求出BH ,根据勾股定理即可求出AD . (3)过点B 作BH∠AN ,垂足为H .BH=4,AH=3,DH=4x -根据∠ECB∠∠ABD 得到22EBC ADB S BC S BD △△=,代入化简为224825xy x x =-+即可求解.【详解】解:(1)∠CE∠BD ,∠∠CEB=∠DBE ,∠DBA=∠BCE .∠∠A=∠DBE ,∠∠A=∠BEC .∠∠ABD∠∠ECB ,∠AD EB AB EC =.∠AD DF AB BC=,∠EB DFEC BC =,∠DF·CE=BC·BE .(2)过点B 作BH∠AN ,垂足为H .∠CE∠BD,∠∠CEB=∠EBD=∠A,又∠∠BCE=∠ECA,∠∠CEB∠∠CAE,∠CE CACB CE=,∠2CE=CB CA⋅.∠AB=5,AC=9,∠BC=4,∠24936CE==⨯,∠CE=6.∠BD ABCE AC=,∠561093AB CEBD==AC⋅⨯=.在Rt∠ABH中,3sin535BH AB A=⋅=⨯=,∠AH=224AB BH-=.==.AD=4±(3)过点B作BH∠AN,垂足为H.BH=4,AH=3,DH=4x-.2222224)3825BD=DH+BH x x x=-+=-+(.∠∠ECB∠∠ABD,∠22EBCADBS BCS BD△△=.∠1322ABDS AD BH x=⋅△=,∠21638252yx xx=-+,∠224825xyx x=-+.定义域为44x<.【点睛】此题属于平面几何的综合应用,主要利用三角形相似,找到相似比,根据相似比求值,计算量较大,有一定难度.9.(2021·上海崇明区·九年级一模)如图,Rt ABC中,90ACB∠=︒,6AC=,8BC=,点D为斜边AB 的中点,ED AB⊥,交边BC于点E,点P为射线AC上的动点,点Q为边BC上的动点,且运动过程中始终保持PD QD⊥.(1)求证:ADP EDQ △△;(2)设AP x =,BQ y =,求y 关于x 的函数解析式,并写出该函数的定义域; (3)连接PQ ,交线段ED 于点F ,当PDF 为等腰三角形时,求线段AP 的长.【答案】(1)证明见解析;(2)253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭;(3)256或53 【分析】(1)根据ED AB ⊥,PD QD ⊥得A DEQ ∠=∠,ADP EDQ ∠=∠,即可得ADP EDQ △△.(2)先根据相似三角形的性质、中点性质以及锐角三角函数的概念得出tan EQ ED EDB AP AD BD===,求出34EQ x =,再根据BQ BE EQ =-,列出函数关系式,化简即可. (3)先证PDFBDQ △△,再分3种情况讨论,分别求出AP 的长.【详解】解:(1)PD QD ⊥,ED AB ⊥∠A DEQ ∠=∠,ADP EDQ ∠=∠,∠ADP EDQ △△.(2)ADP EDQ △△,∠EQ EDAP AD= 又点D 为斜边AB 的中点,∠AD BD = , EQ ED EDAP AD BD==又ED AB ⊥在Rt BDE 中tan =ED ED EQB BD AD AP==,又6tan =8AC BC DE B BD ==,由勾股定理得:BC =10D 为AB 中点, ∠BD =5, DE =154,由勾股定理得:BE =254AP x =,可得34EQ x =,BQ BE EQ =-, 253250443y x x ⎛⎫=-≤≤ ⎪⎝⎭. (3)tan tan DQ ED EDFPD B DP AD BD∠====,∠FPD B ∠=∠,又∠PDF BDQ ∠=∠, ∠PDFBDQ △△,∠PDF 为等腰三角形时,BDQ △亦为等腰三角形.若DQ BQ =,12cos BD B BQ=,542253544x =-,解得256x .若BD BQ =, 253544x -=,解得53x =. ③若DQ BD =,2180B DQB BDQ B BDQ ︒∠+∠+∠=∠+∠<,此种情况舍去.【点睛】本题主要考查了相似三角形的判定和性质,等腰三角形的性质和判定,三角函数,正确和熟练应用相似三角形的性质得到各线段之间的数量关系是解决本题的关键.10.(2021·上海闵行区·九年级一模)如图,在矩形ABCD 中,2AB =,1AD =,点E在边AB 上(点E与端点A 、B 不重合),联结DE ,过点D 作DF DE ⊥,交BC 的延长线于点F ,连接EF ,与对角线AC 、边CD 分别交于点G 、H .设AE x =,DH y =.(1)求证:ADE CDF ∽△△,并求EFD ∠的正切值; (2)求y 关于x 的函数解析式,并写出该函数的定义域; (3)连接BG ,当BGE △与DEH △相似时,求x 的值.【答案】(1)证明见解析;12;(2)222(02)21x y x x +=<<+;(3)45x =或45x =【分析】(1)根据垂直关系得到ADE CDF ∠=∠,根据AA 即可证明ADE CDF ∽△△,得到12DE AD DF CD ==,再根据正切的定义即可求解tan EFD ∠; (2)先证明FCH FBE △∽△,得到FC CH FB BE =,代入得到22212x yx x-=+-,故可求解; (3)根据题意分BEG DHE △∽△和EGB HDE △∽△,分别列出比例式求出x 的值即可求解. 【详解】解:(1)∠90ADE CDE ︒∠+∠=,90CDF CDE ︒∠+∠=∠ADE CDF ∠=∠在Rt EAD 和Rt FCD 中90ADE CDFEAD FCD ∠=∠⎧⎨∠=∠=︒⎩90EAD FCD ︒∠=∠=∠FAD FCD △∽△∠2AB DC ==,1AD =,∠12DE AD DF CD == ∠1tan 2DE EFD DF ∠== (2)由(1)可知ADE CDF ∽△△∠12EA DE AD FC DF CD ===∠22FC EA x ==∠AB //CD∠FCH FBE △∽△,∠FC CH FB BE =∠22212x y x x -=+-∠222(02)21x y x x +=<<+, (3)∠AE x =,DH y =,过点E 作EM∠CD 于M 点,∠四边形AEMD 为矩形∠MH=DH -DM=DH -AE=y -x ,∠2BE x =-,DE =EH =∠AB //CD∠AEG CHG △∽△∠EG AE HG CH =∠EG AE EH AE CH =+∠AEEG EH AE CH=⋅+∠BEG DHE ∠=∠, 若BEG DHE △∽△, ∠BE EG DH HE =∠BE AEDH AE CH =+即22x x y x y -=+- 化简得2240x y +-=∠22221x y x +=+∠222212240x x x +⨯-++=化简得22508x x +=-解得x =45x =若EGB HDE △∽△∠BE EG EH HD = ∠2AE BE HD HE AE CH⋅=⋅+即2(2)1()2x x y y x x y ⎡⎤-=⋅+-⎣⎦+- ∠22221x y x +=+代入化简得22637200x x ++=∠=372-4×26×20=-711<0,∠方程无解综上,45x =和x =BGE △与DEH △相似.【点睛】本题考查了矩形的性质、函数关系式、正切的定义、相似三角形的判定和性质等知识点,解题的关键是灵活运用所学知识解决问题,用分类讨论的思想思考问题,属于中考压轴题.11.(2021·上海奉贤区·九年级一模)已知圆O 的直径4AB =,点P 为弧AB 上一点,联结PA PO 、,点C 为劣弧AP 上一点(点C 不与点A 、P 重合),联结BC 交PA PO 、于点D E 、()1如图,当78cos CBO ∠=时,求BC 的长;()2当点C 为劣弧AP 的中点,且EDP ∆与AOP ∆相似时,求ABC ∠的度数; ()3当2AD DP =,且BEO ∆为直角三角形时.求四边形AOED 的面积.【答案】(1)72;(2)18°;(3)53【分析】(1)方法一:作OG BC ⊥,利用垂径定理和余弦即可求得;方法二:连接AC ,根据直径所对的圆周角等于90°可得∠ACB=90°,利用余弦解直角三角形即可;(2)先根据已知条件确定两个相似三角形的对应角,得出P PED PAO OEB ∠=∠=∠=∠,设ABC α∠=,利用等腰三角形等边对等角和弧与圆心角的关系,圆周角定理分别表示∠AOP 和∠OEB ,利用三角形外角的性质即可求得α即ABC ∠;(3)分当90EOB ∠=和当90OEB ∠=时两种情况讨论,画出对应图形,利用相似三角形和解直角三角形的知识求解即可.【详解】解析:方法一: 作OG BC ⊥,∠BC=2BG,7cos 4BG BO CBO =⋅∠=,722BC BG ∴==;方法二: 连接AC ,∠AB 为直径,90ACB ∴∠=7cos 2BC AB CBO ∴=⋅∠=; (2)∠AO=OP ,∠∠PAO=∠P ,∠P P ∠=∠,EDP ∆与AOP ∆相似,,DPEOPA ∴∆∆P PED PAO OEB ∴∠=∠=∠=∠,C 是AP 中点,CO ∴平分AOP ∠, CO BO =,设,ABC α∠=2,4AOC AOP αα∴∠=∠=,18049022PAO OEB αα-∴∠==-=∠,AOP OEB ABC ∴∠=∠+∠, 即4902a a a =-+,18a ABC ∴=∠=;()3 I .当90EOB ∠=时,作DH AB ⊥∠DH//OP ,∠∠ADH∠∠APO ,∠23AH DH AD AD AO OP AP AD DP ====+, 23AH AO ∴=,∠AB=4,∠OA=OB=2,428,,333AH HO BH ∴===, 2,AO OP ==43AH DH ∴==,∠DH//OP ,∠∠BOE∠∠BHD , 28433EO OB EODH HB ∴===,1EO ∴=, AHD AOED HOEDS S S ∆∴=+四边形梯形21414251232333⎛⎫⎛⎫=⨯+⨯+⨯= ⎪ ⎪⎝⎭⎝⎭; II .当90OEB ∠=时连接,AC由()1得//AC DP ,∠∠ACD∠∠PED ,∠ACB∠∠OEB ,2AD DP =,∠2CD AC ADDE PE DP===,2AC EP ∴=,又,AO BO =∠=2CB AC ABBE OE BO==,2,AC EO ∴=2,30AC OP ABC ∴==∠=,60,EOB CAO ∴∠=∠=∠AO=OP ,∠∠PAO=∠APO ,∠PAO+∠APO=∠EOB=60°,∠30CAD AP O O PA ∠=∠==∠,ABC OEB ACD AOED S S S S ∆∆∆∴=--四边形111222AC BC OE BE CD AC =⋅-⋅-⋅4,AB =2,AC BC BE ∴===1OE =,CD =111212222AOED S ∴=⨯⨯⨯=四边形综上所述,四边形AOED 的面积为53 【点睛】本题考查圆周角定理、垂径定理、相似三角形的性质和判定,解直角三角形,等腰三角形的性质等.(1)中能借助定理构造直角三角形是解题关键;(2)能借助相似三角形以及圆周角定理表示相关角是解题关键;(3)中注意分类讨论和正确构造图形.12.(2021·上海普陀区·九年级一模)如图,矩形ABCD 中,1AB =,3BC =,点E 是边BC 上一个动点(不与点B 、C 重合),AE 的垂线AF 交CD 的延长线于点F .点G 在线段EF 上,满足:1:2FG GE =.设BE x =.(1)求证:AD DFAB BE=; (2)当点G 在ADF 的内部时,用x 的代数式表示ADG ∠的余切; (3)当FGD AFE ∠=∠时,求线段BE 的长.。

专题23 命题与证明-2021年中考数学名校地市必刷题(上海专用)(解析版)

专题23 命题与证明-2021年中考数学名校地市必刷题(上海专用)(解析版)

专题23 命题与证明一、单选题(共12小题)1.(2020•长沙模拟)用尺规作图作△ABC的BC边上的高,下列作法正确的是()A.B.C.D.【解答】解:∵△ABC的BC边上的高,AD⊥BC,∴选项B正确,故选:B.【知识点】作图—基本作图、三角形的角平分线、中线和高2.(2020•河南模拟)如图,在Rt△ABC中,∠ABC=90°,分别以点A和点B为圆心,大于AB的长为半径作弧相交于点D和点E,直线DE交AC于点F,交AB于点G,连接BF,若BF=3,AG=2,则BC=()A.5 B.4C.2D.2【解答】解:由作法得GF垂直平分AB,∴FB=F A,AG=BG=2,∴∠FBA=∠A,∵∠ABC=90°,∴∠A+∠C=90°,∠FBA+∠FBC=90°,∴∠C=∠FBC,∴FC=FB,∴FB=F A=FC=3,∴AC=6,AB=4,∴BC===2故选:C.【知识点】线段垂直平分线的性质、作图—基本作图3.(2020•河北模拟)如图,在△ABC中,AB=AC,AD是高,AM是△ABC外角∠CAE的平分线.以点D为圆心,适当长为半径画弧,交DA于点G,交DC于点H.再分别以点G、H为圆心,大于GH的长为半径画弧,两弧在∠ADC内部交于点Q,连接DQ并延长与AM交于点F,则△ADF的形状是()A.等腰三角形B.等边三角形C.直角三角形D.等腰直角三角形【解答】解:根据画图过程可知:DF平分∠ADC,∴∠ADF=∠CDF,∵AB=AC,∴∠B=∠ACB,∵AM是△ABC外角∠CAE的平分线,∴∠EAM=∠CAM,∵∠EAC=∠B+∠ACB,∴∠EAF=∠B,∴AF∥BC,∴∠AFD=∠FDC,∴∠AFD=∠ADF,∴AF=AD,∵AD是高,∴∠ADB=90°,∴∠F AD=∠ADB=90°,∴△ADF的形状是等腰直角三角形.故选:D.【知识点】等边三角形的判定、等腰直角三角形、作图—基本作图、等腰三角形的判定4.(2020•襄城区校级模拟)如图,四边形ABCD是平行四边形,用直尺和圆规作∠BAD的平分线AG交BC于点E,若AB=5,BF=6,则AE的长为()A.8 B.10 C.11 D.12【解答】解:∵AG平分∠BAD,∴∠BAG=∠DAG,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEB=∠DAG,∴∠BAG=∠AEB,∴AB=BE=5,由作图可知:AB=AF,∠BAE=∠F AE,∴BH=FH=3,BF⊥AE,由勾股定理得:AH=EH=4,∴AE=8,故选:A.【知识点】角平分线的性质、作图—基本作图、平行四边形的性质5.(2019•成都一模)如图,已知矩形AOBC的三个顶点的坐标分别为O(0,0),A(0,3),B(4,0),按以下步骤作图:①以点O为圆心,适当长度为半径作弧,分别交OC,OB于点D,E;②分别以点D,E为圆心,大于DE的长为半径作弧,两弧在∠BOC内交于点F;③作射线OF,交边BC于点G,则点G的坐标为()A.(4,)B.(,4)C.(,4)D.(4,)【解答】解:∵四边形AOBC是矩形,A(0,3),B(4,0),∴OB=4,OA=BC=3,∠OBC=90°,∴OC==5,作GH⊥OC于H.由作图可知:OG平分∠BOC,∵GB⊥OB,GH⊥OC,∴GB=GH,时GB=GH=x,∵S△OBC=×3×4=×5×x+×4×x,∴x=,∴G(4,).故选:A.【知识点】矩形的性质、坐标与图形性质、作图—基本作图6.(2019•海港区一模)已知△ABC,D是AC上一点,尺规在AB上确定一点E,使△ADE∽△ABC,则符合要求的作图痕迹是()A.B.C.D.【解答】解:如图,点E即为所求作的点.故选:A.【知识点】相似三角形的判定、作图—复杂作图7.(2019•金水区校级一模)如图,在△ABC中,按以下步骤作图:①分别以点B,C为圆心,以大于BC的长为半径作弧,两弧相交于两点M,N;②作直线MN交AB于点D,连接CD.如果CD=AC,∠ACB =105°,那么∠B的度数为()A.20°B.25°C.30°D.35°【解答】解:由题意可得:MN垂直平分BC,则DC=BD,故∠DCB=∠DBC,∵DC=AC,∴∠A=∠CDA,设∠B为x,则∠BCD=x,∠A=∠CDA=2x,可得:x+2x+105°=180°,解得:x=25,即∠B=25°,故选:B.【知识点】作图—基本作图、等腰三角形的性质、线段垂直平分线的性质8.(2019•信阳一模)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2x,y+1),则y关于x的函数关系为()A.y=x B.y=﹣2x﹣1 C.y=2x﹣1 D.y=1﹣2x【解答】解:由作图可知,点P在第二象限的角平分线上,横坐标与纵坐标互为相反数,∵P(2x,y+1),∴2x+y+1=0,∴y=﹣2x﹣1,故选:B.【知识点】作图—基本作图9.(2020•坪山区一模)如图,在平面直角坐标系中,以坐标原点O为圆心,适当的长为半径作弧,分别交x轴、y轴于点M、点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P(a,b),则a与b的数量关系为()A.a+b=0 B.a+b>0 C.a﹣b=0 D.a﹣b>0【解答】解:利用作图得点OP为第二象限的角平分线,所以a+b=0.故选:A.【知识点】作图—基本作图10.(2020•石家庄模拟)如图,已知点D、E分别在∠CAB的边AB、AC上,若PD=6,由作图痕迹可得,PE的最小值是()A.2 B.3 C.6 D.12【解答】解:根据作图痕迹可知:AP是∠BAC的平分线,∵PD⊥AB,且PD=6,当PE⊥AC时,PE=PD=6,∴PE的最小值是6.故选:C.【知识点】作图—基本作图11.(2020•路南区一模)在以下三个图形中,根据尺规作图的痕迹,不能判断射线AD平分∠BAC的是()A.图2 B.图1与图2 C.图1与图3 D.图2与图3【解答】解:在图1中,利用基本作图可判断AD平分∠BAC;在图2中,利用基本作图得到D点为BC的中点,则AD为BC边上的中线;在图3中,利用作法得AE=AF,AM=AN,则可判断△ADM≌△ADN,所以∠AMD=∠AND,则可判断△MDE≌△NDF,所以D点到AM和AN的距离相等,则可判断AD平分∠BAC.故选:A.【知识点】作图—基本作图12.(2020•虹口区二模)已知在ABC中,小明按照下列作图步骤进行尺规作图(示意图与作图步骤如表),那么交点O是△ABC的()A.外心B.内切圆的圆心C.重心D.中心【解答】解:由尺规作图可知,MN、PQ分别是线段BC、AC的垂直平分线,∴点D、E分别是BC、AC的中点,∴AD、BE是△ABC的中线,∴点O是△ABC的重心,故选:C.【知识点】三角形的外接圆与外心、作图—基本作图、三角形的重心、三角形的内切圆与内心二、填空题(共10小题)13.(2020•松滋市一模)如图,在边长是4×4,小正方形边长为1的正方形网格图中,线段AB的两个端点都在格点上,若以AB为斜边,则可以作出个格点直角三角形,并在答题卡的图中作出其中面积最大的格点直角三角形.【解答】解:如图所示:线段AB的两个端点都在格点上,以AB为斜边,可以作出4个格点直角三角形,△ABC的面积最大.故答案为4.【知识点】勾股定理的逆定理、作图—应用与设计作图、勾股定理14.(2019•河西区二模)在每个小正方形的边长为1的网格中,有△ABC,点A,B,C都在格点上(Ⅰ)△ABC的面积等于.(Ⅱ)求作其内接正方形,使其一边在BC上,另两个顶点各在AB,AC上.在如图所示的网格中,请你用无刻度的直尺,画出该正方形,并简要说明画图的方法(不要求证明).【解答】解:(Ⅰ)5×4÷2=10.故△ABC的面积等于10,故答案为:10;(Ⅱ)如图所示:取格点D,F,E,连接DE,DF分别交AB,AC于点M,N,再取格点S,T.G,K,连接GK,ST交于点Q,连接MQ并延长MQ交BC于点P,同理得到点R,四边形MPRN即为所求的正方形;故答案为:取格点D,F,E,连接DE,DF分别交AB,AC于点M,N,再取格点S,T.G,K,连接GK,ST交于点Q,连接MQ并延长MQ交BC于点P,同理得到点R,四边形MPRN即为所求的正方形.【知识点】作图—复杂作图、相似三角形的判定与性质15.(2019•新乡二模)如图,在每个小正方形的边长为1的网格中,点A,B,C均在格点上.(Ⅰ)AC的长等于;(Ⅱ)在线段AC上有一点D,满足AB2=AD•AC,请在如图所示的网格中,用无刻度的直尺,画出点D,并简要说明点D的位置是如何找到的(不要求证明).【解答】解:(Ⅰ)AC=,故答案为:5,(Ⅱ)要满足AB2=AD•AC,即AD=,构造△AEC,如图所示,过点E作EF⊥AC于点F,由相似三角形的性质易证:CE2=CF•AC,∴CF=以点A为圆心,CF长为半径作圆交AC于点D,连接BD,此时△ABD∽△ACB,故答案为:构造△ACE,过点E作EF⊥AC于点F,以点A为圆心,CF长为半径作圆交AC于点D.【知识点】作图—复杂作图、勾股定理、相似三角形的判定与性质16.(2020•扶沟县一模)在△ABC中,尺规作图的痕迹如图所示,已知∠ADB=50°,∠A=110°,则∠ABC的度数为.【解答】解:由作图可知:EF垂直平分线段BC,∴DB=DC,∴∠DBC=∠C,∵∠ADB=∠DBC+∠C=50°,∴∠C=25°,∴∠ABC=180°﹣∠A﹣∠C=180°﹣110°﹣25°=45°,故答案为45°.【知识点】三角形内角和定理、作图—复杂作图、三角形的外角性质17.(2019•怀柔区二模)下面是一位同学的一道尺规作图题的过程.已知:线段a,b,c.求作:线段x,使得a:b=c:x.他的作法如下:①以点O为端点画射线OM,ON;②在OM上依次截取OA=a,AB=b;③在ON上截取OC=c;④联结AC,过点B作BD∥AC,交ON于点D.所以:线段CD就是所求的线段x.这位同学作图的依据是.【解答】解:这位同学作图的依据是:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例;故答案为:平行于三角形一边的直线截其它两边(或两边的延长线),所得对应线段成比例.【知识点】作图—复杂作图、平行线分线段成比例18.(2019•花溪区一模)下面是一道确定点P位置的尺规作图题的作图过程.如图1,直线L1与L2相交于点O,A,B是L2上两点,点P是直线L1上的点,且∠APB=30°,请在图中作出符合条件的点P.作法:如图2,(1)以AB为边在L2上方作等边△ABC;(2)以C为圆心,AB长为半径作⊙C交直线L1于P1,P2两点.则P1、P2就是所作出的符合条件的点P.请回答:该作图的依据是.【解答】解:(1)如图1,由作法得AC=BC=AB,△ABC是等边三角形;(2)如图2,由作法得CA=CB=AB=CP1=CP2,∴直线L1的两点P1,P2和A,B在半径为AB的圆上,故答案为:等边三角形的定义,到圆心的距离等于半径的点在圆上.【知识点】作图—复杂作图、等边三角形的性质19.(2019•长春模拟)如图,一块余料ABCD,AD∥BC,现进行如下操作以点B为圆心,适当长为半径作圆弧,分别交BA,BC于点G,H;再分别以点G,H为圆心,大于GH的长为半径作圆弧,两弧在∠ABC内部相交于点O,画射线BO,交AD于点E.连结OG、OH.若∠A=124°,则∠AEB的大小是度.【解答】解:由作图可知:∠ABE=∠CBE,∵AD∥BC,∴∠AEB=∠CBE,∴∠ABE=∠AEB,∵∠A=124°,∴∠AEB=(180°﹣124°)=28°,故答案为28.【知识点】平行线的性质、作图—应用与设计作图20.(2019•天津一模)如图,在每个小正方形边长为1的网格中,△ABC的顶点A,B,C均在格点上,D为AC边上的一点.(1)线段AC的值为;(2)在如图所示的网格中,AM是△ABC的角平分线,在AM上求一点P,使CP+DP的值最小,请用无刻度的直尺,画出AM和点P,并简要说明AM和点P的位置是如何找到的(不要求证明).【解答】解:(1)AC==5,故答案为5.(2)如图,取格点E,连接AE交BC于M,取格点F,连接DF交AM于点P,点P即为所求.【知识点】作图—复杂作图、轴对称-最短路线问题21.(2019•柯桥区模拟)如图,五个边长为1的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A、B两个顶点,过顶点C作CD⊥AB,垂足为D.“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的对角线长为.【解答】解:如图所示:四边形ACBE是正方形,AB与CE是正方形的对角线,边长为,则CD=DE=AD=BD,则组成的这个矩形的长与宽分别为,,∴这个矩形的对角线的长==故答案为:.【知识点】矩形的性质、作图—应用与设计作图、图形的剪拼22.(2019•东丽区一模)如图,在由边长都为1的小正方形组成的网格中,点A,B,C均为格点,点P,Q为线段AB上的动点,且满足PQ=1.(Ⅰ)当点Q为线段AB中点时CQ的长度等于.(Ⅱ)当线段CQ+CP取得最小值时,请借助无刻度直尺在给定的网格中画出点Q,并简要说明你是怎么画出点Q 的:.【解答】解:(I)当点Q为线段AB中点时CQ的长度等于2.5;故答案为2.5.(Ⅱ)线段CQ+CP的值最小时,点P,Q必在△ABC的AB边上的高线的垂足的两侧,并且关于垂足对称,即离垂足的距离为0,5.所以先找到C关于ABD的对称点H,连接CH交AB于点O,下一步取格点D,使得AB∥CD,AB=CD,取格点E,F,连接EF,则CG=1,取格点N,L,使得BN=3,NL∥AB,NL=AB,此时直线LN与直线CD到直线AB的距离相等,取格点H,T,使得HT∥AB,TH=AB,取格点J,K,连接JK交TH于M,此时HM=CG=1,连接GM,此时GM∥CH,设直线LN交MG于T,交CH于R,此时TR=CG=1,OR=OC,矩形CGTR关于直线AB对称,连接CT交AB于Q,此时OQ=0.5,点Q即为所求.故答案为:取格点D,E,F,连接CD,EF,它们相交于点G,取格点H,I,J,K,连接HI,JK,它们相交于点M,连接GM,取格点L,N,连接LN且延长,交GM于T,连接TC交AB于Q,点Q即为所求.【知识点】勾股定理、作图—复杂作图、轴对称-最短路线问题三、解答题(共8小题)23.(2020•禅城区模拟)如图,已知Rt△ABC中∠C=90°,AB=10,AC=8.(1)作AB的垂直平分线DE,交AB于点D,交AC于点E.(要求尺规作图,不写作法,保留作图痕迹);(2)求AE的长.【解答】解:(1)如图所示,DE即为所求;(2)如图,连接BE,∵DE垂直平分AB,∴AE=BE,设AE=x,则BE=x,CE=8﹣x,∵Rt△ABC中∠C=90°,AB=10,AC=8,∴BC=6.∵Rt△BCE中,BC2+CE2=BE2,∴62+(8﹣x)2=x2,解得x=,∴AE=.【知识点】线段垂直平分线的性质、勾股定理、作图—基本作图24.(2020•颍州区一模)如图,⊙O是△ABC的外接圆,且AB是直径.(1)尺规作图:作∠ACB的平分线CD,交⊙O于点D;(保留作图痕迹,不写作法)(2)连接AD、BD,若∠ADC=30°,AD=,求阴影部分的面积.【解答】解:(1)尺规作图如图所示;(2)连接OC,则∠AOC=2∠ADC=60°.∵AB是⊙O的直径,CD是∠ACB的平分线∴∠ADB=90°,∠ACD=∠DCB.∴AD=BD.故,AC=1,.∴.∴.【知识点】三角形的外接圆与外心、扇形面积的计算、圆周角定理、作图—基本作图25.(2019•合肥模拟)已知Rt△ABC中,∠ABC=90°,∠C=30°,F为AC的中点.⊙O是以AF为直径的圆,交AB于点D,交BF于点E.(1)过E点作⊙O的切线,并标出它与BD的交点M(要求:用尺规作图,保留作图痕迹,不写作法);(2)连接ME,求证:ME是线段BD的垂直平分线.【解答】(1)解:如图,ME为所作;(2)∵∠ABC=90°,∠C=30°,∴∠A=60°,∵F为AC的中点,∴F A=FB=FC,∴△ABF为等边三角形,∴∠AFB=∠ABF=60°,而OF=OE,∴△OEF为等边三角形,∴∠EOF=60°,∴∠EOF=∠A,∴OE∥AB,而OE⊥ME,∴AB⊥EM,∵∠BDE=∠AFE=60°,∴△BDE为等边三角形,∴ME是线段BD的垂直平分线.【知识点】直角三角形斜边上的中线、作图—复杂作图、切线的性质、线段垂直平分线的性质26.(2020•张家港市模拟)在Rt△ABC中,∠ACB=90°,利用直尺和圆规作图(1)作出AB边上的中线CD;(2)作出△ABC的角平分线AE;(3)若AC=5,BC=12,求出斜边AB上的高的长度.【解答】解:(1)如图,线段CD即为所求.(2)如图,线段AE即为所求.(3)作CH⊥AB于H.在Rt△ABC中,∵AC=5,BC=12,∠ACB=90°∴AB===13,∵•AC•BC=•AB•CH∴CH==.【知识点】作图—复杂作图、角平分线的性质、勾股定理、直角三角形斜边上的中线、线段垂直平分线的性质27.(2020•花都区一模)如图,四边形ABCD为平行四边形,AD=2,AB=6,∠DAB=60°,E为边CD上一点.(1)尺规作图:延长AE,过点C作射线AE的垂线,垂足为F(不写作法,保留作图痕迹);(2)当点E在线段CD上(不与C,D重合)运动时,求EF•AE的最大值.【解答】解:(1)如图,射线CF即为所求.(2)作AH⊥CD交CD的延长线于H.设EC=x.∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD=6,∴∠BAD=∠ADH=60°,∵∠H=90°,∴∠DAH=30°,∴DH=AD=1,∴CH=CD+DH=6+1=7,∵∠CFE=∠H=90°,∠CEF=∠AEH,∴△CFE∽△AHE,∴=,∴EF•AE=CE•EH=x(7﹣x)=﹣x2+7x=﹣(x﹣)2+,∵﹣1<0,∴EF•AE的最大值为.【知识点】作图—基本作图、平行四边形的性质28.(2020•长春模拟)已知:直线1及直线1外一点M.请根据下列提供的数学原理一、二、三,分别在图①,②,③中使用直尺和圆规作直线MN,使得MN ∥l.(保留作图痕迹,不写作法)【解答】解:如图所示,根据题意的数学原理一、二、三,图1,2,3中直线MN即为所求.【知识点】作图—复杂作图、平行线的判定29.(2019•山西模拟)为提升城市品味、改善居民生活环境,我省某市拟对某条河沿线十余个地块进行片区改造,其中道路改造是难度较大的工程如图是某段河道坡路的横截面,从点A到点B,从点B到点C是两段不同坡度的坡路,CM是一段水平路段,CM与水平地面AN的距离为12米.已知山坡路AB的路面长10米,坡角BAN=15°,山坡路BC与水平面的夹角为30°,为了降低坡度,方便通行,决定降低坡路BC的坡度,得到新的山坡AD,降低后BD与CM相交于点D,点D,A,B在同一条直线上,即∠DAN=15°.为确定施工点D的位置,求整个山坡路AD的长和CD的长度(sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,sin30°=0.50,cos30°≈0.87,tan30°≈0.58结果精确到0.1米)【解答】解:过B作BE⊥AN于E,过D作DF⊥AN于F,过C作CG⊥AN于G,过B作BH⊥CG于H,则四边形CGFD和四边形BEGH是矩形,∴BE=GH,EG=BH,CD=GF,CG=DF,∴CH=DF﹣GH,由题意得,DF=12,AB=10,在Rt△ABE中,BE=AB•sin15°=10×0.26=2.6,在Rt△ADF中,DF=AB•sin15°,AD=12÷0.26=46.2,∴CH=DF﹣BE=9.4,在Rt△CBH中,CH=BC•sin30°,BC=CH÷0.5=18.8,∵CD∥AN,∴∠CDB=∠BAN=15°,∵∠CBH=30°,∴∠DBC=15°,∴∠CDB=∠CBD,∴CD=CB=18.8(米),答:修整后山坡路AD的长约为46.2米,CD的长约为18.8米.【知识点】作图—应用与设计作图、解直角三角形的应用-坡度坡角问题30.(2019•荔湾区校级二模)在边长为12的正方形ABCD中,P为AD的中点,连结PC,(1)作出以BC为直径的⊙O,交PC于点Q(要求尺规作图,不要求写作法,保留作图痕迹);(2)连结AQ,证明:AQ为⊙O的切线;(3)求QC的长与cos∠DAQ的值;【解答】解:(1)如图,点Q为所作;(2)证明:过Q点作QE⊥BC于E,交AD于F,连接BQ、OQ、OA,如图,∵四边形ABCD为正方形,∴BC=CD=AD=AB=12,AD∥BC,在Rt△PCD中,PC==6,∵BC为直径,∴∠BQC=90°,∵PD∥BC∴∠CPD=∠BCQ,∴Rt△BCQ∽Rt△CPD,∴CQ:PD=BC:CP,即CQ:6=12:6,∴CQ=,∵CQ2=CE•CB,∴CE==,在Rt△CEQ中,QE==,∴FQ=12﹣=,∵AF=AD﹣FD=AD﹣CE=12﹣=.∴AQ==12,在△OAB和△OQA中,∴△OAB≌△OQA(SSS),∴∠OQA=∠OBA=90°,∴OQ⊥AQ,∴AQ为⊙O的切线;(3)由(2)得CQ=,AF=,AQ=12,∴cos∠EAQ==,即cos∠DAQ的值为.【知识点】作图—复杂作图、圆周角定理、解直角三角形、正方形的性质、切线的判定与性质。

2021-2019年上海各区中考数学一模压轴题图形的翻折分类汇编答案解析版

2021-2019年上海各区中考数学一模压轴题图形的翻折分类汇编答案解析版

2021-2019年上海各区中考数学一模压轴题图形的翻折分类汇编答案解析版【历年真题】1.(2021秋•长宁区期末)如图,在△ABC中,∠C=90°,AC=BC=3,点D、E分别在AC边和AB边上,沿着直线DE翻折△ADE,点A落在BC边上,记为点F,如果CF=1,则BE=4.【考点】翻折变换(折叠问题);等腰直角三角形.【专题】平移、旋转与对称;几何直观.【分析】过F作FG⊥AB于点G.先求出AB=32,BF=3﹣1=2.则FG=GB=BF=2,所以AG=AB﹣BG=32﹣2=22,设AE=x,则EF =x,EG=22﹣x,在Rt△EGF中,EG2+FG2=EF2,利用勾股定理解列出(22﹣x)2+(2)2=x2,解得x=524,即求出BE.【解答】解:过F作FG⊥AB于点G.∵∠C=90°,AC=BC=3,CF=1,∴AB=32,BF=3﹣1=2.∴FG=GB=BF=2,∴AG=AB﹣BG=3,设AE=x,则EF=x,EG=﹣x,在Rt△EGF中,EG2+FG2=EF2,即(﹣x)2+)2=x2,解得x,∴BE=AB﹣AE=.故答案为:4.【点评】本题考查翻折变换,等腰直角三角形的性质等知识,解题的关键是熟练运用勾股定理,属于中考常考题型.2.(2021秋•虹口区期末)如图,在△ABC中,AB=AC=15,sin∠A=45.点D、E分别在AB和AC边上,AD=2DB,把△ADE沿着直线DE翻折得△DEF,如果射线EF⊥BC,那么AE=10.【考点】翻折变换(折叠问题);解直角三角形;等腰三角形的性质.【专题】推理填空题;等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】先根据折叠得到DE平分∠AEF,根据角平分线过D作∠AEF两边垂线即可.【解答】过D 作DM ⊥AC 于M ,过B 作BH ⊥AC 于H∵AB =AC =15,4sin 5A ∠=,AD =2DB ∴AD =10,DM =8,AM=6,BH=12,AH=9, ∴CH =AC -CH=6∴tan 2,BH C BC CH∠====过D 作DG ⊥EF 交EF 于N ,交AC 于G∵把△ADE 沿着直线DE 翻折得△DEF ∴DE 平分∠AEF ,∴DM =DN =8,EM =EN ,∵EF ⊥BC 于点G ,∴DH ∥BC ,∴23DG AD BC AB ==,∠C =∠NHE ,∴23DG BC ==∴8NG DG DN =-= ∵tan tan 2ENC NGE NG ∠=∠==∴216EM EN NG ===-∴10AE AM EM =+=故答案为:10【点评】本题难度比较大,综合考查折叠的性质、三角函数、相似三角形的性质与判定,解题的关键是由折叠得到角平分线再根据角平分线作垂线.3.(2021秋•金山区期末)在△ABC中,AB=AC=10,sinB=45,E是BC上一点,把△ABE沿直线AE翻折后,点B落在点P处,如果PE∥AC,那么BE= 2 .【考点】翻折变换(折叠问题);解直角三角形;平行线的性质;等腰三角形的判定与性质.【专题】等腰三角形与直角三角形;平移、旋转与对称;解直角三角形及其应用;几何直观;应用意识.【分析】过A作AD⊥BC于D,设AP交BC于F,根据AB=AC=10,sin B=45,AD⊥BC,可得AD=8,BD=CD=6,BC=12,由△ABE沿直线AE翻折后,点B落在点P处,即得∠P=∠B=∠C,∠BAE=∠P AE,而PE∥AC,有∠P=∠F AC,可证得∠AEC=∠EAC,CE=AC=10,即得BE=BC﹣CE=2.【解答】解:过A作AD⊥BC于D,设AP交BC于F,如图:∵AB=AC=10,sin B=45,AD⊥BC,∴4105AD ADAB==,∴AD=8,∴BD=CD=6,∴BC=12,∵△ABE沿直线AE翻折后,点B落在点P处,∴∠P=∠B=∠C,∠BAE=∠P AE,∵PE∥AC,∴∠P=∠F AC,∴∠B=∠F AC,∴∠B+∠BAE=∠F AC+∠P AE,即∠AEC=∠EAC,∴CE=AC=10,∴BE=BC﹣CE=2,故答案为:2.【点评】本题考查等腰三角形中的折叠问题,解题的关键是掌握折叠的性质,能熟练运用锐角三角函数解直角三角形.4.(2021秋•闵行区期末)如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,点P是AC边上一点,将△ACB沿着过点P的一条直线翻折,使得点A落在边AB上的点Q 处,联结PQ,如果∠CQB=APQ,那么AQ的长为395.【考点】相似三角形的判定与性质;解直角三角形;勾股定理;翻折变换(折叠问题).【专题】几何综合题;压轴题;推理填空题;运算能力;推理能力.【分析】利用三角形内角和180°,以及平角180度,推导出PQ平分∠AQC,设CP=x,则AP=PQ=8﹣x,利用三角形等面积法和相似三角形性质求出AQ 的长,再利用相似三角形的性质构建方程即可解决问题.【解答】解:根据题意如图所示:在Rt△ABC中,∠C=90°,∵AC=8,BC=6,∴AB=10,根据折叠的性质可知∠A=∠PQA,∵∠AQP+∠A+∠APQ=180°,∠AQP+∠PQC+∠CQB=180°,∵∠CQB=∠APQ,∴∠A=∠AQP=∠PQC,∴PQ平分∠AQC,设CP=x,则AP=PQ=8﹣x,如图,过点C作CD⊥AB于点D,PE⊥AB于点E,∴S△ABC =12⨯AC•BC=12⨯AB•CD,∴10CD=6×8,∴CD=245,∵CD⊥AB,PE⊥AB,∴PE∥CD,∴△APE∽△ACD,∴AP PE AC CD=,∴82485x PE-=,∴PE=35(8﹣x),∴AE==45(8﹣x),∴AQ=2AE=85(8﹣x),∵∠PCQ=∠QCA,∠PQC=∠A∴△PCQ∽△QCA,∴CQ CP PQAC CQ AQ==,∴CQ88(8)5xx-=-,∴258x=,∴AQ=85(8﹣x)=395.故答案为:395.【点评】本题属于几何综合题,是中考填空题的压轴题,主要考查了翻折的性质、解直角三角形、相似三角形的判定和性质、勾股定理,三角形等面积法,综合性较强,熟练解直角三角形中线段问题是解题的捷径.5.(2021秋•徐汇区期末)如图,在Rt △ABC 中,∠CAB =90°,AB =AC ,点D 为斜边BC 上一点,且BD =3CD ,将△ABD 沿直线AD 翻折,点B 的对应点为B ′,则sin ∠CB ′D = 10.【考点】翻折变换(折叠问题);平行线分线段成比例;解直角三角形;等腰直角三角形.【专题】平移、旋转与对称;解直角三角形及其应用;运算能力;推理能力.【分析】过点D 作DE ⊥AB 于点E ,由折叠的性质得出AB =AB ',∠BAD =∠B 'AD ,证出∠CB 'D =∠CAD ,由平行线的性质得出∠CAD =∠ADE =∠CB 'D ,13CD AE BD BE ==,设AE =a ,则DE =3a ,求出AD ,由锐角三角函数的定义可得出答案.【解答】解:过点D 作DE ⊥AB 于点E ,∵将△ABD 沿直线AD 翻折,∴AB =AB ',∠BAD =∠B 'AD ,∵AB =AC ,∴AC =AB ',∴∠AB 'C =∠ACB ',设∠B 'AC =x ,∠CB 'D =α,∠CAD =β,∵AB =AC ,∠CAB =90°,∴∠B =∠ACB =∠AB 'D =45°,∴2(α+45°)+x =180°,∴2α=90°﹣x ,又∵∠B 'AD +∠BAD =∠B 'AC +∠CAB ,∴2(x +β)=90°+x ,∴2β=90°﹣x ,∴α=β,∴∠CB 'D =∠CAD ,∵CD ⊥AB ,DE ⊥AB ,∴CA ∥DE ,∴∠CAD =∠ADE =∠CB 'D ,13CD AE BD BE ==, ∵BE =DE ,∴13AE BE =, 设AE =a ,则DE =3a ,∴AD =,∴sin ∠CB ′D =sin ∠ADE =AE DE ==10.【点评】本题考查了折叠的性质,等腰直角三角形的性质,平分线分线段成比例定理,锐角三角函数的定义,熟练掌握折叠的性质是解题的关键.6.(2021秋•崇明区期末)如图所示,在三角形纸片ABC 中,AB =9,BC =6,∠ACB =2∠A ,如果将△ABC 沿过顶点C 的直线折叠,使点B 落在边AC 上的点D 处,折痕为CM ,那么cos ∠DMA = 3132.【考点】翻折变换(折叠问题);解直角三角形.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】由折叠的性质可知,CB =CD =6,∠BCM =∠ACM ,证明△BCM ∽△BAC ,由相似三角形的性质得出CD BM CM AB BC AC==,求出BM 和AC 的长,过点D作DN ⊥AM 于点N ,设MN =x ,则AN =5﹣x ,由勾股定理求出x ,根据锐角三角函数的定义可得出答案.【解答】解:由折叠的性质可知,CB =CD =6,∠BCM =∠ACM ,∵∠ACB =2∠A ,∴∠BCM =∠A ,∵∠B =∠B ,∴△BCM ∽△BAC , ∴CD BM CM AB BC AC ==,∴696BM =, ∴BM =4,∴AM =CM =5,∴659AC=, ∴AC =152,∴AD =AC ﹣CD =152﹣6=32, 过点D 作DN ⊥AM 于点N ,设MN =x ,则AN =5﹣x , ∴22223()(5)42x x +-=-,解得318x =, ∴cos ∠DMA =31318432MN DM ==. 故答案为:3132. 【点评】本题考查了折叠的性质,相似三角形的判定与性质,勾股定理,解直角三角形,证明△BCM ∽△BAC 是解题的关键.7.(2021秋•奉贤区期末)如图,在Rt △ABC 中,∠C =90°,sin B =35.D 是边BC 的中点,点E 在边AB 上,将△BDE 沿直线DE 翻折,使得点B落在同一平面内的点F处.如果线段FD交边AB于点G,当FD⊥AB时,AE:BE的值为 4 .【考点】平行线分线段成比例;解直角三角形;翻折变换(折叠问题).【专题】解直角三角形及其应用;推理能力.【分析】如图,过B点作BH∥DE交GD的延长线于H,如图,利用正弦的定义得到sin B=35DGBD=,则设DG=3x,BD=5x,所以BG=4x,再根据折叠的性质和平行线的性质得到∠H=∠DBH,所以DH=DB=5x,接着根据平行线分线段成比例定理得到35GE DGBE DH==,则BE=52x,然后证明△BDG∽△BAC,利用相似比得到BA=252x,最后计算AE:BE的值.【解答】解:如图,过B点作BH∥DE交GD的延长线于H,如图,∵FD⊥AB,∴∠DGB=90°,∵sin B=35DGBD=,∴设DG=3x,BD=5x,∴BG=4x,∵△BDE沿直线DE翻折得到△FDE,∴∠BDE=∠FDE,∵DE∥BH,∴∠FDE=∠H,∠BDE=∠DBH,∴∠H=∠DBH,∴DH=DB=5x,∵DE∥BH,∴35 GE DGBE DH==,∴BE=58×4x=52x,∵∠BGD=∠C=90°,∠DBG=∠ABD,∴△BDG∽△BAC,∴BD BGBA BC=,即5410x xBA x=,∴BA=252x,∴AE=AB﹣BE=252x﹣52x=10x,∴AE :BE =10x :52x =4. 故答案为:4.【点评】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.也考查了折叠的性质和解直角三角形.8.(2020秋•崇明区期末)在△ABC 中,AB =,∠B =45°,∠C =60°.点D 为线段AB 的中点,点E 在边AC 上,连接DE ,沿直线DE 将△ADE 折叠得到△A ′DE .连接AA ′,当A ′E ⊥AC 时,则线段AA ′的长为 2【考点】翻折变换(折叠问题).【专题】等腰三角形与直角三角形;平移、旋转与对称;图形的相似;解直角三角形及其应用;运算能力;推理能力.【分析】画出相应的图形,结合图形通过作高构造直角三角形,求出AM =BM =4,进而求出AC ,再利用相似三角形的性质和判定求出AE ,根据对称在Rt △AEF 中求出AF 即可.【解答】解:如图,过点A 作AM ⊥BC ,垂足为M ,在Rt △ABM 中,∠B =45°,AB =,∴AM =BM =AB •sin ∠B =4,在Rt △ACM 中,AM =4,∠C =60°,∴AC =AM 4=sin C sin 60∠=, 又∵A ′E ⊥AC ,∴∠A ′EC =90°,由折叠得∠AED=∠A′ED=12(180°﹣90°)=45°,AA′⊥DE,∵∠AED=45°=∠B,∠DAE=∠CAB,∴△DAE∽△CAB,∴AE AD=AB DC,∵点D为线段AB的中点,∴AD=BD=12AB=AE=在Rt△AEF中,AF=EF=AE•sin∠AED=2,∴AA′=2AF=,故答案为:.【点评】本题考查轴对称的性质,相似三角形的判定和性质,解直角三角形,掌握轴对称、相似三角形的性质以及解直角三角形是解决问题的关键.9.(2020秋•长宁区期末17)如图,矩形ABCD沿对角线BD翻折后,点C落在点E处.联结CE交边AD于点F.如果DF=1,BC=4,那么AE【考点】翻折变换(折叠问题);矩形的性质.【专题】矩形菱形正方形;推理能力.【分析】首先根据题意得到EG=CG,CE⊥BD,证明△CDF∽△BCD和△CDG ∽△BDC,可计算CD和CG的长,再证明△EFD∽△AED,可得AE的长.【解答】解:由折叠得:CE⊥BD,CG=EG,∴∠DGF=90°,∴∠DFG+∠FDG=90°,∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,∴∠ADG+∠CDG=90°,∴∠CDG=∠DFG,∵∠CDF=∠BCD=90°,∴△CDF∽△BCD,∴CD DF=BC CD,∵AB=4,DF=1,∴CD1=4CD,∴CD=2,由勾股定理得:CFBD,同理得:△CDG∽△BDC,∴CD CG=BD BCCG4,∴CG,∴CE=2CG=5,∴EF=CE﹣CF,∵DF1=ED2,ED21==AD42,且∠EDF=∠AED,∴△EFD∽△AED,∴EF DF=AE DE,即15=AE2,∴AE=【点评】本题主要考查了几何变换中的翻折变换、相似三角形的性质和判定、矩形的性质、勾股定理;熟练掌握翻折变换和矩形的性质,利用相似三角形列比例式是本题的关键.10.(2020秋•虹口区期末)如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.D 是BC的中点,点E在边AB上,将△BDE沿直线DE翻折,使得点B落在同一平面内的点B'处,线段B'D交边AB于点F,联结AB'.当△AB'F是直角三角形时,BE的长为2或4017.【考点】翻折变换(折叠问题);相似三角形的判定与性质;勾股定理.【专题】等腰三角形与直角三角形;平移、旋转与对称;运算能力;推理能力.【分析】分两种情况画出图形,①方法一:如图1,当∠AFB′=90°时,由相似三角形的性质及直角三角形的性质可求出答案;方法二:过点E作EH⊥BC 于点H,设EH=3a,BE=5a,则BH=4a,由BF的长列出方程,解方程求出a 即可;②方法一如图2,当∠AB′F=90°时,由相似三角形的性质及直角三角形的性质可求出答案.方法二:过点E作EG⊥BD于点G,设EG=3a,BG=4a,BE=5a,得出9442a a+=,求出a的值则可得出答案.【解答】解:①方法一:如图1,当∠AFB′=90°时.在Rt △ABC 中,∵AC =6,BC =8,∴AB=10==,∵D 是BC 的中点,∴BD =CD =12BC =4, ∵∠AFB '=∠BFD =90°,∠ACB =90°,∴∠DFB =∠ACB , 又∵∠DBF =∠ABC ,∴△BDF ∽△BAC ,∴BF BD BC AB =,即4810BF =, 解得:BF =165, 设BE =B 'E =x ,则EF =165﹣x , ∵∠B =∠FB 'E ,∴sin ∠B =sin ∠FB 'E ,∴'AC EF AB B E =, ∴166510x x-=,解得x =2.∴BE =2. 方法二:过点E 作EH ⊥BC 于点H ,设EH =3a ,BE =5a ,则BH =4a ,∵将△BDE 沿直线DE 翻折,∴EF =3a ,∴BF =8a =BD •cos ∠B =4×45,∴a =25, ∴BE =5a =2;②如图2中,当∠AB ′F =90°时,连接AD ,作EH ⊥AB ′交AB ′的延长线于H .∵AD =AD ,CD =DB ′,∴Rt △ADC ≌Rt △ADB ′(HL ),∴AC =AB ′=6,∵将△BDE 沿直线DE 翻折,∴∠B =∠DB 'E ,∵AB '⊥DB ',EH ⊥AH ,∴DB '∥EH ,∴∠DB 'E =∠B 'EH ,∴∠B =∠B 'EH ,∴sin ∠B =sin ∠B 'EH ,设BE =x ,则B 'H =35x ,EH =45x , 在Rt △AEH 中,AH 2+EH 2=AE 2, ∴22234(6)()(10)55x x x ++=-,解得x =4017,∴BE =4017. 则BE 的长为2或4017. 方法二:过点E 作EG ⊥BD 于点G ,设EG =3a ,BG =4a ,BE =5a ,∴DG =EG ×32=92a , ∵DG +GB =DB ,∴9442a a +=,∴a =817, ∴BE =4017. 故答案为:2或4017. 【点评】本题考查了翻折变换、勾股定理、解直角三角形、相似三角形的判定与性质、全等三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想解决问题.11.(2020秋•松江区期末)如图,已知矩形纸片ABCD ,点E 在边AB 上,且BE =1,将△CBE 沿直线CE 翻折,使点B 落在对角线AC 上的点F 处,联结DF ,如果点D 、F 、E 在同一直线上,则线段AE 的长为 .【考点】翻折变换(折叠问题);矩形的性质.【专题】矩形 菱形 正方形;平移、旋转与对称;运算能力;推理能力.【分析】根据矩形的性质得到AD =BC ,∠ADC =∠B =∠DAE =90°,根据折叠的性质得到CF =BC ,∠CFE =∠B =90°,EF =BE =1,DC =DE ,证明△AEF ∽△DEA ,根据相似三角形的性质即可得到结论.【解答】解:∵四边形ABCD 是矩形,∴AD =BC ,AB =CD ,∠ADC =∠B =∠DAE =90°,∵把△BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,∴CF =BC ,∠CFE =∠B =90°,EF =BE =1,∠CEB =∠CEF ,∵矩形ABCD 中,DC ∥AB ,∴∠DCE =∠CEB ,∴∠CEF =∠DCE , ∴DC =DE ,设AE =x ,则AB =CD =DE =x +1,∵∠AFE =∠CFD =90°,∴∠AFE =∠DAE =90°,∵∠AEF =∠DEA ,∴△AEF ∽△DEA , ∴AF DE EF AE =,∴11x x x+=,解得x 或x ,∴AE =.故答案为:12. 【点评】本题考查了翻折变换(折叠问题),平行线的性质,相似三角形的判定和性质,矩形的性质,正确的识别图形是解题的关键.12.(2020秋•普陀区期末)如图,在▱ABCD 中,点E 在边BC 上,将△ABE 沿着直线AE翻折得到△AFE,点B的对应点F恰好落在线段DE上,线段AF的延长线交边CD于点G,如果BE:EC=3:2,那么AF:FG的值等于214.【考点】相似三角形的判定与性质;平行四边形的性质;翻折变换(折叠问题).【专题】多边形与平行四边形;平移、旋转与对称;图形的相似;推理能力.【分析】延长BC,AG交于点H,设BE=3x,EC=2x,由平行四边形的性质可得AD=BC=5x,AD∥BC,由折叠的性质可得∠AEB=∠AEF,BE=EF=3x,通过证明△ADF∽△HEF,△ADG∽△HCG,可求AF=425y,FG=AG﹣AF=85y,即可求解.【解答】解:如图,延长BC,AG交于点H,∵BE:EC=3:2,∴设BE=3x,EC=2x,∵四边形ABCD是平行四边形,∴AD=BC=5x,AD∥BC,∴∠DAE=∠AEB,∵将△ABE沿着直线AE翻折得到△AFE,∴∠AEB=∠AEF,BE=EF=3x,∴∠DAE=∠AED,∴AD=DE=5x,∴DF=2x,∵AD∥BC,∴△ADF∽△HEF,∴AD DF AFEH EF FH==,∴523x AFEH FH==,∴EH=152x,AF=23FH,∴CH=EH﹣EC=x,∵AD∥BC,∴△ADG∽△HCG,∴AD AGCH GH=,∴51011112x AGGHx==,∴设AG=10y,GH=11y,∴AH=21y,∴AF=215y×2=425y,∴FG=AG﹣AF=85y,∴AF:FG=21:4=214,故答案为214.【点评】本题考查了相似三角形的判定和性质,折叠的性质,平行四边形的性质,灵活运用这些性质进行推理是解题的关键.13.(2019秋•虹口区期末)如图,在等腰梯形ABCD中,AD∥BC,sin C=45,AB=9,AD=6,点E、F分别在边AB、BC上,联结EF,将△BEF沿着EF所在直线翻折,使BF的对应线段B′F经过顶点A,B′F交对角线BD于点P,当B′F⊥AB时,AP的长为247.【考点】相似三角形的判定与性质;解直角三角形;等腰梯形的性质;翻折变换(折叠问题).【专题】图形的相似;解直角三角形及其应用;应用意识.【分析】解直角三角形求出BF,AF,再利用相似三角形的性质求解即可.【解答】解:如图,∵FB′⊥AB,∴∠BAF=90°,∵四边形ABCD是等腰梯形,∴∠ABC=∠C,∴sin∠ABC=sin∠C=AFBF=45,设AF=4k,BF=5k,则AB=9=3k,∴k=3,∴AF=12,BF=15,∵AD∥BF,∴△APD∽△FPB,∴PA AD62===PF BF155,∴P A=27AF=247,故答案为247.【点评】本题考查相似三角形的判定和性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.14.(2019秋•青浦区期末)已知,在矩形纸片ABCD中,AB=5cm,点E、F分别是边AB、CD的中点,折叠矩形纸片ABCD,折痕BM交AD边于点M,在折叠的过程中,如果点A恰好落在线段EF上,那么边AD.【考点】翻折变换(折叠问题).【专题】平移、旋转与对称;推理能力.【分析】根据已知条件得到AE=DF=BE=CF,求得四边形AEFD是矩形,得到EF=AD,∠AEN=∠BEN=90°,根据折叠的性质得到BN=AB,根据直角三角形的性质得到∠BNE=30°,于是得到EN=2BN即可得到结论.【解答】解:如图,∵在矩形纸片ABCD中,点E、F分别是边AB、CD的中点,∴AE=DF=BE=CF,∴四边形AEFD是矩形,∴EF=AD,∠AEN=∠BEN=90°,∵折叠矩形纸片ABCD,折痕BM交AD边于点M,∴BN=AB,∵BE=12AB,∴BE=12BN,∴∠BNE=30°,∵AB=5cm,∴EN=2BN∴EF≥EN时,点A恰好落在线段EF上,即AD∴边AD【点评】本题考查了翻折变换(折叠问题),矩形的性质,直角三角形的性质,正确的识别图形是解题的关键.15.(2019秋•闵行区期末)如图,在等腰△ABC中,AB=AC=4,BC=6,点D 在底边BC上,且∠DAC=∠ACD,将△ACD沿着AD所在直线翻折,使得点C落到点E 处,联结BE,那么BE的长为1.【考点】翻折变换(折叠问题);等腰三角形的性质;勾股定理.【专题】平移、旋转与对称;推理能力.【分析】只要证明△ABD∽△MBE,得AB BDBM BE=,只要求出BM、BD即可解决问题.【解答】解:∵AB=AC,∴∠ABC=∠C,∵∠DAC=∠ACD,∴∠DAC=∠ABC,∵∠C=∠C,∴△CAD∽△CBA,∴CA CDCB AC=,∴464CD=,∴CD=83,BD=BC﹣CD=103,∵∠DAM=∠DAC=∠DBA,∠ADM=∠ADB,∴△ADM∽△BDA,∴AD DMBD DA=,即8310833DM=,∴DM=3215,MB=BD﹣DM=65,∵∠ABM=∠C=∠MED,∴A、B、E、D四点共圆,∴∠ADB=∠BEM,∠EBM=∠EAD=∠ABD,∴△ABD∽△MBE,(不用四点共圆,可以先证明△BMA∽△EMD,推出△BME∽AMD,推出∠ADB=∠BEM也可以!)∴AB BD BM BE=,∴BE=BD BMAB=1.故答案为:1.【点评】本题考查翻折变换、等腰三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是充分利用相似三角形的性质解决问题,本题需要三次相似解决问题,题目比较难.16.(2019秋•杨浦区期末)在Rt△ABC中,∠A=90°,AC=4,AB=a,将△ABC沿着斜边BC翻折,点A落在点A1处,点D、E分别为边AC、BC的中点,联结DE并延长交A1B所在直线于点F,联结A1E,如果△A1EF为直角三角形时,那么a=4或【考点】翻折变换(折叠问题);勾股定理;三角形中位线定理.【专题】平移、旋转与对称;推理能力.【分析】当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,根据对称的性质和平行线可得:A1C=A1E=4,根据直角三角形斜边中线的性质得:BC=2A1B=8,最后利用勾股定理可得AB 的长;②当∠A1FE=90°时,如图2,证明△ABC是等腰直角三角形,可得AB=AC=4.【解答】解:当△A1EF为直角三角形时,存在两种情况:①当∠A1EF=90°时,如图1,∵△A1BC与△ABC关于BC所在直线对称,∴A1C=AC=4,∠ACB=∠A1CB,∵点D,E分别为AC,BC的中点,∴D、E是△ABC的中位线,∴DE∥AB,∴∠CDE=∠MAN=90°,∴∠CDE =∠A1EF,∴AC∥A1E,∴∠ACB=∠A1EC,∴∠A1CB=∠A1EC,∴A1C=A1E=4,Rt△A1CB中,∵E是斜边BC的中点,∴BC=2A1E=8,由勾股定理得:AB2=BC2﹣AC2,∴AB==②当∠A1FE=90°时,如图2,∵∠ADF=∠A=∠DFB=90°,∴∠ABF=90°,∵△A1BC与△ABC关于BC所在直线对称,∴∠ABC=∠CBA1=45°,∴△ABC 是等腰直角三角形,∴AB =AC =4;综上所述,AB 的长为4;故答案为:4;【点评】本题考查了翻折变换(折叠问题),三角形的中位线定理、勾股定理、轴对称的性质、等腰直角三角形的判定、直角三角形斜边中线的性质,并利用分类讨论的思想解决问题.17.(2019秋•崇明区期末)如图,在Rt △ABC 中,∠C =90°,AB =10,AC =8,D 是AC的中点,点E 在边AB 上,将△ADE 沿DE 翻折,使得点A 落在点A ′处,当A ′E ⊥AB 时,则A ′A = 5或5.【考点】翻折变换(折叠问题).【专题】平移、旋转与对称;解直角三角形及其应用.【分析】分两种情形分别求解,作DF ⊥AB 于F ,连接AA ′.想办法求出AE ,利用等腰直角三角形的性质求出AA ′即可.【解答】解:如图,作DF ⊥AB 于F ,连接AA ′.在Rt △ACB 中,BC 6,∵∠DAF =∠BAC ,∠AFD =∠C =90°,∴△AFD ∽△ACB , ∴DF AD AF BC AB AC ==,∴46108DF AF ==, ∴DF =125,AF =165, ∵A ′E ⊥AB ,∴∠AEA ′=90°,由翻折不变性可知:∠AED =45°,∴EF =DF =125,∴AE =A ′E =125+165=285,∴AA ′=5, 如图,作DF ⊥AB 于F ,当 EA ′⊥AB 时,同法可得AE =165﹣125=45,AA ′AE =5.故答案为5或5. 【点评】本题考查翻折变换,相似三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考填空题中的压轴题.18.(2019秋•静安区期末)如图,有一菱形纸片ABCD ,∠A =60°,将该菱形纸片折叠,使点A 恰好与CD 的中点E 重合,折痕为FG ,点F 、G 分别在边AB 、AD 上,联结EF ,那么cos ∠EFB 的值为 17.【考点】翻折变换(折叠问题);解直角三角形;等边三角形的判定与性质;菱形的性质.【专题】矩形 菱形 正方形;解直角三角形及其应用.【分析】如图,连接BD .设BC =2a .在Rt △BEF 中,求出EF ,BF 即可解决问题.【解答】解:如图,连接BD .设BC =2a .∵四边形ABC都是菱形,∴AB=BC=CD=AD=2a,∠A=∠C=60°,∴△BDC是等边三角形,∵DE=EC=a,∴BE⊥CD,∴BE==,∵AB∥CD,BE⊥CD,∴BE⊥AB,∴∠EBF=90°,设AF=EF=x,在Rt△EFB中,则有x2=(2a﹣x)2+a)2,∴x=74a,∴AF=EF=74a,BF=AB﹣AF=4a,∴cos∠EFB=14774aBFaEF==,故答案为17.【点评】本题考查菱形的性质,解翻折变换,直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.。

2021年上海市16区中考数学一模考点分类汇编专题06 几何证明(解答题23题)(解析版)

2021年上海市16区中考数学一模考点分类汇编专题06 几何证明(解答题23题)(解析版)

2021年上海市16区中考数学一模汇编专题06 几何证明(解答题23题)1. (2021宝山一模)如图,点O 是菱形ABCD 的对角线BD 上一点,联结AO 并延长,交CD 于点E ,交BC 的延长线于点F .(1)求证:2AB DE BF =⋅;(2)如果1OE =,2EF =,求CF BF的长.【答案】(1)见解析;(2)33CF BF = 【分析】(1)根据菱形的性质证明ABO EDO ,BFO DAO ,得到AB BF ED DA=,再由AB DA =,即可证明结论; (2)连接OC ,先证明()ADO CDO SAS ≅得到DAO DCO ∠=∠,就可以证明OEC OCF ,根据对应边成比例求出OC 的长,再根据ADE FCE ~,利用对应边成比例求出结果.【详解】解:(1)∵四边形ABCD 是菱形,∴//AB CD ,//AD BC ,AB DA =,∴ABO EDO ,BFO DAO , ∴AB BO ED DO =,BF BO DA DO =,∴AB BF ED DA=, ∵AB DA =,∴2AB DE BF =⋅;(2)如图,连接OC ,∵四边形ABCD 是菱形,∴AD=DC ,ADO CDO ∠=∠,在ADO △和CDO 中,AD CD ADO CDO DO DO =⎧⎪∠=∠⎨⎪=⎩,∴()ADO CDO SAS ≅,∴DAO DCO ∠=∠,∵//AD BF ,∴DAO OFC ∠=∠,∴DCO OFC ∠=∠,∵COE FOC ∠=∠,∴OEC OCF ,∴OE OC OC OF=,即2OC OE OF =⋅, ∵1OE =,2EF =,∴123OF =+=,∴OC =AO OC == ∵//AD CF ,∴ADE FCE ~,∴12AD AE FC FE +==,∴12BC AD FC ==,BF BC CF FC FC =+=+=,∴(23363CF BF -===. 【点睛】本题考查相似三角形,解题的关键是掌握相似三角形的性质和判定.2. (2021崇明一模)已知:如图,D 、E 分别是ABC 的边AB 、AC 上的点,且AED ABC ∠=∠,连接BE 、CD 相交于点F .(1)求证:ABE ACD ∠=∠;(2)如果ED EC =,求证:22DF EF BD EB=. 【分析】(1)先说明ADE ACB 可得AE AB AD AC=,再说明ADC AEB △△,最后根据相似三角形对应角相等即可证明: (2)先说明EDF EBD △△得到DF EF DE BD DE BE ==,进一步可得2DF EF DE BD DE BE ⎛⎫=⋅ ⎪⎝⎭即可证明. 【详解】证明:(1)∵AED ACB ∠=∠,A A ∠=∠,∵ADE ACB ,∵AE AB AD AC =, 又∵A A ∠=∠,∵ADC AEB △△,∵ABE ACD ∠=∠;(2)∵ED EC =,∵EDC ACD ∠=∠,∵ABE ACD ∠=∠∵EDC ABE ∠=∠,又∵DEF DEF ∠=∠,∵EDF EBD △△,∵DF EF DE BD DE BE ==, ∵2DF EF DE BD DE BE ⎛⎫=⋅ ⎪⎝⎭,∵22DF EF BD EB =. 【点睛】本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键. 3. (2021奉贤一模)如图,在四边形ABCD 中,,B DCB ∠=∠联结AC .点E 在边BC 上,且,CDE CAD DE ∠=∠与AC 交于点,F CE CB AB CD ⋅=⋅.()1求证://AD BC ;()2当AD DE =时,求证:2AF CF CA =⋅.【分析】(1)证明ACB EDC ∆∆可得∠ACB=∠EDC=∠CAD ,从而可得结论;(2)根据ASA 证明ADF DEC ∆≅∆,得到AF=DC ,再证明FCDDCA ∆∆,得到2FC CA CD =,即可得到结论.【详解】解:(1)∵B DCB ∠=∠,且CE CB AB CD ⋅=⋅,即CE CD AB CB = ∴ACB EDC ∆∆,∴ACB CDE ∠=∠∵CDE CAD ∠=∠,∴∠ACB=∠CAD ,∴//AD BC(2)∵//AD BC ,∴∠ADE=∠CED在△ADF 和△DEC 中,FAD EDC AD CEADF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF ≌△DEC ,∴AF=DC 又∵∠CDF=∠CAD ,∠FCD=∠ACD ,∴FCD DCA ∆∆ ∴FC CD CD CA=,即2FC CA CD = ,∴2AF CF CA =⋅ 【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质,解题的关键是利用相似三角形的性质找出比例式.4. (2021虹口一模)如图,在ABC 中,点D 、G 在边AC 上,点E 在边BC 上,DB DC =,//EG AB ,AE 、BD 交于点F ,BF AG =.(1)求证:BFE CGE △△;(2)当AEG C ∠=∠时,求证:2AB AG AC =⋅.【分析】(1)由//EG AB 易证△CGE ∽△CAB ,由性质得CG CE =CA CB 由比例性质得CG CE =AG BE ,由已知BF=AG 比例式变为CG CE =BF BE,由已知DB DC =,利用等边对等角得∠FBE=∠GCE ,利用两边成比例夹角相等知BFE CGE △∽△;(2)由//EG AB ,利用性质内错角相等∠BAE=∠AEG ,由已知AEG C ∠=∠,推出∠BAE=∠C ,又∠ABE=∠CBA 共用,可证△ABE ∽△CBA ,由性质AB BE =BC AB,∠BEA=∠BAC ,把比例变等积得2AB =BC BE ,由(1)BFE CGE △∽△利用性质∠BEF=∠CEG ,∠BFE=∠CGE ,推出∠BAC=∠GEC=∠ABC=∠EGC ,利用等角对等边得AC=BC ,GC=EC ,利用等量代换得AG=BE ,可证2AB =AC AG .【详解】(1)∵//EG AB ,∴∠CGE=∠CAB ,∠CEG=∠CBA ,∴△CGE ∽△CAB ,∴CG CE =CA CB , ∴CG CE =CA-CG CB-CE 即CG CE =AG BE ,∵BF=AG ,∴CG CE =BF BE,∵DB DC =, ∴∠DBC=∠DCB ,即∠FBE=∠GCE ,∴BFE CGE △∽△,(2)∵//EG AB ,∴∠BAE=∠AEG ,又∵AEG C ∠=∠,∴∠BAE=∠C ,又∵∠ABE=∠CBA 共用,∴△ABE ∽△CBA ,∴AB BE =BC AB,∠BEA=∠BAC ,∴2AB =BC BE , 由(1)BFE CGE △∽△,∴∠BEF=∠CEG ,∠BFE=∠CGE ,∵//EG AB ,∴∠ABC=∠GEC ,∠BAC=∠EGC ,∴∠BAC=∠GEC=∠ABC=∠EGC ,∴AC=BC ,GC=EC ,∴AG=BE ,2AB =BC BE=AC AG ..【点睛】本题考查相似三角形的判定与性质,等腰三角形的判定与性质,掌握相似三角形的判定与性质,等腰三角形的判定与性质,会利用换比的方法证三角形相似,会利用相似证角等转化边角关系是解题关键.5.(2021黄埔一模)某班级的“数学学习小组心得分享课”上,小智跟同学们分享了关于梯形的两个正确的研究结论:①如图1,在梯形ABCD 中,//AD BC ,过对角线交点O 的直线与两底分别交于点M 、N ,则AM CN DM BN=; ②如图2.在梯形ABCD 中,//AD BC ,过两腰延长线交点P 的直线与两底分别交于点K 、L ,则AK BL DK CL =.接着小明也跟同学们分享了关于梯形的一个推断:过梯形对角线交点且平行于底边的直线被梯形两腰所截,截得的线段被梯形对角线的交点平分.(1)经讨论,大家都认为小明所给出的推断是正确的,请你结合图示(见答题卷)写出已知、求证,并给出你的证明:(2)小组还出了一个作图题考同学们:只用直尺将图3中两条平行的线段AB 、CD 同时平分,请保留作图过程痕迹,并说明你作图方法的正确性(可以直接运用小智和小明得到的正确结论).(注意:请务必在试卷图示中完成作图草稿,在答题卷上直接用2B 铅笔水笔完成作图,不要涂改)【分析】(1)根据题意,写出已知、求证并画出图形,如解图所示,根据平行证出△AOB ∽△COD ,列出比例式并根据比例的性质可证AO BO AC BD=,再利用平行证出△AEO ∽△ADC ,△BFO ∽△BCD ,分别列出比例式即可证出结论;(2)连接DA 、CB 并延长交于点P ,连接AC 、BD 交于点O ,连接PO 并延长,分别交AB 、CD 于M 、N ,利用①、②的结论即可证明PN 平分线段AB 、CD .【详解】解:(1)已知:四边形ABCD 为梯形,AB ∥CD ,对角线AC 与BD 交于点O ,过点O 作EF ∥CD ,分别交AD 、BC 于E 、F ,求证:OE=OF 证明:∵AB ∥CD ,∴△AOB ∽△COD ,∴AO BO CO DO =,∴AO BO AC BD= ∵EF ∥CD ,∴△AEO ∽△ADC ,△BFO ∽△BCD ∴OE AO CD AC =,OF BO CD BD=,∴OE OF CD CD =,∴OE=OF ; (2)连接DA 、CB 并延长交于点P ,连接AC 、BD 交于点O ,连接PO 并延长,分别交AB 、CD 于M 、N ,如下图所示,PN 即为所求,证明如下的由①知:AM CN BM DN =,由②知:AM DN BM CN =,∴CN DN DN CN= ∴22CN DN =,∴CN=DN ,∴1AM DN BM DN==,∴AM=BM ,∴PN 平分线段AB 、CD . 【点睛】此题考查的是相似三角形的判定及性质,掌握利用平行证相似和相似三角形的性质是解题关键.6. (2021嘉定一模)如图,已知矩形DEFG 的边DE 在ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.ABC 的高AH 交GF 于点I .(1)求证:BD EH DH CE ⋅=⋅;(2)设DE n EF =⋅(n 为正实数),求证:11n BC AH EF+=. 分析】(1)证明,BDG BHA CEF CHA ∆∆∆∆∽∽,根据相似三角形的性质列出比例关系,整理即可证得结论;(2)要证明11n BC AH EF +=只需证明1nEF EF BC AH +=即1DE EF BC AH+=,证明∵AGF∵∵ABC ,根据相似三角形的性质以及比例的性质即可证明.【详解】解:(1)证明:∵四边形DEFG 为矩形,ABC 的高AH 交GF 于点I ,∴GD=EF,90GDH GDB FEC FEB AHB AHC ∠=∠=∠=∠=∠=∠=︒,又∵∵B=∵B,∵C=∵C ,∵,BDG BHA CEF CHA ∆∆∆∆∽∽, ∴GD BD BD AH BH BD DH ==+,EF CE CE AH CH CE EH ==+,∵=BD CE BD DH CE EH++,∴BD EH DH CE ⋅=⋅; (2)证明:∵四边形DEFG 为矩形,∴,//GF DE GF BC =,90FEB EFG ∠=∠=︒,∴,AGF B AFG C ∠=∠∠=∠,∴∵AGF∵∵ABC , ∵AH 为∵ABC 的高,∵∵AIF=∵AHC=90°,GF AI BC AH =,即DE AI BC AH=, ∵90FEB EF C G AH ∠=∠=∠=︒,∴四边形IHEF 为矩形,∴EF=IH ,∵DE n EF =⋅,∴1nEF EF DE IH AI IH AI IH AH BC AH BC AH AH AH AH AH ++=+=+===,∴11n BC AH EF+=. 【点睛】本题考查相似三角形的性质与判定,矩形的性质和判断.本题中相似三角形有很多,能结合结论判断是需要证明哪组三角形相似是解题关键.7. (2021闵行一模)如图,点E 为ABC 边BC 上一点,过点C 作CD BA ⊥,交BA 的延长线于点D ,交EA 的延长线于点F ,且AF CD BC AD ⋅=⋅.(1)求证:AE BC ⊥;(2)如果BE CE =,求证:22BC BD AC =⋅.【分析】(1)先证明ADF CDB △△,再根据相似三角形的性质、对顶角相等和三角形内角和即可得证; (2)根据等腰三角形的三线合一即可得出1B ∠=∠,再证明BCD CAE △△,根据相似三角形的性质得出BC CE BD AC ⋅=⋅,根据等式的性质和等量代换即可得证.【详解】(1)CD BD ⊥,90ADF CDB ∴∠=∠=︒,AF CD BC AD ⋅=⋅,AD CD AF BC∴=, 在ADF 和CDB △中AD BC AF CD ADF CDB ⎧=⎪⎨⎪∠=∠⎩,ADFCDB ∴△△,F B ∴∠=∠,FAD EAB ∠=∠,90FDA BEA ∴∠=∠=︒,AE BC ∴⊥;(2)BE CE AE BC =⊥,,AB AC ∴=,1B ∴∠=∠又90BDC AEC ︒∠=∠=,BCDCAE ∴△△,BC BD AC CE ∴=,BC CE BD AC ∴⋅=⋅ 22BC CE BD AC ∴⋅=⋅,BE CE =,∴2BC CE =,∴22BC BD AC =⋅.【点睛】本题考查了相似三角形的判定及性质、等腰三角形的性质,熟练掌握性质定理是解题的关键.8.(2021普陀一模) 已知:如图,//AD BC ,ABD C ∠=∠,AE BD ⊥,DF BC ⊥,点E 、F 分别为垂足.(1)求证:AE BD DF BC=; (2)连结EF ,如果ADB BDF ∠=∠,求证:DF DC EF BC ⋅=⋅.【分析】(1)先证ABD △与DCB 相似,再根据相似三角形对应线段成比例再进行证明,问题得证;(2)先证ABD EFD ∽,再证DCB EFD △∽△,最后根据相似三角形对应线段成比例进行证明,问题得证.【详解】证明(1)/AD/BC ,ADB DBC ∠=∠∴,ABD C ∠=∠,∴ABD DCB △∽△,又∵AE 、DF 分别是ABD △与DCB 对应边上的高,AE BDDF BC∴= (2)如图,连结EF/AD/BC ,DF BC ⊥,∴90ADF ∠=︒,ADB BDF ∠=∠,∴45ADB BDF ∠==︒ AE BD ⊥,∴90∠=︒AED ,∴cos45DE DFDA DB=︒= ABD EFD ∴△∽△,DCB EFD ∴△∽△,DC BCEF DF∴=DF DC EF BC ∴⋅=⋅ 【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 9. (2021青浦一模)已知:如图,在四边形ABCD 中,AB AD =,AC 、BD 相交于点E ,AE CE DE BE ⋅=⋅(1)求证:ABE ACB ∽;(2)如果2·DA DE DB =,求证:AB EC BC AE ⋅=⋅. 【分析】(1)找到两对相同角即可证明相似 (2)证明出ADE BDA △∽△后可推出.【详解】证明:(1)··AE CE DE BE ADE BCE ADE ACB =⇒⇒∠=∠∽AB AD ADE ABE ACB ABE =⇒∠=∠⇒∠=∠∵两个三角形有一公共角∠BAC ∴ABE ACB ∽.(2)2·DA DE DB ADE BDA =⇒∽AED ⇒为等腰三角形BEC ⇒为等腰三角形AD AE AB AEAB EC BC AE BC EC BC EC⇒=⇒=⇒⋅=⋅. 【点睛】本题考查四边形的性质、相似三角形的判定和性质,解题的关键是灵活运用这些知识解决问题, 10.(2021松江一模)如图,已知在平行四边形ABCD 中,E 是边AD 上一点,联结BE 、CE ,延长BA 、CE 相交于点F ,2CE DE BC =⋅(1)求证:EBC DCE ∠=∠; (2)求证:··BE EF BF AE =. 【分析】(1)根据2CE DE BC =⋅得CE BCED CE=,再由BCE CED ∠=∠,可以证明BCE CED ,即可得到结论;(2)根据平行四边形的性质结合(1)的结论,证明BFE AEB ∠=∠,即可证明EBF ABE ,就能得到结论.【详解】解:(1)∵2CE DE BC =⋅,∴CE BCED CE=,∵四边形ABCD 是平行四边形,∴//AD BC ,∴BCE CED ∠=∠,∴BCE CED ,∴EBC DCE ∠=∠;(2)∵四边形ABCD 是平行四边形,∴//AD BC ,∴AEB EBC ∠=∠, ∵EBC DCE ∠=∠,∵//AB CD ,∴BFE DCE ∠=∠,∴BFE AEB ∠=∠, ∵EBF ABE ∠=∠,∴EBFABE ,∴EF BFAE BE=,∴BE EF BF AE ⋅=⋅. 【点睛】本题考查相似三角形,解题的关键是掌握相似三角形的性质和判定.11. (2021杨浦区一模)已知:如图,在梯形ABCD 中,//AD BC ,对角线BD 、AC 相交于点E ,过点A 作//AF DC ,交对角线BD 于点F .(1)求证:DF DEBD BE=; (2)如果ADB ACD ∠=∠,求证:线段CD 是线段DF 、BE 的比例中项. 【分析】(1)延长AF 交BC 于点G ,可证AD=GC ,由//AF DC ,可证DF CG ADBD BC BC==,由ADE CBE △△,可证AD DEBC BE=,进而可证结论成立; (2)证明ADECBE △△,可证2CD BD DE =⋅,由(1)得AD DEBC BE=,即DF BE BD DE ⋅=⋅,进而可证线段CD 是线段DF 、BE 的比例中项.【详解】证明:(1)如图,延长AF 交BC 于点G ,∵//AD BC ,//AF DC , ∴四边形AGCD 是平行四边形,∴AD=GC . ∵//AF DC ,∴DF CG ADBD BC BC==,∵//AD BC ,∴ADE CBE △△, ∴AD DE BC BE =, ∴DF DEBD BE=;(2)∵//AD BC ,∴CBD ADB ∠=∠.∵ADB ACD ∠=∠,∴CBD ACD ∠=∠, ∵CDE BDC ∠=∠, ∴CDEBDC ,∴CD DEBD CD=, ∴2CD BD DE =⋅. ∵DF DEBD BE=,∴DF BE BD DE ⋅=⋅,∴2CD DF BE =⋅. 【点睛】本题考查了平行四边形的判定与性质,相似三角形的判定与性质,以及平行线分线段成比例定理,熟练掌握相似三角形的判定与性质是解答本题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.12. (2021金山一模)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且ABD MAN ∠=∠.(1)求证:DE BF AB ⋅=2;(2)若DCDNDE BE =,求证:MN EF //.证明:(1)∵四边形ABCD 是菱形; ∴AD AB =;……………(1分) ∴ADB ABD ∠=∠;……………(1分)∵BAE ABD AED ∠+∠=∠,BAE MAN BAF ∠+∠=∠; 又∵ABD MAN ∠=∠;A BF E C第23题图DMN∴BAF AED ∠=∠;……………(1分) ∴AED ∆∽FAB ∆;……………(1分) ∴ABDEBF AD =,即DE BF AB AD ⋅=⋅;……………(1分) ∴DE BF AB ⋅=2.……………(1分)(2)∵四边形ABCD 是菱形;∴BC AD =,BC AD //;……………(1分) ∴AD BM DE BE =;……………(2分) ∵DCDNDE BE =; ∴DC DN AD BM =,……………(1分)∴DCDNBC BM =;……………(1分) ∴BD MN //,即MN EF //.……………(1分)13. (浦东新区一模)Rt △ABC 中,∠ACB =90°,点D 、E 分别为边AB 、BC 上的点,且CD =CA , DE ⊥AB .(1)求证:CA 2=CE •CB ;(2)联结AE ,取AE 的中点M ,联结CM 并延长与AB 交于点H ,求证:CH ⊥AB .【分析】(1)证明△DCE△△BCD ,根据相似三角形的对应边成比例即可得证;(2)证明△CAE△△CBA ,可得△CEA=△CAB ,由直角三角形的性质可证CM=AM ,从而△CAE=△ACM ,然后由等量代换可证△CAB+△ACM=90°,进而可证结论成立.【详解】证明:(1)△CA=CD ,△△A=△CDA .△△ACD=90°,△△A+△B=90°.△DE△AB,△△CDA+△CDE=90°,△△B=△CDE.△△DCE=△BCD,△△DCE△△BCD,△CD CB CE CD=.△CD=CA,△CA CBCE CA=,△2CA CB CE=⋅;(2)△CA CBCE CA=,△ACE=△BCA,△△CAE△△CBA,△△CEA=△CAB.△△ACB=90°,△△CEA+△CAE=90°.△M为AE的中点,△ACE=90°,△CM=AM,△△CAE=△ACM.△△CEA=△CAB,△△CAB+△ACM=90°,△△AHC=90°,△CH△AB.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的中线,熟练掌握相似三角形的判定与性质是解答本题的关键.14.(2021徐汇一模)如图,在△ACB中,点D、E分别在边BC、AC上,AD=AB,BE=CE,AD与BE 交于点F,且AF•DF=BF•EF.求证:(1)∠ADC=∠BEC;(2)AF•CD=EF•AC.【分析】(1)利用AF•DF=BF•EF和∠AFE=∠BFD可判断△AFE∽△BFD,所以∠AEF=∠BDF,然后根据等角的补角相等得到结论;(2)由△AFE∽△BFD得到∠EAF=∠FBD,∠AEF=∠BDF,再证明∠EAF=∠C,∠ABC=∠AEF,于是可证明△AEF∽△CBA,利用相似比得到=,然后证明AD=AB=CD,从而得到结论.【解答】证明:(1)∵AF•DF=BF•EF,∴=,而∠AFE=∠BFD,∴△AFE∽△BFD,∴∠AEF=∠BDF,∵∠AEF+∠BEC=180°,∠BDF+∠ADC=180°,∴∠ADC=∠BEC;(2)∵△AFE∽△BFD,∴∠EAF=∠FBD,∠AEF=∠BDF,∵EB=EC,AB=AD,∴∠EBC=∠C,∠ADB=∠ABD,∴∠EAF=∠C,∠ABC=∠AEF,∴△AEF∽△CBA,∴=,∴EF•AC=AB•AF∵∠DAC=∠C,∴AD=CD,∴AB=AD=CD,∴EF•AC=CD•AF,即AF•CD=EF•AC.15.(2021长宁一模)已知:如图,在Rt△ABC中,∠ACB=90°,CH⊥AB,垂足为点H.点D在边BC 上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.【分析】(1)根据同角的余角相等得到∠ACH=∠CBH,根据等腰三角形的性质得到∠CED=∠CDE,进而得到∠AEC=∠ADB,根据相似三角形的判定定理证明结论;(2)过点B作BG∥AC交AD的延长线于点G,根据相似三角形的性质得到=,根据相似三角形的面积公式计算,证明结论.【解答】证明:(1)∵AC⊥BC,CH⊥AB,∴∠ACB=∠AHC=90°,∴∠ACH=∠CBH,∵CE=CD,∴∠CED=∠CDE,∴∠AEC=∠ADB,∴△ACE∽△ABD;(2)过点B作BG∥AC交AD的延长线于点G,∴∠CAD=∠G,∵△ACE∽△ABD,∴=,∠CAD=∠BAD,∴∠BAD=∠G,∴AB=BG,∵BG∥AC,∴△ADC∽△GDB,∴=,∴=,∴=,∴△ACD的面积是△ACE的面积与△ABD的面积的比例中项.16.(2021·上海静安区·九年级一模)已知:如图,在△ABC中,DE△BC,AD2=AE•AC.求证:(1)△BCD△△CDE;(2)22CD AD BC AB.【分析】(1)由2·AD AE AC =,易证得ADC AED ∆∆∽,即可得ACD ADE =∠∠,又由//DE BC ,易证得ECD B ∠=∠,则可证得BCD CDE ∆∆∽;(2)由BCD CDE ∆∆∽,根据相似三角形的对应边成比例,即可得CD DEBC CD=,又由//DE BC ,可得ADE ABC ∆∆∽,即可得AD DEAB BC=,继而得到结论. 【详解】证明:(1)2·AD AE AC =,∴AD ACAE AD=,A ∠是公共角, ADC AED ∴∆∆∽,ACD ADE ∴∠=∠,//DE BC ,ADE B ∴∠=∠,BCD CDE ∠=∠,ECD B ∴∠=∠,BCD CDE ∴∆∆∽;(2)BCD CDE ∆∆∽,∴CD DE BC CD =,2CD DE BC ∴=, //DE BC ,ADE ABC ∴∆∆∽,∴AD DE AB BC =,∴22CD ADBC AB=. 【点睛】此题考查了相似三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握数形结合思想的应用.。

2021年上海市嘉定区九年级数学一模试卷含答案

2021年上海市嘉定区九年级数学一模试卷含答案

2020学年第一学期嘉定区九年级期终学业质量调研测试数学试卷(满分150分,考试时间100分钟)(2021.1)同学们注意:1.本试卷含三个大题,共25题;没有特殊说明,几何题均视为在同一个平面内研究问题.2.答题时,务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效;3.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.如果实数,,,满足,下列四个选项中,正确的是······················(▲)(A);(B);(C);(D).2.在平面直角坐标系中,已知点,点与原点的连线与轴的正半轴的夹角为,那么的值是····························································(▲)(A);(B);(C);(D).3.抛物线的顶点坐标是···································································(▲)(A);(B);(C);(D).4.已知单位向量与非零向量、,下列四个选项中,正确的是·······················(▲)(A);(B);(C);(D).5.在Rt△ABC中,,,,垂足为.下列四个选项中,不正确的是·······································································································(▲)(A);(B);(C);(D).6.二次函数的图像如图1所示,下列四个选项中,正确的是···········(▲)(A);(B);(C);(D).图1图4二、填空题:(本大题共12题,每题4分,满分48分)【请将结果直接填入答题纸的相应位置】7.正方形的边长与它的对角线的长度的比值为▲.8.已知点是线段的一个黄金分割点,且,那么的比值为▲.9.如图2,点在的边上,当▲时,与相似.10.已知向量关系式,那么向量=▲.(用向量与向量表示)11.如图3,飞机在目标的正上方,飞行员测得目标的俯角为,那么的度数为▲°.12.如果一个斜坡的坡度,那么该斜坡的坡角的度数为▲°.13.如果抛物线的开口向下,那么实数的取值范围是▲.14.二次函数的图像与轴的交点坐标为▲.15.如果抛物线的顶点在轴上,那么常数为▲.16.如果抛物线的对称轴是直线,那么▲.(从<,,>中选择)17.如图4,正方形和正方形的边长相等,点、、三个点在同一条直线上.联结,那么的值为▲.18.已知在△ABC 中,,,(如图5),把△ABC 绕着点C按顺时针方向旋转(),将点A 、B 的对应点分别记为点、,如果为直角三角形,那么点与点的距离为▲.三、解答题:(本大题共7题,满分78分)19.(本题满分10分)计算:.图5图3图220.(本题满分10分,第(1)小题满分4分,第(2)小题满分6分)我们已经知道二次函数的图像是一条抛物线.研究二次函数的图像与性质,我们主要关注抛物线的对称轴、抛物线的开口方向、抛物线的最高点(或最低点)的坐标..、抛物线与坐标轴的交点坐标..、抛物线的上升或下降情况(沿轴的正方向看).已知一个二次函数的大致..图像如图6所示.(1)你可以获得该二次函数的哪些信息?(写出四条信息即可)(2)依据目前的信息,你可以求出这个二次函数的解析式吗?如果可以,请求出这个二次函数的解析式;如果不可以,请补充一个条件,并求出这个二次函数的解析式.21.(本题满分10分,每小题满分5分)如图7,已知与相交于点,联结.(1)如果,,,求:.(2)分别将的面积记为,如果是与的比例中项,求证:.22.(本题满分10分,每小题满分5分)如图8,在中,,.(1)求边的长度;(2)求的值.23.(本题满分12分,每小题满分6分)如图9,已知矩形DEFG的边DE在△ABC的边BC上,顶点G,F分别在边AB、AC上.△ABC的高AH交GF于点I.(1)求证:;(2)设(为正实数),求证:.图9图8图7图624.(本题满分12分,每小题满分4分)在平面直角坐标系中(如图10),已知点,点,点.如果抛物线()恰好经过这三个点之中的两个点.(1)试推断抛物线经过点之中的哪两个点?简述理由;(2)求常数与的值;(3)将抛物线先沿与轴平行的方向向下平移2个单位长度,再沿与轴平行的方向,向右平移个单位长度,如果所得到的新抛物线经过点.设这个新抛物线的顶点是,试探究的形状(写出简要的计算与推理过程).25.(本题满分14分,第(1)小题满分4分,第(2)小题中的每小题满分5分)在矩形ABCD 中,,,点E在CD 边上,.点F是线段AE上一点,联结,CF.(1)如图11,如果,求线段的长;(2)如图12,如果,①求证:∠CFE=∠DAE;②求线段的长.图11图12备用图图102020学年第一学期嘉定区九年级期终学业质量调研测试数学试卷阅卷参考答案(交流版)(考试时间100分钟,总分150分)(2021.1)一、选择题(本大题共6题,每题4分,满分24分)1.A;2.D;3.C;4.B;5.B;6.A.二、填空题:(本大题共12题,每题4分,满分48分)7.;8.;9.;10.;11.;12.;13.;14.;15.;16.;17.;18.或.三、解答题(本大题共7题,满分58分)19.(本题满分10分)解:=·············································································8分=.·················································································2分20.(本小题满分10分,第(1)小题6分,第(2)小题4分)解:(1)①抛物线的开口向下(或者),②抛物线的顶点坐标为(2,7),③抛物线的对称轴为直线,④沿轴的正方向看:在直线的左侧,图像是上升的(或的值随着的值的增大而增大);在直线的右侧,图像是下降的(或的值随着的值的增大而减小),⑤,⑥,⑦,⑧,⑨等信息,每出现其中的一条信息,均可得1分,满分4分。

上海市16区2018届中学考试一模数学试卷分类总汇编:几何证明含问题详解

上海市16区2018届中学考试一模数学试卷分类总汇编:几何证明含问题详解

上海市16区2018届九年级上学期期末(一模)数学试卷分类汇编几何证明专题宝山区23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G . (1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项.长宁区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE,DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆; (2)求证:AD AB DE BF ⋅=⋅.F EDA第23题图崇明区23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒.奉贤区已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 相交于点F ,2BD AB BC =⋅ (1)求证:BD 平分∠ABC ;(2)求证:BE CF BC EF ⋅=⋅.虹口区如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ⋅=⋅. (1)求证AD AB AE AC ⋅=⋅;(2)当AB =12,AC =9,AE =8时,求BD 的长与△△ADEECFS S 的值.黄浦区23.(本题满分12分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(第23题图)ABDECGFC EABDF第23题图(1)求证:∠CDE =12∠ABC ; (2)求证:AD •CD =AB •CE .嘉定区23.如图6,已知梯形ABCD 中,AD ∥BC ,AB =CD ,点E 在对角线AC 上,且满足∠ADE =∠BAC 。

上海九年级数学一模考复习知识点大纲

上海九年级数学一模考复习知识点大纲

2021年中考数学一模学问点汇总复习一、比例的根本性质1.根本性质:a cad bcb d=∴= 2.反比性质:a cb db d a c=∴=3.更比性质:a c a bb dc d=∴= 4.合比性质:a c abc db d b d++=∴=5.分比性质:a c a b c db d b d--=∴=6.合分比性质:a c a b c db d a bc d++ =∴=--7.等比性质:...=...(...0)...a c m a c m ab d nb d n b d n b+++==+++≠∴=+++二、黄金分割在线段AB上任取一点P,把线段AB分成两条线段AP和BP〔AP>BP〕,且使AP是AB和BP的比例中项,这样的分割方法叫做把线段ABP叫做线段AB的黄金分割点.AP及AB的比值10.6182≈称为黄金分割数.简称黄金数. ☆口诀:较短:较长=较长:总长=1 2三、三角形的重心1.三角形三条中线的交点叫做三角形的重心.2.三角形的重心到一个顶点的间隔,等于它到这个顶点对边中点的间隔的两倍.四、平行线分线段成比例1.三角形一边的平行线性质定理平行于三角形一边的直线截其他两边所在的直线,截得的对应线段成比例.2.三角形一边的平行线性质定理推论平行于三角形一边的直线截其他两边所在的直线,截得的三角形的三边及原三角形的三边对应成比例.3.三角形一边的平行线断定定理假如一条直线截三角形的两边所得的对应线段成比例,那么这条直线平行于三角形的第三边.4.三角形一边的平行线断定定理推论假如一条直线截三角形两边的延长线(这两边的延长线在第三边的同侧)所得的对应线段成比例,那么这条直线平行于三角形的第三边.☆常见协助线:构造A型或X型.5.平行线分线段成比例定理两条直线被三条平行的直线所截,截得的对应线段成比例.6.平行线等分线段定理 两条直线被三条平行的直线所截,假如在一条直线上截得的线段相等,那么在另一条直线上截得的线段也相等.☆口诀:(对于A 型和X 型) 上:下=上:下,上:全=上:全,全:下=全:下 (对于H 型) 通过作被截直线的平行线,化为A 型或X 型求解.五、相像三角形(1)定义法:三角对应相等,三边对应成比例的两个三角形相像.(2)传递法:假如两个三角形分别及同一个三角形相像,那么这两个三角形也相像.(3)平行线法:平行于三角形一边的直线截其他两边所在的直线,截得的三角形及原三角形相像.(4)AA :两角对应相等,两个三角形相像.(5)SAS :两边对应成比例且夹角相等,两个三角形相像.(6)SSS :三边对应成比例,两个三角形相像.(7)HL :斜边和一条直角边对应成比例,两个直角三角形相像.☆断定相像三角形的一般策略:先看角再看边,先看大角再看小角,有直角考虑HL .(1)相像三角形的对应角相等,对应边成比例.(2)相像三角形对应高的比、对应中线的比和对应角平分线的比都等于相像比.(3)相像三角形的周长的比等于相像比.(4)相像三角形的面积的比等于相像比的平方.☆相像三角形的常见模型:A 型,X 型,斜A 型,斜X 型,有公共边的斜A 型,射影定理型,A 及X 混合型,斜A 及斜X 混合型,一线三等角型, 三垂直型,等腰三角形相像型,旋转型等.3.射影定理 在直角三角形中,直角边的平方等于它在斜边上的射影及斜边的乘积,斜边上的高的平方等于两条直角边在斜边上的射影的乘积. o 90,ACB CD AB ∠=⊥2AC =AD ∴●,AB 2BC =BD ∴●,AB2CD =AD ●.BD六、锐角三角比〔定义〕1.正切:在直角三角形中,一个锐角的对边及邻边的比叫做这个锐角的正切. 锐角A 的正切记做:tan A .2.余切:在直角三角形中,一个锐角的邻边及对边的比叫做这个锐角的余切. 锐角A 的余切记做:cot A .3.正弦:在直角三角形中,一个锐角的对边及斜边的比叫做这个锐角的正弦. 锐角A 的正弦记做:sin A .2.余弦:在直角三角形中,一个锐角的邻边及斜边的比叫做这个锐角的余弦. 锐角A 的余弦记做:cos A .o 90C ∠=∴关系:1tan ,tan cot A A A=●cot =1,A o sin =cos(90),A A - o 22cos =sin(90),sin cos 1.A A A A -+=范围:tan 0,cot 0,0sin 1,0cos 1.A A A A >><<<<特别锐角三角比的值:☆口诀:正弦余弦分母2,正弦根号123;余弦根号321;正切三分之根号3,1,根号3;余切仍旧倒着记;正弦正切随角增,余弦余切随角减.七、解直角三角形(定义)1.在直角三角形中,由元素求出全部未知元素的过程,叫做解直角三角形.的5个元素中,只要知道其中的2个元素 (至少有一个是边),就可以求出其余的3个元素.应用:1.仰角、俯角:常用模型2.方向角:北南偏东西,比方北偏西30o ,东北方向是北偏东45o .3.坡比、坡角:坡面的铅垂高度(h )及程度宽度(l )的比叫做坡面的坡度(或坡比),记作i ,即tan .h i lα== 坡度通常写成1:m 的形式,例如:31:.4i = 八、二次函数(概念) 解析式形如2y ax bx c =++(其中a 、b 、c 是常数,且0a ≠)的函数叫做二次函数.二次函数的定义域为一实在数.特征解析式:1.一般式:2y ax bx c =++ (a 、b 、c 是常数,0a ≠)2.交点式:12()()y a x x x x =--(0a ≠,x 1,x 2是图像及x 轴交点的横坐标)3.顶点式:2()y a x h k =-+(0(,)a h k ≠,是顶点坐标)配方法的根本步骤:二次项及一次项提取二次项系数;加上再减去一次项系数一半的平方;前面写成完全平方后面计算.公式法:抛物线2y ax bx c =++的对称轴是直线,2b x a=-顶点坐标是 24,24b ac b aa ⎛⎫-- ⎪⎝⎭,当a >0时,抛物线开口向上,顶点是最低点,在对称轴左侧的部分是下降的,在对称轴右侧的部分是上升的;当a <0时,抛物线开口向下,顶点是最高点,在对称轴左侧的部分是上升的,在对称轴右侧的部分是下降的.平移抛物线:先写成顶点式,左加右减(加减在自变量),上加下减(加减在常数项).九、平面对量〔实数及向量相乘的运算律〕设m 、n 为实数,那么(1)()();(2)();m na mn a m n a ma na =+=+(3)().m a b ma mb +=+平行向量定理 假如向量b 及非零向量a 平行,那么存在唯一的实数m ,使b =ma .零向量:长度为零,方向随意. 单位向量:单位向量0a 的长度为1,有方向. 平面对量根本定理 平面上随意一个向量c 都可以用这个平面内两个不平行 的向量a 、bx 、y ,使得:c =xa +yb . xa +yb 叫做c 关于a 、b 的分解式.画分向量(即xa ,yb ):起点重合,作平行线,标分向量,写结论.。

2021高考数学(文)真题分项汇编专题《06 立体几何(解答题)》含近年高考真题(解析版)

2021高考数学(文)真题分项汇编专题《06 立体几何(解答题)》含近年高考真题(解析版)

专题06立体几何(解答题)1.【2019年高考全国Ⅰ卷文数】如图,直四棱柱ABCD–A 1B 1C 1D 1的底面是菱形,AA 1=4,AB =2,∠BAD =60°,E ,M ,N 分别是BC ,BB 1,A 1D 的中点.(1)证明:MN ∥平面C 1DE ;(2)求点C 到平面C 1DE 的距离.【答案】(1)见解析;(2)17.【解析】(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =.由题设知11=A B DC ∥,可得11=B C A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE .(2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH.从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E =,故17CH =.从而点C 到平面1C DE 的距离为17.【名师点睛】该题考查的是有关立体几何的问题,涉及的知识点有线面平行的判定,点到平面的距离的求解,在解题的过程中,注意要熟记线面平行的判定定理的内容,注意平行线的寻找思路,再者就是利用线面垂直找到距离问题,当然也可以用等积法进行求解.2.【2019年高考全国Ⅱ卷文数】如图,长方体ABCD –A 1B 1C 1D 1的底面ABCD 是正方形,点E 在棱AA 1上,BE ⊥EC 1.(1)证明:BE ⊥平面EB 1C 1;(2)若AE =A 1E ,AB =3,求四棱锥11E BB C C -的体积.【答案】(1)见详解;(2)18.【解析】(1)由已知得B 1C 1⊥平面ABB 1A 1,BE ⊂平面ABB 1A 1,故11B C BE ⊥.又1BE EC ⊥,所以BE ⊥平面11EB C .(2)由(1)知∠BEB 1=90°.由题设知Rt △ABE ≌Rt △A 1B 1E ,所以1145AEB A EB ︒∠=∠=,故AE =AB =3,126AA AE ==.作1EF BB ⊥,垂足为F ,则EF ⊥平面11BB C C ,且3EF AB ==.所以,四棱锥11E BB C C -的体积1363183V =⨯⨯⨯=.【名师点睛】本题主要考查线面垂直的判定,以及四棱锥的体积的求解,熟记线面垂直的判定定理,以及四棱锥的体积公式即可,属于基础题型.3.【2019年高考全国Ⅲ卷文数】图1是由矩形ADEB ,Rt △ABC 和菱形BFGC 组成的一个平面图形,其中AB =1,BE =BF =2,∠FBC =60°.将其沿AB ,BC 折起使得BE 与BF 重合,连结DG ,如图2.(1)证明:图2中的A ,C ,G ,D 四点共面,且平面ABC ⊥平面BCGE ;(2)求图2中的四边形ACGD 的面积.【答案】(1)见解析;(2)4.【解析】(1)由已知得AD BE ,CG BE ,所以AD CG ,故AD ,CG 确定一个平面,从而A ,C ,G ,D 四点共面.由已知得AB⊥BE,AB⊥BC,故AB⊥平面BCGE.又因为AB⊂平面ABC,所以平面ABC⊥平面BCGE.(2)取CG的中点M,连结EM,DM.因为AB∥DE,AB⊥平面BCGE,所以DE⊥平面BCGE,故DE⊥CG.由已知,四边形BCGE是菱形,且∠EBC=60°得EM⊥CG,故CG⊥平面DEM.因此DM⊥CG.在Rt△DEM中,DE=1,EM,故DM=2.所以四边形ACGD的面积为4.【名师点睛】本题是很新颖的立体几何考题,首先是多面体折叠问题,考查考生在折叠过程中哪些量是不变的,再者折叠后的多面体不是直棱柱,突出考查考生的空间想象能力.-中,PA⊥平面ABCD,底部ABCD为菱形,E 4.【2019年高考北京卷文数】如图,在四棱锥P ABCD为CD的中点.(1)求证:BD⊥平面PAC;(2)若∠ABC=60°,求证:平面PAB⊥平面PAE;(3)棱PB上是否存在点F,使得CF∥平面PAE?说明理由.【答案】(1)见解析;(2)见解析;(3)存在,理由见解析.【解析】(1)因为PA⊥平面ABCD,⊥.所以PA BD又因为底面ABCD为菱形,所以BD AC ⊥.所以BD ⊥平面PAC .(2)因为PA ⊥平面ABCD ,AE ⊂平面ABCD ,所以PA ⊥AE .因为底面ABCD 为菱形,∠ABC =60°,且E 为CD 的中点,所以AE ⊥CD .所以AB ⊥AE .所以AE ⊥平面PAB .所以平面PAB ⊥平面PAE .(3)棱PB 上存在点F ,使得CF ∥平面PAE .取F 为PB 的中点,取G 为PA 的中点,连结CF ,FG ,EG .则FG ∥AB ,且FG =12AB .因为底面ABCD 为菱形,且E 为CD 的中点,所以CE ∥AB ,且CE =12AB .所以FG ∥CE ,且FG =CE .所以四边形CEGF 为平行四边形.所以CF ∥EG .因为CF ⊄平面PAE ,EG ⊂平面PAE ,所以CF ∥平面PAE .【名师点睛】本题主要考查线面垂直的判定定理,面面垂直的判定定理,立体几何中的探索问题等知识,意在考查学生的转化能力和计算求解能力.5.【2019年高考天津卷文数】如图,在四棱锥P ABCD -中,底面ABCD 为平行四边形,PCD △为等边三角形,平面PAC ⊥平面PCD ,,2,3PA CD CD AD ⊥==.(1)设G ,H 分别为PB ,AC 的中点,求证:GH ∥平面PAD ;(2)求证:PA ⊥平面PCD ;(3)求直线AD 与平面PAC 所成角的正弦值.【答案】(1)见解析;(2)见解析;(3)3.【解析】(1)连接BD ,易知AC BD H = ,BH DH =.又由BG =PG ,故GH PD ∥.又因为GH ⊄平面PAD ,PD ⊂平面PAD ,所以GH ∥平面PAD .(2)取棱PC 的中点N ,连接DN .依题意,得DN ⊥PC ,又因为平面PAC ⊥平面PCD ,平面PAC 平面PCD PC =,所以DN ⊥平面PAC ,又PA ⊂平面PAC ,故DN PA ⊥.又已知PA CD ⊥,CD DN D = ,所以PA ⊥平面PCD .(3)连接AN ,由(2)中DN ⊥平面PAC ,可知DAN ∠为直线AD 与平面PAC 所成的角,因为PCD △为等边三角形,CD =2且N 为PC 的中点,所以DN =又DN AN ⊥,在Rt AND △中,sin 3DN DAN AD ∠==.所以,直线AD 与平面PAC 所成角的正弦值为3.【名师点睛】本小题主要考查直线与平面平行、直线与平面垂直、平面与平面垂直、直线与平面所成的角等基础知识.考查空间想象能力和推理论证能力.6.【2019年高考江苏卷】如图,在直三棱柱ABC-A1B1C1中,D,E分别为BC,AC的中点,AB=BC.求证:(1)A1B1∥平面DEC1;(2)BE⊥C1E.【答案】(1)见解析;(2)见解析.【解析】(1)因为D,E分别为BC,AC的中点,所以ED∥AB.在直三棱柱ABC−A1B1C1中,AB∥A1B1,所以A1B1∥ED.又因为ED⊂平面DEC1,A1B1 平面DEC1,所以A1B1∥平面DEC1.(2)因为AB=BC,E为AC的中点,所以BE⊥AC.因为三棱柱ABC−A1B1C1是直棱柱,所以CC1⊥平面ABC.又因为BE ⊂平面ABC ,所以CC 1⊥BE .因为C 1C ⊂平面A 1ACC 1,AC ⊂平面A 1ACC 1,C 1C ∩AC =C ,所以BE ⊥平面A 1ACC 1.因为C 1E ⊂平面A 1ACC 1,所以BE ⊥C 1E .【名师点睛】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系等基础知识,考查空间想象能力和推理论证能力.7.【2019年高考浙江卷】如图,已知三棱柱111ABC A B C -,平面11A ACC ⊥平面ABC ,90ABC ∠=︒,1130,,,BAC A A A C AC E F ∠=︒==分别是AC ,A 1B 1的中点.(1)证明:EF BC ⊥;(2)求直线EF 与平面A 1BC 所成角的余弦值.【答案】(1)见解析;(2)35.【解析】方法一:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC ,则A 1E ⊥BC .又因为A 1F ∥AB ,∠ABC =90°,故BC ⊥A 1F .所以BC ⊥平面A 1EF .因此EF ⊥BC .(2)取BC 中点G ,连接EG ,GF ,则EGFA 1是平行四边形.由于A 1E ⊥平面ABC ,故A 1E ⊥EG ,所以平行四边形EGFA 1为矩形.由(1)得BC ⊥平面EGFA 1,则平面A 1BC ⊥平面EGFA 1,所以EF 在平面A 1BC 上的射影在直线A 1G 上.连接A 1G 交EF 于O ,则∠EOG 是直线EF 与平面A 1BC 所成的角(或其补角).不妨设AC =4,则在Rt △A 1EG 中,A 1E 3,EG 3.由于O 为A 1G 的中点,故11522A G EO OG ===,所以2223cos 25EO OG EG EOG EO OG +-∠==⋅.因此,直线EF 与平面A 1BC 所成角的余弦值是35.方法二:(1)连接A 1E ,因为A 1A =A 1C ,E 是AC 的中点,所以A 1E ⊥AC .又平面A 1ACC 1⊥平面ABC ,A 1E ⊂平面A 1ACC 1,平面A 1ACC 1∩平面ABC =AC ,所以,A 1E ⊥平面ABC .如图,以点E 为原点,分别以射线EC ,EA 1为y ,z 轴的正半轴,建立空间直角坐标系E –xyz .不妨设AC =4,则A 1(0,0,),B,1,0),1B,3,,22F ,C (0,2,0).因此,3,,22EF =,(BC = .由0EF BC ⋅=得EF BC ⊥.(2)设直线EF 与平面A 1BC 所成角为θ.由(1)可得1=(10)=(02BC AC - ,,,.设平面A 1BC 的法向量为n ()x y z =,,,由100BC A C ⎧⋅=⎪⎨⋅=⎪⎩ n n,得00y y ⎧+=⎪⎨-=⎪⎩,取n (11)=,故||4sin |cos |=5|||EF EF EF θ⋅==⋅ ,n n n |,因此,直线EF 与平面A 1BC 所成的角的余弦值为35.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.8.【2018年高考全国Ⅰ卷文数】如图,在平行四边形ABCM 中,3AB AC ==,90ACM =︒∠,以AC为折痕将△ACM 折起,使点M 到达点D 的位置,且AB DA ⊥.(1)证明:平面ACD ⊥平面ABC ;(2)Q 为线段AD 上一点,P 为线段BC 上一点,且23BP DQ DA ==,求三棱锥Q ABP -的体积.【答案】(1)见解析;(2)1.【解析】(1)由已知可得,BAC ∠=90°,BA AC ⊥.又BA ⊥AD ,所以AB ⊥平面ACD .又AB ⊂平面ABC ,所以平面ACD ⊥平面ABC .(2)由已知可得,DC =CM =AB =3,DA =又23BP DQ DA ==,所以BP =作QE ⊥AC ,垂足为E ,则QE =∥13DC .由已知及(1)可得DC ⊥平面ABC ,所以QE ⊥平面ABC ,QE =1.因此,三棱锥Q ABP -的体积为11113451332Q ABP ABP V QE S -=⨯⨯=⨯⨯⨯⨯︒=△.【名师点睛】该题考查的是有关立体几何的问题,涉及到的知识点有面面垂直的判定以及三棱锥的体积的求解,在解题的过程中,需要清楚题中的有关垂直的直线的位置,结合线面垂直的判定定理证得线面垂直,之后应用面面垂直的判定定理证得面面垂直,需要明确线线垂直、线面垂直和面面垂直的关系,在求三棱锥的体积的时候,注意应用体积公式求解即可.解答本题时,(1)首先根据题的条件,可以得到BAC ∠=90°,即BA AC ⊥,再结合已知条件BA ⊥AD ,利用线面垂直的判定定理证得AB ⊥平面ACD ,又因为AB ⊂平面ABC ,根据面面垂直的判定定理,证得平面ACD ⊥平面ABC ;(2)根据已知条件,求得相关的线段的长度,根据第一问的相关垂直的条件,求得三棱锥的高,之后借助于三棱锥的体积公式求得三棱锥的体积.9.【2018年高考全国Ⅱ卷文数】如图,在三棱锥P ABC -中,AB BC ==,4PA PB PC AC ====,O 为AC 的中点.(1)证明:PO ⊥平面ABC ;(2)若点M 在棱BC 上,且2MC MB =,求点C 到平面POM 的距离.【答案】(1)见解析;(2)455.【解析】(1)因为AP =CP =AC =4,O 为AC 的中点,所以OP ⊥AC ,且OP =23连结OB .因为AB =BC =22AC ,所以△ABC 为等腰直角三角形,且OB ⊥AC ,OB =12AC =2.由222OP OB PB +=知,OP ⊥OB .由OP ⊥OB ,OP ⊥AC 知PO ⊥平面ABC .(2)作CH ⊥OM ,垂足为H .又由(1)可得OP ⊥CH ,所以CH ⊥平面POM .故CH 的长为点C 到平面POM 的距离.由题设可知OC =12AC =2,CM =23BC =23,∠ACB =45°.所以OM =253,CH =sin OC MC ACB OM ⋅⋅∠=55.所以点C 到平面POM 的距离为455.【名师点睛】立体几何解答题在高考中难度低于解析几何,属于易得分题,第一问多以线面的证明为主,解题的核心是能将问题转化为线线关系的证明,解答本题时,连接OB ,欲证PO ⊥平面ABC ,只需证明,PO AC PO OB ⊥⊥即可;本题第二问可以通过作出点到平面的距离线段求解,即过点C 作CH OM ⊥,垂足为M ,只需论证CH 的长即为所求,再利用平面几何知识求解即可,本题也可利用等体积法解决.10.【2018年高考全国Ⅲ卷文数】如图,矩形ABCD 所在平面与半圆弧 CD所在平面垂直,M 是 CD 上异于C ,D 的点.(1)证明:平面AMD ⊥平面BMC ;(2)在线段AM 上是否存在点P ,使得MC ∥平面PBD ?说明理由.【答案】(1)见解析;(2)存在,理由见解析.【解析】(1)由题设知,平面CMD ⊥平面ABCD ,交线为CD .因为BC ⊥CD ,BC ⊂平面ABCD ,所以BC ⊥平面CMD ,故BC ⊥DM .因为M 为 CD上异于C ,D 的点,且DC 为直径,所以DM ⊥CM .又BC ∩CM =C ,所以DM ⊥平面BMC .而DM ⊂平面AMD ,故平面AMD ⊥平面BMC .(2)当P 为AM 的中点时,MC ∥平面PBD .证明如下:连结AC 交BD 于O .因为ABCD 为矩形,所以O 为AC 中点.连结OP ,因为P 为AM 中点,所以MC ∥OP .MC ⊄平面PBD ,OP ⊂平面PBD ,所以MC ∥平面PBD .【名师点睛】本题主要考查面面垂直的证明,利用线线垂直得到线面垂直,再得到面面垂直,第二问先断出P 为AM 中点,然后作辅助线,由线线平行得到线面平行,考查学生空间想象能力,属于中档题.11.【2018年高考北京卷文数】如图,在四棱锥P−ABCD 中,底面ABCD 为矩形,平面PAD ⊥平面ABCD ,PA ⊥PD ,PA =PD ,E ,F 分别为AD ,PB 的中点.(1)求证:PE ⊥BC ;(2)求证:平面PAB ⊥平面PCD ;(3)求证:EF ∥平面PCD .【答案】(1)见解析;(2)见解析;(3)见解析.【解析】(1)∵PA PD =,且E 为AD 的中点,∴PE AD ⊥.∵底面ABCD 为矩形,∴BC AD ∥,∴PE BC ⊥.(2)∵底面ABCD 为矩形,∴AB AD ⊥.∵平面PAD ⊥平面ABCD ,∴AB ⊥平面PAD .∴AB PD ⊥.又PA PD ⊥,∴PD ⊥平面PAB ,∴平面PAB ⊥平面PCD .(3)如图,取PC 中点G ,连接,FG GD .∵,F G 分别为PB 和PC 的中点,∴FG BC ∥,且12FG BC =.∵四边形ABCD 为矩形,且E 为AD 的中点,∴1,2ED BC DE BC =∥,∴ED FG ∥,且ED FG =,∴四边形EFGD 为平行四边形,∴EF GD ∥.又EF ⊄平面PCD ,GD ⊂平面PCD ,∴EF ∥平面PCD .【名师点睛】证明面面关系的核心是证明线面关系,证明线面关系的核心是证明线线关系.证明线线平行的方法:(1)线面平行的性质定理;(2)三角形中位线法;(3)平行四边形法.证明线线垂直的常用方法:(1)等腰三角形三线合一;(2)勾股定理逆定理;(3)线面垂直的性质定理;(4)菱形对角线互相垂直.12.【2018年高考天津卷文数】如图,在四面体ABCD 中,△ABC 是等边三角形,平面ABC ⊥平面ABD ,点M 为棱AB 的中点,AB =2,AD=BAD =90°.(1)求证:AD ⊥BC ;(2)求异面直线BC 与MD 所成角的余弦值;(3)求直线CD 与平面ABD所成角的正弦值.【答案】(1)见解析;(2)26;(3)4.【解析】(1)由平面ABC ⊥平面ABD ,平面ABC ∩平面ABD =AB ,AD ⊥AB ,可得AD ⊥平面ABC ,故AD ⊥BC .(2)取棱AC 的中点N ,连接MN ,ND .又因为M 为棱AB 的中点,故MN ∥BC .所以∠DMN (或其补角)为异面直线BC 与MD 所成的角.在Rt △DAM 中,AM =1,故DMAD ⊥平面ABC ,故AD ⊥AC .在Rt △DAN 中,AN =1,故DN在等腰三角形DMN 中,MN =1,可得12cos 26MN DMN DM ∠==.所以,异面直线BC 与MD 所成角的余弦值为26.(3)连接CM .因为△ABC 为等边三角形,M 为边AB 的中点,故CM ⊥AB ,CM =.又因为平面ABC ⊥平面ABD ,而CM ⊂平面ABC ,故CM ⊥平面ABD .所以,∠CDM 为直线CD 与平面ABD 所成的角.在Rt △CAD 中,CD =4.在Rt △CMD 中,sin 4CM CDM CD ∠==.所以,直线CD 与平面ABD 所成角的正弦值为4.【名师点睛】本小题主要考查异面直线所成的角、直线与平面所成的角、平面与平面垂直等基础知识.考查空间想象能力、运算求解能力和推理论证能力.13.【2018年高考江苏卷】在平行六面体1111ABCD A B C D -中,1111,AA AB AB B C =⊥.求证:(1)AB ∥平面11A B C ;(2)平面11ABB A ⊥平面1A BC .【答案】(1)见解析;(2)见解析.【解析】(1)在平行六面体ABCD -A 1B 1C 1D 1中,AB ∥A 1B 1.因为AB⊄平面A1B1C,A1B1⊂平面A1B1C,所以AB∥平面A1B1C.(2)在平行六面体ABCD-A1B1C1D1中,四边形ABB1A1为平行四边形.又因为AA1=AB,所以四边形ABB1A1为菱形,因此AB1⊥A1B.又因为AB1⊥B1C1,BC∥B1C1,所以AB1⊥BC.又因为A1B∩BC=B,A1B⊂平面A1BC,BC⊂平面A1BC,所以AB1⊥平面A1BC.因为AB1⊂平面ABB1A1,所以平面ABB1A1⊥平面A1BC.【名师点睛】本题可能会出现对常见几何体的结构不熟悉导致几何体中的位置关系无法得到运用或者运用错误,如柱体的概念中包含“两个底面是全等的多边形,且对应边互相平行,侧面都是平行四边形”,再如菱形对角线互相垂直的条件,这些条件在解题中都是已知条件,缺少对这些条件的应用可导致无法证明.解答本题时,(1)先根据平行六面体得线线平行,再根据线面平行判定定理得结论;(2)先根据条件得四边形ABB1A1为菱形,再根据菱形对角线相互垂直,以及已知垂直条件,利用线面垂直判定定理得线面垂直,最后根据面面垂直判定定理得结论.14.【2018年高考浙江卷】如图,已知多面体ABCA1B1C1,A1A,B1B,C1C均垂直于平面ABC,∠ABC=120°,A1A=4,C1C=1,AB=BC=B1B=2.(1)证明:AB1⊥平面A1B1C1;(2)求直线AC1与平面ABB1所成的角的正弦值.【答案】(1)见解析;(2)13.【解析】方法一:(1)由11112,4,2,,AB AA BB AA AB BB AB ===⊥⊥得111AB A B ==,所以2221111A B AB AA +=.故111AB A B ⊥.由2BC =,112,1,BB CC ==11,BB BC CC BC ⊥⊥得11B C =,由2,120AB BC ABC ==∠=︒得AC =由1CC AC ⊥,得1AC =2221111AB B C AC +=,故111AB B C ⊥.因此1AB ⊥平面111A B C .(2)如图,过点1C 作111C D A B ⊥,交直线11A B 于点D ,连结AD.由1AB ⊥平面111A B C 得平面111A B C ⊥平面1ABB ,由111C D A B ⊥得1C D ⊥平面1ABB ,所以1C AD ∠是1AC 与平面1ABB 所成的角.由111111B C A B AC ===得111111cos C A B C A B ∠=∠=,所以1C D =,故111sin 13C D C AD AC ∠==.因此,直线1AC 与平面1ABB所成的角的正弦值是13.方法二:(1)如图,以AC 的中点O 为原点,分别以射线OB ,OC 为x ,y 轴的正半轴,建立空间直角坐标系O -xyz.由题意知各点坐标如下:111(0,(1,0,0),(0,(1,0,2),A B A B C因此111112),(1,2),(0,3),AB A B A C ==-=-uuu r uuu u r uuu u r由1110AB A B ⋅=uuu r uuu u r 得111AB A B ⊥.由1110AB A C ⋅=uuu r uuu u r 得111AB A C ⊥.所以1AB ⊥平面111A B C .(2)设直线1AC 与平面1ABB 所成的角为θ.由(1)可知11(0,(1,(0,0,2),AC AB BB ===uuu r uu u r uuu r 设平面1ABB 的法向量(,,)x y z =n .由10,0,AB BB ⎧⋅=⎪⎨⋅=⎪⎩uu u r uuu r n n即0,20,x z ⎧+=⎪⎨=⎪⎩可取(=n .所以111|sin |cos ,|13|||AC AC AC θ⋅===⋅uuu r uuu r uuu r n |n n |.因此,直线1AC 与平面1ABB所成的角的正弦值是13.【名师点睛】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.15.【2017年高考全国Ⅰ文数】如图,在四棱锥P−ABCD 中,AB//CD ,且90BAP CDP ∠=∠= .(1)证明:平面PAB ⊥平面PAD ;(2)若PA =PD =AB =DC ,90APD ∠= ,且四棱锥P−ABCD 的体积为83,求该四棱锥的侧面积.【答案】(1)见解析;(2)326+.【解析】(1)由已知90BAP CDP ==︒∠∠,得AB AP ⊥,CD PD ⊥.由于AB CD ∥,故AB PD ⊥,从而AB ⊥平面PAD .又AB ⊂平面PAB ,所以平面PAB ⊥平面PAD .(2)在平面PAD 内作PE AD ⊥,垂足为E .由(1)知,AB ⊥平面PAD ,故AB PE ⊥,可得PE ⊥平面ABCD .设AB x =,则由已知可得AD =,2PE x =.故四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=.由题设得31833x =,故2x =.从而2PA PD ==,AD BC ==,PB PC ==.可得四棱锥P ABCD -的侧面积为21111sin 6062222PA PD PA AB PD DC BC ⋅+⋅+⋅+︒=+【名师点睛】证明面面垂直,先由线线垂直证明线面垂直,再由线面垂直证明面面垂直;计算点面距离时,如直接求不方便,应首先想到转化,如平行转化、对称转化、比例转化等,找到方便求值时再计算,可以减少运算量,提高准确度,求点面距离有时能直接作出就直接求出,不方便直接求出的看成三棱锥的高,利用等体积法求出.解答本题时,(1)由AB AP ⊥,AB PD ⊥,得AB ⊥平面PAD 即可证得结果;(2)设AB x =,则四棱锥P ABCD -的体积31133P ABCD V AB AD PE x -=⋅⋅=,解得2x =,可得所求侧面积.16.【2017年高考全国Ⅱ卷文数】如图,四棱锥P ABCD -中,侧面PAD 为等边三角形且垂直于底面ABCD ,1,2AB BC AD BAD ==∠90.ABC =∠=︒(1)证明:直线BC ∥平面PAD ;(2)若△PCD 的面积为,求四棱锥P ABCD -的体积.【答案】(1)见解析;(2)【解析】(1)在平面ABCD 内,因为∠BAD =∠ABC =90°,所以BC ∥AD .又BC PAD ⊄平面,AD PAD ⊂平面,故BC ∥平面PAD .(2)取AD 的中点M ,连结PM ,CM ,由12AB BC AD ==及BC ∥AD ,∠ABC =90°得四边形ABCM 为正方形,则CM ⊥AD .因为侧面PAD 为等边三角形且垂直于底面ABCD ,平面PAD ∩平面ABCD =AD ,所以PM ⊥AD ,PM ⊥底面ABCD ,因为CM ABCD ⊂底面,所以PM ⊥CM .设BC =x ,则CM =x ,CD ,PM =,PC =PD =2x .取CD 的中点N ,连结PN ,则PN ⊥CD ,所以2PN x =.因为△PCD 的面积为,所以122x ⨯=,解得x =−2(舍去),x =2,于是AB =BC =2,AD =4,PM =所以四棱锥P −ABCD 的体积()224132V ⨯+=⨯⨯=.【名师点睛】解答本题时,(1)先由平面几何知识得BC ∥AD ,再利用线面平行的判定定理证得结论;(2)取AD 的中点M ,利用线面垂直的判定定理证明PM ⊥底面ABCD ,从而得四棱锥的高,再通过平面几何计算得底面直角梯形的面积,最后代入锥体体积公式即可.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.17.【2017年高考全国Ⅲ卷文数】如图,四面体ABCD 中,△ABC 是正三角形,AD =CD .(1)证明:AC ⊥BD ;(2)已知△ACD 是直角三角形,AB =BD .若E 为棱BD 上与D 不重合的点,且AE ⊥EC ,求四面体ABCE 与四面体ACDE 的体积比.【答案】(1)见解析;(2)1:1【解析】(1)取AC 的中点O ,连结DO ,BO .因为AD =CD ,所以AC ⊥DO .又由于△ABC 是正三角形,所以AC ⊥BO .从而AC ⊥平面DOB ,故AC ⊥BD .(2)连结EO .由(1)及题设知∠ADC =90°,所以DO =AO .在Rt △AOB 中,222BO AO AB +=.又AB =BD ,所以222222BO DO BO AO AB BD +=+==,故∠DOB =90°.由题设知△AEC 为直角三角形,所以12EO AC =.又△ABC 是正三角形,且AB =BD ,所以12EO BD =.故E 为BD 的中点,从而E 到平面ABC 的距离为D 到平面ABC 的距离的12,四面体ABCE 的体积为四面体ABCD 的体积的12,即四面体ABCE 与四面体ACDE 的体积之比为1:1.【名师点睛】解答本题时,(1)取AC 的中点O ,由等腰三角形及等边三角形的性质得OD AC ⊥,OB AC ⊥,再根据线面垂直的判定定理得⊥AC 平面OBD ,即得AC ⊥BD ;(2)先由AE ⊥EC ,结合平面几何知识确定12EO AC =,再根据锥体的体积公式得所求体积之比为1:1.垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行.(2)证明线面垂直,需转化为证明线线垂直.(3)证明线线垂直,需转化为证明线面垂直.18.【2017年高考北京卷文数】如图,在三棱锥P –ABC 中,PA ⊥AB ,PA ⊥BC ,AB ⊥BC ,PA =AB =BC =2,D 为线段AC 的中点,E 为线段PC 上一点.(1)求证:PA ⊥BD ;(2)求证:平面BDE ⊥平面PAC ;(3)当PA ∥平面BDE 时,求三棱锥E –BCD 的体积.【答案】(1)见解析;(2)见解析;(3)13.【解析】(1)因为PA AB ⊥,PA BC ⊥,所以PA ⊥平面ABC ,又因为BD ⊂平面ABC ,所以PA BD ⊥.(2)因为AB BC =,D 为AC 中点,所以BD AC ⊥,由(1)知,PA BD ⊥,所以BD ⊥平面PAC ,所以平面BDE ⊥平面PAC .(3)因为PA ∥平面BDE ,平面PAC 平面BDE DE =,所以PA DE ∥.因为D 为AC 的中点,所以112DE PA ==,2BD DC ==由(1)知,PA ⊥平面ABC ,所以DE ⊥平面ABC .所以三棱锥E BCD -的体积1163V BD DC DE =⋅⋅=.【名师点睛】线线、线面的位置关系以及证明是高考的重点内容,而其中证明线面垂直又是重点和热点,要证明线面垂直,根据判定定理可转化为证明线与平面内的两条相交直线垂直,也可根据性质定理转化为证明面面垂直.解答本题时,(1)要证明线线垂直,一般转化为证明线面垂直;(2)要证明面面垂直,一般转化为证明线面垂直、线线垂直;(3)由13BCD V S DE =⨯⨯△即可求解.19.【2017年高考天津卷文数】如图,在四棱锥P ABCD -中,AD ⊥平面PDC ,AD BC ∥,PD PB ⊥,1AD =,3BC =,4CD =,2PD =.(1)求异面直线AP 与BC 所成角的余弦值;(2)求证:PD ⊥平面PBC ;(3)求直线AB 与平面PBC 所成角的正弦值.【答案】(1)55;(2)见解析;(3)55.【解析】(1)如图,由已知AD //BC ,故DAP ∠或其补角即为异面直线AP 与BC 所成的角.因为AD ⊥平面PDC ,所以AD ⊥PD .在Rt △PDA 中,由已知,得AP ==故cos 5ADDAP AP ∠==.所以,异面直线AP 与BC 所成角的余弦值为5.(2)因为AD ⊥平面PDC ,直线PD ⊂平面PDC ,所以AD ⊥PD .又因为BC //AD ,所以PD ⊥BC ,又PD ⊥PB ,所以PD ⊥平面PB C .(3)过点D 作AB 的平行线交BC 于点F ,连结PF ,则DF 与平面PBC 所成的角等于AB 与平面PBC 所成的角.因为PD ⊥平面PBC ,故PF 为DF 在平面PBC 上的射影,所以DFP ∠为直线DF 和平面PBC 所成的角.由于AD //BC ,DF //AB ,故BF =AD =1,由已知,得CF =BC –BF =2.又AD ⊥DC ,故BC ⊥DC ,在Rt △DCF 中,可得DF ==,在Rt △DPF 中,可得5sin 5PD DFP DF ∠==.所以,直线AB 与平面PBC 所成角的正弦值为5.【名师点睛】线线、线面的位置关系以及证明是高考的重点考查内容,而证明线面垂直又是重点和热点,要证明线面垂直,根据判断定理转化为证明直线与平面内的两条相交直线垂直即可,而线线垂直又可通过线面垂直得到,用几何法求线面角,关键是找到斜线的射影,斜线与其射影所成的角就是线面角.解答本题时,(1)异面直线所成的角一般都转化为相交线所成的角,因为AD BC ∥,所以DAP ∠或其补角即为异面直线AP 与BC 所成的角,本题中AD ⊥PD ,进而可得AP 的长,所以cos AD DAP AP ∠=;(2)要证明线面垂直,根据判断定理,证明直线与平面内的两条相交直线垂直即可;(3)根据(2)中的结论,作DF AB ∥,连结PF ,则DFP ∠为直线DF 和平面PBC 所成的角.20.【2017年高考山东卷文数】由四棱柱ABCD −A 1B 1C 1D 1截去三棱锥C 1−B 1CD 1后得到的几何体如图所示,四边形ABCD 为正方形,O 为AC 与BD 的交点,E 为AD 的中点,A 1E ⊥平面ABCD .(1)证明:1AO ∥平面B 1CD 1;(2)设M 是OD 的中点,证明:平面A 1EM ⊥平面B 1CD 1.【答案】(1)见解析;(2)见解析.【解析】(1)取11B D 的中点1O ,连接111,CO A O ,由于1111ABCD A B C D -是四棱柱,所以1111,A O OC A O OC =∥,因此四边形11A OCO 为平行四边形,所以11A O O C ∥,又1OC ⊂平面11B CD ,1AO ⊄平面11B CD ,所以1AO ∥平面11B CD .(2)因为AC BD ⊥,E ,M 分别为AD 和OD 的中点,所以EM BD ⊥,又1A E ⊥平面ABCD ,BD ⊂平面ABCD ,所以1,A E BD ⊥因为11,B D BD ∥所以11111,,EM B D A E B D ⊥⊥又1,A E EM ⊂平面1A EM ,1A E EM E = ,所以11B D ⊥平面1,A EM 又11B D ⊂平面11B CD ,所以平面1A EM ⊥平面11B CD .【名师点睛】证明线面平行时,先直观判断平面内是否存在一条直线和已知直线平行,若找不到这样的直线,可以考虑通过面面平行来推导线面平行,应用线面平行性质的关键是如何确定交线的位置,有时需要经过已知直线作辅助平面来确定交线.在应用线面平行、面面平行的判定定理和性质定理进行平行转化时,一定要注意定理成立的条件,严格按照定理成立的条件规范书写步骤,如把线面平行转化为线线平行时,必须说清经过已知直线的平面与已知平面相交,则直线与交线平行.21.【2017年高考江苏卷】如图,在三棱锥A BCD -中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ;(2)AD ⊥AC .【答案】(1)见解析;(2)见解析.【解析】(1)在平面ABD 内,因为AB ⊥AD ,EF AD ⊥,所以EF AB ∥.又因为EF ⊄平面ABC ,AB ⊂平面ABC ,所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD ,平面ABD 平面BCD =BD ,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD .因为AD ⊂平面ABD ,所以BC ⊥AD .又AB ⊥AD ,BC AB B = ,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC ,又因为AC ⊂平面ABC ,所以AD ⊥AC .【名师点睛】垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.22.【2017年高考浙江卷】如图,已知四棱锥P –ABCD ,△PAD 是以AD 为斜边的等腰直角三角形,BC AD ∥,CD ⊥AD ,PC =AD =2DC =2CB ,E 为PD 的中点.PABC D E(1)证明:CE ∥平面PAB ;(2)求直线CE 与平面PBC 所成角的正弦值.【答案】(1)见解析;(2)8.【解析】本题主要考查空间点、线、面位置关系,直线与平面所成的角等基础知识,同时考查空间想象能力和运算求解能力.满分15分.(1)如图,设PA 中点为F ,连接EF ,FB .因为E ,F 分别为PD ,PA 中点,所以EF AD ∥且12EF AD =,又因为BC AD ∥,12BC AD =,所以EF BC ∥且EF BC =,即四边形BCEF 为平行四边形,所以CE BF ∥,因此CE ∥平面PAB .(2)分别取BC ,AD 的中点为M ,N .连接PN 交EF 于点Q ,连接MQ .因为E ,F ,N 分别是PD ,PA ,AD 的中点,所以Q 为EF 中点,在平行四边形BCEF 中,MQ//CE .由△PAD 为等腰直角三角形得PN ⊥AD .由DC ⊥AD ,N 是AD 的中点得BN ⊥AD .所以AD ⊥平面PBN ,由BC //AD 得BC ⊥平面PBN ,那么平面PBC ⊥平面PBN .过点Q 作PB 的垂线,垂足为H ,连接MH .MH 是MQ 在平面PBC 上的射影,所以∠QMH 是直线CE 与平面PBC 所成的角.设CD =1.在△PCD 中,由PC =2,CD =1,PD=CE ,在△PBN 中,由PN =BN =1,PB 得QH =14,在Rt △MQH 中,QH=14,MQ ,所以sin ∠QMH =28,所以直线CE 与平面PBC 所成角的正弦值是8.【名师点睛】本题主要考查线面平行的判定定理、线面垂直的判定定理及面面垂直的判定定理,属于中档题.证明线面平行的常用方法:①利用线面平行的判定定理,使用这个定理的关键是设法在平面内找到一条与已知直线平行的直线,可利用几何体的特征,合理利用中位线定理、线面平行的性质或者构造平行四边形、寻找比例式证明两直线平行.②利用面面平行的性质,即两平面平行,在其中一平面内的直线平行于另一平面.本题(1)是就是利用方法①证明的.另外,本题也可利用空间向量求解线面角.31。

上海初三数学一模各区几何证明题集合

上海初三数学一模各区几何证明题集合

2018各区一模几何证明普陀23.(本题满分12分)已知:如图9,四边形ABCD 的对角线AC 和BD 相交于点E ,AD=DC ,DC 2=DE·DB . 求证:(1)△BCE ∽△ADE ;(2)AB·BC=BD·BE .静安23.已知:如图,梯形ABCD 中,AB DC //,BD AD =,DB AD ⊥,点E 是腰AD 上一点,作︒=∠45EBC,联结CE ,交DB 于点F . (1)求证:ABE ∆∽DBC ∆;(2)如果65=BD BC ,求BDA BCE S S ∆∆的值.奉贤23.已知:如图,四边形ABCD ,∠DCB =90°,对角线BD ⊥AD ,点E 是边AB 的中点,CE 与BD 相交于点F ,2BDAB BC =⋅(1)求证:BD 平分∠ABC ; (2)求证:BE CF BC EF ⋅=⋅.虹口23.(本题满分12分,第(1)题满分6分,第(2)题满分6分)如图,在△ABC 中,点D 、E 分别在边AB 、AC 上,DE 、BC 的延长线相交于点F ,且EF DF BF CF ⋅=⋅.(1)求证AD AB AE AC ⋅=⋅;(2)当AB =12,AC =9,AE =8时,求BD 的长与△△ADEECFS S 的值.宝山23.(本题满分12分,每小题各6分)如图,△ABC 中,AB =AC ,过点C 作CF ∥AB 交△ABC 的中位线DE 的延长线于F ,联结BF ,交AC 于点G .(1)求证:GAE AC EGC =; (2)若AH 平分∠BAC ,交BF 于H ,求证:BH 是HG 和HF 的比例中项. 嘉定23.(本题满分12分,每小题6分)如图,已知梯形ABCD 中,AD ∥BC ,CD AB =,点E 在对角线AC 上,且满足BAC ADE ∠=∠.(1)求证:BC DE AE CD ⋅=⋅; (2)以点A 为圆心,AB 长为半径画弧交边BC 于点F ,联结AF .求证:CA CE AF ⋅=2.CE A BDF第23题图ABD EF第23题图闵行23.(本题共2小题,每小题6分,满分12分)如图,已知在△ABC 中,∠BAC =2∠B ,AD 平分∠BAC ,DF //BE ,点E 在线段BA 的延长线上,联结DE ,交AC 于点G ,且∠E =∠C .(1)求证:2AD AF AB =⋅; (2)求证:AD BE DE AB ⋅=⋅.杨浦23.(本题满分12分,第(1)小题5分,第(2)小题7分)已知:梯形ABCD 中,AD //BC ,AD =AB ,对角线AC 、BD 交于点E ,点F 在边BC 上,且∠BEF =∠BAC .(1)求证:△AED ∽△CFE ;(2)当EF //DC 时,求证:AE =DE .松江23.(本题满分12分,每小题6分)已知四边形ABCD 中,∠BAD =∠BDC =90°,2BD AD BC =⋅.(1)求证:AD ∥BC ;(2)过点A 作AE ∥CD 交BC 于点E .请完善图形并求证:2CD BE BC =⋅.浦东23.(本题满分12分,其中第(1)小题6分,第(2)小题6分)如图,已知,在锐角△ABC 中,CE ⊥AB 于点E ,点D 在边AC 上, 联结BD 交CE 于点F ,且DF FB FC EF ⋅=⋅. (1)求证:BD ⊥AC ;(2)联结AF ,求证:AF BE BC EF ⋅=⋅.徐汇23.(本题满分12分,第(1)小题满分5分,第(2)小题满分7分)如图在△ABC 中,AB =AC ,点D 、E 、F 分别在边BC 、AB 、AC 上,且∠ADE =∠B , ∠ADF =∠C ,线段EF 交线段AD 于点G . (1)求证:AE =AF ; (2)若DF CFDE AE=,求证:四边形EBDF 是平行四边形. 崇明23.(本题满分12分,每小题各6分)如图,点E 是正方形ABCD 的边BC 延长线上一点,联结DE ,过顶点B 作BF DE ⊥,垂足为F ,BF 交边DC 于点G .(1)求证:GD AB DF BG ⋅=⋅; (2)联结CF ,求证:45CFB ∠=︒. 黄浦23.(本题满分12分)如图,BD 是△ABC 的角平分线,点E 位于边BC 上,已知BD 是BA 与BE 的比例中项.(1)求证:∠CDE =12∠ABC ; (2)求证:AD ?CD =AB ?CE .青浦23.(本题满分12分,第(1)小题4分,第(2)小题8分)如图8,已知点D 、E 分别在△ABC 的边AC 、BC 上,线段BD 与AE 交于点F ,且CD CA CE CB ⋅=⋅.(1)求证:∠CAE =∠CBD ; (2)若BE ABEC AC=,求证:AB AD AF AE ⋅=⋅. (第23题图)AB DC EF G (第23题图)A B CD FEA (第23题图)DEFB C (第23题图)A BD ECGFEDCBAABCD EF图8长宁23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图,在∆ABC 中,点D 在边BC 上,联结AD ,∠ADB=∠CDE , DE 交边AC 于点E ,DE 交BA 延长线于点F ,且DF DE AD ⋅=2.(1)求证:BFD ∆∽CAD ∆;(2)求证:AD AB DE BF ⋅=⋅.金山23.(本题满分12分,每小题6分)如图,已知在Rt △ABC 中,∠ACB=90°,AC>BC ,CD 是Rt △ABC 的高,E 是AC 的中点,ED 的延长线与CB 的延长线相交于点F .(1)求证:DF 是BF 和CF 的比例中项; (2)在AB 上取一点G ,如果AE ·AC=AG ·AD ,求证:EG ·CF=ED ·DF .F EDABC第23题图。

【2021年上海市初中一模数学卷】2021年上海市长宁区初中毕业生学业模拟考试试卷九年级数学及答案

【2021年上海市初中一模数学卷】2021年上海市长宁区初中毕业生学业模拟考试试卷九年级数学及答案

2020学年第一学期初三数学教学质量检测试卷一、选择题1.已知在ABC 中,∠C =90°,∠B =50°,AB =10,那么BC 的长为( )A .10cos 50°B .10sin 50°C .10tan 50°D .10cot 50°2.下列命题中,说法正确的是( )A .四条边对应成比例的两个四边形相似B .四个内角对应相等的两个四边形相似C .两边对应成比例且有一个角相等的两个三角形相似D .斜边与一条直角边对应成比例的两个直角三角形相似3.已知12,e e 是两个单位向量,向量123,3a e b e ==−,那么下列结论正确的是( )A . 12e e =B .a b =−C . a b =D . a b =−4.已知二次函数()20y ax bx c a =++≠的图像如图所示,那么,a c 满足( )A .0,0a c >>B .0,0a c ><C .0,0a c <>D .0,0a c <<5.已知点P 、点Q 是线段AB 的两个黄金分割点,且AB =10,那么PQ 的长为( )A .(53B .)102C .)51D .)516.如图,已知在ABC 中,点D 、点E 是边BC 上的两点,联结AD 、AE ,且AD =AE ,如果ABE CBA ,那么下列等式错误的是( )A . 2AB BE BC =⋅B .CD AB AD AC ⋅=⋅C . 2AE CD BE =⋅D .AB AC BE CD⋅=⋅二、填空题7.已知12x y =,那么x yx y +−的值为____________ 第4题图第6题图8.计算:()122a b b −+=____________9.245sin 60︒+︒=____________10.如果两个相似三角形对应边上的中线之比为5:4,那么这两个三角形的周长之比为____________11.将抛物线221y x =−向下平移3个单位后,得到新抛物线的表达式为____________12.一辆汽车沿着坡度i =50米,那么它距离地面的垂直高度下降了___________米13.已知抛物线22y x x c =−+经过点()()121,,2,y y −,试比较1y 和2y 的大小:1y ___________2y (填“>”、“<”或“=”)14.如图,已知AC //EF //BD ,如果AE :EB =2:3,CF =6,那么CD 的长等于___________15.已知二次函数()2f x ax bx c =++的部分对应值如下表,那么()3f −的值为____________16.如图,点G 为ABC 的重心,如果AG =CG ,BG =2,AC =4,那么AB 的长等于____________17.如图,矩形ABCD 沿对角线BD 翻折后,点C 落在点E 处,联结CE 交边AD 于点F ,如果DF =1,BC =4,那么AE 的长等于____________18.如果一条对角线把凸四边形分成两个相似三角形,那么我们把这条对角线叫做这个凸四边形的相似对角线,在凸四边形ABCD 中,32AB AC AD CD ====,点E 、点F 分别是边AD 、边BC 上的 中点,如果AC 是凸四边形ABCD 的相似对角线,那么EF 的长等于____________三、解答题19.已知二次函数21722y x x =−−+. (1)用配方法把该二次函数的解析式化为()2y a x m k =++的形式;(2)写出该二次函数图像的开口方向、顶点坐标和对称轴,并说明函数值y 随自变量x 的变化而变化的情 况.20.如图,四边形ABCD 是平行四边形,点E 是边AD 的中点,AC 、BE 相交于点O ,设,BA a CB b ==.(1)试用,a b 表示BO ;(2)在图中作出CO 在,CB CD 上的分向量,并直接用,a b 表示CO .(不要求写作法,但要保留作图痕迹,并写明结论)21.如图,在ABC 中,点D 在边AB 上,点E 、点F 在边AC 上,且DE //BC ,AF AE FE EC =. (1)求证:DF //BE ;(2)如果AF =2,EF =4,AB =DE BE的值.22.某校为检测师生体温,在校门安装了某型号的测温门,如图为该“测温门”截面示意图,身高1.6米的小聪做了如下实验:当他在地面M处时“测温门”开始显示额头温度,此时在额头B处测得A的仰角为30°;当他在地面N处时,“测温门”停止显示额头温度,此时在额头C处测得A的仰角为53°,如果测得小聪的有效测温区间MN的长度是0.98米,求测温门顶部A处距地面的高度约为多少米?(注:︒≈︒≈︒≈≈)额头到地面的距离以身高计,sin530.8,cos530.6,cot53 1.73⊥,垂足为点H,点D在边BC上,联结AD,交23.已知:如图,在Rt ABC中,∠ACB=90°,CH ABCH于点E,且CE=CD.(1)求证:ACE ABD;(2)求证:ACD的面积是ACE的面积与ABD的面积的比例中项.24.已知在平面直角坐标系xOy 中,抛物线22y ax bx =++经过点()()3,6,6,0A B −−,与y 轴交于点C .(1)求抛物线的表达式;(2)点D 是抛物线上的点,且位于线段BC 上方,联结CD .①如果点D 的横坐标为2,求cot ∠DCB 的值;②如果∠DCB =2∠CBO ,求点D 的坐标.25.已知,在矩形ABCD 中,点M 是边AB 上的一个点(与点A 、B 不重合),联结CM ,作∠CMF =90°,且MF 分别交边AD 于点E 、交边CD 的延长线于点F ,点G 为线段MF 的中点,联结DG .(1)如图1,如果AD =AM =4,当点E 与点G 重合时,求MFC 的面积;(2)如图2,如果AM =2,BM =4,当点G 在矩形ABCD 内部时,设2,AD x DG y ==,求y 关于x 的函 数解析式,并写出定义域;(3)如果AM =6,CD =8,∠F =∠EDG ,求线段AD 的长(直接写出计算结果)参考答案一、选择题1.A2. D3. C4. C5. B6. D二、填空题7.3−8. 12a b +9. 7410.5:411. 224y x =−12. 2513.>14.1515.12 17. 18. 三、解答题19.(1)()21142y x =−++(2)二次函数开口方向向下,顶点坐标()1,4−,对称轴直线1x =−;沿着x 轴正方向看,在直线1x =−左侧,y 随x 增大而增大;在直线1x =−右侧,y 随x 增大而减小20.(1)2133BO a b =−(2)作图略;2233CO b a =+21.(1)证明略(2)322.2.6米23.(1)证明略(2)证明略24.(1)215233y x x =−++(2)①12; ②104,3D ⎛⎫ ⎪⎝⎭25.(1)20(2)()4244644x x y x =−+<<(3)。

上海市各区2021届九年级中考二模数学试卷精选汇编:几何证明专题

上海市各区2021届九年级中考二模数学试卷精选汇编:几何证明专题

上海市各区2021届九年级中考二模数学试卷精选汇编几何证明专题宝山区、嘉定区23.(本题满分12分,第(1)小题6分,第(2)小题6分)如图6,在正方形ABCD 中,点M 是边BC 上的一点(不与B 、C 重合),点N 在CD 边的延长线上,且满足︒=∠90MAN ,联结MN 、AC ,MN 与边AD 交于点E . (1)求证;AN AM =;(2)如果NAD CAD ∠=∠2,求证:AE AC AM ⋅=2.23.证明:(1)∵四边形ABCD 是正方形∴AD AB =,︒=∠=∠=∠=∠90BCD ADC B BAD ……1分 ∴︒=∠+∠90MAD MAB ∵︒=∠90MAN∴︒=∠+∠90MAD NAD ∴NAD MAB ∠=∠………1分 ∵︒=∠+∠180ADC ADN ∴︒=∠90ADN ……1分 ∴ADN B ∠=∠……………………1分 ∴△ABM ≌△ADN ………………………1分 ∴AN AM = ……………………………1分(2)∵四边形ABCD 是正方形 ∴AC 平分BCD ∠和BAD ∠ ∴︒=∠=∠4521BCD BCA ,︒=∠=∠=∠4521BAD CAD BAC ……1分 ∵NAD CAD ∠=∠2 ∴︒=∠5.22NAD∵NAD MAB ∠=∠ ∴︒=∠5.22MAB ………1分 ∴︒=∠5.22MAC ∴︒=∠=∠5.22NAE MAC ∵AN AM =,︒=∠90MAN ∴︒=∠45ANE图6图6∴ANE ACM ∠=∠…………………1分 ∴△ACM ∽△ANE …………1分 ∴ANACAE AM =……1分 ∵AN AM =∴AE AC AM ⋅=2…………1分长宁区23.(本题满分12分,第(1)小题5分,第(2)小题7分)如图,在四边形ABCD 中,AD //BC ,E 在BC 的延长线,联结AE 分别交BD 、CD 于点 G 、F ,且AG GF BE AD =.(1)求证:AB //CD ;(2)若BD GD BC ⋅=2,BG =GE ,求证:四边形ABCD 是菱形.23.(本题满分12分,第(1)小题5分,第(2)小题7分)证明:(1)∵BC AD // ∴BG DG BE AD = (2分)∵AG GFBE AD =∴AGGF BG DG = (1分) ∴ CD AB // (2分) (2)∵BC AD //,CD AB //∴四边形ABCD 是平行四边形 ∴BC=AD (1分) ∵ BD GD BC ⋅=2∴ BD GD AD ⋅=2即ADGDBD AD =又 ∵BDA ADG ∠=∠ ∴ADG ∆∽BDA ∆ (1分) ∴ABD DAG ∠=∠∵CD AB // ∴BDC ABD ∠=∠ ∵BC AD // ∴E DAG ∠=∠∵BG =GE ∴E DBC ∠=∠ ∴DBC BDC ∠=∠ (3分)ACDEF GB第23题图∴BC=CD (1分) ∵四边形ABCD 是平行四边形 ∴平行四边形ABCD 是菱形. (1分)崇明区23.(本题满分12分,第(1)、(2)小题满分各6分)如图,AM 是ABC △的中线,点D 是线段AM 上一点(不与点A 重合).DE AB ∥交BC 于点K ,CE AM ∥,联结AE .(1)求证:AB CMEK CK=; (2)求证:BD AE =.23.(本题满分12分,每小题6分) (1)证明:∵DE AB ∥∴ ABC EKC =∠∠ ……………………………………………………1分∵CE AM ∥∴ AMB ECK =∠∠ ……………………………………………………1分∴ABM EKC △∽△ ……………………………………………………1分 ∴AB BMEK CK=………………………………………………………1分 ∵ AM 是△ABC 的中线∴BM CM = ………………………………………………………1分∴AB CMEK CK=………………………………………………………1分 (2)证明:∵CE AM ∥ ∴DE CMEK CK=………………………………………………………2分 (第23题图)ABK MCDE又∵ABCMEK CK=∴DE AB = ………………………………………………………2分 又∵DE AB ∥∴四边形ABDE 是平行四边形 …………………………………………1分 ∴BD AE = ………………………………………………………1分奉贤区23.(本题满分12分,每小题满分各6分)已知:如图7,梯形ABCD ,DC ∥AB ,对角线AC 平分∠BCD , 点E 在边CB 的延长线上,EA ⊥AC ,垂足为点A . (1)求证:B 是EC 的中点;(2)分别延长CD 、EA 相交于点F ,若EC DC AC ⋅=2,求证:FC AC AF AD ::=.黄浦区23.(本题满分12分)如图,点E 、F 分别为菱形ABCD 边AD 、CD 的中点. (1)求证:BE =BF ;(2)当△BEF 为等边三角形时,求证:∠D =2∠A .ACD E图7B23. 证:(1)∵四边形ABCD为菱形,∴AB=BC=AD=CD,∠A=∠C,——————————————————(2分)又E、F是边的中点,∴AE=CF,——————————————————————————(1分)∴△ABE≌△CBF———————————————————————(2分)∴BE=BF. ——————————————————————————(1分)(2)联结AC、BD,AC交BE、BD于点G、O. ——————————(1分)∵△BEF是等边三角形,∴EB=EF,又∵E、F是两边中点,∴AO=12AC=EF=BE.——————————————————————(1分)又△ABD中,BE、AO均为中线,则G为△ABD的重心,∴1133OG AO BE GE===,∴AG=BG,——————————————————————————(1分)又∠AGE=∠BGO,∴△AGE≌△BGO,——————————————————————(1分)∴AE=BO,则AD=BD,∴△ABD是等边三角形,———————————————————(1分)所以∠BAD=60°,则∠ADC=120°,即∠ADC=2∠BAD. —————————————————————(1分)金山区23.(本题满分12分,每小题6分)如图7,已知AD 是△ABC 的中线, M 是AD 的中点, 过A 点作AE ∥BC ,CM 的延 长线与AE 相交于点E ,与AB 相交于点F . (1)求证:四边形AEBD 是平行四边形; (2)如果AC =3AF ,求证四边形AEBD 是矩形.23.证明:(1)∵AE //BC ,∴∠AEM =∠DCM ,∠EAM =∠CDM ,……………………(1分)又∵AM=DM ,∴△AME ≌△DMC ,∴AE =CD ,…………………………(1分) ∵BD=CD ,∴AE =BD .……………………………………………………(1分) ∵AE ∥BD ,∴四边形AEBD 是平行四边形.……………………………(2分)(2)∵AE //BC ,∴AF AEFB BC=.…………………………………………………(1分) ∵AE=BD=CD ,∴12AF AE FB BC ==,∴AB=3AF .……………………………(1分)∵AC=3AF ,∴AB=AC ,…………………………………………………………(1分) 又∵AD 是△ABC 的中线,∴AD ⊥BC ,即∠ADB =90°.……………………(1分) ∴四边形AEBD 是矩形.……………………………………………………(1分)静安区23.(本题满分12分,第(1)小题满分6分,第(2)小题满分6分) 已知:如图,在平行四边形ABCD 中, AC 、DB 交于点E , 点F 在BC 的延长线上,联结EF 、DF ,且∠DEF =∠ADC .EAFMD图7CC第23题图ABDE F(1)求证:DBABBF EF =; (2)如果DF AD BD ⋅=22,求证:平行四边形ABCD 是矩形.23.(本题满分12分,第(1)小题6分,第(2)小题6分) 证明:(1)∵平行四边形ABCD ,∴AD //BC ,AB //DC∴∠BAD +∠ADC =180°,……………………………………(1分) 又∵∠BEF +∠DEF =180°, ∴∠BAD +∠ADC =∠BEF +∠DEF ……(1分) ∵∠DEF =∠ADC ∴∠BAD =∠BEF , …………………………(1分) ∵AB //DC , ∴∠EBF =∠ADB …………………………(1分)∴△ADB ∽△EBF ∴DB AB BF EF =………………………(2分) (2) ∵△ADB ∽△EBF ,∴BFBEBD AD =, ………………………(1分) 在平行四边形ABCD 中,BE =ED =BD 21∴221BD BE BD BF AD =⋅=⋅∴BF AD BD ⋅=22, ………………………………………(1分) 又∵DF AD BD ⋅=22∴DF BF =,△DBF 是等腰三角形 …………………………(1分) ∵DE BE =∴FE ⊥BD , 即∠DEF =90° …………………………(1分) ∴∠ADC =∠DEF =90° …………………………(1分) ∴平行四边形ABCD 是矩形 …………………………(1分)闵行区23.(本题满分12分,其中第(1)小题5分,第(2)小题7分)如图,已知在△ABC 中,∠BAC =2∠C ,∠BAC 的平分线AE 与∠ABC 的平分线BD 相交于点F ,FG ∥AC ,联结DG .(1)求证:BF BC AB BD ⋅=⋅; (2)求证:四边形ADGF 是菱形.CAB第23题图DE FABEGCFD(第23题图)23.证明:(1)∵AE 平分∠BAC ,∴∠BAC =2∠BAF =2∠EAC .∵∠BAC =2∠C ,∴∠BAF =∠C =∠EAC .…………………………(1分) 又∵BD 平分∠ABC ,∴∠ABD =∠DBC .……………………………(1分) ∵∠ABF =∠C ,∠ABD =∠DBC ,∴ABF CBD ∆∆∽.…………………………………………………(1分) ∴AB BFBC BD=.………………………………………………………(1分) ∴BF BC AB BD ⋅=⋅.………………………………………………(1分) (2)∵FG ∥AC ,∴∠C =∠FGB ,∴∠FGB =∠FAB .………………(1分)∵∠BAF =∠BGF ,∠ABD =∠GBD ,BF =BF ,∴ABF GBF ∆∆≌.∴AF =FG ,BA =BG .…………………………(1分) ∵BA =BG ,∠ABD =∠GBD ,BD =BD ,∴ABD GBD ∆∆≌.∴∠BAD =∠BGD .……………………………(1分) ∵∠BAD =2∠C ,∴∠BGD =2∠C ,∴∠GDC =∠C ,∴∠GDC =∠EAC ,∴AF ∥DG .……………………………………(1分) 又∵FG ∥AC ,∴四边形ADGF 是平行四边形.……………………(1分) ∴AF =FG .……………………………………………………………(1分) ∴四边形ADGF 是菱形.……………………………………………(1分)普陀区23.(本题满分12分)已知:如图9,梯形ABCD 中,AD ∥BC ,DE ∥AB ,DE 与对角线AC 交于点F ,FG ∥AD ,且FG EF =.(1)求证:四边形ABED 是菱形; (2)联结AE ,又知AC ⊥ED ,求证:212AE EF ED =.ABC DE FG图923.证明:(1)∵ AD ∥BC ,DE ∥AB ,∴四边形ABED 是平行四边形. ··························· (2分)∵FG ∥AD ,∴FG CFAD CA=. ·················································································· (1分) 同理EF CFAB CA = . ··································································································· (1分) 得FG AD =EF AB∵FG EF =,∴AD AB =. ··················································································· (1分) ∴四边形ABED 是菱形. ························································································· (1分) (2)联结BD ,与AE 交于点H .∵四边形ABED 是菱形,∴12EH AE =,BD ⊥AE . ····································· (2分) 得90DHE ∠= .同理90AFE ∠=.∴DHE AFE ∠∠=. ······························································································· (1分) 又∵AED ∠是公共角,∴△DHE ∽△AFE . ··················································· (1分)∴EH DEEF AE =. ········································································································ (1分) ∴212AE EF ED =. ······························································································ (1分) 青浦区23.(本题满分12分,第(1)、(2)小题,每小题6分)如图7,在梯形ABCD 中,AD ∥BC ,对角线AC 、BD 交于点M ,点E 在边 BC 上,且DAE DCB ∠=∠,联结AE ,AE 与BD 交于点F .(1)求证:2DM MF MB =⋅; (2)联结DE ,如果3BF FM =,求证:四边形ABED 是平行四边形.23.证明:(1)∵AD //BC ,∴∠=∠DAE AEB , ····························································· (1分)∵∠=∠DCB DAE ,∴∠=∠DCB AEB , ··········································· (1分)MFE DCBA图7∴AE //DC , ···································································································· (1分)∴=FM AMMD MC. ························································································· (1分) ∵AD //BC ,∴=AM DMMC MB, ····································································· (1分) ∴=FM DM MD MB, ························································································· (1分) 即2=⋅MD MF MB .(2)设=FM a ,则=3BF a ,=4BM a . ························································· (1分)由2=⋅MD MF MB ,得24=⋅MD a a ,∴2=MD a , ································································································ (1分) ∴3==DF BF a . ························································································ (1分) ∵AD //BC ,∴1==AF DFEF BF, ····································································· (1分) ∴=AF EF , ································································································· (1分) ∴四边形ABED 是平行四边形. ······································································ (1分)松江区23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分)如图,已知梯形ABCD 中,AB ∥CD ,∠D =90°,BE 平分∠ABC ,交CD 于点E , F 是AB 的中点,联结AE 、EF ,且AE ⊥BE .求证:(1)四边形BCEF 是菱形;(2)2BE AE AD BC ⋅=⋅.23.(本题满分12分,第(1)小题满分7分,第(2)小题满分5分) 证明:(1) ∵BE 平分∠ABC ,∴∠ABE =∠CBE …………………………………………………1分 ∵AE ⊥BE(第23题图)FACD EB∴∠AEB =90°∵F 是AB 的中点 ∴12EF BF AB ==………………………………………………1分 ∴∠FEB =∠FBE …………………………………………………1分∴∠FEB =∠CBE …………………………………………………1分∴EF ∥BC …………………………………………………1分∵AB ∥CD∴四边形BCEF 是平行四边形…………………………1分∵EF BF =∴四边形BCEF 是菱形……………………………………1分(2) ∵四边形BCEF 是菱形,∴BC =BF ∵12BF AB = ∴AB =2BC ………………………………………………1分∵ AB ∥CD∴ ∠DEA =∠EAB∵ ∠D =∠AEB∴ △EDA ∽△AEB ………………………………………2分∴AD AE BE AB = …………………………………………1分 ∴ BE ·AE =AD ·AB∴ 2BE AE AD BC ⋅=⋅…………………………………1分徐汇区23. 在梯形ABCD 中,AD ∥BC ,AB CD =,BD BC =,点E 在对角线BD 上,且DCE DBC ∠=∠.(1)求证:AD BE =;(2)延长CE 交AB 于点F ,如果CF AB ⊥,(第23题图)F A C D E B⋅=⋅.求证:4EF FC DE BD杨浦区23、(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图7,在□ABCD中,点G为对角线AC的中点,过点G的直线EF分别交边AB、CD 于点E、F,过点G的直线MN分别交边AD、BC于点M、N,且∠AGE=∠CGN。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021年上海市16区中考数学一模汇编专题06 几何证明(解答题23题)1. (2021宝山一模)如图,点O 是菱形ABCD 的对角线BD 上一点,联结AO 并延长,交CD 于点E ,交BC 的延长线于点F .(1)求证:2AB DE BF =⋅;(2)如果1OE =,2EF =,求CF BF的长.2. (2021崇明一模)已知:如图,D 、E 分别是ABC 的边AB 、AC 上的点,且AED ABC ∠=∠,连接BE 、CD 相交于点F .(1)求证:ABE ACD ∠=∠;(2)如果ED EC =,求证:22DF EF BD EB=.3. (2021奉贤一模)如图,在四边形ABCD 中,,B DCB ∠=∠联结AC .点E 在边BC 上,且,CDE CAD DE ∠=∠与AC 交于点,F CE CB AB CD ⋅=⋅.()1求证://AD BC ;()2当AD DE =时,求证:2AF CF CA =⋅.4. (2021虹口一模)如图,在ABC 中,点D 、G 在边AC 上,点E 在边BC 上,DB DC =,//EG AB ,AE 、BD 交于点F ,BF AG =.(1)求证:BFE CGE △△;(2)当AEG C ∠=∠时,求证:2AB AG AC =⋅.5.(2021黄埔一模)某班级的“数学学习小组心得分享课”上,小智跟同学们分享了关于梯形的两个正确的研究结论:①如图1,在梯形ABCD 中,//AD BC ,过对角线交点O 的直线与两底分别交于点M 、N ,则AM CN DM BN=; ②如图2.在梯形ABCD 中,//AD BC ,过两腰延长线交点P 的直线与两底分别交于点K 、L ,则AK BL DK CL =.接着小明也跟同学们分享了关于梯形的一个推断:过梯形对角线交点且平行于底边的直线被梯形两腰所截,截得的线段被梯形对角线的交点平分.(1)经讨论,大家都认为小明所给出的推断是正确的,请你结合图示(见答题卷)写出已知、求证,并给出你的证明:(2)小组还出了一个作图题考同学们:只用直尺将图3中两条平行的线段AB、CD同时平分,请保留作图过程痕迹,并说明你作图方法的正确性(可以直接运用小智和小明得到的正确结论).(注意:请务必在试卷图示中完成作图草稿,在答题卷上直接用2B铅笔水笔完成作图,不要涂改)的6. (2021嘉定一模)如图,已知矩形DEFG的边DE在ABC的边BC上,顶点G,F分别在边AB,AC 上.ABC的高AH交GF于点I.(1)求证:BD EH DH CE ⋅=⋅;(2)设DE n EF =⋅(n 为正实数),求证:11n BC AH EF+=.7. (2021闵行一模)如图,点E 为ABC 边BC 上一点,过点C 作CD BA ⊥,交BA 的延长线于点D ,交EA 的延长线于点F ,且AF CD BC AD ⋅=⋅.(1)求证:AE BC ⊥;(2)如果BE CE =,求证:22BC BD AC =⋅.8.(2021普陀一模) 已知:如图,//AD BC ,ABD C ∠=∠,AE BD ⊥,DF BC ⊥,点E 、F 分别为垂足.(1)求证:AE BD DF BC=; (2)连结EF ,如果ADB BDF ∠=∠,求证:DF DC EF BC ⋅=⋅.9. (2021青浦一模)已知:如图,在四边形ABCD 中,AB AD =,AC 、BD 相交于点E ,AE CE DE BE ⋅=⋅(1)求证:ABE ACB ∽;(2)如果2·DA DE DB =,求证:AB EC BC AE ⋅=⋅.10.(2021松江一模)如图,已知在平行四边形ABCD 中,E 是边AD 上一点,联结BE 、CE ,延长BA 、CE 相交于点F ,2CE DE BC =⋅(1)求证:EBC DCE ∠=∠;(2)求证:··BE EF BF AE =.11. (2021杨浦区一模)已知:如图,在梯形ABCD 中,//AD BC ,对角线BD 、AC 相交于点E ,过点A 作//AF DC ,交对角线BD 于点F .(1)求证:DF DE BD BE =; (2)如果ADB ACD ∠=∠,求证:线段CD 是线段DF 、BE 的比例中项.12. (2021金山一模)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且ABD MAN ∠=∠.(1)求证:DE BF AB ⋅=2; (2)若DCDN DE BE =,求证:MN EF //.A B F EC第23题图 D MN13.(浦东新区一模)Rt△ABC中,∠ACB=90°,点D、E分别为边AB、BC上的点,且CD=CA,DE⊥AB.(1)求证:CA2=CE•CB;(2)联结AE,取AE的中点M,联结CM并延长与AB交于点H,求证:CH⊥AB.14.(2021徐汇一模)如图,在△ACB中,点D、E分别在边BC、AC上,AD=AB,BE=CE,AD与BE 交于点F,且AF•DF=BF•EF.求证:(1)∠ADC=∠BEC;(2)AF•CD=EF•AC.15.(2021长宁一模)已知:如图,在Rt△ABC中,∠ACB=90°,CH⊥AB,垂足为点H.点D在边BC 上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.16.(2021·上海静安区·九年级一模)已知:如图,在△ABC中,DE△BC,AD2=AE•AC.求证:(1)△BCD△△CDE;(2)22CD AD BC AB.2021年上海市16区中考数学一模汇编专题06 几何证明(解答题23题)1. (2021宝山一模)如图,点O 是菱形ABCD 的对角线BD 上一点,联结AO 并延长,交CD 于点E ,交BC 的延长线于点F .(1)求证:2AB DE BF =⋅;(2)如果1OE =,2EF =,求CF BF的长.【答案】(1)见解析;(2)CF BF = 【分析】(1)根据菱形的性质证明ABO EDO ,BFO DAO ,得到AB BF ED DA=,再由AB DA =,即可证明结论; (2)连接OC ,先证明()ADO CDO SAS ≅得到DAO DCO ∠=∠,就可以证明OEC OCF ,根据对应边成比例求出OC 的长,再根据ADE FCE ~,利用对应边成比例求出结果.【详解】解:(1)∵四边形ABCD 是菱形,∴//AB CD ,//AD BC ,AB DA =,∴ABO EDO ,BFO DAO , ∴AB BO ED DO =,BF BO DA DO =,∴AB BF ED DA=, ∵AB DA =,∴2AB DE BF =⋅;(2)如图,连接OC ,∵四边形ABCD 是菱形,∴AD=DC ,ADO CDO ∠=∠,在ADO △和CDO 中,AD CD ADO CDO DO DO =⎧⎪∠=∠⎨⎪=⎩,∴()ADO CDO SAS ≅,∴DAO DCO ∠=∠,∵//AD BF ,∴DAO OFC ∠=∠,∴DCO OFC ∠=∠,∵COE FOC ∠=∠,∴OEC OCF ,∴OE OC OC OF=,即2OC OE OF =⋅, ∵1OE =,2EF =,∴123OF =+=,∴OC =AO OC == ∵//AD CF ,∴ADE FCE ~,∴12AD AE FC FE +==,∴12BC AD FC ==,BF BC CF FC FC =+=+=,∴(23363CF BF -===. 【点睛】本题考查相似三角形,解题的关键是掌握相似三角形的性质和判定.2. (2021崇明一模)已知:如图,D 、E 分别是ABC 的边AB 、AC 上的点,且AED ABC ∠=∠,连接BE 、CD 相交于点F .(1)求证:ABE ACD ∠=∠;(2)如果ED EC =,求证:22DF EF BD EB=. 【分析】(1)先说明ADE ACB 可得AE AB AD AC=,再说明ADC AEB △△,最后根据相似三角形对应角相等即可证明: (2)先说明EDF EBD △△得到DF EF DE BD DE BE ==,进一步可得2DF EF DE BD DE BE ⎛⎫=⋅ ⎪⎝⎭即可证明. 【详解】证明:(1)∵AED ACB ∠=∠,A A ∠=∠,∵ADE ACB ,∵AE AB AD AC =, 又∵A A ∠=∠,∵ADC AEB △△,∵ABE ACD ∠=∠;(2)∵ED EC =,∵EDC ACD ∠=∠,∵ABE ACD ∠=∠∵EDC ABE ∠=∠,又∵DEF DEF ∠=∠,∵EDF EBD △△,∵DF EF DE BD DE BE ==, ∵2DF EF DE BD DE BE ⎛⎫=⋅ ⎪⎝⎭,∵22DF EF BD EB =. 【点睛】本题主要考查了相似三角形的判定与性质,灵活运用相似三角形的判定定理成为解答本题的关键. 3. (2021奉贤一模)如图,在四边形ABCD 中,,B DCB ∠=∠联结AC .点E 在边BC 上,且,CDE CAD DE ∠=∠与AC 交于点,F CE CB AB CD ⋅=⋅.()1求证://AD BC ;()2当AD DE =时,求证:2AF CF CA =⋅.【分析】(1)证明ACB EDC ∆∆可得∠ACB=∠EDC=∠CAD ,从而可得结论;(2)根据ASA 证明ADF DEC ∆≅∆,得到AF=DC ,再证明FCDDCA ∆∆,得到2FC CA CD =,即可得到结论.【详解】解:(1)∵B DCB ∠=∠,且CE CB AB CD ⋅=⋅,即CE CD AB CB = ∴ACB EDC ∆∆,∴ACB CDE ∠=∠∵CDE CAD ∠=∠,∴∠ACB=∠CAD ,∴//AD BC(2)∵//AD BC ,∴∠ADE=∠CED在△ADF 和△DEC 中,FAD EDC AD CEADF DEC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ADF ≌△DEC ,∴AF=DC 又∵∠CDF=∠CAD ,∠FCD=∠ACD ,∴FCD DCA ∆∆ ∴FC CD CD CA=,即2FC CA CD = ,∴2AF CF CA =⋅ 【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质,解题的关键是利用相似三角形的性质找出比例式.4. (2021虹口一模)如图,在ABC 中,点D 、G 在边AC 上,点E 在边BC 上,DB DC =,//EG AB ,AE 、BD 交于点F ,BF AG =.(1)求证:BFE CGE △△;(2)当AEG C ∠=∠时,求证:2AB AG AC =⋅.【分析】(1)由//EG AB 易证△CGE ∽△CAB ,由性质得CG CE =CA CB 由比例性质得CG CE =AG BE ,由已知BF=AG 比例式变为CG CE =BF BE,由已知DB DC =,利用等边对等角得∠FBE=∠GCE ,利用两边成比例夹角相等知BFE CGE △∽△;(2)由//EG AB ,利用性质内错角相等∠BAE=∠AEG ,由已知AEG C ∠=∠,推出∠BAE=∠C ,又∠ABE=∠CBA 共用,可证△ABE ∽△CBA ,由性质AB BE =BC AB,∠BEA=∠BAC ,把比例变等积得2AB =BC BE ,由(1)BFE CGE △∽△利用性质∠BEF=∠CEG ,∠BFE=∠CGE ,推出∠BAC=∠GEC=∠ABC=∠EGC ,利用等角对等边得AC=BC ,GC=EC ,利用等量代换得AG=BE ,可证2AB =AC AG .【详解】(1)∵//EG AB ,∴∠CGE=∠CAB ,∠CEG=∠CBA ,∴△CGE ∽△CAB ,∴CG CE =CA CB , ∴CG CE =CA-CG CB-CE 即CG CE =AG BE ,∵BF=AG ,∴CG CE =BF BE,∵DB DC =, ∴∠DBC=∠DCB ,即∠FBE=∠GCE ,∴BFE CGE △∽△,(2)∵//EG AB ,∴∠BAE=∠AEG ,又∵AEG C ∠=∠,∴∠BAE=∠C ,又∵∠ABE=∠CBA 共用,∴△ABE ∽△CBA ,∴AB BE =BC AB,∠BEA=∠BAC ,∴2AB =BC BE , 由(1)BFE CGE △∽△,∴∠BEF=∠CEG ,∠BFE=∠CGE ,∵//EG AB ,∴∠ABC=∠GEC ,∠BAC=∠EGC ,∴∠BAC=∠GEC=∠ABC=∠EGC ,∴AC=BC ,GC=EC ,∴AG=BE ,2AB =BC BE=AC AG ..【点睛】本题考查相似三角形的判定与性质,等腰三角形的判定与性质,掌握相似三角形的判定与性质,等腰三角形的判定与性质,会利用换比的方法证三角形相似,会利用相似证角等转化边角关系是解题关键.5.(2021黄埔一模)某班级的“数学学习小组心得分享课”上,小智跟同学们分享了关于梯形的两个正确的研究结论:①如图1,在梯形ABCD 中,//AD BC ,过对角线交点O 的直线与两底分别交于点M 、N ,则AM CN DM BN=; ②如图2.在梯形ABCD 中,//AD BC ,过两腰延长线交点P 的直线与两底分别交于点K 、L ,则AK BL DK CL =.接着小明也跟同学们分享了关于梯形的一个推断:过梯形对角线交点且平行于底边的直线被梯形两腰所截,截得的线段被梯形对角线的交点平分.(1)经讨论,大家都认为小明所给出的推断是正确的,请你结合图示(见答题卷)写出已知、求证,并给出你的证明:(2)小组还出了一个作图题考同学们:只用直尺将图3中两条平行的线段AB 、CD 同时平分,请保留作图过程痕迹,并说明你作图方法的正确性(可以直接运用小智和小明得到的正确结论).(注意:请务必在试卷图示中完成作图草稿,在答题卷上直接用2B 铅笔水笔完成作图,不要涂改)【分析】(1)根据题意,写出已知、求证并画出图形,如解图所示,根据平行证出△AOB ∽△COD ,列出比例式并根据比例的性质可证AO BO AC BD=,再利用平行证出△AEO ∽△ADC ,△BFO ∽△BCD ,分别列出比例式即可证出结论;(2)连接DA 、CB 并延长交于点P ,连接AC 、BD 交于点O ,连接PO 并延长,分别交AB 、CD 于M 、N ,利用①、②的结论即可证明PN 平分线段AB 、CD .【详解】解:(1)已知:四边形ABCD 为梯形,AB ∥CD ,对角线AC 与BD 交于点O ,过点O 作EF ∥CD ,分别交AD 、BC 于E 、F ,求证:OE=OF 证明:∵AB ∥CD ,∴△AOB ∽△COD ,∴AO BO CO DO =,∴AO BO AC BD= ∵EF ∥CD ,∴△AEO ∽△ADC ,△BFO ∽△BCD ∴OE AO CD AC =,OF BO CD BD=,∴OE OF CD CD =,∴OE=OF ; (2)连接DA 、CB 并延长交于点P ,连接AC 、BD 交于点O ,连接PO 并延长,分别交AB 、CD 于M 、N ,如下图所示,PN 即为所求,证明如下的由①知:AM CN BM DN =,由②知:AM DN BM CN =,∴CN DN DN CN= ∴22CN DN =,∴CN=DN ,∴1AM DN BM DN==,∴AM=BM ,∴PN 平分线段AB 、CD . 【点睛】此题考查的是相似三角形的判定及性质,掌握利用平行证相似和相似三角形的性质是解题关键.6. (2021嘉定一模)如图,已知矩形DEFG 的边DE 在ABC 的边BC 上,顶点G ,F 分别在边AB ,AC 上.ABC 的高AH 交GF 于点I .(1)求证:BD EH DH CE ⋅=⋅;(2)设DE n EF =⋅(n 为正实数),求证:11n BC AH EF+=. 分析】(1)证明,BDG BHA CEF CHA ∆∆∆∆∽∽,根据相似三角形的性质列出比例关系,整理即可证得结论;(2)要证明11n BC AH EF +=只需证明1nEF EF BC AH +=即1DE EF BC AH+=,证明∵AGF∵∵ABC ,根据相似三角形的性质以及比例的性质即可证明.【详解】解:(1)证明:∵四边形DEFG 为矩形,ABC 的高AH 交GF 于点I ,∴GD=EF,90GDH GDB FEC FEB AHB AHC ∠=∠=∠=∠=∠=∠=︒,又∵∵B=∵B,∵C=∵C ,∵,BDG BHA CEF CHA ∆∆∆∆∽∽, ∴GD BD BD AH BH BD DH ==+,EF CE CE AH CH CE EH ==+,∵=BD CE BD DH CE EH++,∴BD EH DH CE ⋅=⋅; (2)证明:∵四边形DEFG 为矩形,∴,//GF DE GF BC =,90FEB EFG ∠=∠=︒,∴,AGF B AFG C ∠=∠∠=∠,∴∵AGF∵∵ABC , ∵AH 为∵ABC 的高,∵∵AIF=∵AHC=90°,GF AI BC AH =,即DE AI BC AH=, ∵90FEB EF C G AH ∠=∠=∠=︒,∴四边形IHEF 为矩形,∴EF=IH ,∵DE n EF =⋅,∴1nEF EF DE IH AI IH AI IH AH BC AH BC AH AH AH AH AH ++=+=+===,∴11n BC AH EF+=. 【点睛】本题考查相似三角形的性质与判定,矩形的性质和判断.本题中相似三角形有很多,能结合结论判断是需要证明哪组三角形相似是解题关键.7. (2021闵行一模)如图,点E 为ABC 边BC 上一点,过点C 作CD BA ⊥,交BA 的延长线于点D ,交EA 的延长线于点F ,且AF CD BC AD ⋅=⋅.(1)求证:AE BC ⊥;(2)如果BE CE =,求证:22BC BD AC =⋅.【分析】(1)先证明ADF CDB △△,再根据相似三角形的性质、对顶角相等和三角形内角和即可得证; (2)根据等腰三角形的三线合一即可得出1B ∠=∠,再证明BCD CAE △△,根据相似三角形的性质得出BC CE BD AC ⋅=⋅,根据等式的性质和等量代换即可得证.【详解】(1)CD BD ⊥,90ADF CDB ∴∠=∠=︒,AF CD BC AD ⋅=⋅,AD CDAF BC∴=, 在ADF 和CDB △中AD BCAF CD ADF CDB⎧=⎪⎨⎪∠=∠⎩,ADFCDB ∴△△,F B ∴∠=∠,FAD EAB ∠=∠,90FDA BEA ∴∠=∠=︒,AE BC ∴⊥;(2)BE CE AE BC =⊥,,AB AC ∴=,1B ∴∠=∠又90BDC AEC ︒∠=∠=,BCDCAE ∴△△,BC BDAC CE∴=,BC CE BD AC ∴⋅=⋅ 22BC CE BD AC ∴⋅=⋅,BE CE =,∴2BC CE =,∴22BC BD AC =⋅.【点睛】本题考查了相似三角形的判定及性质、等腰三角形的性质,熟练掌握性质定理是解题的关键. 8.(2021普陀一模) 已知:如图,//AD BC ,ABD C ∠=∠,AE BD ⊥,DF BC ⊥,点E 、F 分别为垂足.(1)求证:AE BDDF BC=; (2)连结EF ,如果ADB BDF ∠=∠,求证:DF DC EF BC ⋅=⋅.【分析】(1)先证ABD △与DCB 相似,再根据相似三角形对应线段成比例再进行证明,问题得证;(2)先证ABD EFD ∽,再证DCB EFD △∽△,最后根据相似三角形对应线段成比例进行证明,问题得证.【详解】证明(1)/AD/BC ,ADB DBC ∠=∠∴,ABD C ∠=∠,∴ABD DCB △∽△,又∵AE 、DF 分别是ABD △与DCB 对应边上的高,AE BDDF BC∴= (2)如图,连结EF/AD/BC ,DF BC ⊥,∴90ADF ∠=︒,ADB BDF ∠=∠,∴45ADB BDF ∠==︒ AE BD ⊥,∴90∠=︒AED ,∴cos45DE DFDA DB=︒= ABD EFD ∴△∽△,DCB EFD ∴△∽△,DC BCEF DF∴=DF DC EF BC ∴⋅=⋅ 【点睛】本题考查了相似三角形的判定和性质,熟练掌握相似三角形的判定和性质是解题的关键. 9. (2021青浦一模)已知:如图,在四边形ABCD 中,AB AD =,AC 、BD 相交于点E ,AE CE DE BE ⋅=⋅(1)求证:ABE ACB ∽;(2)如果2·DA DE DB =,求证:AB EC BC AE ⋅=⋅. 【分析】(1)找到两对相同角即可证明相似 (2)证明出ADE BDA △∽△后可推出.【详解】证明:(1)··AE CE DE BE ADE BCE ADE ACB =⇒⇒∠=∠∽AB AD ADE ABE ACB ABE =⇒∠=∠⇒∠=∠∵两个三角形有一公共角∠BAC ∴ABE ACB ∽.(2)2·DA DE DB ADE BDA =⇒∽AED ⇒为等腰三角形BEC ⇒为等腰三角形AD AE AB AEAB EC BC AE BC EC BC EC⇒=⇒=⇒⋅=⋅. 【点睛】本题考查四边形的性质、相似三角形的判定和性质,解题的关键是灵活运用这些知识解决问题, 10.(2021松江一模)如图,已知在平行四边形ABCD 中,E 是边AD 上一点,联结BE 、CE ,延长BA 、CE 相交于点F ,2CE DE BC =⋅(1)求证:EBC DCE ∠=∠; (2)求证:··BE EF BF AE =. 【分析】(1)根据2CE DE BC =⋅得CE BCED CE=,再由BCE CED ∠=∠,可以证明BCE CED ,即可得到结论;(2)根据平行四边形的性质结合(1)的结论,证明BFE AEB ∠=∠,即可证明EBF ABE ,就能得到结论.【详解】解:(1)∵2CE DE BC =⋅,∴CE BCED CE=,∵四边形ABCD 是平行四边形,∴//AD BC ,∴BCE CED ∠=∠,∴BCE CED ,∴EBC DCE ∠=∠;(2)∵四边形ABCD 是平行四边形,∴//AD BC ,∴AEB EBC ∠=∠, ∵EBC DCE ∠=∠,∵//AB CD ,∴BFE DCE ∠=∠,∴BFE AEB ∠=∠, ∵EBF ABE ∠=∠,∴EBFABE ,∴EF BFAE BE=,∴BE EF BF AE ⋅=⋅. 【点睛】本题考查相似三角形,解题的关键是掌握相似三角形的性质和判定.11. (2021杨浦区一模)已知:如图,在梯形ABCD 中,//AD BC ,对角线BD 、AC 相交于点E ,过点A 作//AF DC ,交对角线BD 于点F .(1)求证:DF DEBD BE=; (2)如果ADB ACD ∠=∠,求证:线段CD 是线段DF 、BE 的比例中项. 【分析】(1)延长AF 交BC 于点G ,可证AD=GC ,由//AF DC ,可证DF CG ADBD BC BC==,由ADE CBE △△,可证AD DEBC BE=,进而可证结论成立; (2)证明ADECBE △△,可证2CD BD DE =⋅,由(1)得AD DEBC BE=,即DF BE BD DE ⋅=⋅,进而可证线段CD 是线段DF 、BE 的比例中项.【详解】证明:(1)如图,延长AF 交BC 于点G ,∵//AD BC ,//AF DC , ∴四边形AGCD 是平行四边形,∴AD=GC . ∵//AF DC ,∴DF CG ADBD BC BC==,∵//AD BC ,∴ADE CBE △△, ∴AD DE BC BE =, ∴DF DEBD BE=;(2)∵//AD BC ,∴CBD ADB ∠=∠.∵ADB ACD ∠=∠,∴CBD ACD ∠=∠, ∵CDE BDC ∠=∠, ∴CDEBDC ,∴CD DEBD CD=, ∴2CD BD DE =⋅. ∵DF DEBD BE=,∴DF BE BD DE ⋅=⋅,∴2CD DF BE =⋅. 【点睛】本题考查了平行四边形的判定与性质,相似三角形的判定与性质,以及平行线分线段成比例定理,熟练掌握相似三角形的判定与性质是解答本题的关键.在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.12. (2021金山一模)已知:如图,四边形ABCD 是菱形,点M 、N 分别在边BC 、CD 上,联结AM 、AN 交对角线BD 于E 、F 两点,且ABD MAN ∠=∠.(1)求证:DE BF AB ⋅=2;(2)若DCDNDE BE =,求证:MN EF //.证明:(1)∵四边形ABCD 是菱形; ∴AD AB =;……………(1分) ∴ADB ABD ∠=∠;……………(1分)∵BAE ABD AED ∠+∠=∠,BAE MAN BAF ∠+∠=∠; 又∵ABD MAN ∠=∠;A BF E C第23题图DMN∴BAF AED ∠=∠;……………(1分) ∴AED ∆∽FAB ∆;……………(1分) ∴ABDEBF AD =,即DE BF AB AD ⋅=⋅;……………(1分) ∴DE BF AB ⋅=2.……………(1分)(2)∵四边形ABCD 是菱形;∴BC AD =,BC AD //;……………(1分) ∴AD BM DE BE =;……………(2分) ∵DCDNDE BE =; ∴DC DN AD BM =,……………(1分)∴DCDNBC BM =;……………(1分) ∴BD MN //,即MN EF //.……………(1分)14. (浦东新区一模)Rt △ABC 中,∠ACB =90°,点D 、E 分别为边AB 、BC 上的点,且CD =CA , DE ⊥AB .(1)求证:CA 2=CE •CB ;(2)联结AE ,取AE 的中点M ,联结CM 并延长与AB 交于点H ,求证:CH ⊥AB .【分析】(1)证明△DCE△△BCD ,根据相似三角形的对应边成比例即可得证;(2)证明△CAE△△CBA ,可得△CEA=△CAB ,由直角三角形的性质可证CM=AM ,从而△CAE=△ACM ,然后由等量代换可证△CAB+△ACM=90°,进而可证结论成立.【详解】证明:(1)△CA=CD ,△△A=△CDA .△△ACD=90°,△△A+△B=90°.△DE△AB,△△CDA+△CDE=90°,△△B=△CDE.△△DCE=△BCD,△△DCE△△BCD,△CD CB CE CD=.△CD=CA,△CA CBCE CA=,△2CA CB CE=⋅;(2)△CA CBCE CA=,△ACE=△BCA,△△CAE△△CBA,△△CEA=△CAB.△△ACB=90°,△△CEA+△CAE=90°.△M为AE的中点,△ACE=90°,△CM=AM,△△CAE=△ACM.△△CEA=△CAB,△△CAB+△ACM=90°,△△AHC=90°,△CH△AB.【点睛】本题考查了相似三角形的判定与性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的中线,熟练掌握相似三角形的判定与性质是解答本题的关键.14.(2021徐汇一模)如图,在△ACB中,点D、E分别在边BC、AC上,AD=AB,BE=CE,AD与BE 交于点F,且AF•DF=BF•EF.求证:(1)∠ADC=∠BEC;(2)AF•CD=EF•AC.【分析】(1)利用AF•DF=BF•EF和∠AFE=∠BFD可判断△AFE∽△BFD,所以∠AEF=∠BDF,然后根据等角的补角相等得到结论;(2)由△AFE∽△BFD得到∠EAF=∠FBD,∠AEF=∠BDF,再证明∠EAF=∠C,∠ABC=∠AEF,于是可证明△AEF∽△CBA,利用相似比得到=,然后证明AD=AB=CD,从而得到结论.【解答】证明:(1)∵AF•DF=BF•EF,∴=,而∠AFE=∠BFD,∴△AFE∽△BFD,∴∠AEF=∠BDF,∵∠AEF+∠BEC=180°,∠BDF+∠ADC=180°,∴∠ADC=∠BEC;(2)∵△AFE∽△BFD,∴∠EAF=∠FBD,∠AEF=∠BDF,∵EB=EC,AB=AD,∴∠EBC=∠C,∠ADB=∠ABD,∴∠EAF=∠C,∠ABC=∠AEF,∴△AEF∽△CBA,∴=,∴EF•AC=AB•AF∵∠DAC=∠C,∴AD=CD,∴AB=AD=CD,∴EF•AC=CD•AF,即AF•CD=EF•AC.15.(2021长宁一模)已知:如图,在Rt△ABC中,∠ACB=90°,CH⊥AB,垂足为点H.点D在边BC 上,联结AD,交CH于点E,且CE=CD.(1)求证:△ACE∽△ABD;(2)求证:△ACD的面积是△ACE的面积与△ABD的面积的比例中项.【分析】(1)根据同角的余角相等得到∠ACH=∠CBH,根据等腰三角形的性质得到∠CED=∠CDE,进而得到∠AEC=∠ADB,根据相似三角形的判定定理证明结论;(2)过点B作BG∥AC交AD的延长线于点G,根据相似三角形的性质得到=,根据相似三角形的面积公式计算,证明结论.【解答】证明:(1)∵AC⊥BC,CH⊥AB,∴∠ACB=∠AHC=90°,∴∠ACH=∠CBH,∵CE=CD,∴∠CED=∠CDE,∴∠AEC=∠ADB,∴△ACE∽△ABD;(2)过点B作BG∥AC交AD的延长线于点G,∴∠CAD=∠G,∵△ACE∽△ABD,∴=,∠CAD=∠BAD,∴∠BAD=∠G,∴AB=BG,∵BG∥AC,∴△ADC∽△GDB,∴=,∴=,∴=,∴△ACD的面积是△ACE的面积与△ABD的面积的比例中项.16.(2021·上海静安区·九年级一模)已知:如图,在△ABC中,DE△BC,AD2=AE•AC.求证:(1)△BCD△△CDE;(2)22CD AD BC AB.【分析】(1)由2·AD AE AC =,易证得ADC AED ∆∆∽,即可得ACD ADE =∠∠,又由//DE BC ,易证得ECD B ∠=∠,则可证得BCD CDE ∆∆∽;(2)由BCD CDE ∆∆∽,根据相似三角形的对应边成比例,即可得CD DEBC CD=,又由//DE BC ,可得ADE ABC ∆∆∽,即可得AD DEAB BC=,继而得到结论. 【详解】证明:(1)2·AD AE AC =,∴AD ACAE AD=,A ∠是公共角, ADC AED ∴∆∆∽,ACD ADE ∴∠=∠,//DE BC ,ADE B ∴∠=∠,BCD CDE ∠=∠,ECD B ∴∠=∠,BCD CDE ∴∆∆∽;(2)BCD CDE ∆∆∽,∴CD DE BC CD =,2CD DE BC ∴=, //DE BC ,ADE ABC ∴∆∆∽,∴AD DE AB BC =,∴22CD ADBC AB=. 【点睛】此题考查了相似三角形的判定与性质以及平行线的性质.此题难度适中,注意掌握数形结合思想的应用.。

相关文档
最新文档