运筹学简介要点
运筹学简介
![运筹学简介](https://img.taocdn.com/s3/m/5aff9d3fe53a580217fcfea4.png)
Operational Research
1
运筹学简介
一、运筹学发展简介 二、运筹学的定义 三、运筹学在管理中的应用 四、运筹学的工作步骤 五、运筹学内容介绍
2
一、运筹学(OR)发展简介
1. 运筹学在国内
中国古代朴素的运筹学思想
田忌赛马
战国时代,齐王常与他的大将田忌赛马,双方约定每场各 出一匹马,分三场进行比赛。齐王的马有上、中、下三等, 田忌的马也有上、中、下三等,但每一等都比不上齐王同等 的马,于是田忌屡赛屡输。一日,田忌的宾客、对军事颇有 研究的孙膑给田忌出了一个主意,结果以二比一赢了齐王。 即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强 的目的——典型的博弈问题.
Operations Research Societies, IFORS).
我国学术界1955年开始研究运筹学时,正是从《史记》中 摘取 “运筹”一词作为OR (Operations Research)的意 译,就是运用筹划、以智取胜的含义.
6
2. 运筹学在国外 运筹学的产生
运筹学的早期历史可以追溯到19世纪中叶,特拉法加尔 (Trafalgar)海战和纳尔森(Nelson)秘诀。法国拿破仑统帅 大军要与英国争夺海上霸主地位。英国海军统帅、海军中将 纳尔森亲自制定了周密的战术方案。1805年10月21日,这 场海上大战爆发了。英国是纳尔森亲自统帅的地中海舰队, 由27艘战舰组成;另外一方是由费伦钮夫(Villenuve)率领 的法国-西班牙联合舰队,共有33艘战舰。在一场海战后, 法国-西班牙联合舰队以惨败告终:联合舰队司令费伦钮夫 连同12艘战舰被俘,8艘沉没,仅13艘逃走,人员伤亡 7000人。而英国战舰没有沉没,人员伤亡1663人。
运筹学知识点总结
![运筹学知识点总结](https://img.taocdn.com/s3/m/00fcbdc9710abb68a98271fe910ef12d2bf9a965.png)
运筹学知识点总结运筹学是研究在有限资源条件下,如何最优化决策问题的学科。
它是应用数学的一部分,主要包括线性规划、整数规划、图论等方向。
运筹学在工业、交通、军事、金融等各个领域有广泛的应用。
一、线性规划线性规划是运筹学中应用最广泛的部分,也是最基础的部分。
线性规划是一种数学方法,用于确定线性函数的最大值或最小值。
它被用来优化各种决策问题,例如成本最小化、收益最大化等。
如果一个问题可以通过不等式和等式来表示,同时还满足线性条件,那么这个问题就可以用线性规划来解决。
二、整数规划整数规划是指在优化问题中,变量需要满足整数限制的问题。
它是一个复杂的优化问题,通常需要使用分支定界法等高级算法来解决。
整数规划在生产安排、设备选型等问题中有广泛应用。
例如,在工厂的生产调度中,每个任务的产量必须是整数,因此需要使用整数规划来制定生产计划。
三、图论图论是运筹学的一个重要分支,它是一种研究图形结构和它们的互相关系的数学理论。
在运筹学中,图论被用来解决一些最短路径、最小花费等问题。
图论在计算机科学中也有广泛的应用。
例如,它被用来分析互联网的连接模式,制定数据传输的路径等。
四、决策分析决策分析是指选择最优行动方案的过程,它使用决策分析方法来权衡各种可行方案的利弊。
这些方法包括概率分析、统计分析、风险分析等。
决策分析在金融、政府和企业管理等领域中有广泛的应用。
例如,在股票投资中,决策分析被用来估计利润和风险,从而选择最优的投资组合。
五、排队论排队论是研究排队系统行为的学科,它被用来分析服务过程中的等待时间、系统容量和服务能力等因素。
排队论可以用来优化人员调度、设备运营和客户满意度。
排队论在交通运输领域中有广泛应用。
例如,在快速公路上,排队论可以帮助确定最佳车道数量,从而减少塞车和等待时间。
六、模拟模拟是一种数学方法,用于模拟真实世界的行为和系统。
它可以用来预测系统行为,以优化决策。
模拟通常使用计算机程序来模拟系统,这些程序称为仿真器。
运筹学知识点总结
![运筹学知识点总结](https://img.taocdn.com/s3/m/c325f9765b8102d276a20029bd64783e09127dd9.png)
运筹学:应用分析、试验、量化的方法,对经济管理系统中人力、物力、财力等资源进行统筹安排,为决策者提供有依据的最优方案,以实现最有效的管理。
第一章、线性规划的图解法1.基本概念线性规划:是一种解决在线性约束条件下追求最大或最小的线性目标函数的方法。
线性规划的三要素:变量或决策变量、目标函数、约束条件。
目标函数:是变量的线性函数。
约束条件:变量的线性等式或不等式。
可行解:满足所有约束条件的解称为该线性规划的可行解。
可行域:可行解的集合称为可行域。
最优解:使得目标函数值最大的可行解称为该线性规划的最优解。
唯一最优解、无穷最优解、无界解(可行域无界)或无可行解(可行域为空域)。
凸集:要求集合中任意两点的连线段落在这个集合中。
等值线:目标函数z,对于z的某一取值所得的直线上的每一点都具有相同的目标函数值,故称之为等值线。
松弛变量:对于“≤”约束条件,可增加一些代表没使用的资源或能力的变量,称之为松弛变量。
剩余变量:对于“≥”约束条件,可增加一些代表最低限约束的超过量的变量,称之为剩余变量。
2.线性规划的标准形式约束条件为等式(=)约束条件的常数项非负(b j≥0)决策变量非负(x j≥0)3.灵敏度分析:是在建立数学模型和求得最优解之后,研究线性规划的一些系数的变化对最优解产生什么影响。
4.目标函数中的系数c i的灵敏度分析目标函数的斜率在形成最优解顶点的两条直线的斜率之间变化时,最优解不变。
5.约束条件中常数项b i的灵敏度分析对偶价格:约束条件常数项中增加一个单位而使最优目标函数值得到改进的数量。
当某约束条件中的松弛变量(或剩余变量)不为零时,这个约束条件的对偶价格为零。
第二章、线性规划问题在工商管理中的应用1.人力资源分配问题(P41)设x i为第i班次开始上班的人数。
2.生产计划问题(P44)3.套材下料问题(P48)下料方案表(P48)设x i为按各下料方式下料的原材料数量。
4.配料问题(P49)设x ij为第i种产品需要第j种原料的量。
运筹学知识点
![运筹学知识点](https://img.taocdn.com/s3/m/41eb5f5c33687e21af45a9c5.png)
运筹学知识点:绪论1.运筹学的起源2.运筹学的特点第一章线性规划及单纯形法1.规划问题指生产和经营管理中如何合理安排,使人力、物力等各种资源得到充分利用,获得最大效益。
2.规划问题解决两类问题:一是给定一定数量的人力、物力等资源,研究如何充分利用,以发挥其最大效果;二是已给定计划任务,研究如何统筹安排,用最少的人力和物力去完成。
3.规划问题的数学模型包含三个组成要素:决策变量、目标函数(单一)、约束条件(多个)。
线性规划问题的数学模型要求:决策变量为可控的连续变量,目标函数和约束条件都是线性的。
4.线性规划问题的标准形式:目标函数为极大、约束条件为等式、决策变量为非负、变量为非负5.划标准型时添加的松驰变量、剩余变量和人工变量6.理解可行解、最优解、基、基解、基可行解等概念,且掌握各类解间的关系7.用图解法理解线性规划问题的四种解的情况:无穷多最优解、无界解、无可行解、唯一最优解8.用图解法只有解决两个变量的决策问题9.线性规划问题存在可行解,则可行域是凸集。
10.线性规划问题的基可行解对应线性规划问题可行域的顶点。
11.线性规划问题的解进行最优性检验:当所有的检验数小于等于零时为最优解;尤其当检验数小于零时(即不等于零)有唯一最优解;当某个非基变量检验数为时,有无穷多最优解;当存在某个检验数大于零且对应的系数又小于等于零时,有无界解。
12.单纯形法的计算过程,可能出计算题13.入单纯形表前首先要化成标准形式。
14.确定换出变量时根据θ值最小原则,且要求公式中对应的系数大于零。
15.当线性规划中约束条件为等式或大于等于时,划为标准型后,系数矩阵中又不包含单位矩阵时,需要添加人工变量构造一个单位矩阵作为基。
16.人工变量的系数为足够大的一个负值,用—M代表17.一般线性规划问题的数学建模题(生产计划问题、人才资源分配问题、混合配料问题等)第二章对偶问题1.原问题和对偶问题数学模型的对应关系,可能出填空题和数学模型题2.每一个线性规划必然有与之相伴而生的对偶问题3.对偶问题的性质:弱对偶性、无界性、强对偶性、最优性、互补松弛性,其中互补松弛性可能出计算题4.原问题与其对偶问题之间存在一对互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题变量5.影子价格的定义,用互补松驰性理解影子价格的含义6.影子价格与企业的生产任务、产品结构、技术状况等相关,与市场需求无关7.理解影子价格是机会成本第三章运输问题1.运输问题的数学模型,出建模题2.掌握三个数字:m+n、m*n、m+n-13.解的退化及处理4.运输规划问题本质仍然是线性规划,系数矩阵的特殊性,利用表上作业法求解,核心依然是单纯形法5.表上作业法的计算过程,可能出大题6.什么是基格和空格及含义以及检验数的经济意义7.初始方案的方法,计算检验数的方法,调整方案的方法8.检验数的含义及检验规划与一般线性规划问题的差别9.产销不平衡问题的处理,包括产大于销和销大于产,假想地的单位运价设为零第四章整数规划1.整数规划的分类:纯整数、混合整数、0-1整数2.指派问题的数学模型,可能出建模题3.匈牙利法的计算过程4.解矩阵的特点:n个解1位于不同行不同列上5.分枝定界法分枝和定界的依据以及如何分枝和如何定界6.整数规划问题的求解方法及适用条件7.整数规划问题与其松弛问题解的关系第五章目标规划1.线性规划的局限:严格约束、单目标、约束同等重要2.目标规划问题的数学模型,可能会出建模题,强调目标函数由偏差变量、优先因素和权系数构成3.偏差变量的含义及特点,成对出现,非负且至少有一个为零4.目标约束是等式,等式左边添加一对偏差变量相减5.目标规划问题求解的单纯形表计算停止的规划:要么所有行的检验数均为非负,要么前i行检验数为非负,第i+1行存在负的检验数,但在负检验数上面存在正检验数6.目标规划的达成函数中的偏差变量的选择第六章图论与网络优化1.图论中的图研究对象间的关系,只关心图中有多少个点及点间有线相连2.树的定义及性质3.最小树的求解方法:避圈法和破圈法4.狄克斯屈拉算法的特点:不仅求出从始点到终点的最短路,还求出从始点其他任何各点的最短路5.有向图(点弧)非对称关系和无向图(点边)对称关系的应用6.可行流的定义:两大类的三个条件7.增广链的定义及特点8.最大流最小割定理9.用ford-fulkerson算法求网络中的最大流的计算过程10.算法的核心和实质是判断是否存在增广链,,即网络达到最大流的条件是网络中不存在增广链第七章网络计划技术1.关键路线的定点:持续时间最长、节点时差为零、不止一条2.工作持续时间的确定方法及使用条件3.节点最早时间、节点最迟时间的理解4.工作时间参数着重理解总时差和自由时差,即总时差是若干项工作共同拥有的机动时间,自由时差是某项工作单独拥有的机动时间5.绘制网络技术图的规则第八章动态规划1.动态规划是研究多阶段决策问题的理论和方法2.状态必须具备无后效性,及无后效性的定义3.动态规划和顺序解法和逆序解法的路径及应用条件。
运筹学知识点要求
![运筹学知识点要求](https://img.taocdn.com/s3/m/575d9ddf9f3143323968011ca300a6c30c22f107.png)
运筹学知识点要求运筹学知识点要求第一部分结论1、运筹学的特点(1)以最优性或合理性为核心。
(2)以数量化、模型化为基本方法。
(3)具有强烈的系统性、交叉性特征。
(4)以计算机为重要的技术支持。
2、运筹学模型求解方法:知道迭代算法的原理步骤。
3、运筹学模型(1)运筹学模型:使用较多的是符号或数学模型,大多数为优化模型。
(2)模型的一般结构(3)模型的三大要素决策变量、目标函数及优化方向、约束条件。
(4)了解模型的分类4、建立优化模型解决实际问题(1)要求能对较简单的实际问题建立优化模型。
主要涉及:一般线性规划模型,整数(特别是0-1规划)规划模型。
5、了解运筹学运用领域。
第二部分线性规划1、线性规划模型的几种表示形式及特点2、线性规划模型的标准形式及如何标准化3、线性规划问题各种解的概念及关系(关系图示)(可行解、非可行解、基本解、基本可行解、最优解,基本可行解的个数小于等于)4、线性问题有关解的基本定理(主要是概念理解)(1)不一定都有最优解(2)若有,一定会在基本可行解上达到(3)基本可行解的个数有限小于等于(4)并非所有最优解都是基本可行解(5)了解凸集与凸组合的概念,理解两个最优解的凸组合都是最优解。
(6)可行解为基本可行解的充要条件5、线性规划单纯形法(1)制作初始单纯表(注意非基变量检验系数的求法,特别注意求有待定系数时的检验系数)(2)各种解的判别条件,对于最大化目标函数问题,包括:唯一最优解:有最优解无穷多最优解存在一个k 有:(或称之为线性规划问题存在可择最优解)无界解,存在k 有:(3)线性规划问题求解结果中解的情况有最优解(唯一最优解、无穷多最优解),无界解,无可行解(4)基变换中入基变量的确定A 、入基变量的必要条件()B 、最速上升准则的理解,不是使目标函数改进最大,而是使目标函数改进速度最大。
m nC m nC 0<j σ0≤j σ0≤j σ0=j σ0,0'≤>k k p 且σ0≥j σ(5)最小比值确定出基变量的目的:保证基变换后新的基本解是可行的。
运筹学概述
![运筹学概述](https://img.taocdn.com/s3/m/437698350912a2161479291b.png)
运筹学概述摘要:运筹学是包含多种学科的综合性学科,是最早形成的一门软科学。
它把科学的方法、技术和工具应用到包括一个系统管理在内的各种问题上,以便为那些掌管系统的人们提供最佳的解决问题的办法。
它用科学的方法研究与某一系统的最优管理有关的问题。
它能帮助决策人解决那些可以用定量方法和有关理论来处理的问题。
本文首先对运筹学做了简单介绍,并回顾了运筹学的产生和历史,同时介绍了运筹学研究对象、定义和特点,以及运筹学的内容和研究方法,深入探讨了运筹学自形成以后在国内外的发展情况,最后概述了运筹学在实际生活中应用。
关键词:运筹学,历史,特点,内容和方法,发展,应用,领域运筹学(Operational Research(英国)或者是Operations Research(美国),在台湾有时又被称作作业研究),是一应用数学和形式科学的跨领域研究,利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。
运筹学经常用于解决现实生活中的复杂问题,特别是改善或优化现有系统的效率。
研究运筹学的基础知识包括实分析、矩阵论、随机过程、离散数学和算法基础等。
而在应用方面,多与仓储、物流、算法等领域相关。
因此运筹学与应用数学、工业工程、计算机科学等专业密切相关。
一、运筹学的简介在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。
田忌赛马的故事说明在已有的条件下,经过筹划、安排,选择一个最好的方案,就会取得最好的效果。
可见,筹划安排是十分重要的。
普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。
前者提供模型,后者提供理论和方法。
运筹学的思想在古代就已经产生了。
敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。
但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。
运筹学知识点总结
![运筹学知识点总结](https://img.taocdn.com/s3/m/0adad7622e60ddccda38376baf1ffc4ffe47e29c.png)
运筹学知识点总结运筹学是一门研究如何有效决策和优化资源分配的学科,它涵盖了数学、统计学和计算机科学等多个学科的知识。
在现代社会,运筹学在各个领域都有广泛的应用,比如物流管理、生产调度、供应链优化等。
本文将介绍一些运筹学的基本概念和应用。
1. 线性规划线性规划是运筹学中最基础也是最常用的数学模型之一。
它的目标是在一组线性约束条件下,最大化或最小化线性目标函数。
线性规划可以用来解决资源分配、生产计划、投资组合等问题。
常见的线性规划算法有单纯形法和内点法。
2. 整数规划整数规划是线性规划的一种扩展形式,其中决策变量被限制为整数。
整数规划在许多实际问题中都有应用,比如货车路径优化、工人调度等。
求解整数规划问题的方法包括分支定界法和割平面法。
3. 图论图论是运筹学中的一个重要分支,它研究图的性质和图算法。
图是由节点和边组成的数学结构,可以用来表示网络、路径、流量等问题。
常见的图论算法有最短路径算法、最小生成树算法和最大流算法。
4. 排队论排队论研究的是随机到达和随机服务的系统中的排队行为。
它在交通规划、电话网络、客户服务等领域有广泛的应用。
常见的排队论模型有M/M/1队列、M/M/c队列和M/G/1队列。
排队论可以用来优化服务水平、减少等待时间等。
5. 动态规划动态规划是一种解决多阶段决策问题的方法,它将问题分解为一系列子问题,并通过递归的方式求解。
动态规划常用于求解最优化问题,比如背包问题、旅行商问题等。
它的核心思想是将问题转化为子问题的最优解,并利用子问题的最优解求解原问题。
6. 模拟优化模拟优化是一种通过模拟实验寻找最优解的方法。
它基于概率统计和随机模拟的原理,通过多次模拟实验来搜索解空间。
模拟优化常用于在实际问题的局部搜索中找到较好的解。
常见的模拟优化算法有遗传算法、蚁群算法和粒子群算法。
7. 供应链管理供应链管理是一种综合运筹学和物流管理的概念,它研究如何优化整个供应链中的流程和资源分配。
供应链管理的目标是降低成本、增加效率并提供更好的顾客服务。
运筹学知识点总结
![运筹学知识点总结](https://img.taocdn.com/s3/m/12966559a31614791711cc7931b765ce05087aa2.png)
运筹学知识点总结一、线性规划线性规划是运筹学中最基础、最重要的一个分支。
它的基本形式可以表示为:Max cxs.t. Ax ≤ bx ≥ 0其中,c是一个n维的列向量,x是一个n维的列向量,A是一个m×n的矩阵,b是一个m维的列向量。
线性规划的目标是找到满足约束条件的x,使得目标函数cx取得最大值。
而当目标是最小化cx时,则是最小化问题。
线性规划问题有着很好的性质,它的最优解一定存在且一定在可行域边界上。
而且,很多非线性规划问题也可以通过线性化转化成线性规划问题,因此线性规划具有广泛的适用范围。
二、整数规划整数规划是线性规划的一个扩展,它在线性规划的基础上增加了对决策变量的整数取值限制。
这样的问题往往更加接近实际情况。
整数规划问题的一般形式可以表示为:Max cxs.t. Ax ≤ bx ∈ Zn整数规划问题的求解难度要比线性规划问题高很多。
因为整数规划问题是NP-hard问题,也就是说它没有多项式时间的算法可以解决。
但是对于特定结构的整数规划问题,可以设计专门的算法来求解。
比如分枝定界法、动态规划等。
整数规划问题在许多领域都有着广泛的应用,比如生产调度、设备配置、网络设计等。
三、动态规划动态规划是一种用来求解具有重叠子问题结构的最优化问题的方法。
它的核心思想是将原问题分解成一系列相互重叠的子问题,然后利用子问题的最优解来构造原问题的最优解。
动态规划问题的一般形式可以表示为:F(n) = max{F(n-1), F(n-2)+cn}其中,F(n)是问题的最优解,cn是问题的参数,n是问题的规模。
动态规划问题的求解是一个自底向上的过程,它依赖于子问题的最优解,然后通过递推关系来求解原问题的最优解。
动态规划在资源分配、路径优化、排程问题等方面有着广泛的应用。
四、决策分析决策分析是一种用来帮助人们做出最佳决策的方法。
它可以应用在各种风险决策、投资决策、生产决策等方面。
决策分析的一般形式可以表示为:Max E(u(x))其中,E(u(x))是对决策结果的期望效用,u(x)是决策结果的效用函数,x是决策变量。
运筹学知识点
![运筹学知识点](https://img.taocdn.com/s3/m/41eb5f5c33687e21af45a9c5.png)
运筹学知识点:绪论1.运筹学的起源2.运筹学的特点第一章线性规划及单纯形法1.规划问题指生产和经营管理中如何合理安排,使人力、物力等各种资源得到充分利用,获得最大效益。
2.规划问题解决两类问题:一是给定一定数量的人力、物力等资源,研究如何充分利用,以发挥其最大效果;二是已给定计划任务,研究如何统筹安排,用最少的人力和物力去完成。
3.规划问题的数学模型包含三个组成要素:决策变量、目标函数(单一)、约束条件(多个)。
线性规划问题的数学模型要求:决策变量为可控的连续变量,目标函数和约束条件都是线性的。
4.线性规划问题的标准形式:目标函数为极大、约束条件为等式、决策变量为非负、变量为非负5.划标准型时添加的松驰变量、剩余变量和人工变量6.理解可行解、最优解、基、基解、基可行解等概念,且掌握各类解间的关系7.用图解法理解线性规划问题的四种解的情况:无穷多最优解、无界解、无可行解、唯一最优解8.用图解法只有解决两个变量的决策问题9.线性规划问题存在可行解,则可行域是凸集。
10.线性规划问题的基可行解对应线性规划问题可行域的顶点。
11.线性规划问题的解进行最优性检验:当所有的检验数小于等于零时为最优解;尤其当检验数小于零时(即不等于零)有唯一最优解;当某个非基变量检验数为时,有无穷多最优解;当存在某个检验数大于零且对应的系数又小于等于零时,有无界解。
12.单纯形法的计算过程,可能出计算题13.入单纯形表前首先要化成标准形式。
14.确定换出变量时根据θ值最小原则,且要求公式中对应的系数大于零。
15.当线性规划中约束条件为等式或大于等于时,划为标准型后,系数矩阵中又不包含单位矩阵时,需要添加人工变量构造一个单位矩阵作为基。
16.人工变量的系数为足够大的一个负值,用—M代表17.一般线性规划问题的数学建模题(生产计划问题、人才资源分配问题、混合配料问题等)第二章对偶问题1.原问题和对偶问题数学模型的对应关系,可能出填空题和数学模型题2.每一个线性规划必然有与之相伴而生的对偶问题3.对偶问题的性质:弱对偶性、无界性、强对偶性、最优性、互补松弛性,其中互补松弛性可能出计算题4.原问题与其对偶问题之间存在一对互补的基解,其中原问题的松弛变量对应对偶问题的变量,对偶问题的剩余变量对应原问题变量5.影子价格的定义,用互补松驰性理解影子价格的含义6.影子价格与企业的生产任务、产品结构、技术状况等相关,与市场需求无关7.理解影子价格是机会成本第三章运输问题1.运输问题的数学模型,出建模题2.掌握三个数字:m+n、m*n、m+n-13.解的退化及处理4.运输规划问题本质仍然是线性规划,系数矩阵的特殊性,利用表上作业法求解,核心依然是单纯形法5.表上作业法的计算过程,可能出大题6.什么是基格和空格及含义以及检验数的经济意义7.初始方案的方法,计算检验数的方法,调整方案的方法8.检验数的含义及检验规划与一般线性规划问题的差别9.产销不平衡问题的处理,包括产大于销和销大于产,假想地的单位运价设为零第四章整数规划1.整数规划的分类:纯整数、混合整数、0-1整数2.指派问题的数学模型,可能出建模题3.匈牙利法的计算过程4.解矩阵的特点:n个解1位于不同行不同列上5.分枝定界法分枝和定界的依据以及如何分枝和如何定界6.整数规划问题的求解方法及适用条件7.整数规划问题与其松弛问题解的关系第五章目标规划1.线性规划的局限:严格约束、单目标、约束同等重要2.目标规划问题的数学模型,可能会出建模题,强调目标函数由偏差变量、优先因素和权系数构成3.偏差变量的含义及特点,成对出现,非负且至少有一个为零4.目标约束是等式,等式左边添加一对偏差变量相减5.目标规划问题求解的单纯形表计算停止的规划:要么所有行的检验数均为非负,要么前i行检验数为非负,第i+1行存在负的检验数,但在负检验数上面存在正检验数6.目标规划的达成函数中的偏差变量的选择第六章图论与网络优化1.图论中的图研究对象间的关系,只关心图中有多少个点及点间有线相连2.树的定义及性质3.最小树的求解方法:避圈法和破圈法4.狄克斯屈拉算法的特点:不仅求出从始点到终点的最短路,还求出从始点其他任何各点的最短路5.有向图(点弧)非对称关系和无向图(点边)对称关系的应用6.可行流的定义:两大类的三个条件7.增广链的定义及特点8.最大流最小割定理9.用ford-fulkerson算法求网络中的最大流的计算过程10.算法的核心和实质是判断是否存在增广链,,即网络达到最大流的条件是网络中不存在增广链第七章网络计划技术1.关键路线的定点:持续时间最长、节点时差为零、不止一条2.工作持续时间的确定方法及使用条件3.节点最早时间、节点最迟时间的理解4.工作时间参数着重理解总时差和自由时差,即总时差是若干项工作共同拥有的机动时间,自由时差是某项工作单独拥有的机动时间5.绘制网络技术图的规则第八章动态规划1.动态规划是研究多阶段决策问题的理论和方法2.状态必须具备无后效性,及无后效性的定义3.动态规划和顺序解法和逆序解法的路径及应用条件。
运筹学概述与主要内容
![运筹学概述与主要内容](https://img.taocdn.com/s3/m/6a77bf259b89680202d825b4.png)
4、Queueing theory(排队论) 5、Game theory(博弈论,对策论) 6、Decision theory(决策论) 7、Storage theory(存储论)
五、运筹学的历史
都江堰水利工程
战国时期(大约公元前250年)川西 太守李冰父子主持修建。其目标是: 利用岷江上游的水资源灌溉川西平原。 追求的效益还有防洪与航运。其总体 构思是系统思想的杰出运用。
模型为:
x(t)f(x,y)xu(t) 0 y(t)g(x,y) yv(t) 0
x(0)x0,y(0)y0
正规战争模型
假设: ➢ 甲乙两方都是正规部队,双方士兵公开活动,每个士兵处在对方的杀伤
范围内; ➢ 甲方战斗减员率与乙方兵力成正比:f(x,y)=ay,a称为乙方战斗有效系数
(a>0); ➢ 乙方战斗减员率与甲方兵力成正比: g(x,y)=bx,b称为甲方战斗有效系
一般战争模型
假设: x0 、x(t)----甲方的初始兵力及时刻 t 的兵力 y0、y(t)----乙方的初始兵力及时刻 t 的兵力
➢ 每一方战斗减员取决于双方的兵力,分别用 f(x,y)与g(x,y)来表示甲、乙双方的战斗减员率;
➢ 每一方的非战斗减员与本方兵力成正比;
➢ 每一方的增援力是给定的函数,分别用u(t)与v(t) 表示甲、乙双方的增援率 。
可以处理相当复杂的大型问题。
随着运筹学应用于社会大系统,仅靠定量分析已难以找到合理的优化方案, 人们常采用定量与定性相结合、在定量分析的基础上进行定性分析的方法。 因此,在许多情况下已很难划分运筹学、系统分析与政策分析的界限。
四、运筹学包含的分支
1、Mathematical programming(数学规划): Linear programming(线性规划), Nonlinear programming(非线性规划), Integer programming(整数规划), Objective programming(目标规划) Dynamic programming(动态规划), 2、Graph theory(图论) 3、Network analysis(网络分析)
高等数学中的运筹学相关知识点详解
![高等数学中的运筹学相关知识点详解](https://img.taocdn.com/s3/m/89527e53dcccda38376baf1ffc4ffe473368fdf4.png)
高等数学中的运筹学相关知识点详解运筹学是一门集数学、计算机科学、经济学、管理学于一体的交叉学科,主要研究决策问题的数学方法和技术,其研究范围广泛,可以应用于工业、交通、金融等各个领域。
在高等数学中,运筹学是一个重要的学科,以下将详细介绍高等数学中与运筹学相关的知识点。
一、线性规划线性规划是运筹学中的核心概念之一,其基本思想是在约束条件下求解能够达到最优的目标函数值。
在高等数学中,常常采用单纯形法和对偶理论来进行线性规划的求解。
单纯形法是指从初始可行解开始,不断沿着非基变量的单调递增方向去寻找目标函数的最优解。
如果能够找到一个可行解,使得当前的目标函数值最小,那么这个可行解就是当前线性规划问题的最优解。
单纯形法虽然简单直观,但是它无法直接求解整数规划问题。
对偶理论则是对线性规划问题的又一种求解方法。
对偶理论中的对偶问题是一个对原问题的镜像,通过求解对偶问题,可以有效地将原问题的解转化为对应的对偶变量。
运用对偶理论可以进一步优化线性规划问题的求解过程。
二、非线性规划与线性规划相比,非线性规划则需要解决更加复杂的问题,其求解方法包括局部极值和全局极值两种。
局部极值是指函数在一定范围内的极值,而全局极值则是指函数在整个定义域内的极值。
在高等数学中,常用牛顿法和梯度下降法来求解非线性规划问题。
牛顿法是一种迭代算法,其基本思想是通过构造某种函数来逐步逼近目标函数的极点。
梯度下降法则是对函数进行反复求导,并通过求解导数为零的点来寻找极值点。
三、动态规划动态规划则是应用于复杂决策问题的算法,其基本思想是将问题划分成若干个相互依存的子问题,并利用记忆化的方法将子问题的解存储起来,最终得到整体问题的最优解。
在高等数学中,动态规划可以具体应用于图论、数论、组合数学等领域。
总结运筹学在高等数学中扮演着重要的角色,运用其相关知识可以有效解决决策问题。
线性规划、非线性规划和动态规划是其中最为基础的三种方法,它们的应用可以覆盖众多领域,包括工业制造、金融投资、交通运输等。
运筹学的概念
![运筹学的概念](https://img.taocdn.com/s3/m/cd17c3c20875f46527d3240c844769eae009a3e0.png)
运筹学的概念运筹学是一种综合性学科,它在现代管理中起着至关重要的作用。
运筹学是一种运用数学、统计学、计算机科学以及其他相关领域的方法和理论来帮助制定最优决策的学科。
它的主要目标是通过通过信息分析和决策模型来使决策者在制定决策时更加合理、科学和精准。
下面是对运筹学概念的详细介绍。
一、运筹学的基本定义运筹学(Operations Research,简称OR)是一门科学,通过使用计算机和数学模型,研究如何最好地利用有限资源来达到预期目标,主要研究方法包括优化、数理统计、决策分析、模拟等。
二、运筹学的发展历程运筹学是在二战期间发展出来的,主要应用于军事后勤问题的解决。
之后,运筹学学科马不停蹄地在各个领域快速发展,至今已经成为了一门广泛的学科。
三、运筹学的应用范围运筹学在各个领域都有广泛的应用,例如生产制造、物流管理、金融风险管理、医疗管理、资源分配等。
它在实践中的应用能够使企业和组织在有限的资源下获得最大收益。
例如,电商企业可以利用运筹学和网络优化技术来解决配送问题。
医院可以利用运筹学与供应链的整合优化来提高采购成本的效率。
银行等金融机构则可以利用运筹学来建立风险管理模型,减轻市场波动造成的经济损失。
四、运筹学的关键技术该学科主要基于优化、数学建模、统计推断和计算机仿真等关键技术。
对于不同的问题,会采用不同的技术手段。
例如,对于线性规划问题,使用线性规划算法进行求解;对于决策树问题,可以使用决策树算法进行求解;对于复杂的大规模问题,可以使用数学建模与计算机仿真技术进行求解。
总之,运筹学是为了解决实际问题而产生的一种学科,它在生产、经济、政策等许多领域有广泛应用,发展迅速,使得成本降低、管理规范化、业务流程优化等问题得到了解决。
运筹学基本概念与发展简介
![运筹学基本概念与发展简介](https://img.taocdn.com/s3/m/ef41b11dbdd126fff705cc1755270722182e595c.png)
运筹学基本概念与发展简介运筹学,又被称为管理科学,是一门综合应用数学、统计学以及其他相关学科的学科。
它的主要目标是通过系统化分析、建模和优化,在资源有限的情况下,达到最优的决策和解决问题的方法。
本文将对运筹学的基本概念和其发展历程进行简要介绍。
一、运筹学的基本概念运筹学的研究对象是各类决策问题,其核心思想在于如何通过适当的方法和技术,对复杂的系统进行优化。
具体而言,运筹学侧重于以下几个方面的内容:1. 数学模型建立:在解决问题之前,必须先建立适当的数学模型。
这些模型可以是线性规划、整数规划、图论、排队论等等。
2. 算法设计与优化:在建立数学模型之后,需要设计算法来求解模型。
算法设计的目标是提高计算效率和准确性。
3. 决策分析:传统的决策往往是依靠主观经验和直觉,而运筹学正是通过系统性的分析和决策模型,使决策过程具有量化、科学性和合理性。
4. 信息管理与决策支持系统:通过信息的获取、存储、处理和分析,提供可靠的支持和决策辅助。
二、运筹学的发展历程运筹学的发展可以追溯到20世纪40年代末期,当时运筹学主要应用于军事领域。
以美国作为代表的国家,大量运筹学家为战争中的资源分配、军事运输、作战计划等问题提供了有效的解决方案。
随着二战的结束,运筹学逐渐应用于工业管理和商业决策领域。
在20世纪50年代,随着计算机技术的进一步发展,运筹学得以迅速扩展。
线性规划、整数规划等方法的诞生,为企业的生产、销售、采购等问题提供了科学的决策支持。
到了1960-1970年代,运筹学领域又得到了新的发展。
传统的运筹学方法逐渐不能满足复杂决策问题的需求,因此出现了非线性规划、动态规划、随机规划等更加高级的方法。
随着信息技术的飞速发展,运筹学又迎来了新的机遇和挑战。
决策支持系统、智能算法等新兴技术的引入,使得运筹学得以更好地应用于实际生产和管理中。
三、运筹学的应用领域运筹学作为一门综合性的学科,应用广泛。
以下是运筹学的一些典型应用领域:1. 供应链管理:通过优化供应链中的各个环节,实现高效的物流运输、仓储管理和库存控制,从而降低成本、提高服务水平。
运筹学知识点
![运筹学知识点](https://img.taocdn.com/s3/m/c4e92ebd9a89680203d8ce2f0066f5335a81679b.png)
运筹学知识点运筹学是一门应用广泛的学科,旨在通过科学的方法和技术来解决各种决策和优化问题。
它综合运用数学、统计学、计算机科学等多学科知识,为管理和决策提供有力的支持。
下面让我们来了解一些运筹学的重要知识点。
一、线性规划线性规划是运筹学中最基本也是最重要的内容之一。
它研究的是在一组线性约束条件下,如何找到目标函数的最优解。
例如,一家工厂生产两种产品 A 和 B,生产单位 A 产品需要消耗 2 单位的原材料和 1 单位的劳动力,生产单位 B 产品需要消耗 3 单位的原材料和 2 单位的劳动力。
工厂现有 100 单位的原材料和 80 单位的劳动力,A 产品的单位利润是 5 元,B 产品的单位利润是 8 元。
那么,如何安排生产才能使工厂的利润最大化?解决这个问题,首先要建立线性规划模型。
设生产 A 产品 x 件,生产 B 产品 y 件,目标函数就是利润最大化:Z = 5x + 8y。
约束条件包括原材料限制:2x +3y ≤ 100;劳动力限制:x +2y ≤ 80;以及非负限制:x ≥ 0,y ≥ 0。
通过求解这个线性规划模型,可以得到最优的生产方案,即生产多少 A 产品和多少 B 产品能够使利润达到最大值。
二、整数规划整数规划是在线性规划的基础上,要求决策变量必须取整数的规划问题。
比如,一个项目需要选择一些地点建设仓库,每个地点的建设成本和运营效益不同。
由于仓库的数量必须是整数,这就构成了一个整数规划问题。
整数规划的求解比线性规划更加复杂,常用的方法有分支定界法、割平面法等。
三、动态规划动态规划是解决多阶段决策过程最优化的一种方法。
以资源分配问题为例,假设一家公司有一定数量的资金要在多个项目中进行分配,每个项目在不同的投资水平下有不同的收益。
要在有限的资金条件下,使总收益最大。
这个问题就可以用动态规划来解决。
动态规划的核心思想是将一个复杂的多阶段决策问题分解为一系列相互关联的子问题,通过求解子问题的最优解来逐步得到原问题的最优解。
运筹学的主要内容
![运筹学的主要内容](https://img.taocdn.com/s3/m/3deb6dd24bfe04a1b0717fd5360cba1aa8118cb7.png)
运筹学的主要内容运筹学是一门研究如何进行决策和规划的学科,它主要关注如何通过优化和模型建立来提高决策的效果和效率。
它涉及许多不同的方法和技术,用于解决各种现实生活中的问题,包括物流规划、生产调度、资源分配、风险管理等等。
运筹学的主要内容包括以下几个方面:1. 线性规划:线性规划是运筹学中最基本和最常用的方法之一。
它通过建立数学模型,利用线性代数和数学规划的理论和方法,来优化决策问题。
线性规划主要用于优化资源的分配和利用,以达到最大化利润或最小化成本的目标。
2. 整数规划:整数规划是线性规划的扩展,它在变量的取值上增加了整数限制。
整数规划在实际生活中的应用非常广泛,比如货物配送中的路径规划、生产计划中的机器调度等。
整数规划的求解难度比线性规划更高,需要使用更复杂的算法和技术。
3. 动态规划:动态规划是一种用于解决多阶段决策问题的方法。
它将问题分解为一系列子问题,通过递归的方式求解,并利用子问题的最优解来求解原始问题。
动态规划通常用于决策过程中具有时序关系的问题,比如项目管理中的时间安排、金融中的投资决策等。
4. 排队论:排队论是研究排队系统的理论和方法。
排队系统广泛存在于各个领域,比如交通流量、客户服务、生产线等。
排队论可以用来评估和优化排队系统的性能指标,比如等待时间、服务水平等。
5. 模拟方法:模拟方法是一种通过构建和运行模型来仿真实际系统的方法。
它可以用来研究系统的运行特性,评估不同决策方案的效果,并提供决策支持。
模拟方法在风险管理、供应链优化等领域有广泛的应用。
6. 网络优化:网络优化是研究网络结构中最优路径和流量分配的方法。
它可以用来解决一些复杂的决策问题,比如交通网络中的最短路径问题、电信网络中的流量优化问题等。
7. 多目标决策:多目标决策是指在决策过程中需要同时考虑多个目标和约束条件的问题。
多目标决策的目标可能是相互矛盾的,需要通过建立合适的权衡模型来找到最优解。
运筹学的主要目标是通过科学的方法和技术,优化决策过程,提高决策的效果和效率。
运筹学知识点
![运筹学知识点](https://img.taocdn.com/s3/m/00be4970302b3169a45177232f60ddccda38e6c9.png)
运筹学知识点运筹学是一门重要的科学,在许多领域都有广泛的应用。
它的核心思想是通过数学模型和方法,优化决策和资源利用效率,以解决复杂的问题。
运筹学知识点有很多,以下列举了一些常见的知识点:1.线性规划:线性规划是运筹学中的一种基本方法,它运用线性代数和数学优化的原理,建立以线性方程组为模型的最优化问题,并通过解题方法进而实现决策优化。
2.整数规划:在满足目标规划条件下,整数规划通过约束条件限制变量的取值,使得目标函数取得最优解。
其解题方法和线性规划有很大不同。
3.动态规划:动态规划是一种求解最优化问题的有效方法,它将复杂的问题分为若干个阶段,并逐步解决,每一阶段的结果又逐渐形成最终结果的总体。
4.排队论:排队论是解决等待的问题,并给出一个概率模型,用于分析排队队列的长度、客户等待时间以及服务员利用率等因素,以此实现资源的最大化使用。
5.模拟算法:模拟算法旨在通过计算机模拟系统的行为,来解决复杂的问题。
因此,模拟算法在实践中发挥了非常大的作用。
6.蒙特卡罗模拟:蒙特·卡罗模拟利用随机模拟,模拟某种情况下的组合概率,从而推导出该情况下的期望值。
这种方法在金融和保险领域非常常见。
7.网络分析:网络分析是一个建立图形数据结构的领域,它的目的是找到一个最短路径,使得要素之间的距离最小化。
8.多目标规划:多目标规划是一种形式化的方法,用以解决一组目标的最优化问题。
该方法多用于具有多个目标的问题,例如通过环境、财务和社会责任计算最大效益的问题等。
9.贝叶斯分析:贝叶斯分析是基于统计学的一种分析方法,在研究产生与观察数据之间关系时,可以用其揭示变量间的作用。
10.决策树:决策树是一种表达多个可能结果和可能决策的图形模型,可作为决策过程的工具,也可用于预测和分类。
在研究中,它应用广泛,往往被用于盈利和损失的预测,以及投资等。
运筹学概述与主要内容
![运筹学概述与主要内容](https://img.taocdn.com/s3/m/6a77bf259b89680202d825b4.png)
三、运筹学模型
运筹学研究的模型主要是抽 象模型——数学模型。数学模型 的基本特点是用一些数学关系 (数学方程、逻辑关系等)来描 述被研究对象的实际关系(技术 关系、物理定律、外部环境等)。
运筹学模型的一个显著 特点是它们大部分为最优化 模型。一般来说,运筹学模 型都有一个目标函数和一系 列的约束条件,模型的目标 是在满足约束条件的前提下 使目标函数最大化或最小化。
⑤方案实施和不断优化:包括应用所得的解解决实际问题,并在方案实施 过程中发现新的问题和不断进行优化。上述5个阶段往往需要交叉进行,不断 反复。
真实系 统
数据准备
系统分析 问题描述
模型建立 与修改
模型求解 与检验
结果分析 与实施
运筹学分析的步骤
现代运筹学方法强调黑箱方法、数学模型和仿真运行。它重视系统的输入输 出关系,即问题所处的环境条件和问题中主要因素与环境间的关系,而不追 求系统内部机理,因而易于达到从系统整体出发来研究问题的目的。常用的 数学模型有:分配模型、运输模型、选址模型、网络模型、计划排序模型、 存储模型、排队模型、概率决策模型、马尔可夫模型等。模型求解往往成为 应用计算机程序进行仿真运行。现在已有各种运筹学软件包供应,使运筹学
对策论(GT);决策分析(DA);存贮论(IC); 排队论(QT);图论(Graph Theory)(统筹方法)
计算机仿真(随机模拟)
运 筹 学 概述
运筹学是近代应用数学的一个分支,主要是研究如何将生产、管理等事件中 出现的运筹问题加以提炼,然后利用数学方法进行解决的学科。运筹学是应 用数学和形式科学的跨领域研究,利用像是统计学、数学模型和算法等方法 ,去寻找复杂问题中的最佳或近似最佳的解答。运筹学经常用于解决现实生 活中的复杂问题,特别是改善或优化现有系统的效率。
运筹学知识点总结
![运筹学知识点总结](https://img.taocdn.com/s3/m/b8398230c4da50e2524de518964bcf84b9d52dcf.png)
运筹学知识点总结运筹学是一门现代应用数学学科,目的是通过对问题进行建模、分析和计算,以便在各种约束条件下达到最优解。
它主要涉及优化、线性规划、非线性规划、整数规划、动态规划、排队论、库存管理、网络流、决策分析等领域。
1. 优化优化是运筹学的核心概念,它是一种在有限资源限制下寻找最优解的一种方法。
其中包括单目标优化和多目标优化、约束优化和无约束优化、线性规划和非线性规划等。
2. 线性规划线性规划是优化中最常见的形式之一,它是优化一个线性函数的目标,以满足一些线性约束条件。
它有广泛的应用,在农业、工业、金融、物流等各个领域都有着重要的作用。
非线性规划是优化问题中更为复杂的形式,其中目标函数或约束条件中存在非线性项。
它的解决方法包括数值优化和分析优化两种方法,分别适用于不同的情况。
4. 整数规划整数规划是规划问题的一种形式,在线性规划的基础上增加了整数变量的限制条件。
它有重要的应用,如在生产调度、项目管理等方面。
5. 动态规划动态规划是优化问题解决中的一种常见方法,它通常用于求解具有重叠子问题和最优子结构性质的问题,如背包问题、最短路径问题等。
6. 排队论排队论是运筹学中的一种最基础的模型,用于研究人口、货物、流量等在现实中排成队形的情况。
它涵盖了顾客到达、排队、服务、离开等过程,是现代生产和服务行业最重要的决策依据。
7. 库存管理库存管理是运筹学中的一个领域,它涉及到如何管理和控制商品或零件的库存,以保证公司的正常运作。
库存管理的目标是在满足需求的同时尽量减少库存成本。
8. 网络流网络流是运筹学中的另一个重要概念,它是图论的一部分。
网络流用于研究通过网络传输物品等物品。
它经常应用于电信、电子商务等领域。
9. 决策分析决策分析是运筹学的一个重要领域,它包含制定和评估决策的工具和方法。
决策分析用于在不确定性和风险的条件下制定决策,例如投资决策、战略制定等。
总之,运筹学是一种分析和优化现实问题的有力工具,可用于各种组织和企业的经营管理和决策。
运筹学知识点总结归纳
![运筹学知识点总结归纳](https://img.taocdn.com/s3/m/d9405718cdbff121dd36a32d7375a417876fc172.png)
运筹学知识点总结归纳运筹学知识点总结归纳一、引言运筹学是一门综合运用数学、统计学和优化理论等相关知识解决实际问题的学科。
它的一个核心目标是在给定的约束条件下,使系统达到最佳状态。
本文将对运筹学的一些基本概念、方法和应用进行总结归纳,以便读者对这门学科有更深入的了解。
二、线性规划线性规划是运筹学中最基本、最常见的数学模型之一。
在线性规划中,目标函数和约束条件都是线性的。
通过线性规划,我们可以最小化或最大化一个目标函数来寻找最优解。
常见的线性规划方法有单纯形法、对偶法和内点法等。
三、整数规划整数规划是线性规划的一种扩展形式。
在整数规划中,决策变量的取值限制为整数。
这种限制使问题更加复杂,通常需要使用分支定界法、割平面法等算法来求解。
整数规划在许多实际问题中有广泛的应用,如生产调度、路径优化等。
四、网络流问题网络流问题是运筹学中一个重要的研究方向。
在网络流问题中,节点和边表示物理或逻辑上的位置,流量沿边流动,目标是最大化总流量或最小化总成本。
常见的网络流问题有最小费用流问题、最大流问题等。
在实际应用中,网络流问题可以用于交通规划、供应链管理等领域。
五、排队论排队论是研究队列系统的数学理论。
队列是指一组按照某种顺序排列的实体,而排队论则是研究这些实体如何进入和离开队列的过程。
通过排队论,可以估计系统的性能指标,如平均等待时间、系统利用率等。
排队论在交通管理、生产调度等领域有广泛的应用。
六、决策分析决策分析是运筹学中的一个重要分支,旨在通过分析问题的数据和信息,寻找最优的决策方案。
决策分析中常用的工具包括决策树分析、多属性决策等。
通过决策分析,我们可以对风险进行评估,并为决策者提供有力的支持。
七、多目标规划多目标规划是一种同时优化多个目标函数的决策问题。
在多目标规划中,不同的目标可能相互冲突,无法简单地将其转化为单一目标。
解决多目标规划问题的方法有权重法、向量法等。
多目标规划在工程设计、投资组合等领域有广泛的应用。
运筹学简介要点共21页文档
![运筹学简介要点共21页文档](https://img.taocdn.com/s3/m/677ece9b2e3f5727a4e96225.png)
31、只有永远躺在泥坑里的人,才不会再掉进坑里。——黑格尔 32、希望的灯一旦熄灭,生活刹那间变成了一片黑暗。——普列姆昌德 33、希望是人生的乳母。——科策布 34、形成天才的决定因素应该是勤奋。——郭沫若 35、学到很多东西的诀窍,就是一下子不要学很多。——洛克
1、不要轻言放弃,否则对不起自己。
2、要冒一次险!整个生命就是一场冒险。走得最远的人,常是愿意 去做,并愿意去冒险的人。“稳妥”之船,从未能从岸边走远。-戴尔.卡耐基。
ห้องสมุดไป่ตู้梦 境
3、人生就像一杯没有加糖的咖啡,喝起来是苦涩的,回味起来却有 久久不会退去的余香。
运筹学简介要点 4、守业的最好办法就是不断的发展。 5、当爱不能完美,我宁愿选择无悔,不管来生多么美丽,我不愿失 去今生对你的记忆,我不求天长地久的美景,我只要生生世世的轮 回里有你。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
5
“运筹帷幄中,决胜千里外”
在公元前3世纪楚汉相争中,汉高祖刘邦的著名谋士张良
为推翻秦朝,打败项羽,统一全国,立下大功,刘邦赞誉他"运 筹帷幄中,决胜千里外". 《史记》在《高祖本纪》 、《留侯世家》多处提及" 运筹帷幄中,决胜千里外". 这里的"运筹",指张良在帷幄中制定作战谋略的过程. 在西汉时代, "运筹"已被当作制定谋略与决策职能分工的 代名词. 我国学术界1955年开始研究运筹学时,正是从《史记》 中摘取 “运筹”一词作为OR (Operations Research) 的意 译,就是运用筹划、以智取胜的含义.
8
“运筹学”这一名词最早出现在第二次世界大战期间—— 美、英等国家的作战研究小组为了解决作战中所遇到的许 多错综复杂的战略、战术问题而提出的。 例如:如何合理运用雷达有效地对付德国空袭;对商船队 如何进行编队护航,在船队遭受德国潜艇攻击时使船队损 失最少;反潜深水炸弹在各种情况下 如何调整其爆炸深度, 才能增加对德国潜潜艇的杀伤力等。 1935年,英国科学家华生华特(Waston-Wart)发明了雷达, 丘吉尔命令在英国东海岸的Bawdsey建立了一个秘密雷达站。 当时,德国已经拥有一支强大的空军,起飞17分钟即可到 达英国本土。雷达作为防空系统的一部分,从技术上是可 行的,但是实际运用时却不理想。在如此短的时间里,如 何预警和拦截德国飞机成为一大难题。
10
1736年,欧拉(Euler)解决了著名的哥尼斯堡七桥问题。 1909年,丹麦电气工程师爱尔朗(A.K.Erlang)为解决自动 电话交换系统的系统排队与系统拥挤现象,提出了有关排 队论的理论与方法,标志着排队论的诞生。 1915年,哈里斯(F.W.Harris)推导出了经济订货批量公式。 1928年,冯.诺伊曼(John Von Neumann 1903-1957)以研 究二人零和对策的一系列论文为对策论奠基. 1939年,苏联的康托洛维奇(L.V.kantorovich,1912-1986) 发表《生产组织和计划中的数学方法》一书是规划论的开 始. 这些工作,仍是现在运筹学研究的领域.但作为一门学 科, 运筹学诞生于20世纪第二次世界大战期间,运筹学起源 于军事、管理、经济.
3
丁渭主持修复皇宫
在我国北宋真宗年间,首都汴京(即今开封)发生大火灾,皇宫被烧为 灰烬。大臣丁渭受命主持皇宫修复工程。那时,皇帝的命令是必须执行的, 否则,即为抗旨。丁渭接到圣旨后,诚惶诚恐。但他并不是那种只知道之乎 也者的呆儒,他立即对皇宫废墟进行了勘察。
第一是取土困难。即找不到适当的地方取土烧制大量的砖瓦 ; 第二是运输困难。因为除砖瓦外还有大量的建筑材料需要运到皇 宫建筑工地,运输量很大。当时最好的运输方式是水路船运,可 惜皇宫不位于汴水河岸,材料通过汴水运到汴京后还得卸货上岸, 改由陆路用车马运到皇宫工地,既劳神费力又可能延误工期 ; 第三是清墟排放的困难。即大量的皇宫废墟垃圾及修建完皇宫后 的建筑垃圾排放何处?
运
筹
学
Operational Research
1
运筹学简介
一、运筹学发展简介 二、运筹学的定义 三、运筹学在管理中的应用 四、运筹学的工作步骤 五、运筹学内容介绍
2
一、运筹学(OR)发展简介
1. 运筹学在国内
中国古代朴素的运筹学思想 田忌赛马
战国时代,齐王常与他的大将田忌赛马,双方约定每场各 出一匹马,分三场进行比赛。齐王的马有上、中、下三等, 田忌的马也有上、中、下三等,但每一等都比不上齐王同等 的马,于是田忌屡赛屡输。一日,田忌的宾客、对军事颇有 研究的孙膑给田忌出了一个主意,结果以二比一赢了齐王。 即要善于用局部的牺牲去换取全局的胜利,从而达到以弱胜强 的目的——典型的博弈问题.
7பைடு நூலகம்
虽然作为统帅的纳尔森阵亡,但留下了秘密备忘录中的 纳尔森秘诀。 1914年英国人兰彻斯特(nchester)针对该秘诀进行 研究,发布了关于人与火力的优势与胜利之间的理论文章, 这就是军事运筹学中著名的“兰彻斯特战斗方程”。 第一次世界大战期间,英国生理学教授希尔领导了一个防 空实验小组,他们专门研究高射炮的利用,研究如何部署 高射炮在阵地中的位置,从而使敌机受到的打击最大,而 自己一方受到的损失最小。因此,后来的科学家、军事学 家、工程师们认为希尔领导的防空实验小组是运筹组织的 萌芽,希尔就被称为“运筹学之父”。
6
2. 运筹学在国外 运筹学的产生 运筹学的早期历史可以追溯到19世纪中叶,特拉法加尔 (Trafalgar)海战和纳尔森(Nelson)秘诀。法国拿破仑统帅 大军要与英国争夺海上霸主地位。英国海军统帅、海军中 将纳尔森亲自制定了周密的战术方案。1805年10月21日, 这场海上大战爆发了。英国是纳尔森亲自统帅的地中海舰 队,由27艘战舰组成;另外一方是由费伦钮夫(Villenuve) 率领的法国-西班牙联合舰队,共有33艘战舰。在一场海战 后,法国-西班牙联合舰队以惨败告终:联合舰队司令费伦 钮夫连同12艘战舰被俘,8艘沉没,仅13艘逃走,人员伤亡 7000人。而英国战舰没有沉没,人员伤亡1663人。
4
首先,沿着皇宫前门大道至最近的汴水河岸的方向挖道取土, 并将大道挖成小河道直通汴水。挖出的土即用来烧砖瓦,解 决“取土困难”; 第二步,挖成河道接通汴水后,建筑材料可由汴水通过挖出 的小河道直运工地,解决“运输困难”; 最后,皇宫修复后,将建筑垃圾及废料充填到小河道中,恢 复原来的大道,解决了“清墟排放”的困难 。 丁渭在修复皇宫工程中,运用了整体的解决方案,统筹兼 顾,使取土、运输、清墟三项繁重的任务协调起来,在总体 上得到了最佳解决。
9
为此,一些科学家就如何合理运用雷达开始了研究。 1939年,英国皇家空军指挥部组织了一个小组,即成立了 英国第一个运筹小组,组长是曼彻斯特大学物理学家、英 国战斗机司令部顾问P.M.S.Blackett(战后因在宇宙射线 方面的研究成果而获得诺贝尔物理学奖)。组员:2位理论 数学家,2位应用数学家,1位天文物理学家, 1位普通物 理学家,3位心理学家,1位海军军官,1位陆军军官,l位 测量员)。——“Blackett杂技团”。 他们研究的问题是:设计将雷达信息传递到指挥系统和武 器系统的最佳方式;雷达与武器的最佳配置。他们对探测、 信息传递、作战指挥、战斗机与武器的协调等做了系统的 研究,并获得成功。他们在秘密报告中使用了 “Operational Research”一词,即“运筹学”。