高数中的重要定理与公式及其证明一
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高数中的重要定理与公式及其证明(一)
考研数学中最让考生头疼的当属证明题,而征服证明题的第一关就就是教材上种类繁多的定理证明。如果本着严谨的对待数学的态度,一切定理的推导过程都就是应该掌握的。但考研数学毕竟不就是数学系的考试,很多时候要求没有那么高。而有些定理的证明又过于复杂,硬要要求自己掌握的话很多时候可能就是又费时又费力,最后还弄得自己一头雾水。因此,在这方面可以有所取舍。
现将高数中需要掌握证明过程的公式定理总结如下。这些证明过程,或就是直接的考点,或就是蕴含了重要的解题思想方法,在复习的初期,先掌握这些证明过程就是必要的。
1)常用的极限
0ln(1)lim 1x x x →+=,01lim 1x x e x →-=,01lim ln x x a a x →-=,0(1)1lim a x x a x →+-=,201cos 1lim 2
x x x →-= 【点评】:这几个公式大家在计算极限的过程中都再熟悉不过了,但有没有人想过它们的由来呢?事实上,这几个公式都就是两个重要极限10lim(1)x
x x e →+=与0sin lim 1x x x
→=的推论,它们的推导过程中也蕴含了计算极限中一些很基本的方法技巧。
证明:
0ln(1)lim 1x x x →+=:由极限10lim(1)x x x e →+=两边同时取对数即得0ln(1)lim 1x x x
→+=。
01lim 1x x e x →-=:在等式0ln(1)lim 1x x x
→+=中,令ln(1)x t +=,则1t x e =-。由于极限过程就是0x →,此时也有0t →,因此有0lim 11
t t t e →=-。极限的值与取极限的符号就是无关的,因此我们可以吧式中的t 换成x ,再取倒数即得01lim 1x x e x
→-=。
01lim ln x x a a x →-=:利用对数恒等式得ln 0011lim lim x x a x x a e x x
→→--=,再利用第二个极限可得ln ln 0011lim ln lim ln ln x a x a x x e e a a x x a →→--==。因此有01lim ln x x a a x
→-=。
0(1)1lim a x x a x
→+-=:利用对数恒等式得 ln(1)ln(1)ln(1)00000(1)111ln(1)1ln(1)lim lim lim lim lim ln(1)ln(1)a a x a x a x x x x x x x e e x e x a a a x x a x x a x x +++→→→→→+---+-+====++上式中同时用到了第一个与第二个极限。
201cos 1lim 2
x x x →-=:利用倍角公式得2
2220002sin sin 1cos 1122lim lim lim 222x x x x x x x x x →→→⎛⎫ ⎪-=== ⎪ ⎪⎝⎭。2)导数与微分的四则运算法则
'''''''''22(), d()(), d()(), d()(0)u v u v u v du dv
uv u v uv uv vdu udv
u vu uv u vdu udv v v v v v ±=±±=±=+=+--==≠
【点评】:这几个求导公式大家用得也很多,它们的证明需要用到导数的定义。而导数的证明也恰恰就是很多考生的薄弱点,通过这几个公式可以强化相关的概念,避免到复习后期成为自己的知识漏洞。具体的证明过程教材上有,这里就不赘述了。
3)链式法则
设(),()y f u u x ϕ==,如果()x ϕ在x 处可导,且()f u 在对应的()u x ϕ=处可导,则复合函数(())y f x ϕ=在x 处可导可导,且有:
[]'''(())()()dy dy du f x f u x dx du dx
ϕϕ==或
【点评】:同上。
4)反函数求导法则 设函数()y f x =在点x 的某领域内连续,在点0x 处可导且'()0f x ≠,并令其反函数为()x g y =,且0x 所对应的y 的值为0y ,则有:
'0''00111()()(())dx g y dy f x f g y dy dx
=
==或 【点评】:同上。
5)常见函数的导数
()'1x x ααα-=,
()
'sin cos x x =,()'cos sin x x =-, ()
'1ln x x =,()'1log ln a x x a =, ()'x x e e =,()'ln x x a e a =
【点评】:这些求导公式大家都很熟悉,但很少有人想过它们的由来。实际上,掌握这几个公式的证明过程,不但可以帮助我们强化导数的定义这个薄弱点,对极限的计算也就是很好的练习。现选取其中典型予以证明。
证明:
()'1x x ααα-=:导数的定义就是'0()()()lim x f x x f x f x x
∆→+∆-=∆,代入该公式得 ()'
1100(1)1(1)1()lim lim x x x x x x x x x x x x x x x x
x
ααααααααα--∆→∆→∆∆+-+-+∆
-====∆∆∆。最后一步用到了极限0(1)1lim a x x a x
→+-=。注意,这里的推导过程仅适用于0x ≠的情形。0x =的情形需要另行推导,这种情况很简单,留给大家。
()
'sin cos x x =:利用导数定义()'0sin()sin sin lim x x x x x x ∆→+∆-=∆,由与差化积公式得002cos()sin sin()sin 22lim lim cos x x x x x x x x x x
x
∆→∆→∆∆++∆-==∆∆。()'cos sin x x =-的证明类似。
()'1ln x x =
:利用导数定义()'00ln(1)ln()ln 1ln lim lim x x x x x x x x x x x ∆→∆→∆++∆-===∆∆。()
'1log ln a x x a =的证明类似(利用换底公式ln log ln a x x a =)。
()'x x e e =:利用导数定义()()'001lim lim x x x x x x x x x e e e e e e x x
+∆∆∆→∆→--===∆∆。()'ln x x a e a =的