二次曲面标准方程小结
二次曲线的标准方程与性质
二次曲线的标准方程与性质二次曲线是代数曲线中的一类特殊曲线,它的标准方程可以通过数学推导得出,并且具有一些特殊的性质。
本文将探讨二次曲线的标准方程以及一些相关的性质。
1. 二次曲线的标准方程在笛卡尔坐标系中,二次曲线的标准方程可表示为:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0其中A、B、C、D、E、F为实数,并且满足条件:B^2 - 4AC < 0。
需要注意的是,当B^2 - 4AC = 0时,方程表示一个抛物线;当B^2 - 4AC > 0时,方程表示一个双曲线。
2. 抛物线的性质当B^2 - 4AC = 0时,二次曲线的标准方程表示一个抛物线。
抛物线具有以下性质:a. 对称轴:抛物线的对称轴是垂直于x轴的一条直线,方程为x = -D / (2A)。
b. 焦点和准线:抛物线有一个焦点和一条准线。
焦点的坐标为(-D / (2A), -E / (4A)),准线的方程为y = (-E - (B * (-D / (2A)))) / (2A)。
c. 形状:抛物线的开口方向由A的正负决定。
当A > 0时,抛物线开口向上;当A < 0时,抛物线开口向下。
d. 最值点:抛物线的最值点称为顶点,坐标为(-D / (2A), -E^2 / (4A) - F)。
当A > 0时,抛物线的顶点是最小值点;当A < 0时,抛物线的顶点是最大值点。
3. 双曲线的性质当B^2 - 4AC > 0时,二次曲线的标准方程表示一个双曲线。
双曲线具有以下性质:a. 中心和焦点:双曲线有一个中心点和两个焦点。
中心的坐标为(-D / (2A), -E / (2C)),焦点的坐标分别为(-D / (2A) ± √(B^2 - 4AC) / (2A), -E / (2C))。
b. 渐近线:双曲线有四条渐近线,方程分别为y = (-E ± √(B^2 -4AC) * x) / (2C)和x = (-D ± √(B^2 - 4AC) * y) / (2A)。
二次曲面的标准方程
二次曲面的标准方程
二次曲面的标准方程是:x²+y²+z²=R²。
其中,R是球的半径,(x,y,z)表示空间中任意一点的位置。
如果二次曲面在三个坐标面上的截距都是圆,并且圆心都在原点,则它的方程为:x²+y²+z²=R²。
其中,R是球的半径。
如果二次曲面在xoy平面上的截距是一个圆,并且圆心在原点,则它的方程为:(x²+y²)=R²。
如果二次曲面在xoz平面上的截距是一个圆,并且圆心在原点,则它的方程为:(x²+z²)=R²。
如果二次曲面在yoz平面上的截距是一个圆,并且圆心在原点,则它的方程为:(y²+z²)=R²。
总之,二次曲面的标准方程可以根据不同的条件选择不同的形式,但它们都涉及到三个坐标轴和球心在原点的球面。
圆锥曲线与二次曲线的方程与性质分析总结
离心率的计算公式:对于椭圆,离心率e的计算公式为e = c/a,其中c为焦点到椭圆中心的距离,a为长轴 半径;对于双曲线,离心率e的计算公式为e = c/a,其中c为焦点到双曲线中心的距离,a为实轴半径。
曲线的导数与切线斜率
圆锥曲线的导数表示切线的斜率 二次曲线的导数可以求出切线的斜率 导数的几何意义是曲线在某点的切线的斜率 导数在研究圆锥曲线和二次曲线的性质中具有重要作用
曲线的交点与公共点个数问题
公共点的个数也是解析性质 的一个重要方面
圆锥曲线与二次曲线的交点 个数取决于它们的方程和几 何性质
二次曲线在几何图形中的应用:二次曲线常用于描述平面几何中的一些形状和结构,例 如椭圆、抛物线、双曲线等。
圆锥曲线与二次曲线的组合应用:在一些复杂的几何图形中,可能需要同时利用圆锥曲 线和二次曲线的性质来解决相关问题。
实际应用中的注意事项:在利用圆锥曲线和二次曲线的性质解决实际问题时,需要注意 一些细节和限制条件,以确保结果的准确性和可靠性。
圆锥曲线与二次曲线的解析性 质
曲线的渐近线与水平截距
圆锥曲线的渐近线:根据圆锥曲线的标准方程,求出其渐近线的方程。 二次曲线的水平截距:根据二次曲的标准方程,求出其与x轴交点的横坐标。 曲线的渐近线与水平截距的关系:分析渐近线与水平截距在曲线性质中的作用和相互影响。 解析性质的应用:举例说明解析性质在解决实际问题中的应用。
解析性质决定了曲线在平面 上的位置关系和相互交点的
个数
解析性质对于研究圆锥曲线 与二次曲线的几何性质具有
重要意义
曲线的参数方程与极坐标方程
第五节常见的二次曲面及其方程
(2) y12 b2 , 实轴与 z 轴平行, 虚轴与 x 轴平行.
(3) y1 b, 截痕为一对相交于点 (0,b,0) 的直线.
x a
z c
0
,
y b
x a
z c
0
.
y b
(4) y1 b,
截痕为一对相交于点 (0,b,0) 的直线.
x a
z c
0
,
x a
z c
0
.
y b
y b
(3)用坐标面 yoz ( x 0), x x1与曲面相截
均可得双曲线.
平面 x a 的截痕是两对相交直线.
单叶双曲面图形 z
o
y
x
x2 a2
y2 b2
z2 c2
1
双叶双曲面
o
y
x
二、小结
c
2
x2 (c2
z12
)
b2 c2
y2 (c2
z12
)
1
z z1
| z1 | c
同理与平面 x x1 和 y y1 的交线也是椭圆.
椭圆截面的大小随平面位置的变化而变化.
椭球面的几种特殊情况:
(1) a b,
x2 a2
y2 a2
z2 c2
1
旋转椭球面
由椭圆
x2 a2
z2 c2
1绕
z 轴旋转而成.
方程可写为
x2 y2 a2
高数-附-2 二次曲面
1
与xoy平面平行的平面 z=z1 的交线为
x2 a2
y2 b2
1
z12 c2
z z1 为椭圆.
与yoz平面的交线
y2 b2
z2 c2
1
双曲线.
x 0
x0
x2 a2
y2 b2
z2 c2
1
与yoz平面平行平面的交线
y2 b2
z2 c2
(二)抛物面
(1) x2 y2 z( p 与 q 同号)
2 p 2q
椭圆抛物面
椭圆抛物面的图形如下:
z z
o x
y
p 0, q 0
xo y
p 0, q 0
用截痕法讨论:设 p 0, q 0
z
(1)用坐标面 xoy(z=0) 与曲面
相截, 截得一点,即坐标原点O.
原点也叫椭圆抛物面的顶点.
与平面 z=z1 ( z1>0 ) 的交线为:
xo y
x2
2
pz1
y2 2qz1
1
当 z1变动时,这种椭 圆的中心都在 z 轴上.
z z1 为椭圆.
与平面 z z1 (z1 0)不相交.
(2)用坐标面 xoz ( y 0)与曲面相截
截得
x2
2
pz
为抛物线
z
z12
)
b2 c2
y2 (c2
z12 )
为椭
1
z z1 | z1 | c
圆
同理与平面 x x1 和 y y1 的交线也是椭圆.
二次曲面的方程与图形
1. 椭球面
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
(1)范围:
x a, y b, z c
(2)与坐标面的交线:椭圆
x2 a2
y2 b2
ቤተ መጻሕፍቲ ባይዱ
1,
z 0
y2 b2
z2 c2
1,
x 0
x2 a2
z2 c2
1
y 0
x2 a2
y2 b2
z2 c2
1
( a,b,c为正数)
(3) 截痕: 与 z z1 ( z1 c)的交线为椭圆:
a2 c2
x2 (c2
z12
)
b2 c2
y2 (c2
z12
)
1
z
z z1
同样 y y1 ( y1 b ) 及
的截痕
也为椭圆.
(4) 当 a=b 时为旋转椭球面; 当a=b=c 时为球面.
2. 抛物面
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt)2
1,
zt
①
z
z
O yy xx
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换
得到)
内容小结 二次曲面
3. 双曲面
z
(1)单叶双曲面
x2 a2
y2 b2
z c
2 2
1
( a,b,c 为正数)
x
O
y
平面 z z1 上的截痕为椭圆.
二次曲面的形状
二次曲面的形状二次曲面是一个重要的数学概念,在几何学以及数学分析中都有广泛的应用。
本文将介绍二次曲面的形状,并探讨其一些重要特性。
二次曲面是由二次方程定义的曲面,其一般方程可以表示为:Ax^2 + By^2 + Cz^2 + Dxy + Exz + Fyz + Gx + Hy + Iz + J = 0其中,A、B、C、D、E、F、G、H、I和J是常数,且不全为零。
通过这个方程,我们可以推断二次曲面的形状种类。
根据方程的系数,我们可以将二次曲面分为多种情况:1. 椭圆面:当A、B和C的符号都相同时,且AB和AC的比值小于1时,二次曲面呈现为一个椭圆形状。
2. 双曲面:当A、B和C的符号都相同时,且AB和AC的比值大于1时,二次曲面呈现为一个双曲线形状。
3. 抛物面:当A、B和C的符号有一个不同,且D、E和F等于零时,二次曲面呈现为一个抛物线形状。
4. 锥面:当A、B和C有一个为零时,且D、E和F等于零时,二次曲面呈现为一个尖锥形状。
除了以上情况,二次曲面还可能呈现其他特殊形态,如点、线和平面。
除了形状种类外,二次曲面还有一些重要的特性需要了解:1. 对称性:二次曲面通常具有一些特殊的对称性,如旋转对称性、对称轴等。
2. 曲率:二次曲面在不同点上具有不同的曲率,对于椭圆面和双曲面来说,曲率可以有正和负两种情况。
3. 焦点和直纹:对于椭圆面和双曲面来说,焦点和直纹是其重要特性,可以通过二次曲面的方程来确定。
了解二次曲面的形状和特性,对于解决几何问题、优化问题以及建模等领域都非常重要。
掌握了这些基础知识,我们可以更好地理解和运用二次曲面的相关概念。
总结起来,二次曲面的形状多种多样,可以根据方程的系数判断具体形态。
在研究二次曲面时,我们还需了解其特性,如对称性、曲率、焦点和直纹等。
掌握这些知识,对于深入理解数学和几何学都具有重要意义。
几种常见的二次曲面 曲面方程的概念
柱面举例
z
z
y2 2x
o
y
o
x
x
抛物柱面
(2)椭圆
a
2
z2 c2
1绕
y 轴和
z 轴;
x 0
绕 y 轴旋转
y2 a2
x2 c2
z2
1
旋 转
椭
绕z 轴旋转
x2 a2
y2
z2 c2
1
球 面
(3)抛物线
y
2
2 pz绕
z 轴;
x 0
x2 y2 2 pz 旋转抛物面
15
三、柱面
在平面坐标系 x2 y2 1表示中心在原点的单位圆
如图 设 M( x, y, z),
z
d M1(0, y1, z1)
M F( y, z) 0
(1) z z1
(2)点 M 到 z 轴的距离
o
y
x
d x2 y2 | y1 |
将 z z1, y1 x2 y2 代入
F( y1, z1) 0
10
将 z z1, y1 x2 y2 代入 F( y1, z1) 0
F x, y2 z2 0.
12
例5.试建立顶点在原点,旋转轴为z轴,半顶角为
的圆锥面方程.
解:在yoz面上,直线 L的方程为
z y cot
z
L
M (0, y, z)
绕 z 轴旋转时, 圆锥面的方程为
z x2 y 2 cot
y
令a cot ,两边平方 x
得方程 F x2 y2 , z 0,
二次曲面的方程和图形
( a, b 为正数)
在平面 z t 上的截痕为椭圆
x2 (at)2
y2 (bt)2
1,
zt
①
z
z
O yy xx
在平面 x=0 或 y=0 上的截痕为过原点的两直线 .
可以证明, 椭圆①上任一点与原点的连线均在曲面上. (椭圆锥面也可由圆锥面经 x 或 y 方向的伸缩变换
得到)
内容小结 二次曲面
z
(1) 椭圆抛物面
x2 y2 z ( p , q 同号)
2p 2q
Oy
特别,当 p = q 时为绕 z 轴的旋转抛物面. x
(2) 双曲抛物面(鞍形曲面)
z
x2 y2 z ( p , q 同号) 2p 2q
O
x
y
椭圆抛物面
x2 a2
y2 b2
z
双曲抛物面
y2 b2
x2 a2
z
所表示的曲面称为双曲抛物面或马鞍面.
研究二次曲面特性的基本方法: 截痕法
1. 椭球面
x2 a2
y2 b2
z2 c2
1
( a,b, c为正数)
(1)范围:
x a, y b, z c
(2)与坐标面的交线:椭圆
x2 a2
y2 b2
1,
z 0
y2 b2
z2 c2
1,
x 0
x2 a2
z2 c2
1
y 0
x2 a2
y2 b2
3. 双曲面
z
(1)单叶双曲面
x2 a2
y2 b2
z c
2 2
1
( a,b,c 为正数)
x
O
y
平面 z z1 上的截痕为椭圆.
常见的九种二次曲面方程
常见的九种二次曲面方程二次曲面方程是解析几何的重点内容,它被广泛涉及于数学、物理、工程、计算机等多个学科中。
本文将介绍九种常见的二次曲面方程,以帮助读者更好的理解和应用。
一、圆锥面方程圆锥面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为锥面三个坐标轴上椭圆截面的半轴长度,这种圆锥面称为椭圆锥面。
当a=b时,圆锥面变成圆锥面;当a=b=c时,称为圆锥体。
二、双曲面方程双曲面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度,这种双曲面称为双曲抛物面或椭圆双曲面。
当a=b时,双曲面变成双曲抛物面;当a=b=c时,称为双曲球面。
三、抛物面方程抛物面方程可以表示为 F(x,y,z)=0,其中 F(x,y,z)是二次型方程,或表示为 z=ax^2+by^2+c,这种抛物面被称为旋转抛物面。
四、球面方程球面方程可以表示为 (x-a)^2+(y-b)^2+(z-c)^2=r^2,其中(a,b,c)是球中心坐标,r是球半径。
球面是最常见的几何形体,可以在多个方面得到应用。
五、椭球面方程椭球面方程可以表示为 (x/a)^2+(y/b)^2+(z/c)^2=1,其中a、b、c分别为椭圆三个坐标轴上椭圆截面的半轴长度。
与圆锥体类似,当a=b=c时,椭球面变成球面。
六、单叶双曲面方程单叶双曲面方程可以表示为 (x/a)^2+(y/b)^2-(z/c)^2=1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度。
单叶双曲面只有一个部分,并非所有双曲面都是单叶的。
七、双叶双曲面方程双叶双曲面方程可以表示为 (x/a)^2+(y/b)^2-(z/c)^2=-1,其中a、b、c分别为双曲面三个坐标轴上双曲截面的半轴长度。
二次曲面
2. 几种常见二次曲面.
x z2 (1) 椭球面 2 + 2 + 2 = 1 a b C
y
3° 类似地, 依次用平面x = 0,平面y = 0截割, 得椭圆:
y2 z2 2 + 2 =1 , b c x =0
x 2 z 2 + a c y = 0
2 2
=1
.
特别: 当a=b=c时, 方程x2 + y2 + z2 = a2 , 表示 球心在原点o, 半径为a的球面.
2
z
y2
O 1° 用平面z = 0去截割, 得椭圆 o 2 x2 y 2 + 2 =1 x a b z =0 2° 用平面z = k去截割(要求 |k | ≤ c), 得椭圆 x2 y2 k2 2 + 2 = 1− 2 a b c z = k 当 |k | ≤ c 时, |k |越大, 椭圆越小; 当 |k | = c 时, 椭圆退缩成点.
3° 类似地,用平面 x = k 去截割, 截线是抛物线.
k 2 y2 2 + 2 =z a b x = k
当k = 0 时 , 为 z =
y b
2 2
.
x (2) 椭圆抛物面: 2 + 2 = z a b
2
y2
z
6二次曲面的标准方程
研究方法是采用平面截痕法.
2. 几种常见二次曲面. (1) 椭球面
x a
2 2
z
2 2
y b
z C
2 2
1
1 用平面z = 0去截割, 得椭圆
x2 y 1 2 2 a b z 0
2
O
x
o
y
2 用平面z = k去截割(要求 |k | c), 得椭圆
2 x2 y k 2 2 1 a b c z k 2 2
k | = c 时, 椭圆退缩成点.
3 类似地, 依次用平面x = 0,平面 y = 0截割, 得椭圆:
y2 z 2 b c x 0
2 2
1
,
x 2 z 2 c a y 0
2 2
1 .
c
b
双曲线 x
y y0 .
以平行于 yz 面的平面 x=x0 截曲面,所得截线 方程为:
y b
2 2
z c
2 2
x0 a
2 2
z y
0
1,
x x0 .
椭圆
作业
P47.1. 2. 3.画出 z=xy 的图象. 4.研究z=2x2+3y2与5-z=3x2+2y2的交线在xy平面上 的投影
x a
2 2
y b
2 2
z c
2 2
1
(a, b, c均大于0)
以平行于 xy 面的平面 z=z0 截曲面,所得截线方程为
2 z0 x y 1 , 2 2 2 2 2
a
b
c
双曲线
z z0 .
二次曲面
z
与平面 y = y1 的交线为 (2’) )
2 y 其轴 轴 x = 2 p z − 其轴//z 抛物线 2q y12 顶点 0, y1 , y = y 1 2q
2 1
x
y
与曲面相截, (3)用坐标面 yoz ( x = 0),x = x1 与曲面相截,均得抛物线 )
z
L
α
M(0, y, z)
y
两边平方
x
2
z =a (x + y )
2 2 2
11
x2 z2 eg2:求坐标面 xoz 上的双曲线 2 − 2 = 1 分别绕 x a c
轴和 z 轴旋转一周所生成的旋转曲面方程. 解:绕 x 轴旋转所成曲面方程为
x2 y2 + z2 − =1 2 2 a c
绕 z 轴旋转所成曲面方程为
x2 + y2 z2 − 2 =1 2 a c
x
y
z
这两种曲面都叫做旋转双曲面 旋转双曲面. 旋转双曲面
12
三、椭球面
x y z + 2 + 2 = 1 (1)范围: x ≤ a, a2 b c
(2)与坐标面的交线:椭圆
x2 y2 2 + 2 =1 , b a z = 0
2
2
2
y ≤ b,
16
四、抛物面 1. 椭圆抛物面
x y + = z ( p 与 q 同号) 同号) 2 p 2q
a ) p > 0, q > 0 z
b) p < 0, q < 0
2
2
z o x y
x
o
y
17
几种二次曲面及其标准方程
第九节几种二次曲面及其标准方程
我们把三元二次方程所表示的曲面称为二次曲面,平面叫一次曲面。
怎样了解三元二次方程所表示的曲面的形状呢?方法之一是用坐标面和平行
于坐标面的平面与曲面相截,考察其交线(即截痕)的形状,然后加以综合,从而了解曲面的全貌,这种方法叫做截痕法。
利用截痕法我们讨论了几种特殊的二次曲面。
一、椭球面
当时,表示球心在原点的球面。
二、抛物面
,(椭圆抛物面)
当时,开口朝上;时,开口朝下。
当时,方程表示面上的抛物线绕轴旋转而成的旋转抛物面。
,(双曲抛物面,又称马鞍面)
三、双曲面
单叶双曲面
双叶双曲面
四、锥面
椭圆锥面
当时,方程表示圆锥面. 例1 指出下列方程在空间表示什么曲面?
(1)
(2)
(3)
(4)
解(1)椭球面,半轴分别为。
(2)顶点在,开口朝下的抛物面。
(3)顶点在原点,开口朝上的上半个圆锥。
(4)顶点在,开口朝下的下半个圆锥。
7.4曲面及其方程与二次曲面
四、试用截痕法讨论双曲抛物面 x2 y2 z ( p与q同号 ). 2 p 2q
练习题答案
y2 2x 9 一、 ,位于平面z 3 上的抛物线. z 0
二、1.
z
2.
z
o o
x
y
y
x
z
三、
1.
o
x
1
2
y
z
R
2.
o
x
R
R
y
常见的几种曲面 分类 椭 球 面 球 面 圆 柱 面 椭 圆 柱 面 抛 物 柱 面 双 曲 柱 面 一 般 柱 面 单叶双曲面 双叶双曲面 椭圆抛物面 双曲抛物面 圆 锥 面 椭 圆 锥 面
小结
椭球面、抛物面、双曲面、截痕法.
(熟知这几个常见曲面的特性)
2 2 z ( x 1 ) ( y 2 ) 1的图形是怎样的? 1、 方程
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
二、旋转曲面
旋转面方程
设 M ( x, y, z )
(1) z z1
(2) 点M 到 z 轴的距离
z
M (0, y , z ) M
根据题意有 | MA || MB |
x 1 y 2 z 3
2 2
2
x 22 y 12 z 42 ,
2 x 6 y 2 z 7 0.
所求方程
二、旋转曲面
定义 一条平面曲线绕其平面上的一条定直线
二次曲面的标准型
三、1 0, 2 , 3 0
x2 9、1 0,2 , 3 =0 抛物柱面 y. 2p
二、1 , 2 0, 3 0
x2 y2 5、1 2 0, z 的系数 0 椭圆抛物面 z ( p, q同号). 2p 2q
x2 y2 6、1 2 0, z 的系数 0 双曲抛物面 z ( p, q同号). 2 p 2q
x2 y2 7、1 2 0, z 的系数=0 椭圆柱面 2 2 1. a b
1
z z1
同样
y y1 ( y1 b ) 及
的截痕
也为椭圆. (4) 当 a=b 时为旋转椭球面; 当a=b=c 时为球面.
2. 抛物面
(1) 椭圆抛物面
z
x2 y2 z ( p , q 同号) 2 p 2q
特别,当 p = q 时为绕 z 轴的旋转抛物面. (2) 双曲抛物面(鞍形曲面)
x2 y2 z2 1、i同号(i 1, 2, 3) 椭球面 2 2 2 1 a b c
x2 y2 z2 2、i 异号(1 , 2 0, 3 0, 常数项=0) 椭圆锥面 2 2 - 2 0 a b c x2 y2 z2 3、i 异号(1 , 2 0, 3 0, 常数项>0) 单叶双曲面 2 2 - 2 1 a b c x2 y2 z2 4、i 异号(1 , 2 0, 3 0, 常数项<0) 双叶双曲面 2 2 - 2 1 a b c
第8章
§ 8.5 二次曲面的标准型
§ 8.5.1 坐标平移
§ 8.5.2 坐标旋转 §8.5.3 二次曲面的标准型
常用的二次曲面方程及其图形
2
3)
z1 =z 时,得到:
x2 y2 z 2 p 2 p
3、 双曲抛物面(鞍型曲面)
方程为:
x2 y2 z (p 与 q 同号) 2 p 2q
4、 双曲面
方程为: 单叶双曲面
x2 y2 z2 2 2 1 a2 b c
具体步骤:
1) 列出平面曲线(母线)方程,比如
f (x0 , y0 ) 0
2) 旋转,根据旋转曲面与平面方程(母线)的关系,列 出空间旋转曲面等式 3) 当 z 0 =z,带入平面曲线方程。
M0 (x0 ,0, z0 )
M (x, y,z)
x0 z0 1 a2 c2
2 2
x 2 y 2 x0
f (x
x f (t ) 若准线的方程是: : y h ( t ) ,母线的方向向量为 z g (t ) x f (t ) lu {l , m, n}时,柱面方程是: : y h ( t ) m u z g (t ) n u
1、 椭圆球
x 方程为: a
1) 当 z=0 时,为过原点的圆,圆点在原点上。
x2 y2 2 1 a2 b
2)
当用平行与 z=0 的平面 z= z1 截双曲面时,
x2 y2 z2 2 2 1 a2 b c
Z= z1
z1 2 x2 y2 1 a2 b2 c2
-------------椭圆
3)
当 y=0 时,在 xoz 平面上为一双曲线
得到旋转面的方程为:
柱面: 是空间的一个曲线,直线 L 沿着 平行移动 所形成的曲面,叫做柱面, 称作柱面的准线,L 称作柱面的母线。