管理运筹学 第16章 决策分析
运筹学决策论
开始结点:应是决策结点 终止:后果 一个简单的决策树
概率枝 状态点
带雨伞 =0.62 不下雨 0.6 下雨 0.4 0.5 下雨 0.4 0.8
后果
0.6
决策点
不带雨伞 0.42 不下雨 0.6 0.3
方案枝
状态点后可 以接方案点
试验
出油 0.85 好 0.6 钻井 不出油 0.15 不钻 井 出油 0.6 不好 0.4 钻井 不出油 0.4 不钻 井
θ1 U11 U21 U31 ┆
θ2 U12 U22 U32 ┆
θ3 U13 U23 U33 ┆
θ4 U14 U24 U34 ┆
┈ ┈ ┈ ┈
该后果相对于决策者的效用,无 量钢,0~1之间的数,U=U (X)——称为效用函数,具体 如何获得决策者的效用函数,后 面章节将具体介绍
状态
行动
A1 A2 A3 ┆
决策是社会科学中用来描述人类进行选择的过程的 术语; 决策是指考虑策略(或方法)来解决目前或未来问 题的智力活动
通过以上定义可以看出:决策是一种有目的的选择行 动,它以人的主观价值判断为依据
决策理论最早与对策一同发展,当前区分依赖于: 对策-多个人之间或人和人之间的决策 决策-人与环境之间对策
不试验 钻井
出油 0.4
不出油 0.6
方案点后可 以接方案点
不钻 井
悲观主义决策准则 乐观主义决策准则 等可能性(Laplace)准则 最小机会损失(最小后悔值、Savage)准则 折中主义准则
§ 6 随机型(风险型)决策准则
6.1随机型决策问题的基本条件和准则
随机性决策问题的基本条件
策 略
决策分析(含答案)
决策分析复习题(请和本学期的大纲对照,答案供参考)第一章一、选择题(单项选)1.1966年,R. A. Howard在第四届国际运筹学会议上发表( C )一文,首次提出“决策分析”这一名词,用它来反映决策理论的应用。
A.《对策理论与经济行为》B.《管理决策新科学》C.《决策分析:应用决策理论》D.《贝叶斯决策理论》2.决策分析的阶段包含两种基本方式:( A )A. 定性分析和定量分析B. 常规分析和非常规分析C. 单级决策和多级决策D. 静态分析和动态分析3.在管理决策中,许多管理人员认为只要选取满意的方案即可,而无须刻意追求最优的方案。
对于这种观点,你认为以下哪种解释最有说服力?( D )A.现实中不存在所谓的最优方案,所以选中的都只是满意方案B.现实管理决策中常常由于时间太紧而来不及寻找最优方案C.由于管理者对什么是最优决策无法达成共识,只有退而求其次D.刻意追求最优方案,常常会由于代价太高而最终得不偿失4.关于决策,正确的说法是(A )A.决策是管理的基础B.管理是决策的基础C.决策是调查的基础D.计划是决策的基础5.根据决策时期,可以将决策分为:(D )A.战略决策与战术决策 B. 定性决策与定量决策C. 常规决策与非常规决策D. 静态决策与动态决策6.我国五年发展计划属于(B)。
A.非程序性决策 B.战略决策 C.战术决策 D.确定型决策7.管理者的基本行为是(A)A.决策 B.计划 C.组织 D.控制8.管理的首要职能是(D)。
A.组织 B. 控制 C.监督 D. 决策9. 管理者工作的实质是(C)。
A.计划 B. 组织 C. 决策D.控制10. 决策分析的基本特点是(C )。
A.系统性 B. 优选性 C. 未来性 D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者”。
(√)2.1944年,Von Neumann和Morgenstern从决策角度来研究统计分析方法,建立了贝叶斯(统计)决策理论。
运筹学第16章 决策分析
S2
25
10
5
S3
50
0
-40补11充源自§1 不确定情况下的决策 • 解:(1)最大最小准则
投资方案
S1 S2 S3
不同经济形势
好 一般 差
10
0
-1
25
10
5
50
0
-40
• 因此,最优方案为:S2。
min aij
-1 5(max)
-40
补12充
§1 不确定情况下的决策
• (2)后悔值准则:
– 由已知可求后悔值矩阵为:
用 E(Si )表示第I方案的收益期望值
自然状态
行动方案
S1(大批量生产) S2(中批量生产) S3(小批量生产)
N1
(需求量大)
p = 1/2
30
20
10
N2
(需求量小)
p = 1/2
-6
-2
5
收益期望值 E (Si)
12(max) 9 7.5
8
§1 不确定情况下的决策
四、乐观系数(折衷)准则
• 决策者取乐观准则和悲观准则的折衷:
第十六章 决策分析
第一节 不确定情况下的决策 第二节 风险型情况下的决策 第三节 效用理论在决策中的应用 第四节 层次分析法
1
第十六章 决策分析
“决策” 一词来源于英语 Decision making,直译为“做出决定”。所谓 决策,就是为了实现预定的目标在若 干可供选择的方案中,选出一个最佳 行动方案的过程,它是一门帮助人们 科学地决策的理论。
➢风 险 型 决 策 问 题
• 在决策环境不确定的条件下进行,决策者对各自然状态发生的概率可 以预先估计或计算出来。
运筹学中的决策分析与风险管理
运筹学中的决策分析与风险管理运筹学是一门综合应用数学的学科,通过运用数学模型和方法来解决实际问题。
在这个领域中,决策分析和风险管理是非常重要的内容。
本文将介绍运筹学中的决策分析和风险管理,并探讨它们在实际中的应用和重要性。
一、决策分析决策分析是一种科学的方法,旨在帮助决策者在面对复杂问题时做出最佳决策。
在决策分析中,决策者需要收集和分析相关数据,应用数学模型和技术来评估各种不同决策方案的风险和回报。
通过这种方法,决策者可以更好地理解决策问题的各种潜在结果,并选择最优的决策方案。
决策分析通常包括以下几个步骤:1. 问题定义:明确问题的目标和约束条件,并确定决策的范围。
2. 数据收集与分析:收集相关数据,并利用数学模型和统计方法对数据进行分析。
3. 模型建立:根据问题的特点和决策者的需求,选择合适的数学模型,并将问题转化为数学模型。
4. 解决方案评估:评估各种决策方案的风险和回报,并对它们进行比较和优化。
5. 决策实施:根据评估结果选择最佳决策方案,并付诸实施。
在实际应用中,决策分析可以帮助企业管理者制定营销策略、生产计划和供应链管理方案等,从而提高业绩和效益。
二、风险管理风险管理是指通过识别、分析和评估风险,并采取相应的措施来降低和控制风险,并在必要时应对可能出现的风险事件。
在运筹学中,风险管理可以帮助决策者更好地处理不确定性,并最大程度地保护企业的利益。
风险管理通常包括以下几个方面:1. 风险识别:根据问题的特点和环境的变化,识别可能出现的各种风险。
2. 风险分析和评估:对已识别的风险进行定量或定性的分析和评估,确定其发生的概率和影响程度。
3. 风险应对:根据分析和评估的结果,制定相应的风险应对策略,并制定相应的预案和措施。
4. 风险监控与控制:建立有效的监控和控制体系,及时发现和处理风险,并防止风险事件的扩散和蔓延。
通过风险管理,企业可以更好地预测和应对不确定性,减少潜在的损失,并提高业务的可持续发展能力。
管理运筹学解决实际问题的步骤及内容
第三章 线性规划问题的计算机求解
教学要求
本章学习如何使用计算机软件包求解线性规划问题,并通过上机操作训练掌握较简单的线性规划问题使用计算机软件包求解的方法。
课时分配
6学时(含计算机上机操作训练)
教学内容
一、管理运筹学计算机软件包的使用说明和结构内容。
二、线性规划问题的菜单界面和输入要点。
简要介绍管理运筹学所涉及的应用领域,如生产计划、库存管理、运输问题、人事管理、市场营销、财务会计、项目评价等;介绍管理运筹学在国内外的应用和发展状况。
四、管理运筹学使用计算机软件的原则
思考题
1、简述运筹学的发展历史和发展前景。
2、管理运筹学的主要分支和应用领域有哪些?
3、使用管理运筹学计算机软件有哪些基本原则?
第十二章 排队论
教学要求
本章学习研究排队现象,主要了解和掌握在不增加固定资产投资前提下,如何把排队时间控制到一定限度内,在服务质量的提高和成本降低之间取得平衡,寻找最恰当的解。
课时分配
3学时
教学内容
一、排队过程的组成部分
二、单服务台泊松到达、负指数服务时间的排队模型
通过图解法作图过程,直观地讲解目标函数中系数的灵敏度分析、约束条件右边常数的灵敏度分析的基本原理。
思考题
1、试述可行域、目标函数等值线、松驰变量和剩余变量的含义。
2、试述线性规划图解法的基本特点、适用范围、图解法求解的基本程序,步骤和方法
3、线性规划问题是如何化为标准形式的?
三、多服务台泊松到达、负指数服务时间的排队模型
四、单服务台泊松到达、任意服务时间的排队模型
五、多服务台泊松到达、任意服务时间、损失制排队模型
运筹学2013年复习
0.1
0.14
0.12
0.26
0.14
0.4
0.16
0.56
0.2
0.76
0.14
0.9
0.1
1
0.04
运筹学:库存决策
E ( y ) (60 * 0.15 110 * 0.25) * 0.04 + (100 * 0.15 70 * 0.25) * 0.1 + (140 * 0.15 30 * 0.25) * 0.12 + 170 * 0.15 * 0.74 19.5 售报员每天的收益期望 为19.5元,一个月的收益期望 为585 元
可以开发
0.9 0.5 0.1
不可开发
0.1 0.5 0.9
运筹学:决策分析
解:
(1)先验分析,由设,利润与概率表为
P( )
i
d
i
j
d1d
1
d2
2
0.2 0.6 0.2
1
80
30 -20
20
20 20
2
3
E (d1 )=80×0.2+30×0.6+(-20) ×0.2=30万元;
E (d2 )=20万元。
运筹学:库存决策
Q
*
2C 3 R P ( ) C1 P R
2 * 1350* 260000* 600000 33868 45 * 0.24 * 340000
运筹学:库存决策
<习题4>
某报社为了扩大销售量,招聘了一大批固定零售售报员,为 了鼓励他们多卖报纸,报社采取的销售策略是:售报员每天 早上从报社设置的售报点以现金买进,每份0.35元,零售价 每份0.5元,利润归售报人所有,如果当天没有售完第二天早 上退还报社,报社按每份报纸0.1元退款,如果某人一个月 (按30天计算)累计订购了7000份,将获得150元的奖金。 某人应聘为售报员,开始他不知道每天应买进多少份报纸, 更不知道能否拿到奖金,报社发行部告诉他一个售报员以前 500天的售报统计数据如表: 问:(1)售报员每天应准备多少份报纸最佳,一个月的收益 的期望值多少? (2)他能否得到奖金,如果一定要得到奖金,一个月的收益 期望值是多少?
运筹学优化问题和决策分析的方法
运筹学优化问题和决策分析的方法运筹学是一门应用数学学科,旨在通过建立数学模型来解决决策问题,并运用优化算法寻找最优解。
在现代社会中,运筹学的应用已经渗透到各个领域,包括供应链管理、物流规划、生产调度等。
本文将介绍运筹学中的优化问题和决策分析的方法。
一、优化问题的基本概念在运筹学中,优化问题是指在一定的约束条件下,寻找某个指标的最优解。
优化问题可以分为线性优化问题和非线性优化问题。
线性优化问题的目标函数和约束条件都是线性的,而非线性优化问题的目标函数和约束条件涉及非线性关系。
在解决优化问题时,通常会使用数学建模的方法。
首先,将实际问题抽象为数学模型,然后建立数学模型的目标函数和约束条件。
接下来,运用优化算法求解模型,得到最优解。
二、常用的优化算法1. 线性规划线性规划是指优化问题的目标函数和约束条件都是线性的情况。
线性规划常常可以用单纯形法来求解,该方法通过迭代计算,逐步逼近最优解。
2. 非线性规划非线性规划是指优化问题的目标函数和约束条件涉及非线性关系的情况。
在求解非线性规划问题时,可以使用梯度下降法、牛顿法等方法。
3. 整数规划整数规划是指优化问题的变量需要取整数值的情况。
整数规划问题通常更加复杂,可以使用分支定界法、割平面法等算法求解。
三、决策分析的方法决策分析是指运用数学建模和分析方法来帮助决策者做出最佳决策。
决策分析的方法包括多属性决策分析、决策树分析、动态规划等。
1. 多属性决策分析多属性决策分析是指在考虑多个决策指标的情况下,综合分析各个指标的权重和价值,从而做出最佳决策。
常用的多属性决策分析方法包括层次分析法、模糊综合评判法等。
2. 决策树分析决策树分析是一种通过构建决策树来辅助决策的方法。
决策树是一种具有树状结构的决策模型,通过分析各个决策路径上的概率和收益来进行决策。
3. 动态规划动态规划是一种递推和状态转移的方法,常用于求解多阶段决策问题。
动态规划将决策问题分解为一系列子问题,并通过逐步求解子问题来求解原问题的最优解。
运筹学决策分析
运筹学决策分析
决策分析的过程有以下3个阶段。 1. 画决策树 2. 网络计算 3. 检查最优路径与风险特征
PPT文档演模板
运筹学决策分析
1. 画决策树
E1
推出
D1
有利
推出
A 试验 C 0.5
放弃
20
0.5 D2
放弃
不利
推出
E2
PPT文档演模板
0.4 需求大 200 B 0.4 需求小 50
0.2 无需求 -150 0.72 需求大 200 0.24 需求小 50 0.04 无需求 -150
PPT文档演模板
运筹学决策分析
(决策) (事件) 需求数量
订购量
6 7 8 9 10 max
6 * 300 350 3100 1305 2300 20 7 * 2100 305 355 1350 1355 20
8
-4100 2150 400 450 1400 40
9
-6300 4-05 2200 405 455 60
PPT文档演模板
运筹学决策分析
与该产品相关的财务和概率数据显示在下表 中:
需求
损益
概率
(数量) 需求大 需求小 无市场
(万元) 200 50
-150
不试验 有利 不利 0.40 0.72 0.08 0.40 0.24 0.56 0.20 0.04 0.36
市场试验成本 = 20万元
PPT文档演模板
放弃 推出
E2
0
0 0.08 需求大 200 0.56 需求小 50 0.36 无需求
-150
0
运筹学决策分析
3. 检查最优路径与风险特征
风险特征可以汇总为表, 列出可能发生的全 部结果, 指出盈利与亏损的各种可能性, 检 查在EMV值后面是否隐藏着较大的亏损值:
运筹学课件决策分析
决策者从最不利的角度考虑问题,再从中选择其中最好的。
先选出每个方案在不同自然状态的最小收益值; 从最小收益值中选取一个最大值,对应方案为最优方案。
例1:P371 例2:某决策相关的决策收益表如下,用最大最小准则进行决策。
例1:某公司现需对某新产品生产批量作出决策,现有三种备选方案。S1:大批量生产;S2:中批量生产;S3:小批量生产。未来市场对这种产品的需求情况有两种可能发生的自然状态:N1:需求量大;N2:需求量小。经估计,采用某一行动方案而实际发生某一自然状态时,公司的收益如下表所示,请用最大最小准则作出决策。
S1
4 5 6 7
S2
2 4 6 9
S3
5 7 3 5
S4
3 5 6 8
S5
3 5 5 5
举例:
01
例1:P373 例2:某决策相关的决策收益表如下,用乐观系数准则进行决策。
01
Nj SijSi
自然状态
max
N1 N2 N3 N4
S1
4 5 6 7
6.4
S2
2 4 6 9
Nj SijSi
自然状态
期望值
N1 N2 N3 N4
S1
4 5 6 7
5.50
S2
2 4 6 9
5.25
S3
5 7 3 5
S5
3 5 5 5
Nj SijSi
自然状态
min
N1 N2 N3 N4
S1
4 5 6 7
S2
2 4 6 9
S3
OK
7
9
7
8
5
3.等可能性准则
决策者认为各自然状态发生的概率相等。
《管理运筹学——面向未来的决策应用》各章案例分析参考
案例2.1 -----产品定价决策案例背景介绍夏洛特·罗斯坦是克雷布罗索夫特公司的创建人,也是主要股东和CE0,近期她必须考虑对她公司的新产品Brainet软件的价格做出一个合适的战略定位,因为计算机软件市场形势变化多端无测,使得该决策变得非常困难。
根据对软件产品成本及市场的估计,她可以以50元/套的价格销售使收入最大化,或者以40元/套的价格销售,使市场份额最大化,当然还有第三个选择,那就是以45元/套销售,使二者兼得。
成本核算方面:新产品Brainet软件已投入了80万元的前期费用,估计每年还需要花费5万元用于支持和运送CD到需要软件硬拷贝的顾客那里。
市场需求方面:公司已得到了一些IT行业的的相关数据,并从基础数据中整理出三种价格策略在其他公司的竟争影响下(激烈、中等、温和)不同的销售量对应的概率。
表2.1.1 高价格下销售量的概率请在以下三种情况下做出能在一年内收回成本的最佳定价决策。
情况1. 市场竟争水平状况完全不能确定,公司如何做定价决策。
情况2. 公司从过去的经验来看,总结了一些简单的先验概率,即面对激烈竞争的可能性是20%,70%的可能性是中等水平的竞争,10%的可能是温和的竞争,公司又该如何决策。
情况3. 在情况2的基础上,好的助手杰妮和瑞杰又联系过她们的营销调查公司,营销调查公司说他们能够在一星期内提供关于推出Brainet面临的竞争状况和销售结果的研究报告。
而根据营销调查公司以往的预测:对于竟争激烈的情况,他们有80%的概率能够准确预测,有15%的概率预测为中等竞争水平。
对于中等竟争水平的情况,他们有80%的概率能够准确预测,有15%的概率预测为激烈竟争。
最后,对于温和竞争的情况,他们有90%的概率能够准确预测,有7%的概率预测为中等竟争水平,有3%的概率预测为激烈竞争。
”那么Cbrosoft是否应当花2000元进行营销调查?总的最优策略是什么?案例2.1 -----产品定价决策决策过程该决策问题的“自然状态”是市场的三种竟争状况:激烈、中等、温和;案例中需要作出的决策是在三种可选的软件产品市场销售价格方案:50元/套、45元/套、40元/套中确定一种最合适的方案。
管理运筹学
管理运筹学管理运筹学,又称管理科学或运筹学,是一门综合型的学科,结合了数学、统计、经济学、计算机科学等多个学科的理论和方法,旨在解决管理中的决策问题和提升决策效率。
本文将从管理运筹学的概念、发展和应用三个方面进行阐述。
一、管理运筹学的概念管理运筹学是一门关注管理决策中问题的数学方法和科学技术的学科。
它通过数学、统计和计算机科学等多个学科的理论,为经济、工业、商业、科学等不同领域的决策问题提供有效的解决方案。
它的主要研究内容包括决策分析、优化方法、生产运作管理、数据分析等。
管理运筹学的应用领域非常广泛,包括生产制造、物流供应链、金融投资、市场营销、医疗卫生等各个领域。
在现代管理中,管理运筹学已成为一种不可缺少的决策支持系统,有效地提高了管理决策的精度和效率。
二、管理运筹学的发展管理运筹学在20世纪初发展起来,主要围绕着飞机制造、物流和传送带生产等领域。
在当时的制造领域,大量的数据需要被处理,以便提高生产效率和降低成本。
由于数据的数量很大,人工处理变得非常耗时、耗力,所以需要一种可靠的、高效的计算方法,于是管理运筹学应运而生。
在20世纪30年代,管理运筹学逐渐成为一门独立的学科,经过了多年的研究和实践,其理论和方法得以不断完善,应用领域得以不断扩展。
随着计算机技术的不断发展,管理运筹学得到了进一步的发展和应用,成为了现代管理科学的重要分支学科。
三、管理运筹学的应用1.决策分析管理决策的关键在于对问题的分析与处理,管理运筹学提供了一种系统分析和解决问题的方法。
通过分析决策问题的结构、特征、影响因素等,为决策人提供有效的决策依据。
2. 优化方法优化方法是管理运筹学最核心的部分,通过建立数学模型,优化目标函数,得到最优解。
优化方法被广泛应用于供应链管理、生产调度、库存控制、交通运输等多个领域,提高了经济效益和人力资源利用率。
3. 生产运作管理生产运作管理是企业生产过程中最核心的环节,管理运策学的方法对其有着重要的指导意义。
决策分析与运筹学
决策分析与运筹学一、引言决策是人们在生活中经常面临的问题,无论是个人还是组织,都要进行决策。
然而,由于信息的不对称、不确定性和复杂性,决策往往会带来巨大的风险。
因此,需要一种科学的方法来辅助我们进行决策,决策分析和运筹学应运而生。
二、决策分析决策分析是以信息、模型和计算为基础的一种决策方法。
它采用定量方法对决策进行分析和评估,从而使决策者获得更清晰的认识和更准确的预测。
常用的决策分析方法包括多属性决策分析、层次分析法和决策树等。
多属性决策分析指的是当决策对象存在多个属性时,通过对多个属性的评估,进行权重的确定,从而综合比较各选项的利弊。
它可以用于复杂的决策问题,如选址、投资决策等。
层次分析法是一种基于分级权重的决策分析方法,它通过构建决策层次结构和定量化各因素之间的重要性关系,实现了对决策对象的逐层分析和权重确定。
层次分析法常用于复杂的决策问题,如市场调研、供应链优化等。
决策树是一种决策分析的可视化方法,它通过构建一棵树形结构,使决策问题变得直观而易于理解。
决策树可以应用于分类、预测和优化等问题,如客户流失预测、电商平台推荐算法等。
三、运筹学运筹学是应用数学、统计学和计算机科学等工具和技术解决实际问题的一门学科。
它以最大化或最小化目标函数为目标,通过构建数学模型和优化算法,寻求最优解。
常用的运筹学方法包括线性规划、整数规划和蒙特卡罗模拟等。
线性规划是一种通过线性模型来寻找最优解的方法,在经济、管理和运输等领域得到广泛应用。
例如,用线性规划模型可以实现最小成本配送、最佳产量分配等。
整数规划是线性规划的扩展,它在目标函数、决策变量或限制条件上增加了整数条件。
整数规划可以用于很多特殊问题,如最佳固定资产重复购置决策、生产调度等。
蒙特卡罗模拟是一种通过模拟随机事件来获得概率分布的方法。
它可以应用于很多领域,如金融风险评估、自然灾害预测等。
四、应用案例决策分析和运筹学在实践中得到广泛的应用。
例如,智能制造领域中的生产调度问题,通过运筹学的方法,可以实现对机器和物料的优化排产,从而提高生产效率和减少成本。
管理科学与工程专业优质课运筹学与决策分析
管理科学与工程专业优质课运筹学与决策分析运筹学与决策分析是管理科学与工程专业中的一门优质课,该课程的目标是通过系统地研究运筹学方法和决策分析技术,培养学生运用这些技能解决实际管理问题的能力。
本文将从课程概述、课程内容、学习方法和运用前景四个方面来介绍管理科学与工程专业优质课运筹学与决策分析。
一、课程概述运筹学与决策分析是管理科学与工程专业中的一门重要课程,旨在培养学生掌握运筹学的基本理论和方法,以及决策分析的常用工具和技术。
通过学习这门课程,学生可以了解到如何运用数学模型和优化方法解决实际问题,并学会对不确定性进行决策分析,从而提高管理决策的质量和效果。
二、课程内容运筹学与决策分析的内容包括线性规划、整数规划、动态规划、网络优化、多目标决策、风险决策等方面的理论和方法。
课程主要包括以下几个方面的内容:1.线性规划:介绍线性规划的基本概念、理论和模型,通过具体案例演示线性规划方法的应用。
2.整数规划:介绍整数规划的基本原理和求解方法,学习如何通过整数规划模型解决实际问题。
3.动态规划:介绍动态规划的基本思想和应用,培养学生动态规划建模和求解问题的能力。
4.网络优化:介绍网络优化的基本概念和方法,学习如何应用网络优化解决实际问题。
5.多目标决策:介绍多目标决策的基本原理和方法,培养学生在多目标环境下进行决策的能力。
6.风险决策:介绍风险决策的基本原理和技术,学习如何对不确定性进行分析和决策。
三、学习方法在学习运筹学与决策分析课程时,学生可以采用以下几种学习方法:1.理论学习:通过课堂教学、教材阅读等方式,理解运筹学与决策分析的基本理论和方法。
2.案例分析:通过分析实际案例,掌握如何应用运筹学与决策分析方法解决实际问题。
3.编程实践:通过编程实践,培养学生运用运筹学与决策分析方法解决实际问题的能力。
4.团队合作:通过小组合作,培养学生在团队中合理分工、协作解决问题的能力。
四、运用前景运筹学与决策分析作为一门优质课,其运用前景非常广泛。
管理科学与工程考研必备运筹学与决策分析题型解析
管理科学与工程考研必备运筹学与决策分析题型解析管理科学与工程考研必备:运筹学与决策分析题型解析运筹学与决策分析作为管理科学与工程领域中的重要学科,广泛应用于各种实际问题的分析与解决。
考研中,这一学科的题型也是必考内容之一。
在本文中,我们将对运筹学与决策分析的题型进行详细解析,帮助考生更好地应对考试。
一、线性规划题型线性规划是运筹学与决策分析中最基础的内容之一。
在考研中,常见的线性规划题型包括最大化问题、最小化问题和求解最优解等。
解决这类题目的关键在于建立数学模型和运用线性规划的相关理论与方法。
例如,某企业要决定生产两种产品A和B,其单价分别为10元/件和8元/件。
已知每天生产产品A需要人工2小时,材料1件,而生产产品B需要人工3小时,材料1件。
每日可用的人工总量为20小时,材料总量为15件。
企业的目标是最大化每日的总利润。
如何确定生产各种产品的数量以实现最大利润?请给出详细解答。
解析:首先,我们定义变量x和y分别表示产品A和产品B的数量。
目标函数可以表示为:最大化利润=10x + 8y。
约束条件为:2x + 3y ≤20和x + y ≤ 15。
在满足约束条件的前提下,求取目标函数的最大值。
二、整数规划题型整数规划是线性规划的一种扩展形式,要求变量的取值必须为整数。
在实际问题中,往往存在许多限制条件,这就需要考生在解题过程中综合运用线性规划和整数规划的方法。
例如,某工厂需要生产一种产品,并有3条生产线可供选择。
第一条生产线每天生产产品的数量不得多于100件;第二条生产线每天生产产品的数量不得多于200件;第三条生产线每天生产产品的数量不得多于150件。
工厂希望最大化每天的总产量。
请问该如何进行决策?解析:我们定义变量x1、x2和x3分别表示选择第一、二和三条生产线生产产品的数量。
目标函数可以表示为:最大化总产量=x1 + x2 +x3。
约束条件为:x1 ≤ 100、x2 ≤ 200和x3 ≤ 150。
决策分析(含答案)
精心整理决策分析复习题(请和本学期的大纲对照,答案供参考)第一章一、 选择题(单项选)1.1966年,R.A.Howard 在第四届国际运筹学会议上发表(C )一文,首次提出“决策分析”这一名词,用它来反映决策理论的应用。
A .C .2 A.C.3ABCD 4A.B.C.D.5A C.6A 7.A .决策8.管理的首要职能是(D )。
A .组织B.控制C.监督D.决策 9.管理者工作的实质是(C )。
A .计划B.组织C.决策D.控制 10.决策分析的基本特点是(C )。
A .系统性B.优选性C.未来性D.动态性二、判断题1.管理者工作的实质就是决策,管理者也常称为“决策者”。
(√)2.1944年,VonNeumann 和Morgenstern 从决策角度来研究统计分析方法,建立了贝叶斯(统计)决策理论。
(×) 3. 1960年美国着名管理学家西蒙(H.A.Simon )在他的着作《管理决策新科学》中,明确提出“管理就是决策”。
(√) 4. 决策的制定者就是决策的分析者。
(×)5.所谓定性分析是这样一种分析方式,它基于能刻画问题本质的数据和数量关系,建立能描述问题的目标、约束及其关系的数学模型,通过一种或多种数量方法,求出最好的解决方案。
(×)6.在随机型决策问题中,决策人无法控制的所有因素,即凡是能够引起决策问题的不确定性的因素,统称作自然状态。
(√)7.决策准则或选择标准,是决策者用来比较和选择方案衡量标准,是选择方案、作出最后决定、评价决策结果时的原则。
√8.1954年L.J.Savage出版了《对策理论与经济行为》一书,建立了现代效用理论。
现代效用理论已成为理性决策的基础理论。
(×)9.目前,世界上比较趋于一致的看法有两种,一种是由西蒙提出的“决策就是作决定”;另一种是由中国学者于光远提出的“管理就是决策”。
这两种截然不同的定义从不同角度深刻揭示了决策的基本内容。
《管理运筹学教案》课件
《管理运筹学教案》PPT课件第一章:管理运筹学概述1.1 管理运筹学的定义解释管理运筹学的概念和内涵强调管理运筹学在实际管理中的应用价值1.2 管理运筹学的发展历程介绍管理运筹学的起源和发展过程提及著名学者和管理运筹学的重要成果1.3 管理运筹学的方法和工具概述管理运筹学常用的方法和工具简要介绍线性规划、整数规划、动态规划等方法1.4 管理运筹学的应用领域列举管理运筹学在不同领域的应用实例强调管理运筹学在企业经营、物流管理、生产计划等方面的应用第二章:线性规划2.1 线性规划的基本概念解释线性规划的目标函数和约束条件引入可行解、最优解等基本概念2.2 线性规划的图解法演示线性规划问题的图解法步骤提供实际例子进行图解法的应用演示2.3 线性规划的代数法介绍线性规划的代数法解题步骤使用具体例子进行代数法的应用解释2.4 线性规划的应用案例提供实际案例,展示线性规划在企业决策、资源分配等方面的应用强调线性规划在解决实际问题中的重要性第三章:整数规划3.1 整数规划的基本概念解释整数规划与线性规划的区别引入整数规划的目标函数和约束条件3.2 整数规划的解法介绍整数规划常用的解法,如分支定界法、动态规划法等使用具体例子进行整数规划解法的应用解释3.3 整数规划的应用案例提供实际案例,展示整数规划在人员排班、物流配送等方面的应用强调整数规划在解决实际问题中的重要性3.4 整数规划与线性规划的比较对比整数规划与线性规划的解法和技术强调整数规划在处理离散决策问题时的优势第四章:动态规划4.1 动态规划的基本概念解释动态规划的定义和特点引入动态规划的基本原理和基本定理4.2 动态规划的解法步骤演示动态规划的解题步骤,如最优子结构、状态转移方程等使用具体例子进行动态规划解法的应用解释4.3 动态规划的应用案例提供实际案例,展示动态规划在库存管理、项目管理等方面的应用强调动态规划在解决多阶段决策问题中的重要性4.4 动态规划与其他运筹学方法的比较对比动态规划与其他运筹学方法的特点和适用场景强调动态规划在处理具有时间序列特征的问题时的优势第五章:决策分析5.1 决策分析的基本概念解释决策分析的目的和意义引入决策问题的基本要素和决策方法5.2 确定型决策分析介绍确定型决策分析的方法和步骤使用具体例子进行确定型决策分析的应用解释5.3 不确定型决策分析介绍不确定型决策分析的方法和步骤使用具体例子进行不确定型决策分析的应用解释5.4 风险型决策分析介绍风险型决策分析的方法和步骤使用具体例子进行风险型决策分析的应用解释5.5 决策分析的应用案例提供实际案例,展示决策分析在企业战略规划、新产品开发等方面的应用强调决策分析在解决实际问题中的重要性第六章:网络计划技术6.1 网络计划技术的基本概念解释网络计划技术的定义和作用引入节点、箭线、活动等基本元素6.2 常用网络计划技术介绍常用的网络计划技术,如PERT、CPM等演示这些网络计划技术的绘制和应用方法6.3 网络计划技术的应用案例提供实际案例,展示网络计划技术在项目管理和生产调度等方面的应用强调网络计划技术在时间管理和资源分配中的重要性6.4 网络计划技术的优化介绍网络计划技术的优化方法和步骤使用具体例子进行网络计划技术优化的应用解释第七章:排队论7.1 排队论的基本概念解释排队论的定义和研究对象引入队列、服务设施、顾客等基本元素7.2 排队论的模型构建介绍排队论的模型构建方法和步骤使用具体例子进行排队论模型的应用解释7.3 排队论的应用案例提供实际案例,展示排队论在服务业、制造业等方面的应用强调排队论在解决等待问题和提高服务水平中的重要性7.4 排队论的优化策略介绍排队论的优化策略和方法使用具体例子进行排队论优化策略的应用解释第八章:存储论8.1 存储论的基本概念解释存储论的定义和研究对象引入存储成本、缺货成本、需求量等基本元素8.2 存储论的模型构建介绍存储论的模型构建方法和步骤使用具体例子进行存储论模型的应用解释8.3 存储论的应用案例提供实际案例,展示存储论在库存管理、供应链等方面的应用强调存储论在解决存货控制和降低成本中的重要性8.4 存储论的优化策略介绍存储论的优化策略和方法使用具体例子进行存储论优化策略的应用解释第九章:对偶理论9.1 对偶理论的基本概念解释对偶理论的定义和意义引入对偶问题、对偶关系等基本元素9.2 对偶理论的解法介绍对偶理论的解法方法和步骤使用具体例子进行对偶理论的应用解释9.3 对偶理论的应用案例提供实际案例,展示对偶理论在优化问题和经济学中的应用强调对偶理论在解决实际问题中的重要性9.4 对偶理论与灵敏度分析解释对偶理论与灵敏度分析的关系介绍灵敏度分析的方法和步骤第十章:总结与展望10.1 管理运筹学的重要性和局限性总结管理运筹学在实际管理中的应用价值和局限性强调管理运筹学在解决问题和创新方面的潜力10.2 管理运筹学的发展趋势展望管理运筹学未来的发展趋势和研究方向提及新兴领域和技术在管理运筹学中的应用前景10.3 提高管理运筹学能力的建议给出提高管理运筹学能力的建议和指导鼓励学习者持续学习和实践,以提升解决实际问题的能力重点解析本文教案主要介绍了管理运筹学的十个重点内容,具体如下:1. 管理运筹学的定义、发展历程、方法与工具,以及应用领域。
管理运筹学 第3版 韩伯棠 高教社 课后答案
第四章 线性规划在工商管理中的应用 作业:P57-58,Q2,Q3 Q2:某快餐店座落在一个旅游景点中。该景点远离市区,平时顾客不多,而在每个周六顾客猛增。该店主要为顾客 提供低价位的快餐服务。该店雇佣 2 名正式工,每天工作 8 小时。其余工作由临时工担任,临时工每天工作 4 小时。 周六营业时间 11:00a.m-22:00p.m。根据就餐情况,在周六每个营业小时所需的职工数如表(包括正式工和临时工) 。 已知一名正式工从 11 点上班,工作 4 小时后休息 1 小时,而后在工作 4 小时。另外一名正式工 13 点上班,工作 4 小时后,休息 1 小时,在工作 4 小时。又知临时工每小时工资 4 元。 时间 11:00-12:00 12:00-13:00 13:00-14:00 14:00-15:00 15:00-16:00 16:00-17:00 所需职工数 9 9 9 3 3 3 时间 17:00-18:00 18:00-19:00 19:00-20:00 20:00-21:00 21:00-22:00 所需职工数 6 12 12 7 7
(1) 、满足对职工需求的条件下,如何安排临时工的班次,使得临时工成本最小。 (2) 、这时付给临时工的工资总额是多少,一共需要安排多少临时工班次。请用剩余变量来说明应该安排一些临时
6
工的 3 小时工作时间的班次,可使得总成本更小。 (3) 、如果临时工每班工作时间可以是 3 小时,也可以是 4 小时,那么如何安排临时工的班次,使得临时工总成本 最小。这样比(1)节省多少费用,这时要安排多少临时工班次。 解题如下: (1)临时工的工作时间为 4 小时,正式工的工作时间也是 4 小时,则第五个小时需要新招人员,临时工只要招用,无 论工作多长时间,都按照 4 小时给予工资。每位临时工招用以后,就需要支付 16 元工资。从上午 11 时到晚上 10 时共计 11 个班次,则设 Xi(i =1,2,…,11)个班次招用的临时工数量,如下为最小成本: minf=16(X1+X2+X3+X4+X5+X6+X7+X8+X9+X10+X11) 两位正式工一个在 11-15 点上班,在 15-16 点休息,然后在 16-20 点上班。另外一个在 13-17 点上班,在 17 -18 点休息,18-22 点上班。则各项约束条件如下: X1+1>=9 X1+X2+1>=9 X1+X2+X3+2>=9 X1+X2+X3+X4+2>=3 X2+X3+X4+X5+1>=3 X3+X4+X5+X6+2>=3 X4+X5+X6+X7+2>=6 X5+X6+X7+X8+1>=12 X6+X7+X8+X9+2>=12 X7+X8+X9+X10+1>=7 X8+X9+X10+X11+1>=7 Xi>=0(i=1,2,…,11) 运用计算机解题,结果输出如下; **********************最优解如下************************* 目标函数最优值为 : 320 变量 最优解 -------------x1 8 x2 0 x3 1 x4 0 x5 1 x6 4 x7 0 x8 6 x9 0 x10 0 x11 0 目标函数最优值为 : 320 这时候临时工的安排为: 变量 班次 临时工班次 -------------x1 8 x2 0 x3 1 x4 0
管理运筹学
管理运筹学
管理运筹学是一门管理科学的学科,旨在研究如何有效地
管理和运筹组织的决策、计划和操作。
它涵盖了诸如优化、模型建立、决策分析、供应链管理、项目管理等内容,以
帮助管理者有效地管理资源、提高效率和效益。
管理运筹学的主要任务包括:
1. 优化决策:通过数学建模和优化算法,找到最佳决策方案,以最大化效益或最小化成本。
2. 模型建立与决策分析:通过建立数学模型来描述和分析
管理问题,然后利用决策分析方法做出合理的决策。
3. 生产与运作管理:通过优化生产和运作过程,提高生产
效率、降低成本、提高质量。
4. 供应链管理:通过优化供应链各个环节的运作,提高整体供应链效率、降低成本、提高客户满意度。
5. 项目管理:通过规划、组织、控制和评估项目的过程,实现项目目标和交付成果。
管理运筹学通常运用数学和统计方法来解决管理问题,利用计算机来辅助建模和求解。
它在各个领域都有应用,包括工业、供应链、金融、医疗等。
通过管理运筹学的方法和工具,管理者可以更科学地决策和管理,提高组织的竞争力和持续发展能力。
运筹学课后习题答案第六版
运筹学课后习题答案第六版运筹学是一门应用数学学科,旨在研究如何在有限资源和约束条件下做出最佳决策。
它涉及到决策分析、优化理论、线性规划、整数规划、动态规划等多个领域。
在学习运筹学的过程中,课后习题是巩固知识和提高能力的重要途径。
本文将为大家提供《运筹学课后习题答案第六版》的相关内容。
第一章:决策分析决策分析是运筹学的基础,它主要涉及到决策的目标、决策的环境、决策的准则等方面。
在第一章的习题中,我们需要运用决策树、决策表、决策矩阵等方法来解决实际问题。
比如,一个公司需要决策是否要进军某个新市场,我们可以通过绘制决策树来分析各种可能的结果和概率,从而选择最佳的决策。
第二章:线性规划线性规划是运筹学中的重要工具,它主要涉及到线性目标函数和线性约束条件的最优化问题。
在第二章的习题中,我们需要运用单纯形法、对偶理论等方法来求解线性规划问题。
比如,一个工厂需要决策如何分配有限的资源以最大化利润,我们可以建立一个线性规划模型,然后通过单纯形法来求解最优解。
第三章:整数规划整数规划是线性规划的扩展,它主要涉及到目标函数和约束条件都是整数的最优化问题。
在第三章的习题中,我们需要运用分支定界法、割平面法等方法来求解整数规划问题。
比如,一个物流公司需要决策如何安排货物的配送路线以最小化成本,我们可以建立一个整数规划模型,然后通过分支定界法来求解最优解。
第四章:动态规划动态规划是一种用来解决多阶段决策问题的方法,它主要涉及到状态转移方程和最优子结构的求解。
在第四章的习题中,我们需要运用贝尔曼方程、最短路径算法等方法来求解动态规划问题。
比如,一个投资者需要决策在不同时间点买入和卖出股票以最大化收益,我们可以建立一个动态规划模型,然后通过贝尔曼方程来求解最优解。
第五章:网络优化网络优化是一种用来解决网络流问题的方法,它主要涉及到网络的建模和最大流最小割定理的求解。
在第五章的习题中,我们需要运用最大流算法、最小割算法等方法来求解网络优化问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
N1
N2
S1
30
-6
S2
20
-2
S3
10
5
现在该公司欲委托一个咨询公司作 市场调查。咨询公司调查的结果也有两 种, I1 :需求量大; I2 :需求量小。并 且根据该咨询公司积累的资料统计得知 ,当市场需求量已知时,咨询公司调查 结论的条件概率如下表所示:
条
自
件
然
概
状
N1
调
查
结
率态 论
I1
P(I1 /N1)=0.8
案。
取 = 0.7
表16-5
管理运筹学
9
§1 不确定情况下的决策
五、后悔值准则(Savage 沙万奇准则) • 决策者从后悔的角度去考虑问题:
把在不同自然状态下的最大收益值作为理想目标,把各方案的 收益值与这个最大收益值的差称为未达到理想目标的后悔值,然后 从各方案最大后悔值中取最小者,从而确定行动方案。
先选出每个方案在不同自然状态下的最小收益值(最保险), 然后从这些最小收益值中取最大的,从而确定行动方案。
用(Si, Nj)表示收益值 表16-2
管理运筹学
6
§1 不确定情况下的决策
二、最大最大准则(乐观准则) • 决策者从最有利的角度去考虑问题:
先选出每个方案在不同自然状态下的最大收益值(最乐观), 然后从这些最大收益值中取最大的,从而确定行动方案。
管理运筹学
23
6.5 S4:不搞市场调查
图16-5
1
7.5302
S5:搞市场调查
10.53-3
管理运筹学
24
§3 效用理论在决策中的应用
• 效用:衡量决策方案的总体指标,反映决策者对决策问题各种因素的总 体看法。
• 使用效用值进行决策:首先把要考虑的因素折合成效用值,然后用决策 准则下选出效用值最大的方案,作为最优方案。
第十六章 决策分析
§1 不确定情况下的决策 §2 风险型情况下的决策 §3 效用理论在决策中的应用 §4 层次分析法
管理运筹学
1
第十六章 决策分析
“决策” 一词来源于英语 Decision making,直译为“做出决定”。所谓决 策,就是为了实现预定的目标在若干 可供选择的方案中,选出一个最佳行 动方案的过程,它是一门帮助人们科 学地决策的理论。
Ø风 险 型 决 策 问 题
• 在决策环境不确定的条件下进行,决策者对各自然状态发生的概率 可以预先估计或计算出来。
管理运筹学
3
第十六章 决策分析
构成决策问题的四个要素: 决策目标、行动方案、自然状态、效益值
行动方案集: A = { s1, s2, …, sm } 自然状态集: N = { n1, n2, …, nk }
那么,EVPI = EVWPI - EVW0PI = 12.5 - 6.5 = 6万 即这个全情报价值为6万。当获得这个全情报需要的成本小于6
万时,决策者应该对取得全情报投资,否则不应投资。
注:一般“全”情报仍然存在可靠性问题。
管理运筹学
17
§2 风险型情况下的决策
六、具有样本情报的决策分析(贝叶斯决策) • 先验概率:由过去经验或专家估计的将发生事件的概率; • 后验概率:利用样本情报对先验概率修正后得到的概率; • 在贝叶斯决策法中,可以根据样本情报来修正先验概率,得到后 验概率。如此用决策树方法,可得到更高期望值的决策方案。
例:1:某公司需要对某新产品生产批量作出决策,各种批量在不
同的自然状态下的收益情况如下表(收益矩阵):
自然状态 行动方案
表16-1
N1(需求量大) N2(需求量小)
S1(大批量生 )
30
-6
S2(中批量生 )
20
-2
S3(小批量生 )
10
5
管理运筹学
5
§1 不确定情况下的决策
一、最大最小准则(悲观准则) • 决策者从最不利的角度去考虑问题:
E(S3)
0
0.35
图16-2
管理运筹学
1
p
15
§2 风险型情况下的决策
在实际工作中,如果状态概率、收益值在其可 能发生的变化的范围内变化时,最优方案保持不变 ,则这个方案是比较稳定的。反之如果参数稍有变 化时,最优方案就有变化,则这个方案就不稳定的 ,需要我们作进一步的分析。就自然状态N1的概率 而言,当其概率值越远离转折概率,则其相应的最 优方案就越稳定;反之,就越不稳定。
如下表:
表16-9
管理运筹学
25
§3 效用理论在决策中的应用
•用收益期望值法:
E(S1) = 0.360 + 0.540 + 0.2(-100) = 18万 E(S2) = 0.3100 + 0.5(-40)+ 0.2(-60) = -2万 E(S3) = 0.30 + 0.50 + 0.20 = 0万 得到 S1 是最优方案,最高期望收益18万。
图16-3
管理运筹学
20
§2 风险型情况下的决策
首先,由全概率公式求得联合概率表:
合概率
N1
N2 由全概率求得
I1
0.24
0.07
P(I1) =0.31
I2
0.06
0.63 P(I2) = 0.69
然后,由条件概率公式P(N/I)=P(NI)/P(I)求得在调查结论已知时的条件
概率表:
条件概率
样本情报效率=EVSI/EVPI×100% 上例中,样本情报价值的效率为4.0302/6×100%=67.17%,也就是说,这个 样本情报相当于全情报效果的67.17%。
多级(两级)决策树问题
如将前面两个决策树进行合并,可以得到一个两级决策问题:首先决策是否 要进行市场调查;然后根据调查结果如何安排生产。决策树的求解结果如图16-5 。
N1
N2
P(N /I )
I1
0.7742 0.2258
I2
0.0870 0.9130
最后,在决策树上计算各个节点的期望值,结果如图16-4,结论为:当 调查结论表明需求量大时,采用大批量生产;当调查结论表明需求量小时, 采用小批量生产。
管理运筹学
21
§2 风险型情况下的决策
21.8712
10.5302
用aij’表示后悔值,构造后悔值矩阵: 表16-6
管理运筹学
10
§2 风险型情况下的决策
特征:1、自然状态已知;2、各方案在不同自然状态下的收益 值已知;3、自然状态发生的概率分布已知。 一、最大可能准则
在一次或极少数几次的决策中,取概率最大的自然状态,按照 确定型问题进行讨论。
表16-7
管理运筹学
管理运筹学
8
§1 不确定情况下的决策
四、乐观系数(折衷)取乐观准则和悲观准则的折衷:
先确定一个乐观系数 (01),然后计算:
CVi = · maxj [(Si, Nj)] +(1- )· minj [(Si, Nj)]
从这些折衷标准收益值CVi中选取最大的,从而确定行动方
11
§2 风险型情况下的决策
二、期望值准则 • 根据各自然状态发生的概率,求不同方案的期望收益值,取其中
最大者为选择的方案。 E(Si) = P(Nj) (Si,Nj)
表16-8
管理运筹学
12
§2 风险型情况下的决策
三、决策树法 具体步骤: (1) 从左向右绘制决策树; (2) 从右向左计算各方案的期望值,并将结果标在相应 方案节点的上方; (3) 选收益期望值最大(损失期望值最小)的方案为最优 方案,并在其它方案分支上打∥记号。
用(Si, Nj)表示收益值 表16-3
管理运筹学
7
§1 不确定情况下的决策
三、等可能性准则 ( Laplace准则 ) 决策者把各自然状态发生的机会看成是等可能的: 设每个自然状态发生的概率为 1/事件数 ,然后计算各行动方
案的收益期望值。 用 E(Si )表示第I方案的收益期望值 表16-4
• 例3:求下表显示问题的最优方案(万元):
某公司是一个小型的进出口公司,目前他面临着两笔进口生意,项目
A和B,这两笔生意都需要现金支付。鉴于公司目前财务状况,公司至多做
A、B中的一笔生意,根据以往的经验,各自然状态商品需求量大、中、小
的发生概率以及在各自然状况下做项目A或项目B以及不作任何项目的收益
一种考虑:
由于财务情况不佳,公司无法承受S1中亏损100万的风险,也无法承 受S2中亏损50万以上的风险,结果公司选择S3,即不作任何项目。
E(S1) = p30 + (1-p)(-6) = 36p - 6 p=0.35为转折概率 E(S2) = p20 + (1-p)(-2) = 22p - 2 实际的概率值距转 E(S3) = p10 + (1-p)(+5) = 5p + 5 折概率越远越稳定
取S3
取S1
E(S1)
E(S2)
管理运筹学
2
第十六章 决策分析
决策的分类:
• 按决策问题的重要性分类 • 按决策问题出现的重复程度分类 • 按决策问题的定量分析和定性分析分类 • 按决策问题的自然状态发生分类:
Ø确 定 型 决 策 问 题
• 在决策环境完全确定的条件下进行。
Ø不 确 定 型 决 策 问 题
• 在决策环境不确定的条件下进行,决策者对各自然状态发生的概率 一无所知。
N2
P(I1 /N2)=0.1
I2
P(I2 /N1)=0.2
P(I2 /N2)=0.9
我们该如何用样本情报进行决策呢? 如果样本情报要价3万元,决策是否要使 用这样的情报呢?