高考导数题型及方法总结(思维导图)
导数思维导图及真题解析
一、思维导图二、疑难透析1、曲线“在点P处的切线”是以点P x0,y0为切点,这样的切线只有一条,切线方程为y−y0=f′x0x−x0。
2、“过点P的切线”,点P可能是切点,也可能不是切点。
点P x0,y0不是切点时的切线方程求解步骤:(1)设出切点坐标P′x1,f(x1);(2)写出过P′x1,f(x1)的切线方程y−f(x1)=f′x1x−x1;(3)将点P x0,y0代入切线方程求出x1;(4)将x1的值代入方程y−f(x1)=f′x1x−x1可得出过点P x0,y0的切线方程。
3、图像连续不断的函数在开区间a,b上不一定有最大值(或最小值)。
若图像连续不断的函数在开区间a,b内只有一个极值,则该极值就是最值。
4、用导数法求函数单调区间的一般步骤:求定义域求导数f'(x)求f'(x)=0在定义域内的根用求得的根划分定义域确定f'(x)在各个开区间内的符号确定单调区间5、用导数法证明函数在 a ,b 的单调性的一般步骤:6、解决函数极值问题的一般步骤:7、导数与极值关系f ′ x 0 =0只是可导函数f x 在x 0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f ′ x 0 在x 0两侧异号.另外,已知极值点求参数时要进行检验。
三、题型示例=(x −3)e x 的单调递增区间是(A.(−∞,2) B.(0,3) C.(1,4) D.(2,+∞) 【解析】(性质法)f ′ x =e x + x −3 e x =(x −2)e x ∵当f ′ x >0时,f x 单调递增求f'(x)确定f'(x)在(a ,b)内的符号得出结论:f'(x)>0,增函数;f'(x)<0,减函数求定义域求导数f'(x)解方程f'(x)=0判断根左右f'(x)的符号极值得方程f'(x)=0根的情况得关于参数的方程(不等式)参数值(范围)求极值用极值∴(x −2)e x >0 ∵e x >0 ∴x −2>0 即x >2 【答案】D2、若函数()y f x =在区间(,)a b 内可导,且0(,)x a b ∈则000()()limh f x h f x h h→+-- 的值( )A .'0()f xB .'02()f xC .'02()f x - D .0【解析】000000()()()()lim lim2[]2h h f x h f x h f x h f x h h h→→+--+--='0000()()2lim2()2h f x h f x h f x h→+--== 【答案】B3、曲线在处的切线方程为( ) A. B. C. D. 【解析】∵ ∴,∴切点坐标为 ∴切线方程为 【答案】B4、曲线y = x +1 x +2 (x +3)在点A (0,6)处的切线的斜率是( )A.9B.10C.11D.12【解析】求函数的导数先化简解析式再求导,连乘形式先展开化为多项式再求导;根式形式 先化为分数指数幂再求导;复杂形式先化为简单分式的和、差再求导。
高考高中数学压轴题思维导图精华版
倾斜角与斜率
点到直线距离
与直线有关重要内容
夹角公式
弦长公式
{两条直线位置关系
标准式 圆锥曲线的方程形式 距离式
参数式 {极坐标式
1、焦半径公式
2、焦点三角形面积公式
圆锥曲线
3、过圆锥曲线上某点的切线方程 4、极线定理
5、弦与中线斜率积为定值
与圆锥曲线有关的二级结论 6、细看中点弦方程,恰似中点弦轨迹 ①端点投影在准线, Nhomakorabea{
4、极坐标{极点在焦点(焦点弦题型,焦点弦的 6 个性质) 极点在坐标原点(过原点的两条垂直直线题型)
5、过原点的两条直线(设斜率为k1
、k2
),若与
{kk11
+ k2 · k2
有关,将方程转化为
k
的二次方程。
������、数形结合,常见的模型及目标函数
①斜率,如y − b x−a
②距离,如(x − a)2 + (y − b)2
1
3、 对比等式两边的系数,求出未知数。 说明:对比系数时,要尝试选出有用的等式,不要将式子展开,那样会很麻烦,只需单 独对比某个项的系数即可。另外,两个直线方程相乘=一个退化的二次曲线。 下面不妨以思维导图来总结压轴题的题型和解题套路。
(1)解析几何 一、知识储备
直线 {
点斜式 两点式 直线方程形式 斜截式 截距式 {一般式
缺点,一是如果被积函数比较复杂,中学生驾驭起来较难,如2������1+1;二是如果积分放缩得
出的结果是一个超越数,很难比较大小,如 ln2 和 0.7 的大小难比较,不等号方向自然无法 确定。另附:
分析通项方法: 1、 证明������1������2 … … ������������ < ������������ ,变式:证明������1������2 … … ������������ < ������。 分析通项,即令������������=(������������/������������−1 )·(������������−1 /������������−2 )···(������2 /������1)·������1 , 从而证明每一项������������ < ������������ /������������−1。(一般可用归纳法) 2、证明������1 + ������2 + … … + ������������ < ������������,变式:证明������1+������2+⋯ … + ������������ < ������。 分析通项,即令������������=(������������— ������������−1 )+(������������−1—������������−2)+···+(������2—������1)+������1, 从而证明每一项������������ < ������������ —������������−1。(一般可用归纳法) 对于变式������1������2 … … ������������ < ������和������1+������2+⋯ … + ������������ < ������,只需将 c 加强为 c(1-������������)<c,其中 0 < ������������ < 1,再进行分析通项。 洛必达法则(恒成立或存在性问题)解题步骤: 1、先分离变量,比如若 a<f(x)恒成立,则求 f(x)的最小值,假设 x∈ (������, +∞)。 2、对 f(x)求导,对于压轴题一般求一次导不行,再进行求二阶导数、三阶导数等等。 3、①若 f(x)min 在 x=b(b>a)处取得,一般不用洛必达法则,直接代入 b 即可。
2021高考数学导数与函数零点用思维导图破解导数压轴大题
2021高考数学导数与函数零点用思维导图破解导数压轴大题用思维导图突破导数压轴题专题3 导数与函数零点函数()f x 零点x 0就是方程()f x =0的根x 0,也是函数()f x 图象与x 轴交点的横坐标x 0.这里函数与方程随时转化,互换角色,充分体现数形结合的思想.函数零点个数转化为方程根的个数,有时把方程()f x =0转化为函数y h x =()与y g x =(),再作函数的图象,从图象确定交点个数,即把求方程根的个数转化为两个函数图象交点的个数.如果连续函数在某个单调区间内两个端点函数值之积为负,则函数在该区间有且仅有一个零点.要求函数的单调区间有回到求其导数的路子上,即转化为前面熟悉的问题.函数零点方程根 求导定调需认真 端点异号那最好 如若不然做转化例1(2019年Ⅰ理第20题)已知函数()sin (1)f x x ln x =-+,()f x '为()f x 的导数.证明:(1)()f x '在区间(1,)2π-存在唯一极大值点;(2)()f x 有且仅有2个零点.求函数f (x )的零点数:求导判断f (x )的单调性,适当选取区间,确定端点函数值异号形:a =g (x )或h (x )=q (x ) 判断相应函数单调性、值域,确定零点个数或范围结合具体问题运用分析法和相关性质确定端点(一般不唯一,见例2等)结合图象确定零点范围(见例3、例6),有时还需证明(见例1)思路点拨第(1)题:若1()cos 1f x x x '=-+在区间(1,)2π-的极大值点x 0,则在x 0左边,()f x '递增,在x 0右边()f x '递减.这需要考虑()f x ''在x 0左边为正,右边为负,也就是说x 0是()f x '的零点,从而()f x '在0(1,)x -上单调递增;在0(x ,)2π上()f x ''<0,可得()f x '单调递减. 第(2)结论等价于方程sinx=ln(1+x)有且仅有两个不等的实数根.在同一坐标系中分别作出图象可知一根为0,另一根介于(2]2π,之间.从图象可以看出当(1,0)x ∈-和(0,)2π时,sin ln(1)0x x -+>,即()0f x >;当[2,)x ∈+∞,()0f x <.这就需要考虑f ′(x )在(−1,0)、(0,π2]、(π2,2]、(2,+∞)单调性以及端点值的正负.由于x 0位于(0,x 0)和(x 0,π2),还有对这两个区间作相应讨论. 第(2)的思维导图:f '(x)-1yx0π2x 02y =ln(1+x )y =sin x-1yx0π2已知f (x )=sin x -ln(1+x )结论:f (x )有且仅有2个零点sinx=ln(1+x)有两个不等实数根当和时,f (x )>0;当 x ∈ሾ2,+∞)时,f (x )<0当 x ∈ሾ2,+∞)时, f (x )<0等价转化函数方程不等式三者联系很密切相互转化无痕迹根据需要作选择极值两边单调反一撇两撇找零点区分左右大和小增减正负是关键综上,f(x)有且仅有2个零点.思路点拨(1)直接进行求导,分类讨论.(2)由(1)知()f x 在上单调递减,在上单调递增, ()f x 有极小值,若()f x 有两个零点,则,且在该点左右两个区间再各找一个点,其函数值大于0即可,当然也可以把函数有两个零点问题转化为另外两个函数图象有两个交点. 满分解答(1)对函数进行求导可得. ①当时,恒成立,故而函数恒递减.②当时,,解得x >ln 1a ,所以函数在上单调递减,在上单调递增.(2)解1 由(1)知,当时,在上单调递减,故在上至多一个零点,不满足条件;当时,. 令,则,从而在上单调递增,而,故当时,;当时,;当时,.当时,,此时恒成立,从而无零点,不满足条件. 当时,,,此时仅有一个实根,不满足条件.当时,,,注意到,故在上有一个实根. 1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭11ln ln 1f a a a ⎛⎫=-+ ⎪⎝⎭()1ln 100a a a-+<>()()()()2'22111x x x xf x ae a e ae e =+--=-+0a ≤()()()'110x xf x ae e =-+≤0a >()()()1'110ln x xf x ae e x a =-+>⇒>1,ln a ⎛⎫-∞ ⎪⎝⎭1ln ,a ⎛⎫+∞ ⎪⎝⎭0a ≤()f x R ()f x R 0a >()min 1()ln 1ln f x f a a a=-=-+()11ln (0)g a a a a=-+>()2110g a a a'=+>()g a ()0,+∞()10g =01a <<()0g a <1a =()0g a =1a >()0g a >1a >()0g a >()0f x >()f x 1a =()0g a =min 1()1ln 0f x a a =-+=()0f x =01a <<()0g a <()min 1()ln 1ln 0f x f a a a=-=-+<22ln 0,(1)10a a a f e e e->-=++->()f x (1,ln )a --而 ,. 故在上有一个实根.又在上单调减,在单调增,故在上至多两个实根.注 怎么知道要算f (-1)>0、3ln(1)0⎛⎫->⎪⎝⎭f a ?事实上,()()[2]=+--x x f x e ae a x ,当x =-1时f (-1)>0;为了再找一点x ,使f (x )>0,因为()()22=+--x xf x ae a e x()=[2]+--x x e ae a x ,注意到0->x e x ,所以只要()21+-=x ae a ,解得3ln(1)=-x a.其实,还可以证f (-2)>0,03ln(1)>-x a 时,3ln(1)0⎛⎫-> ⎪⎝⎭f a . (2)解2 令()0f x =,即()220xxae a e x +--=,所以有22x x x e xa e e+=+.于是函数()f x 有两个零点,即y a =与()22x x x e xg x e e+=+的图象有两个交点.()g x 的导函数为()()()()2211'1xx xxe e x g x e e ++-=-+,当0x <时,()'0g x >;当0x >时,()'0g x <时,所以()g x 在(),0-∞上单调递增,在()0,+∞上单调递减,且()g x 在0x =处取得最大()01g =.当1a ≥时,y a =与()g x 至多有一个零点,不符合题意;当0a ≤时,由于当0x ≥时,()0g x >,而当0x <时,()g x 是单调递增,所以y a=与()g x 至多有一个交点,不符合题意;当01a <<时,一方面,由于()()20,01g a g a -<<=>,且()g x 在()2,0-上单调递增,所以y a =与()g x 在()2,0-上有且仅有一个交点.31ln 1ln ln a a a ⎛⎫->=- ⎪⎝⎭33ln 1ln 133ln(1)e e2ln 1a a f a a a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⎛⎫-=⋅+--- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭()33132ln 1a a a a ⎛⎫⎛⎫=-⋅-+--- ⎪ ⎪⎝⎭⎝⎭331ln 10a a ⎛⎫⎛⎫=---> ⎪ ⎪⎝⎭⎝⎭()f x 3ln ln 1a a ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭,()f x ()ln a -∞-,(ln ,)a -+∞()f x R思路点拨 第(1)题要证明不等式()1f x ≥,由于(0)=1f ,结论等价于当0x ≥时,()(0)f x f ≥,只要证明'()0f x >,接下来就是从已知入手证明'()0f x >,也可以把()1f x ≥转化为只要证明210x e x --≥,两边同时除以xe (注:这样构造下面的函数g(x)求导比较方便),不等式转化为2(1)10x x e -+-≤,构造新的函数2()(1)1x g x x e -=+-,只要证明()(0)g x g ≤.第(2)题要求()f x 的零点,如果直接对()f x 求导得'()2x f x e ax =-,要判断其符号就要对a 进行讨论,如果把()f x 转化为22()()x f x x e x a -=-,令2()x h x e x a -=-,则()f x 与()h x 在(0,)+∞零点个数相同,而'3(2)()xx eh x x-=中没有a ,讨论符号方便,运算量会减小.当然,也可把()f x 转化为2()1xx f x e ax e -=-()来解答.还可以用最常见的方法来思考:函数()f x 只有一个零点问题等价转化为方程2xe a x=只有一根问题,从而寻找两函数(y a =与 2()x e G x x =)的图像只有一个交点问题,于是,本小题有下面的3种解法. 满分解答解(1)解 1 因为2()x f x e ax =-,所以'()2x f x e x =-, 令'()2,()2x x g x e x g x e =-=-,由2=0x e -得ln 2x =.当''[0,ln 2),()0;(ln 2,),()0x g x x g x ∈<∈+∞>,所以()g x 在[0,ln 2)上单调递减,在(ln 2,)+∞上单调递增,所以()(ln 2)220,g x g ln ≥=->因此()f x 在[0,)+∞上递增,所以2()1(0)x f x e x f =-≥=.解2 设函数2()(+1)1x g x x e -=-,则'22()(21)(1)x x g x x x e x e --=--+=--, 当1x ≠时,'()0g x <,所以()g x 在[0,)+∞单调递减,从而有()(0)0g x g ≤=,即2(+1)10x x e --≤,整理得,21x e x -≥,故有()1f x ≥.(2)解1因为()f x 在(0,)+∞只有一个零点,由于22()x f x x e x a -=-(),则2()xh x e x a -=-在(0,)+∞只有一个零点,'3(2)()x x e h x x-=,当(0,2)x ∈时,'()0h x <,当(2,)x ∈+∞时,'()0h x >,所以()h x 在(0,2)上递减,在(2,)+∞上递增,所以()h x ≥2(2)4e h a =-.当24e a <时,()h x 在(0,)+∞无零点;当24e a =时,()h x 在(0,)+∞只有一个零点,满足题意;当24e a >时,由(1)可得:()20xg x e x =->,即22()x e h x a a x x=->-,当 20a x ->,此时22x a <<时,()0,h x >取1,x a =故()h x 在1(,2)a有一个零点.由(1)可得当0x >时,2x e x >,有32,3xx e >此时即3222()83()27xx e h x a a x a x x =->-=-,当2728x a >>时,()0,h x >取4,x a =则(4)0h a >,由零点存在定理知()h x 在(2,4)a 有一个零点,此时()f x 在(0,)+∞有两个零点,不合题意.综上所述:24e a =.解2因为()f x 在(0,)+∞只有一个零点,由于2()1xx f x e ax e -=-(),令2()1xh x ax e -=-在(0,)+∞只有一个零点,(i )当0a ≤时,()0h x >,()h x 没有零点; (ii )当0a >时,'(2)()xax x h x e -=; 当(0,2)x ∈时,'()0h x <;当(2,)+∞时,'()0h x >.所以()h x 在(0,2)单调递减,在(2,)+∞单调递增.故有24()(2)1ah x h e ≥=-. 当24e a <时,24()10,a h x e ≥->函数无零点,不合题意;当24e a =时,24()10,a h x e ≥-=函数只有一个零点,满足题意;当24e a >时,24()10,a h x e ≥-<由(0)1h =,所以()h x 在(0,2)有一个零点,由(1)得,当0x >时,2,xe x >所以33342241616161(4)11110()(2)a a a a a h a e e a a=-=->-=->,故有()h x 在(2,4)a 有一个零点,因此()h x 在(0,)+∞有两个零点.综上所述,()f x 在(0,+∞)只有一个零点时,24e a =.解3 由()f x 在(0,)+∞只有一个零点可知方程20x e ax -=在(0,)+∞只有一个根,即 2xe a x=在(0,)+∞只有一个根,从而可得函数y a =与 2()x e G x x =的图像在(0,)+∞只有一个交点.'3(2)()x e x G x x-=,当(0,2)x ∈时,'()0G x <,当(2,)x ∈+∞时,'()0,G x >所以()G x 在(0,2)递减,在(2,)+∞递增;当0x →时,()G x →+∞,当x →+∞时,()G x →+∞,所以()f x 在(0,)+∞只有一个零点时,2(2)4e a G ==.思路点拨第(2)题解1是把零点问题转化为不等式问题,又转化为方程解的问题,但不是直接解方程,由于通过条件知道方程的解,就转化为验证是否是方程的解,有效回避解高次方程.解2是通过“两边夹”的方法得到c 的值,再验证其是唯一满足条件的值. 满分解答(1)()ax x x f 232'+=,令()0'=x f ,解得01=x ,322ax -=. 若0=a ,因()032'≥=x x f ,所以函数()x f 在R 上单调递增. 若0>a ,当32ax -<或0>x 时,()0'>x f ; 当032<<-x a 时,()0'<x f ,所以函数()x f 在⎪⎭⎫ ⎝⎛-∞-32,a 和()+∞,0上单调递增,在⎪⎭⎫⎝⎛-0,32a上单调递减.若0<a ,当32ax ->或0<x 时,()0'>x f ; 当320a x -<<时,()0'<x f ;所以函数()x f 在()0,∞-和⎪⎭⎫ ⎝⎛+∞-,32a 上单调递增,在⎪⎭⎫ ⎝⎛-32,0a 上单调递减. (2)解1 ()a c ax x x f -++=23,()ax x x f 232'+=,322ax -=. 由函数()x f 有三个不同的零点知0≠a 且()0320<⎪⎭⎫ ⎝⎛-⋅a f f ,即()02743<⎪⎪⎭⎫ ⎝⎛-+-a c a a c . 又因为a 的解集是()⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-,2323,13, .31-=a ,12=a ,233=a 是()02743=⎪⎪⎭⎫ ⎝⎛-+-a c a a c 因为c a =一定是方程的一个根,若分别令31,,32c =-,则只要检验a 的其余两个值是否满足34027a c a +-=. (*) 当1=c 时,3a =-和32a =是(*)的根(32a =是重根);当3-=c 时,32a =和1a =不是(*)的根; 当23=c 时,3a =-和1a =不是(*)的根. 综上所述,1=c .解2 由(1)知,函数()x f 的两个极值为()b f =0,b a af +=⎪⎭⎫ ⎝⎛-327432,则函数()x f 有三个零点等价于()02743203<⎪⎭⎫⎝⎛+=⎪⎭⎫ ⎝⎛-⋅b a b a f f ,从而30,40,27a a b >⎧⎪⎨-<<⎪⎩或30,40.27a b a <⎧⎪⎨<<-⎪⎩又a c b -=,所以当0>a 时,02743>+-c a a 或当0<a 时,02743<+-c a a . 设()c a a a g +-=3274,因为函数()x f 有三个零点时,a 的取值范围恰好是(),3-∞-331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,所以当(),3a ∈-∞-时,(g (),3a ∈-∞-时,()0<a g ,且当31,2a ⎛⎫∈ ⎪⎝⎭3,2⎛⎫+∞ ⎪⎝⎭时,()min 0g a >,()0g a >均恒成立,从而()013≤-=-c g ,且0123≥-=⎪⎭⎫ ⎝⎛c g ,因此1=c .此时,()a ax x x f -++=123()()[]ax a x x -+-++=1112,因函数有三个零点,则()0112=-+-+a x a x 有两个异于1-的不等实根, 所以()()2141a a ∆=---2a =+2a 30->,且()()2111320a a a ---+-=-≠,解得()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 综上1=c . 解3 由解1得函数()f x 有三个不同的零点知0a ≠等价于()34027a c a c a ⎛⎫-+-< ⎪⎝⎭,即43222727270424a ca a ca c --+->,其解集恰为()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a . 又不等式233102a a a +⋅-⋅->()()(),即4322727270424a a a a --+->的解集也是()⎪⎭⎫⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2323,13, a ,故不等式43222727270424a ca a ca c --+->与不等式4322727270424a a a a --+->同解,比较系数可得1=c .思路点拨第(1)的①可直接求解,②可转换为恒成立问题;(2)由f (0)=2知0就是g(x )的零点,由条件知这是唯一零点.利用导数判断g(x )的单调性,则需唯一的极小值为0,由此得ab 的值. 满分解答①()122xxf x ⎛⎫=+ ⎪⎝⎭,由01a <<可得1222x x+=,则()222210x x -⨯+=,即()2210x -=,则21x =,0x =. ②由题意得221122622xx x x m ⎛⎫++- ⎪⎝⎭≥恒成立. 令122x x t =+,则由20x >可得2t ≥,此时226t mt --≥恒成立,即244t m t t t+=+≤恒成立.因为2t ≥时44t t +=≥,当且仅当2t =时等号成立,因此实数ab 的最大值为4.(2)解1()()22xxg x f x a b =-=+-,()ln 'ln ln ln ln x x x xa b g x a a b b a b b a ⎡⎤⎛⎫=+=+⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 由01a <<,1b >可得1b a >,令()ln ln xb ah x a b ⎛⎫=+ ⎪⎝⎭,则()h x 递增,而ln 0,ln 0a b <>,因此0ln log ln b aa xb ⎛⎫=-⎪⎝⎭时()00h x =,因此, 当()0,x x ∈-∞时,()0h x <,ln 0x a b >,则()'0g x <; 当()0,x x ∈+∞时,()0h x >,ln 0x a b >,则()'0g x >;所以,()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x , ① 若()00g x <,log 2a x <时,log 22ax a a >=,0x b >,则()0g x >;当x >log b 2时,0x a >,log 22bx b b >=,则()0g x >;当1log 2a x <且10x x <时,()10g x >,则()g x 在()10,x x 有零点,当2log 2b x >且20x x >时,()20g x >,则()g x 在()02,x x 有零点,所以()g x 至少有两个零点,与条件矛盾;② 若()00g x ≥,由函数()g x 有且只有1个零点,()g x 最小值为()0g x ,可得()00g x =,由()00020g a b =+-=,因此00x =.因此ln log 0ln b aa b ⎛⎫-= ⎪⎝⎭,即ln 1ln ab -=,即ln ln 0a b +=, 因此()ln 0ab =,则1ab =.解2 因为函数2)()(-=x f x g 只有1个零点,而022)0()0(00=-+=-=b a f g , 所以0是函数)(x g 的唯一零点.由解1知道()g x 在()0,x -∞递减,()0,x +∞递增,因此()g x 最小值为()0g x . 下证00x =.若00x <,则0002x x <<,于是0()(0)02x g g <=,又log 2log 2log 2(log 2)220a a a a g ab a =+->-=,且函数()g x 在以2x 和log 2a 为端点的闭区间上的图象不间断,所以在02x 和log 2a 之间存在()g x 的零点,记为1x .因为01a <<,所以log 20a <,又002x <,所以10x <与“0是函数()g x 的唯一零点”矛盾.若00x >,同理可得,在02x 和log 2a 之间存在()g x 的非0的零点,矛盾. 因此,00x =.于是ln 1ln ab-=,故ln ln 0a b +=,所以1ab =.。
导数常见题型与解题方法总结
导数题型总结1、分离变量-----用分离变量时要特别注意是否需分类讨论(>0,=0,<0)2、变更主元-----已知谁的范围就把谁作为主元3、根分布4、判别式法-----结合图像分析5、二次函数区间最值求法-----(1)对称轴(重视单调区间)与定义域的关系(2)端点处和顶点是最值所在一、基础题型:函数的单调区间、极值、最值;不等式恒成立此类问题提倡按以下三个步骤进行解决:第一步:令得到两个根;第二步:画两图或列表;第三步:由图表可知;第三种:变更主元(即关于某字母的一次函数)-----(已知谁的范围就把谁作为主元)。
例1:设函数在区间D上的导数为,在区间D上的导数为,若在区间D上,恒成立,则称函数在区间D上为“凸函数”,已知实数m是常数,(1)若在区间上为“凸函数”,求m的取值范围;(2)若对满足的任何一个实数,函数在区间上都为“凸函数”,求的最大值.解:由函数得(1)在区间上为“凸函数”,则在区间[0,3]上恒成立解法一:从二次函数的区间最值入手:等价于解法二:分离变量法:∵当时, 恒成立,当时, 恒成立等价于的最大值()恒成立,而()是增函数,则(2)∵当时在区间上都为“凸函数”则等价于当时恒成立变更主元法再等价于在恒成立(视为关于m的一次函数最值问题)例2:设函数(Ⅰ)求函数f(x)的单调区间和极值;(Ⅱ)若对任意的不等式恒成立,求a的取值范围.解:(Ⅰ)令得的单调递增区间为(a,3a)令得的单调递减区间为(-,a)和(3a,+)∴当x=a时,极小值= 当x=3a时,极大值=b.(Ⅱ)由||≤a,得:对任意的恒成立①则等价于这个二次函数的对称轴(放缩法)即定义域在对称轴的右边,这个二次函数的最值问题:单调增函数的最值问题。
上是增函数. (9分)∴于是,对任意,不等式①恒成立,等价于又∴点评:重视二次函数区间最值求法:对称轴(重视单调区间)与定义域的关系例3:已知函数图象上一点处的切线斜率为,(Ⅰ)求的值;(Ⅱ)当时,求的值域;(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
高考数学题型总结之导数题型分析及解题方法
高考数学题型总结之导数题型分析及解题方法高考数学题型总结之导数题型分析及解题方法一、考试内容导数的概念,导数的几何意义,几种常见函数的导数;两个函数的和、差、基本导数公式,利用导数研究函数的单调性和极值,函数的最大值和最小值。
二、热点题型分析题型一:利用导数研究函数的极值、最值。
1. 在区间上的最大值是22.已知函数处有极大值,则常数c= 6 ;3.函数有极小值-1 ,极大值3题型二:利用导数几何意义求切线方程1.曲线在点处的切线方程是2.若曲线在P点处的切线平行于直线,则P点的坐标为(1,0)3.若曲线的一条切线与直线垂直,则的方程为4.求下列直线的方程:(1)曲线在P(-1,1)处的切线; (2)曲线过点P(3,5)的切线;解:(1)所以切线方程为(2)显然点P(3,5)不在曲线上,所以可设切点为,则①又函数的导数为,所以过点的切线的斜率为,又切线过、P(3,5)点,所以有②,由①②联立方程组得,,即切点为(1,1)时,切线斜率为;当切点为(5,25)时,切线斜率为;所以所求的切线有两条,方程分别为题型三:利用导数研究函数的单调性,极值、最值1.已知函数的切线方程为y=3x+1(Ⅰ)若函数处有极值,求的表达式;(Ⅱ)在(Ⅰ)的条件下,求函数在[-3,1]上的最大值;(Ⅲ)若函数在区间[-2,1]上单调递增,求实数b的取值范围解:(1)由过的切线方程为:而过故由①②③得a=2,b=-4,c=5(2)当又在[-3,1]上最大值是13。
(3)y=f(x)在[-2,1]上单调递增,又由①知2a+b=0。
依题意在[-2,1]上恒有0,即①当;②当;③当综上所述,参数b的取值范围是教师范读的是阅读教学中不可缺少的部分,我常采用范读,让幼儿学习、模仿。
如领读,我读一句,让幼儿读一句,边读边记;第二通读,我大声读,我大声读,幼儿小声读,边学边仿;第三赏读,我借用录好配朗读磁带,一边放录音,一边幼儿反复倾听,在反复倾听中体验、品味。
导数专题 高考数学复习思维导图
单
(3)讨论完毕须写综述.
概述
调
定义域为R,导函数的零点有无意义,
性
有分一类,无分一类
一
中
例如对数真数要大于0(主要定义域的求解原则) 根
分
定义域非R为D,导函数的零点在不在定义域D内,
类
在分一类,不在分一类
定义域为R,导函数两个零点的大小关系: 等于,大于,小于
题
讨
型
论
定义域非R为D,导函数的两个零点在不在
函数恰好有三个不同的单调区间---导函数有两个零点 函数有两个不同的单调区间--导函数有一个零点
非单调 函数求 参数
①二次项系数讨论; ②导函数有无零点的讨论(或零点有无意义) ③导函数的零点在不在定义域内的讨论 ④导函数多个零点时大小的讨论
分类 讨论 点依据
(1)讨论分“依据”四个方面
解题
(2)讨论时要根据上面四种情况,找准参数讨论的分类 过程
两
定义域D内,两个零点的大小关系:等于、大于、小于 根
不能因式分解的一元二次导函数, 用求根公式,利用判别式进行分类讨论
若函数f (x)在[a,b]上单调递增或递减,
则f (a)与f (b)一个为最大值,一个为最小值
闭区间
最
若函数f (x)在区间(a,b)内有极值,先求出函数f (x)在区间
求最值
值
单调区间
利
用
导
数
求
单调
函
函数
数
函数在某个区间存在单调区间可转化为不等式有解问题 求参
单
数
调
方法二:利用集合间的包含关系处理
性
y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子
专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题
用思维导图突破导数压轴题解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影. 把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。
中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。
专题01 导数与函数的最(极)值问题利用导数求函数f (x )极值、最值的基本方法是先求f (x )的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。
先求导数 再定零点 考查单调极值来了思路点拨第(1)只要直接计算即可。
第(2)题先求出()f x 和()f x '的含参数零点(用a 、b 表示),再根据零点均在集合{3-,1,3}中确定a 、b 的值。
第(3)题求出()f x '的零点12,x x (设12x x <),根据单调性确定极大值为321111()(1)=-++f x x b x bx ,这里含有两个变量,最容易想到的方法就是转化为一元变量,但恒等变形能力要求较高,也可以挖掘隐含条件利用基本不等式整体消元。
第(3)解题思维导图如下:.(2)a b ≠,b c =,设2()()()f x x a x b =--, 令2()()()0f x x a x b =--=,解得x a =,或x b =.又2()()2()()()(32)f x x b x a x b x b x b a '=-+--=---,令()0f x '=,解得x b =,或23a bx +=. 因为()f x 和()f x '的零点均在集合{3A =-,1,3}中,所以3a =-,1b =,则2615333a b A +-+==-∉,舍去; 1a =,3b =-,则2231333a b A +-==-∉,舍去; 3a =-,3b =,则263133a b A +-+==-∉,舍去; 3a =,3b =-,则263133a b A +-==∈; 3a =,1b =,则2617333a b A ++==∉,舍去; 1a =,3b =,则2533a b A +=∉,舍去.因此3a =,3b =-,213a bA +=∈,从而2()(3)(3)f x x x =-+,()3[(3)](1)f x x x '=---, 令()0f 'x =,得3x =-或1x =.列表如下:从而可知,()f x 的单调递增区间为(−∞,−3]和[1,+∞),单调递减区间为[−3,1],由此可知当1x =时,函数()f x 取得极小值,2(1)2432f =-⨯=-.(3)证明:0a =,01b <„,1c =,()()(1)f x x x b x =--,则2()()(1)(1)()3(22)f x x b x x x x x b x b x b '=--+-+-=-++.因为△22214(1)124444()332b b b b b =+-=-+=-+…,所以()0f x '=有两实根12,x x ,设12x x <,则()f x 单调递增区间为(−∞,1x ]和[2x ,+∞),单调递减区间为12[,]x x ,于是()f x 取得极大值为1111()()(1)M f x x x b x ==--。
高中数学知识框架思维导图(整理版)
柯西不等式
第四部分
位置关系
截距
解析几何
斜率公式、倾斜角的变化与斜率的变化: = tan , =
倾斜角和斜率
重合
A1B2-A2B1=0,C1B2-C2B1=0
平行
A1B2-A2B1=0,C1B2-C2B1≠0
相交
A1B2-A2B1≠0
垂直
直线的方程
z 的几何意义:
过可行域内一点(, )
向直线 = , = 作
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
对称性
y=Asin(x+)+b
化简、求值、
证明(恒等变形)
)
值域
图象
对称轴(正切函数除外)经过函数图象
的最高(或低)点且垂直 x 轴的直线,
对称中心是正余弦函数图象的零点,正
切函数的对称中心为( ,0)(k∈Z).
最值
2
①图象可由正弦曲线经过平移、伸缩得到,但要注意先平移后伸缩与先伸缩后平移不同;
2.
3.
分组求和法
2
=
1
−
−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1
2+1 −1
导数常见题型与解题方法总结
导数常见题型与解题方法总结导数题型总结:1.分离变量:在使用分离变量时,需要特别注意是否需要分类讨论(大于0,等于0,小于0)。
2.变更主元:已知谁的范围就把谁作为主元。
3.根分布。
4.判别式法:结合图像分析。
5.二次函数区间最值求法:(1)对称轴(重视单调区间)与定义域的关系;(2)端点处和顶点是最值所在。
基础题型:此类问题提倡按以下三个步骤进行解决:1.令f'(x)=0,得到两个根。
2.画两图或列表。
3.由图表可知。
另外,变更主元(即关于某字母的一次函数)时,已知谁的范围就把谁作为主元。
例1:设函数y=f(x)在区间D上的导数为f'(x),f'(x)在区间D上的导数为g(x),若在区间D上,g(x)<___成立,则称函数y=f(x)在区间D上为“凸函数”。
已知实数m是常数,f(x)=(-x^4+mx^3+3x^2)/62.1.若y=f(x)在区间[0,3]上为“凸函数”,求m的取值范围。
解法一:从二次函数的区间最值入手,等价于g(x)<0在[0,3]上恒成立,即g(0)<0且g(3)<0.因此,得到不等式组-3<m<2.解法二:分离变量法。
当x=0或x=3时,g(x)=-3<0.因此,对于0≤x≤3,g(x)<___成立。
根据分离变量法,得到不等式组-3<m<2.2.若对满足m≤2的任何一个实数m,函数f(x)在区间(a,b)上都为“凸函数”,求b-a的最大值。
由f(x)=(-x^4+mx^3+3x^2)/62得到f'(x)=(-4x^3+3mx^2+6x)/62,f''(x)=(-12x^2+6mx+6)/62.因为f(x)在区间(a,b)上为“凸函数”,所以f''(x)>0在(a,b)___成立。
因此,得到不等式组a≤x≤b和-12a^2+6ma+6>0,即a≤x≤b且m≤2或a≤x≤b且m≥1/2.由于m≤2,所以a≤x≤b且m≤2.根据变更主元法,将F(m)=mx-x^2+3视为关于m的一次函数最值问题,得到不等式组F(-2)>0和F(2)>0,即-2x-x^2+3>0且2x-x^2+3>0.解得-1<x<1.因此,b-a=2.Ⅲ)由题意可得,对任意x∈[1,4],有f(x)≤g(x)代入g(x)得:x3+(t-6)x2-(t+1)x+3≥x3+(t-6)x2/2化___:x2(t-7/2)-x(t+1/2)+3≥0由于对于任意x∈[1,4],不等式都成立,所以判别式≤0:t+1/2)2-4×3×(t-7/2)≤0化___:t2-10t+19≤0解得:1≤___≤9综上所述,a=-3,b=1/2,f(x)的值域为[-4,16],t的取值范围为1≤t≤9.单调增区间为:$(-\infty,-1),(a-1,+\infty)$和$(-1,a-1)$。
高考压轴题:导数题型及解题方法归纳
高考压轴题:导数题型及解题方法一.切线问题题型1 求曲线)(x f y =在0x x =处的切线方程。
方法:)(0x f '为在0x x =处的切线的斜率。
题型2 过点),(b a 的直线与曲线)(x f y =的相切问题。
方法:设曲线)(x f y =的切点))(,(00x f x ,由b x f x f a x -='-)()()(000求出0x ,进而解决相关问题。
注意:曲线在某点处的切线若有则只有一,曲线过某点的切线往往不止一条。
例 已知函数f (x )=x 3﹣3x .(1)求曲线y=f (x )在点x=2处的切线方程;(答案:0169=--y x )(2)若过点A )2)(,1(-≠m m A 可作曲线)(x f y =的三条切线,求实数m 的取值范围、 (提示:设曲线)(x f y =上的切点()(,00x f x );建立)(,00x f x 的等式关系。
将问题转化为关于m x ,0的方程有三个不同实数根问题。
(答案:m 的范围是()2,3--)练习 1. 已知曲线x x y 33-=(1)求过点(1,-3)与曲线x x y 33-=相切的直线方程。
答案:(03=+y x 或027415=--y x )(2)证明:过点(-2,5)与曲线x x y 33-=相切的直线有三条。
2.若直线0122=--+e y x e 与曲线x ae y -=1相切,求a 的值. (答案:1)题型3 求两个曲线)(x f y =、)(x g y =的公切线。
方法:设曲线)(x f y =、)(x g y =的切点分别为()(,11x f x )。
()(,22x f x );进而求出切线方程。
解决问题的方法是设切点,用导数求斜率,建立等式关系。
例 求曲线2x y =与曲线x e y ln 2=的公切线方程。
(答案02=--e y x e )练习 1.求曲线2x y =与曲线2)1(--=x y 的公切线方程。
高中数学知识框架思维导图(整理版)
点斜式:y-y0=k(x-x0)
注意:截距可正、
可负,也可为 0.
2 −1
注意各种形式的转化和运用范围.
x y
截距式: + =1
a b
两直线的交点
距离
一般式:Ax+By+C=0
两点间的距离公式|1 2 | = √(1 − 2 )2 + (1 − 2 )2 .
2.
3.
分组求和法
2
=
1
−
−1)(2+1 −1)
2 −1
+1
1 1
1
= (
2 (+2)2
(−1) ∙4
4 2
(2−1)(2+1)
1ቤተ መጻሕፍቲ ባይዱ
2+1 −1
− (+2)2 )
= (−1) (
1
2−1
+
错位相加法: = ( + )−1 → = ( + ) −
复合函数
函数与方程
2
二次函数、基本不等式、双勾函数、三角函
数有界性、数形结合、单调性、导数.
基本初等函数
分段函数
, )
零点
求根法、二分法、图象法、二次及三次方程根的分布
建立函数模型
平移变换: = () → = ( ± ), = () → = () ± ,, > 0
与 的关系
1 ,
= 1,
= {
− −1 , ≥ 2.
构造等差数列
an+1 p an
= · +1 转为③
qn q qn-1
⑤an + 1=pan+qn
2020年高考数学复习思维导图(人教版)02——函数
基本不等式实际是对勾函数的特例,可以考虑利用对勾实际应用题考虑解析式有意义且考虑实际问题有意义
解析式表示的斜率、截距、距离等几何意义一般适用含有绝对值的函数
6种基本函数及其加减形式
形如f[g(x)]
确定函数的定义域.
将复合函数分解成基本初等函数y =f(u),u =g(x).分别确定这两个函数的单调区间.如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,对称轴是两个横坐标的中点
对称中心为函数对称两点的中点,可以利用中点坐标
如果一个奇函数f(x)在原点处有定义,即f(0)有意义,那么一定有奇偶性的判断利用奇偶性求解析式公
众
么
难。
专题02 导数与函数、不等式(精讲篇)-用思维导图突破导数压轴题
用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者特级教师文卫星专题02 导数与函数、不等式导数与函数、不等式综合题是近年高考试题的一个热点,往往是在运用导数知识以后,由不等式提升试题难度。
证明不等式f x g x ≥()()一般是作h(x )f x g x =-()(),通过对h x ()求导,求出h x ()的最小值大于或大于0,;证明不等式f x g x <()()成立的方法类似。
如果要证明的不等式中含有参数,需要分类讨论,才能确定单调性,就要根据题设条件确定恰当的分类标准。
如果要求参数的范围,在得到相关不等式后可以分离变量,也可能需要构造新函数,找出参数满足的条件,才能求出参数的范围。
作差求导 判断单调 求出极值思路点拨第(1)题由或解出相应的x 的范围即可确定单调区间。
第(2)题记不等式左边为,证明指定区间上函数值非负,理想状态是在该区间单调,且最小值为0。
第(3)题利用第(2)结论,由,得'()0f x >'()0f x <()h x ()h x ()h x ππ2,2π42n x n n π∈++(),记,那么 ,由(2)可得由(2)知,,有两条路径:一条是通过分解、变形、代换、放缩等化归为熟悉的基本的函数单调性问题(解1-解3);另一条是把变量n 转化成x n ,构造函数,回归导数基本运算,借助研究定义域内函数单调性的变化,转化为最值问题(解4)。
思维导图如下:满分解答解(1)由已知,有()e (cos sin )xf 'x x x =-, 当52,244x k k ππ⎛⎫∈π+π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x >,得()0f 'x <,则()f x 单调递减;当32,244x k k ππ⎛⎫∈π-π+ ⎪⎝⎭()k ∈Z 时,有sin cos x x <,得()0f 'x >,则()f x 单调递增.所以,()f x 的单调递增区间为32,2(),()44k k k f x ππ⎡⎤π-π+∈⎢⎥⎣⎦Z 的单调递减区间为52,2()44k k k ππ⎡⎤π+π+∈⎢⎥⎣⎦Z . ππ2,2π42n x n n π∈++()2n n y x π=-(,)42n y ππ∈π()()()02n n n f y g y y +-≥(2)证明:记()()()2h x f x g x x π⎛⎫=+-⎪⎝⎭.函数定义域为,依题意及(Ⅰ),有()e (cos sin )xg x x x =-,从而()2e sin xg'x x =-. 当,42x ππ⎛⎫∈⎪⎝⎭时,0()g'x <,故 ()()()()(1)()022h'x f 'x g'x x g x g'x x ππ⎛⎫⎛⎫=+-+-=-< ⎪ ⎪⎝⎭⎝⎭.因此,()h x 在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递减,进而()022h x h f ππ⎛⎫⎛⎫≥== ⎪ ⎪⎝⎭⎝⎭.所以,当,42x ππ⎡⎤∈⎢⎥⎣⎦时,()()02f x g x x π⎛⎫+-≥ ⎪⎝⎭. (3)思路一:借助前问巧带入,不等证明化函数观察到本问与第二问结构类似,范围类似,充分利用前问,对一个非基本问题通过分解、变形、代换、放缩等多种方式,化归为熟悉的基本的函数单调性问题,从而得到解答.解1 依题意,()()10n n u x f x =-=,即cos e 1n xn x =.记2n n y x n =-π,则,42n y ππ⎛⎫∈ ⎪⎝⎭,且22()cos cos(2)()n n y x n n n n n f y e y e x n e n N πππ--==-=∈.由()()20e1n n f y f y -π==≤及(Ⅰ),得0n y y ≥即024ππ>≥>n y y .令函数()sin cos ()42m x x x x ππ=-<<,()cos sin 0m x x x '=+>,所以()m x 在,42ππ⎡⎤⎢⎥⎣⎦上为增函数,所以0)()(()04π≥>=n m m y y m ,故 ()()()()()()22222200000=2sin cos sin co e e e e e s en n n n n n y n n n n n n n f y y g y g y e m y m y m y y y x x -π-π-π-π-π-ππ--=-<⋅≤==-≤-所以,20022sin c s e o n n n x x x -πππ+-<-.解2 依题意,()()10n n u x f x =-=,即cos e 1n xn x =,即c eos nx n x -=,,42ππ⎡⎤⎢⎥⎣⎦因为(2,2)42n x n n ππππ∈++,所以2(,)42n x n πππ-∈, 由(2)知(2)(2)(2)02n n n f x n g x n x n ππππ-+--+≥,所以[]22cos(2)cos(2)sin(2)(2)02n n x n x n n n n n e x n e x n x n x n πππππππ---+----+≥,所以cos (cos sin )(2)02n n n n x x x x n ππ+--+≥,因为(2,2)42n x n n ππππ∈++,所以cos sin n n x x <,又cos n x n e x -=, 上式可化为22sin cos nx n n ne x n x x ππ--+≤-,只需证200sin cos sin cos n x n n n e e x x x x π--<--, 因为2n x n π>,所以20nx n ee π--<<,下面只需证明00sin cos sin cos n n x x x x -≥-. 令()sin cos ()42m x x x x ππ=-<<,只需证明0(2)()n m x n m x π-≥,因为()cos sin 0m x x x '=+>,所以()m x 在(,)42ππ上单调递增 因为0n x x ≥,所以0nx x e e --≤,则0cos cos n x x ≤,则0cos(2)cos n x n x π-≤,因为cos x 在(,)42ππ内单调递减,所以0242n x x n πππ<≤-<, (或者:因为20(2)1()n n f x n ef x ππ--=≤=,且()f x 在(,)42ππ单调递增,所以0242n x x n πππ<≤-<),所以0(2)()n m x n m x π-≥所以原式得证.解3(前一部分与解法二相同,省略)只需证200sin cos sin cos n x n n n e e x x x x π--<-- 令函数1()(22)(sin cos )42=+<<+-x k x n x n e x x ππππ, 所以22sin ()(22)(sin cos )42x x k x n x n e x x ππππ-'=+<<+-,显然()0k x '<,则函数()k x 在(2,2)42n n ππππ++单调递减, 只需证2001()(sin cos )n n k x e x x π<-,因为00222000(2)cos(2)cos 1()x n x n n n f x n e x n e x e e f x πππππ++=⋅+=⋅=≥=,其中0,(2,2)42n x x n n ππππ∈++, 且由(Ⅰ)知()f x 在(2,2)42n n ππππ++内单调递减,所以022242n n x n x n πππππ+<+≤<+,所以002001()(2)(sin cos )n x n k x k x n e x x ππ+≤+=-0220000(sin cos )sin cos n n x e e e x x x x ππ--=<--, 所以原式得证.(解3中不等式左侧也可以构造成1()n g x -,利用函数()n g x 解题,方法雷同,不再赘述)思路二:不等证明法若干,差值函数要优先仿照第二问的证明方法,但是本问难在变量不统一,既有n 又有n x ,需要将它们化成同一变量,通过自变量的改变,构造函数,回归导数基本运算,借助研究定义域内函数单调性的变化,转化为最值问题,达到证明不等式的目的.解4 记2n n y x n =-π,则,42n y ππ⎛⎫∈⎪⎝⎭, 因为()()10n n u x f x =-=,即cos 1e ,=n xn x . 所以2cos(21e)n y n n y n ππ++=,所以2e cos n y n n y π--=要证20022sin c s e o n n n x x x -πππ+-<-,只需证00co 2sin cos s π-<-n n n y e y y x x ,显然有1n n x x +>12(1)2n n y n y n ππ+++>+即,所以12(1)2n n y n y n e e ππ+--+-->,即1cos cos n n y y +<,因为42n y ππ⎛⎫∈⎪⎝⎭,,所以1n n y y +>则{}n y 关于n 单调递增,所以0,)2n y x π⎡∈⎢⎣.(或者用第一问结论,进行如下证明:1112(1)2(1)11()cos n n n y y y n n n n f y e y e e e ππ+++--+-+++=⋅==,所以2()n n f y e π-=,因为21()1()n n f y e f y π-+=<,且()0n f y >,所以1()()n n f y f y +<,由(1)知,()f x 在,42ππ⎡⎤⎢⎥⎣⎦内单调递减,所以1n n y y +>, 所以{}n y 关于n 单调递增,所以0,)2n y x π⎡∈⎢⎣)记000cos ,)sin cos 2()2,x ππ=--⎡∈⎢-⎣x e x x x x x h x ,只需证0,)2()0x 时,π⎡∈⎢⎣<h x x ,因为00,42x y ππ⎛⎫=∈⎪⎝⎭,所以()000sin cos )0,14x x x π-=-∈,所以0000sin cos )2sin 0sin cos sin co (()s )xx e x x e xx x x h x x h x ->--'''==(-1,,所以()x h '在⎪⎭⎫⎢⎣⎡20π,x 内单调递增,所以00()()=10xh x h x e ''≥->,所以()x h 在⎪⎭⎫⎢⎣⎡20π,x 内单调递增,即()()=02h x h π<.所以原式得证.思路三:中学数学较难题,高等数学解悬疑以高等数学背景为指导,以函数图像为直观,充分考察了学生直观想象的数学核心素养.教学过程中我们可以适当给学生介绍拉格朗日中值定理、洛必达法则等高等数学内容,内容虽然超纲,但本质大都可以用高中生已有的知识来介绍清楚,可以试着在这些高观点和思想的指导下用高中阶段的知识完成解题.解5 构造函数)(221)()(n n x x x n x u x F --+--=ππ,(,2)2n x x n ππ∈+ ,则0)(=n x F ,0)22(=+ππn F ,1()()22nF x u x n x ππ-''=-+-,()()=()2sin 0'''''==-<x F x u x g x e x所以()F x '在(,2)2n x n ππ+单调递减,假设()0n F x '≤,则()0n F x '≤在)22,(ππ+n x n 内恒成立,则)()22(n x F n F <+ππ, 与()(2)02n F x F n ππ=+=矛盾,所以假设错误,所以()0n F x '>,假设(2)02F n ππ'+≥,则()0n F x '≥在 )22,(ππ+n x n 内恒成立,则)()22(n x F n F >+ππ,与()(2)02n F x F n ππ=+=矛盾, 所以假设错误,所以0)22('<+ππn F ,由零点存在性定理,在)22,(ππ+n x n 内存在ξ,使0)('=ξF ,即n x n u -+-=221)('ππξ.所以'122()n n x u ππξ+-=-, 要证明002cos sin 22x x e x n n n -<-+-πππ只需证)cos (sin )(002'x x e u n ->-πξ,因为'()()(cos sin )xu x g x e x x ==-在区间(,2)2ππ+n x n 内递减,所以''()()n u u x ξ<,即)cos (sin )cos (sin )(2'n n n n n xx x e x x e u n ->->-πξ,只需证明00cos sin cos sin x x x x n n -≥-:以下与解法二相同,省略.本题在命题上环环相扣,逻辑清晰,解法中灵活构造别具一格,呈现数学思维之美.考查学生的运算能力、直观意识,分类讨论,转化化归,数形结合思想,具有很好的区分度与选拔性.思路点拨(1)讨论()f x 的单调性,就是要比较)('x f 与0的大小。
专题04 导数与切线(精讲篇)-用思维导图突破导数压轴题
用思维导图突破解导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者特级教师文卫星专题4 导数与切线函数在某点的导函数值就是过该点切线的斜率。
高考中切线问题多数年份出现在客观题和解答题第(1)题中,考查知识点相对单一,比较容易。
少数年份出现在解答题(2)、(3)题,往往与方程结合起来考查,难度较大,解题时要注意数形结合。
两个函数若相切 作差构造再求导 判断导数正负号 想方设法零点找思路点拨第(1)题只需求出()h x 的导函数,并令其为0,然后分区间讨论符号即可确定单调区间;第(2)先求各自的斜率,令其相等,化简即得;第(3)题分别求出两个函数的切线方程,若两个函数有公切线,则这两条切线表示同一条直线,通过待定系数法转化为二元方程引例(2018天津理科第20题)已知函数()xf x a =, ()log a g x x =,其中a >1.(1)求函数()()ln h x f x x a =-的单调区间;(2)若曲线()y f x =在点()()11,x f x 处的切线与曲线()y g x =在点()()22,x g x 处的切线平行,证明()122lnln ln ax g x a+=-; (3)证明当1ea e ≥时,存在直线l ,使l 是曲线()y f x =的切线,也是曲线()y g x =的切线.函数y =f (x )与y =g(x )图象相切构造函数h (x )=f (x )–g(x )根据具体问题,运用分析法确定区间[a ,b ](区间不唯一)判断在区间[a ,b ]上的正负,使h (a )h (b )<0组解的问题,通过消元将方程组化为一元方程.而方程是否有解问题可归结为连续函数的零点定理,即只要在区间上存在零点,其函数值异号即可.满分解答(1)由已知, ()xh x a xlna =-,有()-'=xh x a lna lna .令()0h x '=,解得x =0.由a >1,可知当x 变化时, ()h x ', ()h x 的变化情况如下表: x(),0-∞()0,+∞()h x ' -+()h x极小值所以函数()h x 的单调递减区间为(),0-∞,单调递增区间为()0,+∞.(3)由()xf x a lna '=,可得曲线()y f x =在点()()11,x f x 处的切线斜率为1x a lna .由()1g x xlna=',可得曲线()y g x =在点()()22,x g x 处的切线斜率为21x lna .若函数, 有公切线在点处的切线l 2:在点处的切线l 1:令,证明r (x )有零点因为这两条切线平行,故有121x a lna x lna=,即()1221x x a lna =. 两边取以a 为底的对数,得21220a log x x log lna ++=,所以()122lnlnax g x lna+=-. (3)曲线()y f x =在点11(,)xx a 处的切线l 1:111ln ()xxy a a a x x -=⋅-,曲线()y g x =在点22(,log )a x x 处的切线l 2:2221log ()ln a y x x x x a-=⋅-. 要证明当1ee a ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线,只需证明当1ee a ≥时,存在1(,)x ∈-∞+∞,2(0,)x ∈+∞,使得l 1和l 2重合.即只需证明当1e e a ≥时,方程组1112121ln ln 1ln log ln x x x a a a x a a x a a x a ⎧=⎪⎪⎨⎪-=-⎪⎩①②有解,由①有,代入②得.再由①有,故有③下面证明方程③有正实数解.令, 则()2ln ln 20r e a =--≤. 那么由连续零点定理可知, 只要找到一个,使得即可.又,而当时, 易得.当时,容易得到若,→0,那么只要控制的大小, 使得其值小于1即可.不妨通过控制,,这三部分的值, 达到使得其和小于1的效果. 如果把步子迈得大一点,令解得 ,令解得;但是解却不那么容易,不妨借助于与, 在满足这两个不等式的前提下,只要即可, 即.故若④则有, ,, 此时, 且, 所以对满足④的都有,所以方程在上必有根.当12lnln 0a +≤时,则12ln ln 0ln ln ax a x+-≥,前述证明仍然成立.所以,当1e e a ≥时,存在, 使得.从而,当1ee a ≥时,存在直线l ,使l 是曲线y =f(x)的切线,也是曲线()y g x =的切线.评注 本题的难点在于证明方程③有正实数解,为此构造函数()r x ,证明该函数在某个区间有解,其方法就是零点定理,关键是确定区间两个端点,其函数值异号.确定区间端点有时比较困难,因为端点不确定在哪里,需要自己根据条件进行估计判断,往往需要解超越不等式,为解此不等式就要做适当放缩,这无形中加大题目难度.本题的背景是函数xy a =与log a y x =交点个数,其结论为: (1) 时, 有3个交点; (2) 时, 有1个交点, 即为切点;(3) 时, 有1个交点; (4) 时, 有2个交点;(5)时, 有1个交点, 即为切点; (6)时, 没有交点.对于第(3)题而言,当时,与的图像相切, 切点处的切线是公切线, 不妨就取这条公切线; 当时,与的图像相离, 且凹凸性相异, 但它们存在一条公切线,就是这道考题.对方程组①、②也可以这样转化: 由①得()1221x x a lna =,代入②,得1111120x xlnlna a x a lna x lna lna-+++=. ③ 因此,只需证明当1ea e ≥时,关于x 1的方程③存在实数解.设函数()12xxlnlnau x a xa lna x lna lna=-+++,即要证明当1e a e ≥时,函数()y u x =存在零点.()()21x u x lna xa '=-,可知(),0x ∈-∞时, ()0u x '>;()0,x ∈+∞时, ()u x '单调递减,又()010u '=>, ()()212110lna u a lna ⎡⎤=-<⎢⎥⎥'⎢⎣⎦, 故存在唯一的x 0,且x 0>0,使得()00u x '=,即()02010x lna x a -=.由此可得()u x 在()0,x -∞上单调递增,在()0,x +∞上单调递减,()u x 在0x x =处取得极大值()0u x .因为1ea e ≥,故()1ln lna ≥-,所以()()000000201212220x x lnlna lnlna lnlna u x a x a lna x x lna lna lna lna x lna +=-+++=++≥≥. 下面证明存在实数t ,使得()0u t <.由(I )可得1x a xlna ≥+,当1x lna>时, 有()()()1211lnlnau x xlna xlna x lna lna≤+-+++()22121lnlna lna x x lna lna=-++++, 所以存在实数t ,使得()0u t < (在22()(ln )u x a x =-12ln ln 1ln ln a x a a ++++中,因为12ln ln 1ln ln aa a++是定值,22(ln )a x -非正,因此,总存在(,t ∈-∞+∞),使()0u t <)因此,当1ea e ≥时,存在()1,x ∈-∞+∞,使得()10u x =.所以,当1e a e ≥时,存在直线l ,使l 是曲线()yf x =的切线,也是曲线()yg x =的切线.思路点拨设()()111222,,,P x y P x y ,且1201x x <<<,则由于12,l l 分别是点12,P P 处的切线,因()1,01'1,1x xf x x x⎧-<<⎪⎪=⎨⎪>⎪⎩,,所以,1l 的斜率1k 为11x -,2l 的斜率2k 为21x .又1l 与2l 垂直,且120x x <<,可得:1112111k k x x ⋅=-⋅=-,121x x ⋅=. 由此可得:1l 的方程分别为:1l :()1111ln y x x x x =---, ① 2l 的方程分别为: 2l :()2221ln y x x x x =-+, ② 此时点A 的坐标为()10,1ln x -,B 的坐标为()20,1ln x -+,所以()12122ln ln 2ln 2AB x x x x =--=-⋅=.①、②两式联立可解得交点P 的横坐标为1212122ln 2x x x x x x x -==++,PAB ∆的面积为:1211112221122PAB x S AB P x x x x ∆=⋅=⨯⨯=≤++. 当且仅当111x x =,即11x =时等号成立,因101x <<,所以1PAB S ∆<,故选(A ).解1 设曲线()ln f x x x =+,曲线()g x 2ax =(2)1a x +++,由1()1f x x'=+求得曲线在点(1,1)处的切线斜率(1)2k f '== ,故切线方程:2l y x =1-,当0a =时,2(2)1y ax a x =+++为直线,不符合题意,当0a ≠时,设切线l 与曲线()g x 相切于点00(,)x y ,根据题意可列方程组0000()22221g x ax a y x '=++=⎧⎨=-⎩,解得00122x y ⎧=-⎪⎨⎪=-⎩,又00()y g x =,解得8a =. 解2 由11y x'=+求得曲线在点(1,1)处的切线斜率2k = ,故切线方程:21l y x =-,当0a =时,2(2)1y ax a x =+++为直线,不符合题意,当0a ≠时,由2(2)121y ax a x y x ⎧=+++⎨=-⎩得220ax ax ++=,依据0∆=解得8a =.解 (Ⅰ)由32()63(4)f x x x a a x b =---+,可得2()3123(4)f x x x a a '=---[]3()(4)x a x a =---。
专题01 导数与函数的最(极)值(精讲篇)-用思维导图突破导数压轴题
用思维导图突破导数压轴题《挑战压轴题•高中数学•精讲解读篇》(华东师大出版社第1-10版(2009-2019年))、《上海高考好题赏析》(浙江大学出版社2019年)、330多篇论文(文章)作者上海市特级教师文卫星解答数学题的“思维导图”:逛公园顺道看景,好风光驻足留影.把条件翻成图式,关键处深挖搞清. 综合法由因导果,分析法执果索因. 两方法嫁接联姻,让难题无以遁形.这里把解题比作逛公园,沿路而行,顺道看景,既有活跃气氛,又有借景喻理之意,即理解题意后把已知条件“翻译”出来,如果能得到结论那是最好,如果不行就要转化,即从已知条件入手推出中间结论(可知),当中间结论能直接证明最终结论时,则解题成功.当中间结论不能直接证明最终结论时,可把最终结论等价转化为“需知”,再用中间结论证明“需知”从而达到解题目的.有时还要挖掘题目的隐含条件.从某种意义上说,解题就是“找关系”----找出已知与未知的联系,不断缩小以至消除二者之间的差距,从而达到解题目的.这个思维导图不仅是用来解答压轴题,其实,每个层次的学生都有相应的难题。
中等以下水平的学生高考基本不用做压轴题的,但他们做中档题会有困难,思维导图一样适用。
专题01 导数与函数的最(极)值问题利用导数求函数f (x )极值、最值的基本方法是先求f (x )的导数f 'x (),再求f 'x ()的零点i x ,i N ∈,根据f 'x ()在i x 两边的符号判断的单调性,最后确定i f x ()是极大值或极小值,再确定最值。
先求导数 再定零点 考查单调 极值来了否已知条件隐含条件中间结论(可知)已知条件的等价转化待求(证)的结论结论的等价转化(需知)能否能引例(2019江苏卷第19题)设函数()()()()f x x a x b x c =---,a ,b ,c R ∈,()f x '为()f x 的导函数.(1)若a b c ==,f (4)8=,求a 的值;(2)若a b ≠,b c =,且()f x 和()f x '的零点均在集合{3-,1,3}中,求()f x 的极小值;(3)若0a =,01b <,1c =,且()f x 的极大值为M ,求证:427M .思路点拨第(1)只要直接计算即可。
高考高中数学压轴题思维导图精华版
4、极坐标{
极点在焦点(焦点弦题型,焦点弦的 6 个性质)
极点在坐标原点(过原点的两条垂直直线题型)
5、过原点的两条直线(设斜率为k1 、k2 ),若与 {
k1 + k 2
有关,将方程转化为 k 的二次方程。
k1 · k 2
y−b
x −a
②距离,如(x − a) 2 + (y − b) 2
①斜率,如
④直线:x = x0 + tcosα,y = y0 + tsinα
t 表示到定点(x0 ,y0)的方向距离
{
{ (x0 ,y0)上方,t > 0;(x0 ,y0)下方,t < 0,
3
二、方法储备: 8、曲线系
①与直线 Ax + By + C = 0 垂直的直线系方程为 By − Ax + C2 = 0
分析通项,即令 =( /−1 )·(−1 /−2 )···(2 /1)·1 ,
从而证明每一项 < /−1。
(一般可用归纳法)
2、证明1 + 2 + … … + < ,变式:证明1 +2 +⋯ … + < 。
分析通项,即令 =( —−1 )+(−1—−2)+···+(2—1)+1,
2、对 f(x)求导,对于压轴题一般求一次导不行,再进行求二阶导数、三阶导数等等。
3、①若 f(x)min 在 x=b(b>a)处取得,一般不用洛必达法则,直接代入 b 即可。
0
②若 f(x)min 在 x=a 处取得,但 x∈ (, +∞),并且产生 型极限,这时候就利用洛必
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数极值最值
和差型导函数 积商型导函数 指数e^x混合型 幂次x^n混合型
逆构造解不等式
求函数零点个数 求函数极值最值
抽象导函数问题பைடு நூலகம்
导数
恒成立求参
参变分离 分离函数 必要性探路 端点效应 分类讨论求最值 隐极值代换 双任意双存在问题
不等式证明
一元不等式证明
指对处理技巧 基本放缩 隐零点代换 凹凸反转
直线与曲线最短距离 对称曲线最短距离 公共切点 不同切点
在点切线 过点切线 距离最值
公切线问题
导数的几何意义
一次型
因式分解型 不能因式分解
二次型
二次求导
可以参变分离
几何意义 函数性质
不能参变分离
常见函数图像 含参讨论单调性 已知单调性求参
函数单调性
求函数极值最值 已知极值最值求参 极值最值范围问题
双重最值问题
二元不等式证明
主元法 同构法
齐次式法
极值点偏移问题 数列不等式证明
对称构造 比值代换\差值代换 对数均值\指数均值 切线构造
函数零点问题
求函数零点个数 已知零点个数求参
找点技巧