SATWE计算结果分析和调整方法

合集下载

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件satwe计算结果分析 (2)

结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析分析与设计参数定义一.总信息1.墙元细分最大控制长度:墙元细分时需要的一个参数,对于尺寸较大的剪力墙,小墙元的边长不得大于给定的限制Dmax,程序限定1.0≤Dmax≤5.0,隐含值Dmax=2.0,Dmax=2.0.对一般工程,Dmax=2.0对于框支剪力墙结构,Dmax=1.5或者1.02.对搜有楼层强制采用刚性楼板假定当计算结构位移比时,需要选择此项。

除了位移比计算,其他的结构分析,设计不应选择此项。

3.墙元侧向节点信息这是墙元刚度矩阵凝聚计算的一个控制参数,若选“出口”墙元的变形协调性好,分析结果符合剪力墙的实际,但计算量较大。

若选“内部”,这时带洞口的墙元两侧边中部的节点为变形不协调点,是对剪力墙的一种简化模拟,精度略逊于前者,但效率高,实用性好,计算量比前者少。

多层结构—(剪力墙较少,工程规模相对较小)选---出口高层结构—内部4.模拟施工加载3计算竖向力,采用分层刚度分层加载模型,与模拟施工加载1类似,只是在分层加载时去掉了没有用的刚度,使其更接近于施工过程。

计算恒载。

5.考虑偶然偏心如果考虑偶然偏心,程序将自动增加计算4个地震工况,分别是质心沿Y正、负向偏移5%的X地震和质心沿X正、负向偏移5%的Y 地震。

6.考虑双向地震作用若考虑,程序自动对X,Y的地震作用效应Sx,Sy进行修改。

Sx←sign(Sx)√Sx2+(0.85Sy)2Sy←sign(Sy)√Sy2+(0.85Sx)27.计算振型个数一般计算振型数应大于9 ,多塔结构多一些。

但是一个规则的两层结构,采用刚性楼板假定,每块刚性楼板只有三个有效动力自由度,整个结构共有6个有效动力自由度,系统自身只有6个特征值,最多取6个8.活荷质量折减系数计算重力荷载代表值时的活荷载组合值系数,缺省取值与荷载组合中的活荷载组合值系数相同(一般为0.5),如果用户需要,也可以自己修改。

9.周期折减系数为了充分考虑框架结构和框架-剪力墙结构的填充墙刚度对计算周期的影响。

satwe软件计算结果分析

satwe软件计算结果分析

SATWE软件计算结果分析SATWE软件是一款应用于聚合物防水材料的计算分析软件,它可以用于预测、计算和分析聚合物防水材料的性质、构造和使用寿命。

本文将从软件的特点、计算方法和计算结果分析三个方面来介绍SATWE软件的应用。

软件特点SATWE软件具有以下特点:多样化的防水材料计算支持SATWE软件可以用于计算多种类型的聚合物防水材料,比如SBS/SBR、HDPE、EVA、EPDM或TPO等。

用户可以选择不同的材料类型,并设置相应的参数来完成计算。

高质量的计算算法该软件采用专业的计算算法和数值模拟方法,可对防水材料进行多维度、多条件的计算和分析,可以预测聚合物材料的热稳定性、拉伸强度、耐磨性、耐老化性、抗紫外线性能等多项指标。

直观的用户界面软件提供了简单直观的用户界面,使操作者能够方便快捷地完成各项计算、设定参数等操作。

计算方法SATWE软件主要基于计算模拟方法来进行计算。

具体地,它采用封闭模型,根据材料的特性特性和使用状态,通过计算材料的物理、化学、力学和动态等指标,来预测和分析材料的性能和使用寿命。

以下是SATWE软件中主要的计算和模拟方法:星形连接模型星形连接模型是SATWE软件的主要计算模型之一,它主要用于分析聚合物防水材料的载荷分布、应变分布、剪切位移、热稳定性等性能。

星形连接模型的优点在于可以近似地模拟材料的本质特性,在一定的误差范围内预测材料的性能,并且可以应对复杂的工程设计情况和操作条件。

热 aging 模拟软件还提供了热 aging 模拟方法,该方法主要用于分析聚合物防水材料在高温环境下的热衰减运动。

通过模拟材料的热异质性、热膨胀系数、热导率等因素,来预测材料的热老化程度和使用寿命。

计算结果分析SATWE软件可以输出多种计算结果,包括各项物理性质的值、计算曲线、表格等。

根据输出结果可以做出如下分析:材料强度预测通过计算材料的拉伸强度、抗裂强度等指标,用户可以预测材料的强度和承重能力,从而更准确地评估材料的使用寿命和安全性。

SATWE计算详解

SATWE计算详解

SATWE计算详解1.SATWE简介SA TWE是采用空间有限元壳元模型计算分析剪力墙的软件,是目前国内外精度最高的计算方法。

SA TWE是专门为多、高层结构分析与设计而研制的空间组合结构有限元分析软件。

SA TWE的核心工作就是要解决剪力墙和楼板的模型化问题,尽可能地减小其模型化误差,使多、高层结构的简化分析模型尽可能地合理,更好地反映出结构的真实受力状态。

SA TWE所需的几何信息和荷载信息全部都从PMCAD建立的建筑模型中自动提取生成,并且由墙元和弹性楼板单元自动划分、多塔、错层信息自动生成功能,并妥善处置上下洞口任意排布弧墙等复杂情况,大大简化了用户操作。

这种计算模型对剪力墙洞口的空间布置无限制,允许上下层洞口不对齐,也适用于计算框支剪力墙转换层等复杂结构。

在壳元基础上凝聚而成的墙元可大大减少计算自由度,并成功地在微机上实现快速高精度计算。

SA TWE采用空间杆单元模拟梁、柱及支撑等杆件,用在壳元基础上凝聚而成的墙元模拟剪力墙。

墙元是专用于模拟多、高层结构中剪力墙的,对于尺寸较大或带洞口的剪力墙,按照子结构的基本思想,由程序自动进行细分,然后用静力凝聚原理将由于墙元的细分而增加的内部自由度消去,从而保证墙元的精度和有限的出口自由度。

这种墙元对剪力墙的洞口(仅考虑矩形洞)的大小及空间位置无限制,具有较好的适用性。

墙元不仅具有墙所在的平面内刚度,也有平面外刚度,可以较好地模拟工程中剪力墙的实际受力状态。

对于楼板,SA TWE给出了四种简化假定,即楼板整体平面内无限刚、分块无限刚、分块无限刚带弹性连接板带和弹性楼板。

在应用中,可根据工程实际情况和分析精度要求,选用其中的一种或几种简化假定。

SA TWE适用于高层和多层钢筋混凝土框架、框架—剪力墙、剪力墙结构,以及高层钢结构或钢—混凝土混合结构。

SA TWE考虑了多、高层建筑中多塔、错层、转换层及楼板局部开大洞等特殊结构形式。

SA TWE可完成建筑结构在恒、活、风、地震力作用下的内力分析、动力时程分析及荷载效应组合计算,可进行活载不利布置计算,并可将上部结构和地下室作为一个整体分析,对钢筋混凝土结构可完成截面配筋计算,对钢结构可作截面验算。

SATWE计算结果分析和调整方法

SATWE计算结果分析和调整方法

SATWE计算结果分析和调整方法SATWE(批判性阅读和写作能力测试)是SAT考试中的一个部分,旨在考察学生的批判性阅读和写作能力。

在SAT考试中,SATWE的分数是由两个评分员分别打分,然后将两个得分相加得到最终的分数。

SATWE的分数范围是0到24分,分数越高表示批判性阅读和写作能力越强。

对于SATWE的计算结果分析和调整方法,以下是一些建议和指导:1.理解SATWE的评分标准:了解SATWE的评分标准是非常重要的。

评分员会根据写作的内容、观点的准确性、文笔的流畅性和逻辑清晰性等方面给予评分。

这包括文章的结构、论证的逻辑性、篇章间的转换和观点的论证力等。

理解这些标准将帮助你理解为什么你得到了一些分数,以及如何改进你的写作能力。

2.分析评分结果:一旦你收到你的SATWE的评分结果,你应该仔细分析评分结果。

看看你在哪些方面得到了高分,以及在哪些方面需要改进。

这将帮助你更好地了解你的写作能力的优点和不足,并为接下来的备考提供指导。

3.寻求反馈和意见:如果可能的话,向评分员或老师寻求他们的意见和建议。

他们可以帮助你理解你的评分结果,并提供具体的改进方案。

这样的反馈是非常宝贵的,可以帮助你更好地了解如何提高你的写作能力。

4.制定备考计划:根据你的评分结果和反馈,制定一个备考计划。

确定你的写作弱点,并集中精力加以改进。

这可能包括加强你的阅读理解能力、提高写作技巧、扩展词汇量等。

确保你有明确的目标和时间表,这将帮助你更有效地准备。

5.练习和修正:练习是提高SATWE分数的关键。

通过写作练习题来锻炼你的写作能力,并根据批改反馈进行修正。

同时,也要多阅读各种类型的文章,提高阅读理解水平。

不断练习和修正是提高SATWE分数的有效途径。

6.寻求帮助:如果你觉得自己在准备SATWE时需要更多的帮助,不要犹豫寻求帮助。

你可以请教老师、辅导员或参加SAT写作课程。

他们可以提供专业的指导和支持,帮助你更好地准备。

7.坚持和信心:提高SATWE分数需要时间和努力,所以要保持坚持和信心。

SATWE参数设置(巨详细)分析

SATWE参数设置(巨详细)分析

SATWE参数设置重要提示:新版本PKPM系列软件对全部数据在存储、各模块之间的传输过程中,采用了新的加密、验证机制,如果您的工程计算结果数据产生异常,请首先核实您的模型数据在建立、传输以及协同合作修改的过程中,所有过程是否全部使用了PKPM正版软件!一、新版设计参数的技术条件新版本《砼规》、《高规》、《抗规》对设计参数有重大调整,本模块按最新规范要求进行了调整,“设计参数”对话框内多处内容(文字及含义)有重大变化,请核实以下设计参数的理解及取值是否正确。

1. 增加“考虑结构使用年限的活荷载调整系数Lγ”新版《高规》5.6.1条,增加了“考虑结构使用年限的活荷载调整系数Lγ”,本模块中“总信息”选项卡中此项为新增,默认值取“1.0”(按设计使用年限为50年取值,100年对应为1.1),取值可由用户自行设置,取值区间为[0,2]。

2. 新旧规范“混凝土保护层”概念有所不同新版《砼规》条文说明8.2.1第2条明确提出,计算混凝土保护层厚度方法:“不再以纵向受力钢筋的外缘,而以最外层钢筋(包括箍筋、构造筋、分布筋)的外缘计算混凝土保护层厚度”。

本模块采用新版《砼规》的概念取值,“梁、柱钢筋的砼保护层厚度”默认值均取20mm。

注意:打开旧版模型数据时,需要按《砼规》表8.2.1重新调整保护层厚度值,计算结果方可满足新规范要求。

3. 钢筋类别的增减新版《砼规》4.2.3条,增加500MPa级热轧带肋钢筋(该级钢筋分项系数取1.15)和300MPa 级钢筋,取消HPB235级钢筋,并增加了其它多种类别钢筋,修改了受拉、受剪、受扭、受冲切的多项钢筋强度限制规则。

为此,本模块增加了HPB300、HRBF335、HRBF400、HRB500、HRBF500共5种钢筋类别。

但仍保留了HPB235级钢筋,放在列表的最后,由用户指定。

注意:打开旧版模型数据时,或者新建工程数据时,如果用户执意选用HPB235级钢筋进行计算,配筋结果将不符合新版规范要求。

SATWE计算参数使用说明

SATWE计算参数使用说明

一、总信息
1、水平力与整体坐标的夹角
一般并不建议用户修改该参数,原因有三:①考虑该角度后, 输出结果的整个图形会旋转一个角度,会给识图带来不便; ②构件的配筋应按考虑该角度和不考虑该角度两次的计算 结果做包络设计;③旋转后的方向并不一定是用户所希望 的风荷载作用方向.综上所述,建议用户
将最不利地震作用方向角填到斜交抗侧力构件夹角栏,这样 程序可以自动按最不利工况进行包络设计.
一、总信息
11、结构材料信息
分为{钢筋混凝土结构}、{钢与砼混合结构}、{有填 充墙钢结构}和{无填充墙钢结构}共4个选项.选定结构 材料即确定结构设计的相关规范,如0.2Q砼结构或0.25Q 钢结构调整.型钢混凝土和钢管混凝土结构属于钢筋砼结构. 有填充墙钢结构}和{无填充墙钢结构}之分是为了计算 风荷载中的脉动系数ξ.根据荷规164页7.4.2-2式计算,这是 10版采用的方法.新版程序相应在风荷载信息增加了风载 作用下的阻尼比参数,其初始值由结构材料信息控制.
一、总信息
8、对所有楼层强制采用刚性楼板假定 位移比、周期比计算时选择该项
层刚度比计算,严格来说要采用刚性板假定. 对于有弹性楼板或板厚为0的工程,可计算两次, 第一次选择强制刚性楼板假定,确定薄弱层.第二次 将薄弱层号填入,按真实情况计算内力及配筋.如果 工程中无弹性楼板、无开洞、无越层错层,则默认 的楼板假定就是刚性楼板假定.
一、总信息
1、水平力与整体坐标的夹角
这个角度与结构的刚度与质量及其位置有关,对结构可能会 造成最不利的影响,在这个方向地震作用下,结构的变形及 部分结构构件内力可能会达到最大.
当用户输入一个非 0角度比如 25度后,结构沿顺时针方向 旋转相应角度即25度,但地震力、风荷载仍沿屏幕的X向和 Y向作用,竖向荷载不受影响

PKPM2024版SATWE计算结果分析

PKPM2024版SATWE计算结果分析

PKPM2024版SATWE计算结果分析SATWE(拼装结构自由度七杆架)是PKPM软件中的一种计算模块,用于分析和设计拼装结构。

而PKPM2024版则是PKPM软件的早期版本,其计算模块相对较简单。

本文将对PKPM2024版SATWE计算结果进行分析,并对其存在的问题进行讨论。

首先,需要明确SATWE计算模块的基本原理和应用范围。

SATWE是基于静力学原理,通过对各个杆件进行应力和变形计算,判断构件的稳定性,并进行极限承载力和刚度分析。

SATWE适用于开展拼装结构的结构分析、验算和设计。

在PKPM2024版中,SATWE计算模块的算法相对较为简单,仅考虑静力学原理,并未考虑材料的非线性特性和构件的几何非线性。

这导致计算结果存在一定的偏差,可能与实际情况存在较大差异。

另外,PKPM2024版SATWE计算模块对于拼装结构的复杂性和多样性处理能力较弱。

该版本中的计算模块主要针对简单和常见的拼装结构进行分析,对于非常规的结构形式和载荷情况处理能力有限。

这可能导致计算结果在一些情况下不准确或不适用。

此外,PKPM2024版SATWE计算模块在计算结果的输出和可视化方面也存在一些不足。

该版本的计算结果输出界面较为简单,仅提供了基本的计算参数和结果,缺乏对结果的详细解释和分析。

同时,该版本的可视化功能也较为有限,无法直观展示结构的应力、变形等信息。

为了克服上述问题,建议在进行拼装结构分析时,尽量使用更新版本的PKPM软件,如PKPM2024版或更高版本。

这些更新版本的软件在算法、计算能力和结果展示方面都有较大的改进和提升。

此外,使用其他专业的结构分析软件也是一个不错的选择,如ANSYS、ABAQUS等。

satwe软件计算结果分析

satwe软件计算结果分析

SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

SATWE参数取值及结果分析探讨之一

SATWE参数取值及结果分析探讨之一

SATWE参数取值及结果分析探讨之一总信息结构材料信息:钢砼结构;结构体系:框架-剪力墙结构竖向荷载计算信息: [模拟施工加载2],根据《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2]。

对于框剪结构或框筒结构,采用模拟算法2是比较合理的,可以避免剪力墙轴力远大于实际的不合情形。

风荷载计算信息:.选[计算风荷载]地震力计算信息:.选[计算水平地震力],《抗规》5.1.1条(强条)墙元细分最大控制长度(m)DMAX= 2.00.....一般工程取2.0。

是否对全楼强制采用刚性楼板假定是.............计算位移与层刚度比时选[是],《高规》5.1.5条;墙梁转换框架梁的控制跨高比(0为不转):5风荷载信息..........................................地面粗糙程度: B类..............有密集建筑群的城市市区选[C]类,乡村、乡镇、市郊等选[B]类,详《荷规》7.2.1条地震信息............................................结构规则性信息:不规则.《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联],规则结构用[非耦联]补充验算计算振型数: NMODE=15.....《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;参见《手册》;[耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,参与计算振型的[有效质量系数]应≥90%地震烈度: NAF = 7.00.....《抗规》1.0.4条,1.0.5条,3.2.4条,附录A场地类别: KD = 3....《抗规》4.1.6条表4.1.6(强条);见地勘报告设计地震分组:一组........《抗规》3.2.4条,附录A特征周期TG = 0.45.....II类场地一、二、三组分别取0.35s、0.40s、0.45s,《抗规》3.2.3条,5.1.4条表5.1.4-2剪力墙的抗震等级: NW = 2.....7度框剪取2,《抗规》6.1.2条表6.1.2(强条)活荷质量折减系数: RMC = 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数周期折减系数: TC = 0.70.....框架砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;《高规》3.3.8条是否考虑偶然偏心:是........单向地震力计算时选[是],单向地震作用计算时,应考虑质量偶然偏心的影响;《高规》3.3.3条;参见《手册》;是否考虑双向地震作用:否........一般工程选[否],此时考虑上条[偶然偏心];“质量与刚度分布明显不均匀不对称”《高规》3.3.2条2款(强条)调整信息........................................中梁刚度增大系数:BK = 2.00......《高规》5.2.2条;装配式楼板取1.0;现浇楼板取值1.3-2.0,一般取2.0梁端弯矩调幅系数:BT = 0.85......主梁弯矩调幅,《高规》5.2.3条;现浇框架梁0.8-0.9;装配整体式框架梁0.7-0.8连梁刚度折减系数:BLZ = 0.70......一般工程取0.7,位移由风载控制时取≥0.8;《抗规》6.2.13条2款,《高规》5.2.1条梁扭矩折减系数:TB = 0.40......现浇楼板(刚性假定)取值0.4-1.0,一般取0.4;现浇楼板(弹性楼板)取1.0;《高规》5.2.4条0.2Qo调整起始层号:KQ1 = 2.....用于框剪(抗震设计时);参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条0.2Qo调整终止层号:KQ2 =19是否按抗震规范5.2.5调整楼层地震力:是.....用于调整剪重比,《抗规》5.2.5条(强条)设计信息........................................梁柱重叠部分简化:不作为刚域........一般不简化,《高规》5.3.4条,参见《手册》是否考虑P-Delt效应:否................一般不考虑;《砼规》5.2.2条3款,7.3.12条;《抗规》3.6.3条;《高规》5.4.1条,5.4.2条柱配筋计算原则:按单偏压计算......宜按[单偏压]计算;角柱、异形柱按[双偏压]验算;可按特殊构件定义角柱,程序自动按[双偏压]计算是否按砼规范(7.3.11-3)计算砼柱计算长度系数:否...一般工程选[否],详见《砼规》7.3.11条3款,水平力设计弯矩占总设计弯矩75%以上时选[是]2.结果文本显示的分析与讨论SATWE数据的前期处理完毕,进行数据检查,最后内力配筋计算。

刚心计算和SATWE存在差异的分析

刚心计算和SATWE存在差异的分析

刚心计算和SATWE存在差异的分析一、用户问题邮件19905,该工程刚心计算结果SATWE和YJK差别大?以第5层为例说明,本例差别主要在Y方向的刚心,SATWE计算的刚心Ys=2.92,而YJK计算的刚心Ys=5.44。

二、计算结果分析1、平面上方长墙多从平面墙的布置分析,在平面上方和下方对比,平面上方布置了2片较长的剪力墙,长墙的刚度比短墙大得多,因此刚心应该偏向平面上方,YJK的Ys计算值更加合理。

2、YJK与PMSAP结果相同用同属于PKPM的PMSAP计算该工程,得到的该层刚心计算结果见下图,PMSAP的刚心Ys=5.3,和YJK的计算结果基本相同,和SA TWE相差甚远。

3、YJK与Etabs结果相同将模型转入ETABS后计算的刚心位置为XCR=24.672m,YCR=5.235m。

三、SATWE在刚心计算中存在的问题SATWE计算层刚度的方法是将所有竖向构件,包括柱、墙、斜杆的抗侧力刚度叠加,他没有考虑竖向构件在平面的位置影响,也不考虑梁、板构件刚度的影响。

SATWE计算高位转换层刚度的方法与计算刚心的算法相同,下面以一个简单高位转换层为例分析SATWE的刚度计算方法。

1、不考虑竖向构件的平面位置如上图转换层上下各1个标准层,柱、梁尺寸相同,仅平面位置不同,SATWE计算结果是上下层刚度相同,刚度比为1,而YJK计算的刚度比为0.5。

2、不考虑梁、板刚度的影响假设对该转换梁例的下层的梁高度由500改为800,这样下部刚度变大,但是SA TWE计算的上下层刚度比仍旧为1,也就是说,梁的刚度对层刚度没有影响,而YJK可以正确反映梁的刚度变化。

3、柱被打断成几段时SATWE将柱的刚度叠加当柱被层间梁打断,或者边框柱被墙的中间节点打断时,该柱在计算模型中形成几段柱,此时SA TWE 对该柱的刚度计算随着按打断的数量叠加。

假设将该转换梁例的上部楼层中间增加一个50*50层间梁将柱子分成两段,SATWE的上层刚度增加到4倍,而YJK的上层刚度基本没有变化。

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析

结构设计pkpm软件SATWE计算结果分析SATWE软件计算结果分析一、位移比、层间位移比控制规范条文:新高规的4.3.5条规定,楼层竖向构件的最大水平位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建筑,不应大于该楼层平均值的1.4倍。

高规4.6.3条规定,高度不大于150m的高层建筑,其楼层层间最大位移与层间之比(即最大层间位移角)Δu/h应满足以下要求:结构休系Δu/h限值框架 1/550框架-剪力墙,框架-核心筒 1/800筒中筒,剪力墙 1/1000框支层 1/1000名词释义:(1)位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

(2)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

SATWE软件计算结果分析

SATWE软件计算结果分析
ห้องสมุดไป่ตู้
有效质量系数90% 有效质量系数90%
《高规》5.1.13-2条规定,抗震计算时,宜考虑平扭 高规》5.1.13藕联计算结构的扭转效应,振型数不宜小于15,对多塔结 藕联计算结构的扭转效应,振型数不宜小于15,对多塔结 构的振型数不应小于塔楼的9 构的振型数不应小于塔楼的9倍,且计算振型数应使振型 参与质量不小于总质量的90% 参与质量不小于总质量的90% 振型的数量,取值太小不能正确反映模型应当考虑的 振型数量,使计算结果失真;取值太大,浪费时间;同时 最大值不能超过结构的总自由度数(对采用刚性板假定的 单塔结构,其振型不得超过结构层数的3 单塔结构,其振型不得超过结构层数的3倍 )。
风荷载, 风荷载,双向地震 作用( 作用(不考虑偶然 偏心) 偏心)
=== 工况 4 === Y 双向地震作用下的楼层最大位移 Floor Tower Jmax Max-(Y) Ave-(Y) Ratio-(Y) MaxAveRatioh JmaxD Max-Dy MaxAve-Dy Ratio-Dy Max-Dy/h DyR/Dy AveRatioMax7 1 1029 10.10 9.90 1.02 3600. 1030 0.85 0.82 1.03 1/4248. 42.9% 0.83 6 1 1008 9.48 9.30 1.02 3600. 1008 1.22 1.18 1.03 1/2957. 15.8% 1.19 5 1 897 8.43 8.28 1.02 3600. 897 1.40 1.37 1.02 1/2571. 28.8% 1.21 4 1 717 7.14 7.01 1.02 3600. 717 1.80 1.77 1.02 1/2004. 17.9% 1.31 3 1 542 5.40 5.30 1.02 3600. 547 2.12 2.09 1.02 1/1699. 2.3% 1.21 2 1 367 3.30 3.23 1.02 3600. 367 2.17 2.14 1.02 1/1656. 48.3% 1.02 1 1 197 1.13 1.10 1.03 3600. 197 1.13 1.10 1.03 1/3194. 99.0% 0.46 Y方向最大值层间位移角: 方向最大值层间位移角: 1/1656.

SATWE计算结果分析和调整方法要点

SATWE计算结果分析和调整方法要点

SATWE软件计算结果分析一、位移比1.位移规范条文:新高规3.4.5规定:结构平面布置应减少扭转的影响。

在考虑偶然偏心影响的规定水平地震力作用下,楼层竖向构件最大的水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑、超过A级高度的混合结构及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。

基本概念:位移比包含两项内容(1)楼层竖向构件的最大水平位移与平均水平位移的比值;(2)楼层竖向构件的最大层间位移与平均层间位移的比值;计算位移比仅考虑墙顶,柱顶等竖向构件上节点的最大位移,不考虑其他节点的位移。

位移比可以用结构刚心与质心的相对位置(偏心率)表示,二者相距较远的结构在地震作用下扭转效应较大,位移比是控制结构整体抗扭特性和平面不规则性的重要指标。

钢筋混凝土高层建筑结构的最大适用高度应区分为A级和B级:名词释义:位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

satwe结果分析

satwe结果分析

规范条文:新高规的 4.3.5条规定,结构扭转为主的第一周期Tt与平动为主的第一周期T1 之比,A级高度高层建筑不应大于0.9;B级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85。

一旦出现周期比不满足要求的情况,一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。

周期比不满足要求,说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是要加强结构外圈,或者削弱内筒。

周期比:主要为限制结构的抗扭刚度不能太弱,使结构具有必要的抗扭刚度,减小扭转对结构产生的不利影响。

见高规4.3.5及相应的条文说明。

周期比不满足规范要求,说明结构的抗扭刚度相对于侧移刚度较小,扭转效应过大,结构抗侧力构件布置不合理。

周期比不满足规范要求时的调整方法(转):1、程序调整:SATWE程序不能实现。

2、结构调整:只能通过调整改变结构布置,提高结构的抗扭刚度。

由于结构外围的抗侧力构件对结构的抗扭刚度贡献最大,所以总的调整原则是加强结构外围墙、柱或梁的刚度,或适当削弱结构中间墙、柱的刚度。

利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,削弱需要增大周期方向的刚度。

当结构的第一或第二振型为扭转时,可按以下方法调整:1)SATWE程序中的振型是以其周期的长短排序的。

2)结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。

见抗规3.5.3条3款及条文说明“结构在两个主轴方向的动力特性(周期和振型)宜相近”。

3)当第一振型为扭转时,说明结构的抗扭刚度相对于其两个主轴(第二振型转角方向和第三振型转角方向,一般都靠近X轴和Y轴)的抗侧移刚度过小,此时宜沿两主轴适当加强结构外围的刚度,并适当削弱结构内部的刚度。

4)当第二振型为扭转时,说明结构沿两个主轴方向的抗侧移刚度相差较大,结构的抗扭刚度相对其中一主轴(第一振型转角方向)的抗侧移刚度是合理的;但相对于另一主轴(第三振型转角方向)的抗侧移刚度则过小,此时宜适当削弱结构内部沿“第三振型转角方向”的刚度,并适当加强结构外围(主要是沿第一振型转角方向)的刚度。

最新satwe计算结果分析

最新satwe计算结果分析
可能引起结构失稳倒塌。 由此计算结构刚重比。输出结果参见 Wபைடு நூலகம்ASS.OUT
剪重比控制
剪重比是抗震设计中非常重要的参数。规范之所以规 定剪重比,主要是因为在长周期作用下,地震影响系数 下降较快,由此计算出来的水平地震作用下的结构效应 有可能太小。而对于长周期结构,地震动态作用下的地 面加速度和位移可能对结构具有更大的破坏作用,但采 用振型分解法时尚无法对此做出较准确的计算。因此出 于安全考虑,规范规定了各楼层水平地震剪力的最小值 。该值如果不满足要求,则说明该结构有可能出现比较 明显的薄弱部位。
结束语
谢谢大家聆听!!!
13
上述所有这些刚度比的控制,都涉及到楼层刚度的计 算方法,目前看来,有三种方案可供选择:
高规附录E.0.1建议的方法——剪切刚度 Ki = Gi Ai / hi 高规附录E.0.2建议的方法——剪弯刚度 Ki = Vi / Δi 抗震规范的3.4.2和3.4.3条文说明中建议方法 Ki = Vi / Δui
satwe计算结果分析
位移比、层间位移比控制
规范条文: 新高规的4.3.5条规定,楼层竖向构件的最大水平 位移和层间位移角,A、B级高度高层建筑均不宜大于该楼层 平均值的1.2倍;且A级高度高层建筑不应大于该楼层平均值 的1.5倍,B级高度高层建筑、混合结构高层建筑及复杂高层建 筑,不应大于该楼层平均值的1.4倍。
2)目前的SATWE软件在《结构设计信息》(WMASS.OUT )文件中输出了相邻层层间受剪承载力之比的比值,该比值是 否满足规范要求需要设计人员人为判断。
注:此为最新增加内容
刚重比控制
按照高规5.4.1计算结构的等效侧向刚度
EJd
11qH4 120u
刚重比是结构刚度与重力荷载之比,它是控制

SATWE计算结果的分析与调整

SATWE计算结果的分析与调整

SATWE计算结果的分析与调整引言:高层建筑结构空间有限元分析软件(SATWE)是中国建筑科学研究院PKPMCAD工程部专门为高层结构分析与设计而开发的基于壳元理论的三维组合结构有限元分析软件。

根据SATWE电算结果文件,可以方便快捷的对《建筑抗震设计规范GB50011-2001(2008版)》(以下简称为抗规);《高层建筑混凝土结构技术规程JGJ3-2002》(以下简称为高规)中规定一些重要参数的限值,如位移、周期、轴压比、层刚度比、剪重比、刚重比、层间受剪承载力比等的限值进行判读、分析、调整与控制。

本文对电算结果中最重要的三个文本输出文件和一个图形输出文件,逐条进行分析。

一、结构设计信息WMASS.OUT本文本信息需要分析与调整的主要包括刚度比、刚重比和层间受剪承载力之比。

1.1刚度比的控制1.1.1规范条文及其控制意义见《高规》4.4.2、5.1.14条及《抗规》3.4.2条。

控制刚度比主要为控制结构竖向规则性,以免竖向刚度突变,形成薄弱层。

1.1.2电算结果判读分析剪切刚度主要用于底部大空间为一层的转换结构(例如一层框支)及地下室嵌固条件的判定,判断地下室嵌固时,依据《高规》5.3.7,地下室其上一层的计算信息中Ratx,Raty 结果不应大于0.5。

剪弯刚度主要用于底部大空间为多层的转换结构(例如二层以上框支);通常工程都采用地震剪力与地震层间位移比。

在各层刚心、偏心率、相邻层侧移刚度比等计算信息中Ratx1,Raty1结果大于等于1。

即满足规范要求。

1.1.3不满足时的调整方法应适当加强本层墙柱、梁的刚度,适当削弱上部相关楼层墙柱、梁的刚度。

如实在不便调整,SATWE会自动将不满足要求楼层定义为薄弱层,并按高规5.1.14将该楼层地震剪力放大1.15倍。

1.2刚重比的控制1.2.1规范条文及其控制意义见《高规》5.4.1及5.4.4条。

控制刚重比主要为了控制结构的稳定性,避免结构在风载或地震力的作用下整体失稳、滑移、倾覆。

SATWE计算结果分析查看及规范依据

SATWE计算结果分析查看及规范依据
SATWE《分析结果图形和文本分析》指标控制规范依据(主要针对高层建筑)
序号 1 指标 平均重度 规范要求 目前国内钢筋混凝土结构高层建筑由恒载和活载引起的单位面积重力, 2 2 框架与框架-剪力墙结构约为 12kN/m ~14kN/m , 2 2 剪力墙和筒体结构约为 13kN/m ~16kN/m , 2 2 其中活荷载部分约为 2kN/m ~3kN/m ,只占全部重力的 15%~20%,活载不利分布的影响较小。 楼层与其相邻上层的侧向刚度比 γ1,可按式(3.5.2—1)计算 2 刚度比 框架结构 本层与相邻上层的比值不宜小于 0.7; 与相邻上部三层刚度平均值的比值不宜小于 0.8。 JGJ3-2010《高规》P15 第 3.5.2 条 控制结构竖向规则性。 中部及 底部偏上 规范出处 JGJ3-2010《高规》P251 第 5.1.8 条 条文说明 软件位置 各层的质量: 上部偏下 平均重度: 中部偏上
7
位移比
上部
3.结构位移 (WDISP.OUT)
B 级高度、混合结构及复杂结构 不宜大于该楼层平均值的 1.2 倍,不应大 1.4 倍 框架-剪力墙、框架-核心筒、板柱-剪力墙结构 筒中筒、剪力墙结构 除框架结构外的转换层 9 轴压比 查表
8
位移角
9.水平力作用 3.结构位移 下结构各层平 (WDISP.OUT) 均侧移简图 上部 3.梁弹性挠度、柱轴压比、 墙边缘构件简图
1.结构设计信息 (WMASS.OUT)
JGJ3-2010《高规》P46 第 5.4.1 条 JGJ3-2010《高规》P49 第 5.4.4 条 JGJ3-2010《高规》P15 第 3.5.3 条 JGJ3-2010《高规》P12 第 3.4.5 条
底部偏上
底部
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

SATWE软件计算结果分析一、位移比1.位移规条文:新高规3.4.5规定:结构平面布置应减少扭转的影响。

在考虑偶然偏心影响的规定水平地震力作用下,楼层竖向构件最大的水平位移和层间位移,A级高度高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.5倍;B级高度高层建筑、超过A级高度的混合结构及本规程第10章所指的复杂高层建筑不宜大于该楼层平均值的1.2倍,不应大于该楼层平均值的1.4倍。

基本概念:位移比包含两项容(1)楼层竖向构件的最大水平位移与平均水平位移的比值;(2)楼层竖向构件的最大层间位移与平均层间位移的比值;计算位移比仅考虑墙顶,柱顶等竖向构件上节点的最大位移,不考虑其他节点的位移。

位移比可以用结构刚心与质心的相对位置(偏心率)表示,二者相距较远的结构在地震作用下扭转效应较大,位移比是控制结构整体抗扭特性和平面不规则性的重要指标。

钢筋混凝土高层建筑结构的最大适用高度应区分为A级和B级:名词释义:位移比:即楼层竖向构件的最大水平位移与平均水平位移的比值。

层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:最大水平位移:墙顶、柱顶节点的最大水平位移。

平均水平位移:墙顶、柱顶节点的最大水平位移与最小水平位移之和除2。

层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

3.控制结构平面规则性,以免形成扭转,对结构产生不利影响。

结构位移输出文件(WDISP.OUT)Max-(X)、Max-(Y)----最大X、Y向位移。

(mm)Ave-(X)、Ave-(Y)----X、Y平均位移。

(mm)Max-Dx ,Max-Dy : X,Y方向的最大层间位移Ave-Dx ,Ave-Dy : X,Y方向的平均层间位移Ratio-(X)、Ratio-(Y)---- X、Y向最大位移与平均位移的比值。

Ratio-Dx,Ratio-Dy : 最大层间位移与平均层间位移的比值即要求:Ratio-(X)= Max-(X)/ Ave-(X) 最好<1.2 不能超过1.5Ratio-Dx= Max-Dx/ Ave-Dx 最好<1.2 不能超过1.5Y方向相同操作要点:位移比在<结构位移>(WDISP.OUT)中输出,各楼层位移比为Ratio(X)和Radio(Y)。

其中,Ratio(X)=Max(X)/Ave(X)调整方法:1)程序调整:satwe程序不能实现2)人工调整:只能人工调整改变结构平面布置,使结构规则,刚度均匀,减小结构刚心与形心的偏心距:可利用程序的节点搜索功能在satwe的“分析结构图形和文本显示”中的“各层配筋构件编号简图”中快速找到位移最大的节点,加强该节点对应的墙、柱等构件刚度;也可以找出位移最小的节点削弱其刚度;直到位移比满足要求。

注意事项(1).验算位移比应选择强制刚性楼板假定,但当凸凹不规则或楼板局部不连续时,应采用符合楼板平面实际刚度变化的计算模型,当平面不对称时尚应计及扭转影响。

最大层间位移、位移比是在刚性楼板假设下的控制参数。

构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移,而后采用弹性楼板进行构件分析。

(2)但需注意的是,对于复杂结构,如不规则的坡屋顶、体育馆看台、工业厂房、错层和越层结构,或者柱、墙不在同一标高,或者没有楼板等情况,如果采用强制刚性楼板假定,结构分析会严重失真,所以,一般这些结构都不强行进行位移比控制。

(3)高层建筑位移比计算应考虑偶然偏心的影响,多层建筑可以不考虑。

(4)位移比是判断结构规则性的重要依据,对是否考虑双向地震有重要参考作用。

(5)当楼层的最大层间位移角不大于新高规第3.7.3条规定的限值的40%时,该楼层竖向构件的最大水平位移和层间位移与该楼层平均值的比值可适当放松,但不应大于1.6。

(6)若位移比超过1.2,则需要在总信息参数设置中考虑双向地震作用;(7)因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位。

二、层间最大位移与层高之比(层间位移角)规条文:新高规的3.7.3条规定按弹性方法计算的风荷载或多遇地震标准值作用下的楼层层间最大水平位移与层高之比△u/h宜符合下列规定:1.高度不大于150m的高层建筑,其楼层层间最大位移与层高之比△u/h不宜大于表3.7.3的限值。

表3.7.32.高度不小于250m的高层建筑,其楼层层间最大位移与层高之比△u/h从不宜大于1/500。

3.高度在150m~250m之间的高层建筑,其楼层层间最大位移与层高之比△u/h从的限值可按本条第1款和第2款的限值线性插入取用。

注:楼层层间最大位移△u以楼层竖向构件最大的水平位移差计算,不扣除整体弯曲变形。

抗震设计时,本条规定的楼层位移计算可不考虑偶然偏心的影响。

抗规5.5.1条文说明:第一阶段设计,变形验算以弹性层间位移角表示。

名词释义:(1)层间位移比:即楼层竖向构件的最大层间位移角与平均层间位移角的比值。

其中:层间位移角:墙、柱层间位移与层高的比值。

最大层间位移角:墙、柱层间位移角的最大值。

平均层间位移角:墙、柱层间位移角的最大值与最小值之和除2。

控制目的:高层建筑层数多,高度大,为了保证高层建筑结构具有必要的刚度,应对其最大位移和层间位移加以控制,主要目的有以下几点:1.保证主体结构基本处于弹性受力状态,避免混凝土墙柱出现裂缝,控制楼面梁板的裂缝数量,宽度。

2.保证填充墙,隔墙,幕墙等非结构构件的完好,避免产生明显的损坏。

结构位移输出文件(WDISP.OUT)Max—Dx、Max—Dy : x和y方向层间最大位移即要求:Max—Dx/h和Max—Dy/h满足规要求电算结果的判别与调整要点:1.验算层间位移角则不需要考虑偶然偏心;2.最大层间位移是在刚性楼板假设下的控制参数。

构件设计与位移信息不是在同一条件下的结果(即构件设计可以采用弹性楼板计算,而位移计算必须在刚性楼板假设下获得),故可先采用刚性楼板算出位移,而后采用弹性楼板进行构件分析。

3.因为高层建筑在水平力作用下,几乎都会产生扭转,故楼层最大位移一般都发生在结构单元的边角部位。

4.当结构层间位移角很小,例如一般结构弹性位移角小于规定限值的1/2,复杂结构和高层结构弹性位移角小于规定限值的1/3,位移比可适当放宽,如放大20%。

二、周期比结构的自振周期周期、地震力与振型输出文件(WZQ.OUT)抗震规(5.2.5)条要求的X向楼层最小剪重比 = 1.60%电算结果的判别与调整要点:1.对于竖向不规则结构的薄弱层的水平地震剪力应增大1.15倍,即上表中楼层最小剪力系数λ应乘以1.15倍。

当周期介于3.5S和5.0S之间时,可对于上表采用插入法求值。

2.对于一般高层建筑而言,结构剪重比底层为最小,顶层最大,故实际工程中,结构剪重比由底层控制,由下到上,哪层的地震剪力不够,就放大哪层的设计地震力.3.各层地震力自动放大与否在调整信息栏设开关;如果用户考虑自动放大,SATWE将在WZQ.OUT中输出程序部采用的放大系数.4.六度区剪重比可在0.7%~1%取。

若剪重比过小,均为构造配筋,说明底部剪力过小,要对构件截面大小、周期折减等进行检查;若剪重比过大,说明底部剪力很大,也应检查结构模型,参数设置是否正确或结构布置是否太刚。

对一般的工程,结构的自振周期在考虑折减系数后应控制在一定的围。

如结构的基本自振周期(即第一周期)大致为:框架结构T1≈ ( 0.12~0.15) n框-剪和框-筒结构T1≈ ( 0.08~0.12) n剪力墙和筒中筒结构T1≈(0.04~0.06)n式中,n为建筑物的总层数。

第二周期、第三周期与第一周期的关系大致为:T2≈(1/3~1/5)T1T3≈(1/5~1/7)T1周期偏长,说明结构过“软”、所承担的地震剪力偏小,应考虑抗侧力构件(柱、墙)截面太小或布置不当;如周期偏短,说明结构过“刚”、所承担的地震力偏大,应考虑抗侧力构件截面太大或墙的布置太多或墙的刚度太大(宜设结构洞予以减小其刚度)。

如果抗侧力构件的截面尺寸、布置都很正常,无特殊情况而自振周期偏离太远,则应检查输入数据是否有错误。

对20层以上的高层建筑结构,如果一切正常,其基本自振周期往往在2.0~3.0之间(叫次长周期),则需要增加地震力(调整系数取1.5~1.8)重新进行计算。

以上的判断是根据平移振动振型分解方法得出来的。

考虑弯扭耦连振动时情况要复杂得多,可以挑出与平移振动相对应的自振周期来进行上述比较,至于扭转周期的合理数值,由于缺乏经验尚难提出。

周期比新高规的3.4.5条规定结构扭转为主的第一自振周期T t与平动为主的第一自振周期T l之比,A级高度高层建筑不应大于0.9,B级高度高层建筑、超过A级高度的混合结构及本规程第10章所指的复杂高层建筑不应大于0.85。

(抗规中没有明确提出该概念,所以多层时该控制指标可以适当放松,但一般不大于1.0。

) 新高规5.1.13条规定,抗震设计时,B级高度的高层建筑结构、混合结构和本规程第10章规定的复杂高层建筑结构,尚应符合下列规定:1 宜考虑平扭耦联计算结构的扭转效应,振型数不应小于15,对多塔楼结构的振型数不应小于塔楼数的9倍,且计算振型数应使各振型参与质量之和不小于总质量的90%;2 应采用弹性时程分析法进行补充计算;3 宜采用弹塑性静力或弹塑性动力分析方法补充计算。

名词释义:周期比:即结构扭转为主的第一自振周期(也称第一扭振周期)Tt与平动为主的第一自振周期(也称第一侧振周期)T1的比值。

周期比主要控制结构扭转效应,减小扭转对结构产生的不利影响,使结构的抗扭刚度不能太弱。

因为当两者接近时,由于振动藕连的影响,结构的扭转效应将明显增大。

对于通常的规则单塔楼结构,如下验算周期比:(1)计算结果详周期、地震力与振型输出文件(WZQ.OUT),因satwe电算结果中并未直接给出周期比,故对于通常的规则单塔楼结构,需人工按如下步骤验算周期比。

(2)根据各振型的两个平动系数和一个扭转系数(三者之和等于1)判别各振型分别是扭转为主的振型(也称扭转振型)还是平动为主的振型(也称平动振型)。

一般情况下,当扭转系数大于0.5时,可认为该振型是扭振振型,反之应为平动振型。

相关文档
最新文档