PSpice仿真(二)实验报告
pspice仿真实验报告
pspice仿真实验报告Pspice仿真实验报告引言:电子电路设计与仿真是电子工程领域中的重要环节。
通过使用电路仿真软件,如Pspice,能够在计算机上对电路进行模拟,从而节省了大量的时间和成本。
本文将介绍一次使用Pspice进行的仿真实验,并对实验结果进行分析和讨论。
实验目的:本次实验的目的是设计一个低通滤波器,通过Pspice进行仿真,并验证其性能指标。
实验步骤:1. 设计电路图:根据低通滤波器的设计要求,我们选择了一个二阶巴特沃斯滤波器。
根据滤波器的截止频率和阻带衰减要求,我们确定了电路的参数,包括电容和电感的数值。
2. 选择元件:根据电路图,我们选择了适当的电容和电感元件,并将其添加到Pspice软件中。
3. 设置仿真参数:在Pspice中,我们需要设置仿真的时间范围和步长,以及输入信号的幅值和频率等参数。
4. 运行仿真:通过点击运行按钮,Pspice将开始对电路进行仿真。
仿真结果将以图表的形式显示出来。
实验结果:通过Pspice的仿真,我们得到了低通滤波器的频率响应曲线。
从图表中可以看出,在截止频率以下,滤波器对输入信号的衰减非常明显,而在截止频率以上,滤波器对输入信号的衰减较小。
这符合我们设计的要求。
此外,我们还可以通过Pspice的仿真结果,得到滤波器的幅频特性和相频特性。
通过分析这些结果,我们可以进一步了解滤波器的性能,并对其进行优化。
讨论与分析:通过本次实验,我们深入了解了Pspice仿真软件的使用方法,并成功设计了一个低通滤波器。
通过仿真结果的分析,我们可以看到滤波器的性能符合预期,并且可以通过调整电路参数来进一步优化滤波器的性能。
然而,需要注意的是,仿真结果可能与实际电路存在一定的误差。
因此,在实际应用中,我们需要结合实际情况,对电路进行实际测试和调整。
结论:通过Pspice的仿真实验,我们成功设计了一个低通滤波器,并验证了其性能指标。
通过对仿真结果的分析和讨论,我们进一步了解了滤波器的特性,并为实际应用提供了一定的参考。
cadence Pspice_上机实验二_电子电路的直流分析
实验二电子电路的直流、交流分析一、实验目的1、应用计算机对电子电路进行直流和交流分析,包括基本工作点分析、灵敏度分析和直流传输特性分析。
2、掌握进行上述基本分析的设置方法,对所给的一些实际电路分别进行直流和交流分析,正确显示出各种波形图,根据形成的各种数据结果及波形图对电路特性进行正确的分析和判断。
二、实验内容1、对左图的共射极单管放大电路进行直流分析,做出三级管Q1的伏安特性曲线(I c~V2),V2从0伏到12伏,I b从40uA~160uA。
2、做出直流负载线:(12- V(V2:+))/1003、进行交流分析,扫描频率范围从100Hz~100MHz三、实验报告要求1、根据计算机进行分析得到的结果,绘出共射极单管放大电路中三级管Q1的伏安特性曲线(I c~V2)及直流负载线。
2、列出共射极单管放大电路中各节点的偏置电压、输入阻抗、输出阻抗、灵敏度分析结果及直流传输特性。
3、绘出三级管Q1集电极电流的交流扫描特性曲线。
实验步骤:1.对V1与Ib(Q1)j进行DcSweep分析,设置如图示:得到仿真波形如图:因此,I b从40uA~160uA变化转变为V1从1.6V~4.8V变化,设置比V1为第二参数,再次DcSweep,设置如图:并添加直流负载线得到结果:2直流Bias分析设置参数如下:运行仿真后,打开.out文件,有如下分析(1),点击,栏中的得到直流工作点如图所示(2)直流传输特性分析(Transfer Function)TF分析及输入输出阻抗(3)小信号AC分析的工作点(SMALL SIGNAL BIAS SOLUTION TEMPERATURE = 27.000 DEG C(4)直流灵敏度分析(DC Sensitivity)3.交流扫描设置和交流扫描曲线如图。
Orcad Pspice (第二次到第七次)上机实验报告
实验二电子电路的直流、交流分析一、实验目的1、应用计算机对电子电路进行直流和交流分析,包括基本工作点分析、灵敏度分析和直流传输特性分析。
2、掌握进行上述基本分析的设置方法,对所给的一些实际电路分别进行直流和交流分析,正确显示出各种波形图,根据形成的各种数据结果及波形图对电路特性进行正确的分析和判断。
二、实验内容1、对左图的共射极单管放大电路进行直流分析,做出三级管Q1的伏安特性曲线(I c~V2),V2从0伏到12伏,I b从40uA~160uA。
2、做出直流负载线:(12-V(V2:+))/1003、进行交流分析,扫描频率范围从100Hz~100MHz三、实验报告要求1、根据计算机进行分析得到的结果,绘出共射极单管放大电路中三级管Q1的伏安特性曲线(I c~V2)及直流负载线。
2、列出共射极单管放大电路中各节点的偏置电压、输入阻抗、输出阻抗、灵敏度分析结果及直流传输特性。
3、绘出三级管Q1集电极电流的交流扫描特性曲线。
实验步骤:1.对V1与Ib(Q1)j进行DcSweep分析,设置如图示:得到仿真波形如图:因此,I b从40uA~160uA变化转变为V1从1.6V~4.8V变化,设置比V1为第二参数,再次DcSweep,设置如图:并添加直流负载线得到结果:2直流Bias分析设置参数如下:运行仿真后,打开.out文件,有如下分析(1),点击,栏中的得到直流工作点如图所示(2)直流传输特性分析(Transfer Function)TF分析及输入输出阻抗(3)小信号AC分析的工作点(SMALL SIGNAL BIAS SOLUTION TEMPERATURE= 27.000DEG C(4)直流灵敏度分析(DC Sensitivity)3.交流扫描设置和交流扫描曲线如图实验三各种激励信号的设置及瞬态分析一、实验目的1、了解各种激励信号中参数的意义,掌握其设置方法。
2、掌握对电路进行瞬态分析的设置方法,能够对所给出的实际电路进行规定的瞬态分析,得到电路的瞬态响应曲线。
PSpice仿真(二)实验报告
实验报告课程名称:电路与模拟电子技术实验 指导老师:张冶沁 成绩: 实验名称: PSpice 的使用练习2 实验类型: EDA 同组学生姓名:一、实验目的和要求:1.熟悉ORCAD-PSPICE 软件的使用方法。
2.加深对共射放大电路放大特性的理解。
3.学习共射放大电路的设计方法。
4.学习共射放大电路的仿真分析方法。
二、实验原理图:图1 三极管共射放大电路三、实验须知:1. 静态工作点分析是指:答:求解静态工作点Q,在输入信号为零时,晶体管和场效应管各电极间的电流和电压就是Q 点。
可用估算法和图解法求解 2. 直流扫描分析是指:答:按照预定范围设置直流电压源变化值,观察电路的直流特性 3. 交流扫描分析是指:答:按照预定范围设置交流电压源变化值,观察电路的交流特性 4. 时域(瞬态)分析是指:答:控制系统在一定的输入下,根据输出量的时域表达式,分析系统的稳定性、瞬态和稳态性能5.参数扫描分析是指:答:在基本电路特性分析中,每个元器件的参数都取确定值,而在参数扫描分析中,将考虑由于参数变化引起的电路特性变化情况 6.温度扫描分析是指:专业: 姓名:学号: 日期:地点:答:在电路参数固定的情况下,测试温度是对电路性能的影响大小7.写出PSpice仿真中调用元器件的模型库位置:答:在安装目录下的\tools\capture\library\pspice中,软件内使用place part可以调用8.PSpice仿真电路图中节点号为0(即接地)的参考节点的作用:为计算其他节点的电位值提供了计算标准。
参考节点通常取何种元器件:电源负极。
解决电路负载开路引起的悬浮节点的方法是:在开路节点和参考节点之间连接一个大阻值电阻。
9.电路图中设置节点别名的好处是:答:通过节点别名描述电路中各个元器件之间的连接关系,生成电连接网表文件;电路中不同位置的节点,只要节点名相同就表示在电学上是相连的;PSpice在模拟结束后,采用节点名表示电路特性分析的结果。
电路仿真实验报告2e
电路仿真实验报告实验一直流电路工作点分析和直流扫描分析一、实验目的(1)学习使用Pspice软件,熟悉它的工作流程,即绘制电路图、元件类别的选择及其参数的赋值、分析类型的建立及其参数的设置、Probe窗口的设置和分析的运行过程等。
(2)学习使用Pspice进行直流工作点的分析和直流扫描的操作步骤。
二、原理与说明对于电阻电路,可以用直观法列些电路方程,求解电路中各个电压和电流。
Pspice软件是采用节点电压法对电路进行分析的。
使用Pspice软件进行电路的计算机辅助分析时,首先编辑电路,用Pspice的元件符号库绘制电路图并进行编辑。
存盘。
然后调用分析模块、选择分析类型,就可以“自动〞进行电路分析了。
三、实验例如1、利用Pspice绘制电路图如下2、仿真(1)点击Psipce/New Simulation Profile,输入名称;(2)在弹出的窗口中Basic Point是默认选中,必须进行分析的。
点击确定。
(3)点击Pspice/Run(快捷键F11)或工具栏相应按钮。
(4)如原理图无错误,那么显示Pspice A/D窗口。
(5)在原理图窗口中点击V,I工具栏按钮,图形显示各节点电压和各元件电流值如下。
四、选做实验1、直流工作点分析,即求各节点电压和各元件电压和电流。
2、直流扫描分析,即当电压源的电压在0-12V之间变化时,求负载电阻R l中电流虽电压源的变化曲线。
曲线如图:直流扫描分析的输出波形3、数据输出为:V_Vs1 I(V_PRINT1)0.000E+00 1.400E+001.000E+00 1.500E+002.000E+00 1.600E+003.000E+00 1.700E+004.000E+00 1.800E+005.000E+00 1.900E+006.000E+00 2.000E+007.000E+00 2.100E+008.000E+00 2.200E+009.000E+00 2.300E+001.000E+012.400E+001.100E+012.500E+001.200E+012.600E+00从图中可得到IRL与US1的函数关系为:IRL=1.4+〔〕US1US1五、思考与讨论1、根据仿真结果验证基尔霍夫定律根据图1-1,R1节点:2A+2A=4A,R1,R2,R3构成的闭合回路:1*2+1*4-3*2=0,满足基尔霍夫定律。
电子技术学实验二 二极管特性PSPICE仿真实验
实验二二极管特性PSPICE仿真实验一、实验目的1. 掌握Pspice中电路图的输入和编辑方法;2. 学习Pspice中直流扫描设置、仿真、波形查看的方法;3. 进一步理解二极管、稳压二极管的工作原理,伏安特性;4. 学习负载线的画法、静态工作点的测量方法;5. 学习二极管工作时直流电阻及交流电阻的求法。
二、概述二极管是一种应用广泛的电路器件,它的工作原理是基于PN结的单向导电性。
当二极管加正向偏置时导通,有较大的电流,电阻小;当二极管加反向偏置时电流很小,电阻大。
二极管两端的电压和流过二极管的电流之间的关系称为二极管的伏安特性。
二极管特性可以应用晶体管特性图示仪、实验测量及Pspice仿真三种方法来获得,本实验应用第三种方法来方法二极管的伏安特性,二极管的伏安特性如图1所示。
图 1 二极管伏安特性二极管伏安特性包括正向特性、反向特性和反向击穿特性。
二极管正向导通时,其电流和电压的大小由正向特性确定。
由图2可确定二极管的工作点。
如图2所示,根据闭合电路的欧姆定律可得:D S D I R U U ⋅−=由于Us 和R 为常量,上式描述的U D -I D 关系是一条不通过坐标原点的直线。
将该直线叠加到二极管的正向特性曲线上,两者的交点就是二极管的工作点。
图 2 二极管的工作点稳压二极管也是一种二极管,但稳压二极管应用于反向偏置;通过稳压二极管伏安特性的仿真练习,进一步理解它的特性。
三、实验设备1. 计算机;2.ORCAD 10.5 软件;3. ORCAD 10.5培训教程(电子版) 洪永思编;4. PSpice-A brief primer Univesity of pennsylvania (电子版)5. D1N914二极管模型、D1N4731稳压二极管模型。
四、预习要求1. 阅读ORCAD 10.5培训教程及Pspice-A brief primer 资料;2. 复习教材中第一章二极管一节的理论课程内容;3. 学习有关二极管直流负载线、工作点、直流电阻、交流电阻的概念。
spice仿真模拟实验报告
宁波大学实验报告纸(20 15 —20 16 学年第 2 学期)实验名称: spice 仿真模拟 指导教师: 得 分: 专业 级微电子 学号: 姓 名:PSPICE 电路模拟仿真实验报告一、实验目的1。
熟悉PSPICE 、ORCAD —PSPICE 软件的使用2.加深对共射放大电路静态工作点设置的理解3.加深晶体管输入输出特性的理解4。
学习共射放大电路的仿真分析方法5。
加深共射放大电路放大特性的理解6.加深共射放大电路的设计方法二、实验内容1.输入编辑电路图。
必有一个接地原件(AGND );必须设置实际的直流电源;可以用BUBBLE 元件将直流电源与电路相连;信号源可选正弦瞬态电压源(sin V 元件);建议加上标号in 和out;设置合适的元件和信号源的参数。
2.仿真分析静态工作点在Schematic 图上直接显示V 和I ;设置直流扫描分析,以电源电压1V 为扫描对象;在Probe 中显示扫描数据。
3.以上述实验电路图为基础,尝试做PSPICE 模拟仿真,分别提取如下数据: ①做静态工作点分析,获得各个点的静态电压值②做直流扫描分析,分别获得C I 、B I 、CE V 。
4。
做DC sweep仿真三、实验仪器PSPICE OR—CAD四、实验原理SPICE软件主要用于大规模集成电路的计算机辅助设计,可用于直流分析、瞬态分析、交流分析、灵敏度分析和统计分析。
ORCAD—PSPICE具有集成度高、完整的Probe观测功能、完整的仿真功能、模块化和层次化设计、模拟行为模块、具有数字和模拟仿真功能、元件库扩充功能。
ORCAD CAPTURE的作用:绘制电路图、设置仿真要求、与PSPICE交互。
ORCAD的使用:①需要先放置需要的元器件和连接导线。
(注意:在放置好所有的元器件之后,需要点击GND图标放置Ground地端子,当放置地窗口打开时,选择GND/CAPSYM并且给它命名为0,否则PSPICA将会给出一个错误或者“Floating Node”)。
模电PSPICE仿真实验报告
模电PSPICE仿真实验报告实验一晶体三极管共射放大电路实验目的1、学习共射放大电路的参数选取方法。
2、学习放大电路静态工作点的测量与调整,了解静态工作点对放大电路性能的影响。
3、学习放大电路的电压放大倍数和最大不失真输出电压的分析方法4、学习放大电路数输入、输出电阻的测试方法以及频率特性的分析方法。
、实验内容确定并调整放大电路的静态工作点。
为了稳定静态工作点,必须满足的两个条件条件一: 条件二: I 1>>I BQV>>V BE I I =(5~10)I BV B =3~5VR E由V B V BE V B再选定 I EQI CQ计算出ReR b2I I ,由 V B V BI I (5~10)I B Q 计算出 m - Vcc V B R b1再由V CC V B(5~10)I BQ 计算出 RiTime从输出波形可以看出没有出现失真,故静态工作点设置的合适。
改变电路参数:V112VdcRc此时得到波形为:400mV200mV0V-200mV450us 500us75k3k4.372V R2 50kQ1Q2N2222Re 2.2kC2T 一6.984V 10uF彳Ce100uF2.0 V-4.0V 0s 50us 100us口V(C2:2) V(C1:1) 150us 200us 250us 300us 350us 400us 450us 500usTime此时出现饱和失真。
当RL开路时(设RL=1MEG Q)时:V1输出波形为:4.0V-4.0V出现饱和失真二、实验心得这个实验我做了很长时间,主要是耗在静态工作点的调试上面。
按照估计算出的Rb1、Rb2、Re的值带入电路进行分析时,电路出现失真,根据其失真的情况需要不停的调节Rb1、Rb2和Re的值是电路输出不失真。
实验二差分放大电路-、实验目的1、学习差分放大电路的设计方法2、学习差分放大电路静态工作的测试和调整方法3、学习差分放大电路差模和共模性能指标的测试方法二、实验内容1. 测量差分放大电路的静态工作点,并调整到合适的数值。
SPICE仿真实验报告
2SPICE仿真实验报告一、实验目的(1)联系使用标准SPICE 的元件描述语句,分析语句,输出语句,模型语句等,熟练掌握电路元件的编写;(2)能够根据电路分析的具体要求灵活使用SPICE ;(3)练习使用aim-SPICE 软件,特别是其中的标准SPICE 分析功能。
二、实验设备:aim-SPICE Student Version3.8a 软件。
三、实验内容:1、实验7-1:解直流电路习题1已知参数求直流电流I :I=-15A 电路文件如下:分析结果如下:2、实验7-2:解直流电路习题2已知部分参数,求电源扫描参数:V-2~6V电路文件如下: 扫描电压变化曲线如下:3、实验7-3:解交流电路习题已知参数求交流响应:电流i 以及电压u 的波形:电路文件如下:电流及电压波形图如下:VmeasY A x i s T i t l e [A ]Vmeas54已知文桥参数求幅频特性以及相频特性曲线电路文件如下: 频率曲线如下:幅频特性曲线:Y A x i s T i t leY A x i s T i t l e [d B ]相频特性曲线:已知一阶电路参数求阶跃响应;电路文件如下: u (ab)过渡过程波形6、实验7-6:RLC 串联电路的二阶过渡过程Y A x i s T i t l e [D e g]Y A x i s T i t l e [V ]已知二阶电路参数求阶跃响应;电路文件如下:电流i的波形: 7、实验7-7:画二极管伏安特性曲线已知二极管参数,求二极管的伏安特性曲线;二极管伏安特性曲线如下:VmeasYAxisTitle[A]8、实验7-8:画三极管的输出特性曲线求出三极管的输出特性曲线;Y A x i s T i t l e [A ]Vm Ib 12Y A x i s T i t l e [A ]。
Pspice实验报告
1.000E+00 1.500E+002.000E+00 1.600E+003.000E+00 1.700E+004.000E+00 1.800E+005.000E+00 1.900E+006.000E+00 2.000E+007.000E+00 2.100E+008.000E+00 2.200E+009.000E+00 2.300E+001.000E+012.400E+001.100E+012.500E+001.200E+012.600E+003、Pspice应用总结1、Pspice中直流电路工作点的分析是默认的,直接点击V、I按钮即可得到电路的各支路电流电压值。
2、DC Sweep为直流扫描分析,若要得到波形图,只需在测定点上设置探针。
其中,“Name”中选择横轴扫描量,“Start Value”为起始值,“EndValue”为终止值,“Increment”为扫描步长。
3、通过电流打印机可以输出扫描的电流数据。
4、思考与讨论(1)根据两图及所得仿真结果验证基尔霍夫定律答:对于电路1,设4V和6V所对应的结点分别为1和2。
对于中间的一个回路有:4*1+1*2-3*2=0,即基尔霍夫电压定律成立。
对于结点1有:2+2-4=0,即基尔霍夫电流定律成立。
(2)怎样理解电流IRL随US1变化的函数关系?这个式子中的各项分别表示什么物理意义?答:负载电流Us1呈线性关系,Ir3=1.4+(1.2/12) Us1=1.4+0.1Us1,式中,1.4A表示将Us1置零时其它激励在负载支路产生的响应,0.1Us1表示仅保留Us1,将其它电源置零(电压源短路,电流源开路)时,负载支路的电流响应。
(3)总结如何用Pspice进行直流工作点分析和直流扫描分析。
答:Pspice软件的使用:若想得到其它量的函数关系,得到其波形图,只需在所测定点上设置相应的探针,然后在参数设定上进行一点更改。
如想要确定负载电阻RL的电流随负载电阻变化的波形,只需将“直流扫描分析参数表”中“Name”中的V1该为RL;若想要确定节点电压Un1随U1的变化,只需在n1这个节点上设置一个电压探针。
Pspice电路仿真实验报告
实验报告院(系):学号:专业:实验人:实验题目:运用Pspice软件进行电路仿真实验。
一、实验目的1、通过实验了解并掌握Pspice软件的运用方法,以及电路仿真的基本方法。
2、学会用电路仿真的方法分析各种电路。
3、通过电路仿真的方法验证所学的各种电路基础定律,并了解各种电路的特性。
二、软件简介Pspice是主要用于集成电路的分析程序,Pspice起初用在大规模电子计算机上进行仿真分析,后来推出了能在 PC上运行的Pspice软件。
Pspice5.0以上版本是基于windows 操作环境。
Pspice软件的主要用途是用于于仿真设计:在实际制作电路之前,先进行计算机模拟,可根据模拟运行结果修改和优化电路设计,测试各种性能,不必涉及实际元器件及测试设备。
三、具体实验内容A、电阻电路(实验一exe 3.38、实验二exe 3.57)1、原理说明:对于简单的电阻电路,用Pspice软件进行电路的仿真分析时,现在要在capture环境(即Schematics程序)下画出电路图。
然后调用分析模块、选择分析类型,就可以“自动”进行电路分析了。
Pspice软件是采用节点电压法求电压的,因此,在绘制电路图时,一定要有零点(即接地点)。
同时,要可以用电路基础理论中的方法列电路方程,求解电路中各个电压和电流。
与仿真结果进行对比分析2、步骤:(1)打开Schematics程序,进入画图界面。
(2)原理图界面点击Get New Part图标,添加常用库,点击Add Library ,将常用库添加进来。
本例需添加Analog( 包含电阻、电容等无源器件),Soure(包含电压源、电流源等电源器件)。
在相应的库中选取电阻R,电压源IDC, F1(实验一),以及地线GND,点取Place 放到界面上。
(3)调节好各元件的位置以及方向,并设好大小,最后连线,保存。
(4)按键盘“F11”(或界面smulate图标)开始仿真。
如原理图无错误,则显示Pspice A/D 窗口。
PSPICE仿真综合实验
1、仿真软件ORCAD一、PSpice简介:PSpice是较早出现的EDA(ElectronicDesignAutomatic,电路设计自动化)软件之一,也是当今世界上著名的电路仿真标准工具之一。
目前广泛使用的PSpice5.1以后版本是Microsim公司于1996年开发的基于Windows环境的仿真程序,并且从6.0版本开始引入图形界面。
1998年著名的EDA商业软件开发商OrCAD公司与Microsim公司正式合并,自此Microsim公司的PSpice产品正式并入OrCAD公司的商业EDA系统中,成为OrCAD/PSpice。
但PSpice仍然单独销售和使用,并不断推出新的版本。
二、PSpice的优越性电路系统仿真方面,PSpice可以说独具特色,是其他软件无法比拟的,它是一个多功能的电路模拟试验平台,PSpice软件由于收敛性好,适于做系统及电路级仿真,具有快速、准确的仿真能力。
其主要优点有:1.图形界面友好,易学易用,操作简单2.实用性强,仿真效果好3.功能强大,集成度高三、PSPICE可执行的主要分析功能本综合试验以ORCAD16.3为仿真平台仿真实验,该平台中PSpice可以分析的类型有以下9种,每一种分析类型的定义如下:(1)直流(DC)分析:也叫直流扫描分析是指电路中的某参数在一定范围内变化时,对电路的直流输出特性的分析和计算。
(2)交流(AC)分析:主要功能是计算电路的交流小信号线性频率响应特性,包括幅频特性和相频特性,以及输入和输出阻抗等。
(3)噪音(Noise)分析:是指在每个设定的频率点上,计算电路指定输出端的等效输出噪音和制定输入端的等效输入噪声电平。
(4)直流工作点(OP)分析:是指当电感短路、电容开路时,电路中的静态工作点的计算。
在进行交流小信号分析和瞬态分析之前,系统将自动计算直流工作点,以确定瞬态分析的初始条件和交流小信号条件下的非线性器件的线性化模型参数。
PSpice电路仿真报告
PSpice 电路仿真报告——11351003 陈纪凯一、 实验目的1. 学会Pspice 电路仿真软件的基本使用2. 掌握直流电路分析、瞬态电路分析等仿真分析方法 二、 实验准备1. 阅读PSpice 软件的使用说明2. 掌握节点法和网孔法来分析直流电路中各元件的电流和电压3. 掌握用函数式表示一阶、二队电路中某些元件的电流和电压 三、 实验原理用PSpice 仿真电路中各元件属性并与计算理论值比较,得出结论。
四、 实验内容 A. P113 3.381. 该测试电路如图a-1所示。
输入该电路图,设置好元件属性和合适的分析方法,按Analysis/Simulate 仿真该电路。
图a -1 图a-22. 仿真结果如图a-2所示。
3. 比较图a-2中仿真出来的数据与理论计算出来的数据。
计算值为: 1.731i A =,153.076V V =,262.885V V = 仿真值为: 1.731i A =,153.08V V =,262.89V V =经比较,发现计算值与仿真值只是精确度不一样,精确值相等。
B. P116 3.571. 该测试电路图如图b-1如示。
设置好元件属性及仿真方法。
图b- 1图b- 22.仿真出来的电路中各支路电流值如图b-2所示。
3.比较仿真值与理论计算值。
计算值:用网孔分析法得到线性方程组如下:用matlab解上述方程得i=1.5835A, i=1.0938A, i=1.2426A, i=-0.8787A即1234i=1.584A, i=1.094A, i=1.243A, i=-0.87872A 从图b-2可以读出仿真值:1234把计算值当作真实值,把仿真值当作测量值,计算相对误差如下表由上表可以看出计算值与仿真值之间的相对误差很小,而从直观上来看,两者只是精确度问题。
4. 图b-2也可以验证一下基尔霍夫电流定律。
如1.584=1.094+489.70m 。
C. P274 Example 7.181. 该测试电路如图c-1所示,设置好元件属性。
pspice微电子实验报告
智能1202 苏思韵201208070216微电子实验报告实验一运算放大电路—求差电路一、实验内容1.电压跟随器仿真电路如图a所示。
绘出其输出、输入波形图。
2.V3FREQ = 50HzVAMPL = 10VOFF = 0R110kR21kV112VV+V2-12VV-U1uA741+3-2V+7V-4OUT6OS11OS25图a 电压跟随电路输出波形输入波形2. 求差电路如图所示。
运放选用741,电源电压V+=+15V ,V-=-15V ,R1=R2=10K Ω,R3=R4=100K Ω。
(1)当V1=0,V2=-0.5sin(2π×100t)(V)时,绘出V2和输出电压的波形。
(2)当V1=0.5sin(2π×100t)(V),V2=0时,绘出V1和输出电压的波形。
V2FREQ = 100Hz VAMPL = -0.5V VOFF = 0R110k0V315VV+V4-15V V-U1uA741+3-2V+7V-4OUT 6OS11OS25V1FREQ = 100Hz VAMPL = 0.5V VOFF = 0R310k100kR5100k图b 求差电路V_V5V(U1:OUT)-20V0V20V(1.4972,-14.788)(-1.5138,14.812)图c 电路的传输特性曲线(1) v2波形输出波形(2)v1波形输出波形实验二 基本共射极放大电路一、实验内容1. 下图为基本共射极放大电路的仿真电路图。
试计算静态工作点的各参数并与手算结果进行比较。
Q1Q2N2222R120kR22kV11VdcV29VdcV3AC =TRAN = sin(0v ,10mv ,1khz,0s,0,0)DC =分析:VBE=0.7V,IB=(1-0.7)/20k=15uA,实验中的电流放大系数是167(我的软件改不了放大系数)IC=167*IB=2.505mA,VCE=9-2k*2.505*10^-3=3.99V2.基于以上电路图,请分别绘出v s,v BE,i B,i C,v CE,v ce的波形图vs的波形图:vBE的波形图:ib的波形图:ic的波形图:vCE的波形图:vce的波形图:实验三 三极管输入输出特性一、实验内容1. 仿真共射极连接时的输入、输出特性曲线(三极管Q2N2222) 注意点:1> 电路图中的参数用花括号括起,如下图中的{VCE}等2> 图中的PARAMETERS: place →part →add library 后,添加special.olb 3> 双击PARAMETERS: 出现property editor ,选择New column, name 中写入相应的参数名,例如下图中的VCE ,初始值VCE=0V ,IB=10uA , IE=1mA4> 仿真过程,需要先进行DC Sweep 设定,然后options 中选择parametric sweep, 在sweep varaible 栏中选择GLOBAL PARAMETER ,在parameter name 中将相应的参数名写入。
SPICE仿真实验报告
微电子实验报告姓名:范喆学号:201208070204院系:信息科学与工程学院班级:智能1202实验一 二极管、稳压管的仿真模型与正反向特性测试 实验内容:1. 设计二极管、稳压管的仿真模型。
2. 用仿真软件分析二极管、稳压管的正反向特性。
实验分析:二极管伏安特性是指二极管两端电压与其电流之间的关系,主要特点是单向导电性及非线性,并且易受温度影响。
二极管的伏安特性测试电路可以设计成如下图所示。
用交变电源获得可变的电压,将二极管与电阻串联,将示波器的A 通道接在二极管两端,测量出的是二极管两端的电压1D A V V =,将示波器的B 通道接在电阻的两端,测出的是电阻两端的电压1R B V V =,由于1111D R R I I R V ==,所以B V 与I D1成正比,所以切换到示波器的B/A 模式就可以观察到二级管的V-I 特性曲线了。
同理,稳压管的设计图如下。
仿真结果:(二极管)仿真后得到的二极管的V-I特性曲线如图:(由于整体的图像太大,不是很直观,因此把V-I的正向和反向特性曲线的放大图也放上来)(稳压管)仿真后得到的稳压管的V-I特性曲线如图对稳压管的反向击穿特性放大如图实验体会及注意事项二极管的仿真实验设计几经反复,首先是在原理图的设计上就否决了好多个思路,从直流电源的扫描分析改成交流电源;在测量方面,刚开始采用的是电压表和电流表,但是苦于无法绘制曲线,最后改成了方便的示波器。
实验过程中由于参数选取不当,导致出现了多次的仿真错误。
最后得到的教训是:在选取了某个型号的二极管的后要先查找它的理论参数,然后估算需要的串联电阻大小和电源电压,以免出现不必要的错误。
对仿真后的曲线分析可知:二级管和稳压管的仿真曲线基本类似,区别在于加上反向电压时,稳压管的反向击穿曲线更陡,说明稳压管的稳压特性好。
实验二负反馈放大电路参数的仿真分析下面来研究负反馈对放大电路的影响。
1.实验电路为了研究负反馈对放大电路的影响,首先,要建立起一个实验电路,下图分立元件组成的二级放大电路,采用DIN。
PSpice三极管共射电路仿真实验
实验报告课程名称: 电路与电子技术实验Ⅱ 指导老师: 成绩:__________________ 实验名称: 共射放大电路辅助设计 实验类型: 练习型 同组学生:一、实验目的和要求〔必填〕 二、实验内容和原理〔必填〕 三、主要仪器设备〔必填〕 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析〔必填〕 七、讨论、心得一、 实验目的和要求1、熟悉PSPICE 软件的使用方法。
2、加深对共射放大电路放大特性的理解。
3、学习共射放大电路的设计方法。
4、学习共射放大电路的仿真分析方法。
二、 实验内容和原理 实验内容:1、在PSPICE 中输入仿真分析电路图2、仿真分析共射放大电路的静态工作点3、当RL=3 k 时,分析电压放大倍数和频率特性4、当RL 开路时,分析电压放大倍数和频率特性5、当RL=3 k 时,分析输入、输出电压波形6、仿真分析电压传输特性及最大不失真输出电压 实验原理:利用PSPice 搭建三极管共射放大电路,运行电路来观察其电压放大倍数、频率特性等电路特性。
以下图为实验电路图:装订线三、主要仪器设备PC、PSPice软件四、操作方法和实验步骤1、输入编辑电路图必须有一个接地元件〔AGND〕;必须设置实际的直流电源,可以用BUBBLE元件将直流电源与电路相连;信号源可选正弦瞬态电压源〔VSIN元件〕;建议加上标号in 和out;设置合适的元件和信号源参数。
2、仿真分析静态工作点设置直流扫描分析,以电源电压VCC〔V1〕为扫描对象;在Probe中查看Q点数据。
3、当RL=3k时,分析电压放大倍数和频率特性设置交流分析;绘制频率特性曲线;注意区分输出电压频率特性与电压放大倍数频率特性的不同;注意频率特性曲线Y轴坐标是线性坐标还是对数坐标〔即dB)。
4、当RL开路时,分析电压放大倍数和频率特性可设RL=1M;其它同前。
5、当RL=3k时,分析输入、输出电压波形设置瞬态分析;查看输入、输出电压波形;注意相位关系;观察失真现象。
实验二 基于PSpice软件的二极管特性仿真(实验报告)
实验二基于PSpice软件的二极管特性仿真一、实验目的1.掌握PSpice中电路图的输入和编辑方法2.学习PSpice中分析设置、仿真、波形查看的方法二、实验内容1.电路如图所示,图中R=10k ,二极管选用1N4148,且I s= 10 nA,n=2。
对于V DD=10V和V DD=1V两种情况下,求I D和V D的值,并与使用理想模型、恒压降模型和折线模型的手算结果进行比较。
(设置直流工作点分析)解:仿真结果:当V DD=1V时,I D =53.52µA和V D =0.452V;当V DD=10V时,I D =939.8µA和V D =0.579V;手算结果:当V DD=1V时:理想模型:V D =0V,I D =V DD/R=0.1mA;恒压降模型:V D =0.7V, I D =(V DD -- V D) /R=0.03mA;折线模型:I D =0.049mA ,V D =0.51V;当V DD=10V时:理想模型:V D =0V,I D =V DD/R=1mA;恒压降模型:V D =0.7V, I D =(V DD -- V D) /R=0.93mA;折线模型:I D =(V DD – V th) /(R+rD)=0.931mA, V D =0.69V;对比结果:折线模型的结果更接近仿真结果。
2.电路如图所示,图中R=1kΩ,V REF=5V,且I s= 10 nA,n=2。
试用PSpice分析当二极管正接与反接时,电路的电压传输特性v O = f(v I)(指针处);若输入电压V I =V i = 10sinωt(V)时,求V O的波形,并与使用理想模型和恒压降模型分析的结果进行分析。
二极管为1N4148。
(设置直流扫描分析与瞬态分析)解:设置直流扫描分析和瞬态分析,得到的结果如图所示:仿真结果与恒压降模型的分析结果很接近。
3.稳压电路如图所示,使用直流偏移为12.8V,振幅为0.8V,频率为100Hz的正弦信号源,稳压管使用1N4739。
实验二 参数扫描分析和统计分析实验
实验二参数扫描分析和统计分析实验一、实验目的熟悉并初步学会用PSpice软件进行扫描分析和统计分析的方法。
二、实验内容1.分析实验一所绘制的差分对电路在-40℃、-20℃、0℃、25℃、50℃、75℃和100℃的输出V(OUT2)频率特性(按实验一的AC Sweep分析设置参数,不作噪声分析)。
观察和分析温度对V(OUT2)幅度的影响,按试验报告要求记录相关的曲线。
操作步骤:(1)设置基本特性分析参数:对所绘制的差分对电路设置交流小信号特性分析参数,如下图所示。
(2)设置温度分析参数:在上图Options参数设置框中,选择Temperature(Sweep),相应的温度分析参数设置如下图。
(3)启动Pspice仿真程序,从下图所示批次选择对话框中选取需要的温度批次,再单击Probe窗口中,将输出曲线复制到实验报告中,并简单说明。
2.对差分对电路进行参数扫描分析,观察并记录有关曲线。
操作步骤:(1)修改电阻RC1和RC2的阻值为“变化的参数”,具体做法是:①将电阻值10K改为{Rval};②从图形符号库SPECIAL库中调出PARAM符号放在电路图的空处;③双击PARAM符号出现以下属性参数对话框:按按下左图所示设置新增的Rval参数,单击选中Rval属性,单击话框;(2)按实验一的AC Sweep分析设置参数后,选中Options参数设置框中的Parametric Sweep,按下图所示进行参数扫描分析的设置;(3)保存一次后,启动Pspice程序进行模拟,进入Probe窗口后,在批次选择对话框(4)对输出曲线进行必要的标注后,复制到实验报告中。
(5)在Probe窗口,在主菜单中用Trace/Performance Analysis或按下按钮进行性能分析,利用Trace/Add Trace或按下按钮,对输出的7条V(OUT2)曲线选用MAX( )函数得到差分对电路的最大增益随RC1、RC2阻值的变化曲线,将其复制到实验报告中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程名称:电路与模拟电子技术实验指导老师:成绩: 实验名称: PSpice 的使用练习 2 实验类型: EDA 同组学生姓名: 一、 实验目的和要求: 1.熟悉 ORCAD-PSPICE 软件的使用方法。 2.加深对共射放大电路放大特性的理解。 3.学习共射放大电路的设计方法。 4.学习共射放大电路的仿真分析方法。
EnableBiasVoltageDisplay 和 EnableBiasCurrentDisplay 得出各支路的电压和电 流。 2、 电压放大倍数计算应该用交流扫描分析。 3、 观察输出电压波形应该用时域分析。 4、 可以。将电源换为正弦电压,仿真得到输出电压波形后,用工具栏中读数 据的工具可以得到最大不失真电压。 六、 实验心得体会: 本次实验在交流扫描分析时仿真出了问题,pspice 报出的 error 还没有搞清楚。熟 悉使用软件很重要。 在做实验前弄懂理论是很重要的,关于最大不失真输出电压我目前还没弄清楚。做 实验的目的在于掌握知识,至于达到创新的目标,还是要先把基础做好的。
四、 实验步骤:
1.静态工作点分析设置:
如何在电路图上直接标注出各节点的电压值和支路的电流值?
答: 在 capture 菜单栏中点击绿色 V、I,即选择 EnableBiasVoltageDisplay 和 EnableBiasCurrentDisplay。 2. 直流扫描分析设置:
①.如何在 PSpiceA/D 界面添加新的 Y 坐标轴,如何把新添加的坐标轴显示在曲 线的右侧? 答: 在 plot 菜单下选择 add Y axis。 ②.为了在曲线上显示 IC(Q1)与 V CE 之间的关系,该如何操作? 答:在 AxisVariable 中设置曲线表达式为 IC(Q1),使之成为 X 变量。 ③.为了得到 I CQ =1.5mA 时的 Rb1 大小, 仿真中采用参数扫描的方式
������������������ −������������ ������1
,对 Rb1 进行直流线性扫描,从 10k 到 20k,纵坐标
选择 I CQ 。当 I CQ =1.5mA 时,可以得到 Rb1 大小。 3. 交流扫描分析设置:
①.如何在 PSpiceA/D 界面添加坐标系? 答:
6.温度扫描分析是指: 答:是分析电路在指定的一个或多个 温度点时电路特性的变化。
8.PSpice 仿真电路图中节点号为 0(即接 地) 的参考节点的作用: 如果没有接地 节点无法进行仿真分析 。 参考节点通常取何种元器件: Place ground 中的 0source。 解决电路负载开路引起的悬浮节点的 方法是: 在该节点与参考节点之间串联 一个很大的电阻。。 9.电路图中设置节点别名的好处是: 10.放置电源端子符号的好处是: 答:增强电路图的可读性,替换程序自 答:表示在该处要连接的是一种电源,本 动生成的网络节点名 身不具备电压值, 但具有全局相连的特性。
3. 交流扫描分析是指: 4. 时域(瞬态)分析是指: 答:首先计算静态工作点,以确定 答:在给定激励信号的情况下,计算 非线性期间的线性化模型参数,在 电路的时域响应,也可以在没有任何 指定频率范围内,对电路进行频率 激励信号情况下求震荡波形和振荡周 扫描分析, 计算出电路的频响特性, 期。 以及电路的输入阻抗和输出阻抗。
二、 实验原理图:
图 1 三极管共射放大电路 三、 实验须知: 1. 静态工作点分析是指: 答:静态工作点就是输入信号为零 时,电路处于直流工作状态。在电 感短路、电容开路的情况下计算电 路的静态工作点。
2. 直流扫描分析是指: 答:在指定的范围内,某一个或者两 个独立源或者其他电路元器件参数变 化时,计算电路直流输出变量的相应 变化曲线。
5.参数扫描分析是指: 答:是分析电路中某些参数在一定 范围内的变化对整个电路特性的影 响,参数扫描分析对指定的每个参 数变化值,均执行一次指定的电路 分析。 7.写出 PSpice 仿真中调用元器件的模 型库位置: 答:在文件夹 capture-library-pspice 下 面的 olb 文件, 操作界面中可在 place part 中选择。
③.简述一下最大不失真仿真的操作步骤。 答:当放大电路的静态工作点调整在三极管线性工作范围的中心位置时,如输 入信号 Vi 增大,Vo 的波形会同时出现“削顶”和“缩顶”失真,用毫伏表测 出将要出现失真时的 Vo 的幅度,即为放大电路的最大不失真输出电压。
五、 实验拓展: 1、 思考题:静态工作点应该采用 bias point 的仿真。然后用
②.在交流扫描分析的输出变量格式中,用啥符号来表示分贝和相位的? 答:
4. 时域分析设置:
①.如何根据得到的 V(in)和 V(out)曲线来求得放大倍数? 答:
②.为得到电路的电压传输特性曲线,该如何操作? 答:
将横坐标改为 V(in),纵坐标改为 V(out)。操作方法同上。 非线性引起的失真现象: