考研数学二真题及参考答案

合集下载

2021年全国硕士研究生入学统一考试数学(二)真题完整版(含答案及解析)

2021年全国硕士研究生入学统一考试数学(二)真题完整版(含答案及解析)

dt
dt
dt dt
dt
dt
当 r = 10, h = 5 时, dV = −100 , dS = −40 ,故选 D.
dt
dt
(4)设函数 f (x) = ax − b ln x(a 0) 有两个零点,则 b 的取值范围是( ) a
A.(0, + )
B.(0,0)
C.(0, 1 ) e
【答案】A.
.
x (0,2)
【答案】1.
【解析】方程两边对 x 求导可得 z + (x +1) z x
+
y1 z
z x

1
+
2y 4x2
y
2
=0.
将 x = 0, y = 2 代入可得 z = 1 ,再将 x = 0, y = 2, z = 1代入可得 z = 1. x
(14)已知函数 f (t) =
t
dx
dt
有因为 x et2 dt = x (1+ t2 + (t2 ))dt = x + 1 x3 + (x3 ) ,故
0
0
3
原式
=
lim
x→0
x

1 x3 3!
+
(
x3
)
1
+
x
+
1 x3 3!
x2
+
(
x3
)

x

1 2
x2
+ (x2 )
=
lim
x→0
1 2
x2
+ (x2 ) x2
=
1 2

1987-1989考研数学二真题及参考答案

1987-1989考研数学二真题及参考答案
(3) 由 y ln x 与两直线 y (e 1) x 及 y 0 围成图形的面积= 3 / 2
(4) 设 L 为取正向的圆周 x2 y2 9 ,则曲线积分 (2xy 2y)dx (x2 4x)dy 的值是 L 18 .
(5) 已知三维线性空间的一组基底 1 (1,1, 0), 2 (1, 0,1), 3 ( 0,1,1) ,则向量 =( 2 , 0 , 0 ) 在上述基底下的坐标是 ( 1 , 1 , -1 )
其中 s 是曲线
z
y 1
(1 y 3) 绕 Y 轴旋转一周所形成的曲面,它的法向量与 Y 轴
x 0
正向的夹角恒大于 / 2 .
解: S 的方程为 y x2 z2 1,记 S1 : y 3, (x2 z2) ,知 S S1 为封闭曲面,设其
方向取外侧,所围区域为 ,则由高斯公式,有
2x yz
○1 当 z 0 时, Fz (z)
0dxdy 0 ,此时 fz (z) 0 0;
2x yz
○2
当 0 z 2 时, Fz (z)
z
dy
zy 2
e ydx
z
0
0
2
z e ydy 1
0
2
z ye ydy ,此时
0
fz
(z)
Fz(z)
1 2
z eydy 1 (1 ez ) ;
1987 年全国硕士研究生入学统一考试 数学试题参考解答
数 学(试卷Ⅰ)
一、填空题(每小题 3 分,满分 15 分. 只写答案不写解题过程)
(1) t

x 1 y 2 z 1 121
都平行,且过原点的平面方程是
x y50
(2) 当 x 1/ ln 2 ;时,函数 y x2x 取得极小值.

2023考研数学二真题+详解答案解析(超清版)

2023考研数学二真题+详解答案解析(超清版)

2023年全国硕士研究生入学统一考试数学(二)试题及答案考试时间:180分钟,满分:150分一、选择题:1~10小题,每小题5分,共50分,下列每题给出的四个选项中,只有一个选项符合题目要求,请将所选项前的字母填在答题纸指定位置上.(1)曲线1ln()1yx e x =+−的斜渐近线方程为( ) (A)y x e =+ (B)1y x e=+(C)y x = (D)1y x e=−【答案】B 【解析】1limlimln()11x x y ke x x →∞→∞==+=−,11lim()lim()lim[ln(]lim [ln(ln ]11x x x x b y kx y x x e x x e e x x →∞→∞→∞→∞=−==−=+−=+−−−111lim ln(1lim (1)(1)x x x x e x e x e→∞→∞=+==−−,所以渐进线方程为1y x e =+,答案为B(2)设0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( )(A)),0()(1)cos sin ,0x x F x x x x x ⎧⎪−≤=⎨+−>⎪⎩(B))1,0()(1)cos sin ,0x x F x x x x x ⎧⎪−+≤=⎨+−>⎪⎩(C)),0()(1)sin cos ,0x x F x x x x x ⎧⎪+≤=⎨++>⎪⎩(D))1,0()(1)sin cos ,x x F x x x x x ⎧⎪++≤=⎨++>⎪⎩【答案】D【解析】根据原函数的连续性,可排除(A)(C);再根据原函数的可导性,可排除选项(B),答案为(D) (3)已知{}n x ,{}n y 满足1112x y ==,1sin n n x x +=,21(1,2,)n n y y n +== ,则当n →∞时( )(A)n x 是n y 的高阶无穷小(B)n y 是n x 的高阶无穷小(C)n x 与n y 是等价无穷小(D)n x 与n y 是同阶但不等价的无穷小【答案】B【解析】由已知可得,{}n x ,{}n y 均单调递减,且12n y ≤,又因为sin x x 在(0,2π上单调递减,故2sin 1x x π<<,所以2sin x x π>,所以21112sin sin 24n n n n nn n n n n ny y y y y y x x x x x ππ++==≤=,依次类推可得,111100()444n nn n n n y y y n x x x πππ++⎛⎫⎛⎫≤≤≤≤=→→∞ ⎪ ⎪⎝⎭⎝⎭,故n y 是n x 的高阶无穷小,答案为B (4)若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A)0,0a b <>(B)0,0a b >>(C)0,0ab =>(D)0,0ab =<【答案】C 【解析】0y ay by ′′′++=的解一共三种情形:①240a b Δ=−>,1212x xy C e C e λλ=+,但此时无论12,λλ取何值,y 在(,)−∞+∞上均无界;②240a b Δ=−=,12()xy C C x eλ=+,但此时无论λ取何值,y 在(,)−∞+∞上均无界;③240a b Δ=−<,12(cos sin )xy e C x C x αββ=+,此时若y 在(,)−∞+∞上有界,则需满足0α=,所以0,0a b =>,答案为(C)(5)设函数()y f x =由2sin x t ty t t⎧=+⎪⎨=⎪⎩确定,则( ) (A)()f x 连续,(0)f ′不存在(B)(0)f ′不存在,()f x ′在0x =处不连续(C)()f x ′连续,(0)f ′′不存在(D)(0)f ′′存在,()f x ′′在0x =处不连续【答案】C 【解析】当0t =时,有0x y ==①当0t>时,3sin x t y t t=⎧⎨=⎩,可得sin 33x xy =,故()f x 右连续;②当0t<时,sin x ty t t=⎧⎨=−⎩,可得sin y x x =−,故()f x 左连续,所以()f x 连续;因为0sin 033(0)lim 0x x x y x ++→−′==;0sin 0(0)lim 0x x x y x −−→−−′==,所以(0)0f ′=;③当0x >时,1sin sin cos 333393x x x x x y ′⎛⎫′==+ ⎪⎝⎭,所以0lim ()0x y x +→′=,即()f x ′右连续;④当0x <时,()sin sin cos y x x x x x ′′=−=−−,所以0lim ()0x y x −→′=,即()f x ′左连续,所以()f x ′连续;考虑01sin cos 23393(0)lim 9x x x xf x ++→+′′==;0sin cos (0)lim 2x x x x f x −−→−−′′==−,所以(0)f ′′不存在,答案为C(6)若函数121()(ln )f dx x x αα+∞+=⎰在0αα=处取得最小值,则0α=( ) (A)1ln(ln 2)−(B)ln(ln 2)− (C)1ln 2(D)ln 2【答案】A 【解析】当0α>时,121()(ln )f dx x x αα+∞+=⎰收敛, 此时21122111111()ln (ln )(ln )(ln )(ln 2)f dx d x x x x x ααααααα+∞+∞+∞++===−=⎰⎰,故211111ln ln 2()(ln 2)(ln 2)(ln 2)f ααααααα′⎡⎤−′==−⎢⎥⎣⎦,令()0f α′=,解得0α=1ln(ln 2)−(7)设函数2()()x f x x a e =+,若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( )(A)[0,1)(B)[1,)+∞(C)[1,2)(D)[2,)+∞【答案】C 【解析】2()()x f x x a e =+,2()(2)x f x x x a e ′=++,2()(42)x f x x x a e ′′=+++,因为()f x 没有极值点,所以440a −≤;又因为曲线()y f x =有拐点,所以164(2)0a −+>,联立求解得:[1,2)a ∈(8)设A ,B 为n 阶可逆矩阵,*M 为矩阵M 的伴随矩阵,则*A E OB ⎛⎫= ⎪⎝⎭( ) (A)****A B B A O B A ⎛⎫−⎪⎝⎭(B)****B A A B O A B ⎛⎫−⎪⎝⎭(C)****B A B A OA B ⎛⎫−⎪⎝⎭(D)****A B A B OB A ⎛⎫−⎪⎝⎭【答案】B【解析】*11111A E A E A E A AB A B O B O B O B O B −−−−−⎛⎫−⎛⎫⎛⎫== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭111***1*A B A A B A B B A A B O A B B OA B −−−−⎛⎫⎛⎫−−== ⎪ ⎪⎝⎭⎝⎭,答案为B (9)二次型222123121323(,,)()()4()f x x x x x x x x x =+++−−的规范形为( )(A)2212y y +(B)2212y y −(C)2221234y y y +−(D)222123y y y +−【答案】B 【解析】222123121323(,,)()()4()f x x x x x x x x x =+++−−222123121323233228x x x x x x x x x =−−+++二次型矩阵为211134143A ⎛⎫⎪=− ⎪ ⎪−⎝⎭,211134(7)(3)143E A λλλλλλλ−−−−=−+−=+−−−+ 故答案为B(10)已知向量1123α⎛⎫ ⎪= ⎪ ⎪⎝⎭,2211α⎛⎫ ⎪= ⎪ ⎪⎝⎭,1259β⎛⎫ ⎪= ⎪ ⎪⎝⎭,2101β⎛⎫ ⎪= ⎪⎪⎝⎭,若γ既可由12,αα线性表示,也可由12,ββ线性表示,则γ=( )(A)33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭ (B)35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭ (C)11,2k k R −⎛⎫ ⎪∈ ⎪ ⎪⎝⎭(D)15,8k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭【答案】D 【解析】令γ11221122k k l l ααββ=+=+,则有112211220k k l l ααββ+−−=,即12121212(,)0k k l l ααββ⎛⎫ ⎪ ⎪−−= ⎪ ⎪⎝⎭而121212211003(,)2150010131910011ααββ−−⎛⎫⎛⎫ ⎪ ⎪−−=−→− ⎪ ⎪⎪ ⎪−−⎝⎭⎝⎭所以1212(,,,)(3,1,1,1),TT k k l l c c R =−−∈,所以12(1,5,8)(1,5,8),T T c c c k k R γββ=−+=−=∈,答案为D二、填空题:11~16小题,每小题5分,共30分,请将答案写在答题纸指定位置上. (11)当0x →时,函数2()ln(1)f x ax bx x =+++与2()cos x g x e x =−是等价无穷小,则ab =________【答案】2−【解析】由已知可得:2222200022221(())()ln(1)2lim lim lim 1()cos (1())(1())2x x x x ax bx x x o x f x ax bx x g x e x x o x x o x →→→++−++++==−++−−+220221(1)(()2lim 13()2x a x b x o x x o x →++−+==+所以1310,22a b +=−=,即1,2a b =−=,所以2ab =−(12)曲线y =⎰的弧长为________43π【解析】由题意可得函数定义域为[x ∈,根据公式可得:2302sin 24cos L x t tdtπ====⎰304(1cos 2)t dt π=+=⎰43π+(13)设函数(,)z z x y =由2ze xz x y +=−确定,则2(1,1)2zx∂=∂_________【答案】32−【解析】代入(1,1)点可得,0z =,先代入1y =,可得21z e xz x +=−,两边对x 求导,2z e z z xz ′′++=,得(1)1z ′=两边再对x 求导,20z ze z e z z z xz ′′′′′′′++++=,代入(1,1)及0z =,(1)1z ′=得2(1,1)232zx∂=−∂(14)曲线35332x y y =+在1x =对应点处的法线斜率为________【答案】119−【解析】代入1x =得到1y =,两边对x 求导,242956x y y y y ′′=+,代入1x =,1y =可得:911y ′=,故1x =对应点处的法线斜率为1119y −=−′(15)设连续函数()f x 满足:(2)()f x f x x +−=,2()0f x dx =⎰,则31()f x dx =⎰_______【答案】12【解析】323211121()()()()(2)f x dx f x dx f x dx f x dx f x dx=+=++⎰⎰⎰⎰⎰[]2121111()()()022f x dx f x x dx f x dx xdx =++=+=+=⎰⎰⎰⎰(16)已知线性方程组13123123121202ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩有解,其中,a b 为常数,若0111412a a a =,则11120a a ab =_______【答案】8【解析】由题意可得:方程组系数矩阵秩为3,可得增广矩阵的秩也为3,即011110012002a a a ab =按照第四列进行行列式展开可得:144411011(1)122(1)11012a a a a a b a ++⋅−+⋅−⋅=所以111280a a ab =三、解答题:17~22小题,共70分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.(17)(本题满分10分)设曲线:()()L y y x x e =>经过点2(,0)e ,L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距(1)求()y x ;(2)在L 上求一点,使得该点处的切线与两坐标轴所围三角形的面积最小,并求此最小面积【答案】(1)()(2ln )y x x x =− (2)33221(,)2e e ,最小面积是3e 【解析】(1)曲线L 上任一点(,)P x y 处的切线方程为()Y y y X x ′−=−,令0X =,则y 轴上的截距为Y y xy ′=−,则有x y xy ′=−,即11y y x′−=−,解得(ln )y x C x =−,其中C 为任意常数,代入2(,0)e 可得2C =,故()(2ln )y x x x =−(2)该点设为000(,(2ln ))x x x −,切线方程为0000(2ln )(1ln )()Y x x x X x −−=−− 令0X =,解得0Y x =;令0Y =,解得00ln 1x X x =−;所以该点处的切线与两坐标轴所围三角形的面积为:200011()22ln 1x S x XY x ==−求导00020(2ln 3)()2(ln 1)x x S x x −′=−,令0()0S x ′=,解得320x e =且为最小值点,最小面积为332()S e e =(18)(本题满分12分) 求函数2cos (,)2yx f x y xe=+的极值【答案】极小值为21(,2)2f e k e π−=−(k Z ∈) 【解析】先求驻点cos cos 0(sin )0y xy y f e x f xe y ⎧′=+=⎪⎨′=−=⎪⎩,解得驻点为1(,(21))e k π−−+和(,2)e k π−,其中k Z∈下求二阶偏导数,cos cos 2cos 1(sin )sin cos xx yxy y y yy f f e y f xe y xe y ⎧′′=⎪⎪′′=−⎨⎪′′=−⎪⎩代入1(,(21))e k π−−+(k Z ∈),解得210xxxy yy A f B f C f e −⎧′′==⎪⎪′′==⎨⎪′′==−⎪⎩,20AC B −<,故1(,(21))e k π−−+不是极值点; 代入(,2)e k π−(k Z ∈),解得210xxxy yy A f B f C f e ⎧′′==⎪⎪′′==⎨⎪′′==⎪⎩,20AC B −>且0A >,故(,2)e k π−是极小值点,其极小值为21(,2)2f e k e π−=−(k Z ∈) (19)(本题满分12分)已知平面区域{(,)01}D x y y x =≤≤≥(1)求D 的面积(2)求D 绕x 轴旋转所成旋转体的体积【答案】(1)ln(1S = (2)24V ππ=−【解析】(1)222214441tan sec csc ln csc cot tan sec D S x t tdt tdt t tt t ππππππ+∞====−⎰⎰⎰ln(1=+;(2)22222111111(1)1x V dx dx dx x x x x πππ+∞+∞+∞⎛⎫===− ⎪++⎝⎭⎰⎰⎰11arctan x x π+∞⎛⎫=−− ⎪⎝⎭24ππ=−(20)(本题满分12分)设平面有界区域D 位于第一象限,由曲线221x y xy +−=,222x y xy +−=与直线y =,0y =围成,计算2213Ddxdy x y +⎰⎰【解析】本题采用极坐标计算,322013Ddxdy d x y πθ=+⎰⎰⎰333222222000111ln 3cos sin 3cos sin 3cos sin d r d d πππθθθθθθθθθ===+++⎰⎰332220011111ln 2ln 2tan ln 22(3tan )cos 23tan 2d d ππθθθθθ=⋅=⋅==++⎰⎰(21)(本题满分12分) 设函数()f x 在[,]a a −上具有2阶连续导数,证明: (1)若(0)0f =,则存在(,)a a ξ∈−,使得21()[()()]f f a f a aξ′′=+−(2)若()f x 在(,)a a −内取得极值,则存在(,)a a η∈−,使得21()()()2f f a f a aη′′≥−−【答案】(1)利用泰勒公式在0x =处展开,再利用介值性定理; (2)利用泰勒公式在极值点处展开,再利用基本不等式进行放缩;【解析】(1)在0x =处泰勒展开,22()()()(0)(0)(0)2!2!f c f c f x f f x x f x x ′′′′′′=++=+, 其中c 介于0与x 之间;代入两个端点有:211()()(0),(0,)2!f f a f a a a ξξ′′′=+∈222()()(0)(),(,0)2!f f a f a a a ξξ′′′−=−+∈−两式相加可得:212()()()()2f f f a f a a ξξ′′′′++−=即122()()1[()()]2f f f a f a a ξξ′′′′++−=因为()f x 在[,]a a −上具有2阶连续导数,所以()f x ′′存在最大值M 与最小值m , 根据连续函数的介值性定理可得,12()()2f f m M ξξ′′′′+≤≤,所以存在(,)a a ξ∈−,使得12()()()2f f f ξξξ′′′′+′′=,即21()[()()]f f a f a aξ′′=+−成立;(2)若()f x 在(,)a a −内取得极值,不妨设0x 为其极值点,则由费马引理可得,0()0f x ′=将()f x 在0x 处泰勒展开,22000000()()()()()()()()()2!2!f d f d f x f x f x x x x x f x x x ′′′′′=+−+−=+−其中d 介于0x 与x 之间;代入两个端点有:210010()()()(),(,)2!f f a f x a x x a ηη′′=+−∈ 220020()()()(),(,)2!f f a f x a x a x ηη′′−=+−−∈−两式相减可得:221200()()()()()()22f f f a f a a x a x ηη′′′′−−=−−−−所以22120022()()11()()()()2222f f f a f a a x a x a a ηη′′′′−−=−−−− 22102021[()()()()]4f a x f a x aηη′′′′≤−++,记112()max[(),()]f f f ηηη′′′′′′=, 又因为22220000()()[()()]4a x a x a x a x a −++≤−++=,所以21()()()2f a f a f aη′′−−≤成立 (22)(本题满分12分)设矩阵A 满足对任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪⎪ ⎪−⎝⎭⎝⎭(1)求A(2)求可逆矩阵P 与对角矩阵Λ,使得1P AP −=Λ【答案】(1)111211011A ⎛⎫⎪=− ⎪⎪−⎝⎭11 /11 (2)401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭【解析】(1)因为任意123,,x x x 均有112321233232x x x x A x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=−+ ⎪ ⎪ ⎪ ⎪−⎝⎭⎝⎭,即112233*********x x A x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭故可分别取单位向量100010001⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,可得100111100010211010001011001A ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=− ⎪ ⎪⎪ ⎪ ⎪⎪−⎝⎭⎝⎭⎝⎭所以111211011A ⎛⎫ ⎪=− ⎪ ⎪−⎝⎭(2)111101101211221(2)2110110(2)1011E A λλλλλλλλλλλ−−−−−−−−=−+−=−+−=+−−−+−++−+101(2)211(2)(2)(1)20λλλλλλ−−=+−−=+−+− 所以A 的特征值为21,2−−,,下求特征向量: 当2λ=−时,解方程组(2)0E A x −−=,可得基础解系为1(0,1,1)T ξ=−;当1λ=−时,解方程组()0E A x −−=,可得基础解系为2(1,0,2)Tξ=−当2λ=时,解方程组(2)0E A x −=,可得基础解系为3(4,3,1)T ξ=令401310112P −⎛⎫ ⎪=− ⎪ ⎪⎝⎭,有1221P AP −⎛⎫ ⎪=Λ=− ⎪ ⎪−⎝⎭成立。

2023年考研《数学二》真题及详解【完整版】

2023年考研《数学二》真题及详解【完整版】

2023年全国硕士研究生招生考试考研《数学二》真题及详解【完整版】一、选择题:1〜10小题,每小题5分,共50分。

在每小题给出的四个选项中, 合题目要求的,请将所选项前的字母填在答题纸指定位置上。

只有一个选项是最符1.曲线y = xln (e^-LA 的渐近线方程为()。

A. y=x+eB. y=x+l/eC. y=xD. y=x —1/e【试题答案】B【试题解析】由已知y = xln (e^ —\ JC 1xlnyk = lim — = lim ----X —00JQXTOO,则可得:limln e +X —00 I1=1b = lim (y-Ax) = lim XT8 ' / XToox-1扁仁上、—X=limxL|' 1、e +--------1_ l X-lyX —>00、x — l)1lim xln XToo1+limXToo所以斜渐近线方程为y=x+l/e 。

2.__,x<0函数 x/l +、2[(x + l)cosx,x > 0的原函数为(A.尸("In +— jv ) jv < 0(x + l)cos x - sin x, x > 0B.尸("In ^/1 + %2 —1, x V 0(x + l)cos x - sin x, x > 0C.In ^/1 + x 2 + x) x V 0(x + l)sin x + cos >In^|/1+%2+x1,jv V0D.F(x)=<(x+l)sin x+cos>0【试题答案】D【试题解析】当xWO时,可得:当x〉0时,可得:j f(x)ch=j(x+l)cos xdx=j(x+l)dsinx=(x+l)sin x-j sin xdx=(x+l)sin x+cos x+C2在x=O处,有:lim In@+J1+工2>G=G,lim(x+l)sin%+cos%+C2=1+C2由于原函数在(一8,+8)内连续,所以Ci=l+C2,令C2=C,则C1=1+C,故In1+%2+x1+C,x V0j/(x)dx=<(x+l)sin x+cos x+C,x>0In+x2+1,x<0令C=0,则f(x)的一个原函数为F(x)=<(x+l)sin x+cos>03.设数列{Xn},{yn}满足xi=yi=l/2,x n+i=sinx n,yn+i=y「,当n—8时()。

考研数学真题及参考答案 数学二

考研数学真题及参考答案 数学二

⎛ 1 0 0⎞
⎛1 0 0⎞ ⎛ 1 0 0⎞⎛1
⎞⎛1 0 0⎞ ⎛1


Q −1
AQ
=
⎜ ⎜
−1
1
0
⎟ ⎟
P
−1
AP
⎜ ⎜
1
1
0
⎟ ⎟
=
⎜ ⎜
−1
1
0 ⎟⎟
⎜ ⎜
⎜⎝ 0 0 1 ⎟⎠
⎜⎝ 0 0 1 ⎟⎠ ⎜⎝ 0 0 1 ⎟⎠ ⎜⎝
1
2
⎟ ⎟⎟⎠
⎜ ⎜⎜⎝
1 0
1 0
0 1
⎟ ⎟⎟⎠
=
⎜ ⎜⎜⎝
已知函数 f (x) = 1+ x − 1 ,记 a = lim f (x)
sin x x,
x→0
(1)求 a 的值
(2)若当 x → 0 时, f (x) − a 是 xk 的同阶无穷小,求 k
【解析】:(1)
lim
x→0
f
(x)
=
1 lim( x→0 sin
x

1 x
+ 1)
=
lim
x→0
x
− sin x2
1
⎟ 2 ⎟⎟⎠
故选(B)。 二、填空题:9−14 小题,每小题 4 分,共 24 分,请将答案写在答.题.纸.指定位置上.
(9)设 y = y(x) 是由方程 x2 − y +1 = ey 所确定的隐函数,则 dy = ________。 dx
2x
【答案】:
ey +1
【解析】:方程 x2 − y +1 = ey 两端对 x 求导,有 2x − dy = e y dy dx dx

考研数二试题及答案

考研数二试题及答案

考研数二试题及答案一、选择题(每题4分,共40分)1. 设函数f(x)=x^2-2x+3,求f(x)的最小值。

A. 1B. 2C. 3D. 4答案:B2. 已知等差数列的前三项分别为1, 4, 7,求该数列的通项公式。

A. an = 3n - 2B. an = 3n - 1C. an = 3nD. an = 3n + 1答案:A3. 求定积分∫(0到1) x^2 dx的值。

A. 1/3B. 1/2C. 2/3D. 1答案:B4. 设矩阵A为2x2矩阵,且|A|=3,则矩阵A的行列式为:A. 3B. -3C. 9D. -95. 已知函数y=x^3-3x^2+2,求y'。

A. 3x^2 - 6xB. x^3 - 3x^2C. 3x^2 - 6x + 2D. x^3 - 3x^2 + 6x答案:A6. 求极限lim(x→0) (sin x)/x。

A. 1B. 0C. 2D. -1答案:A7. 设函数f(x)=e^x-x^2,求f'(x)。

A. e^x - 2xB. e^x + 2xC. e^x - xD. e^x + x^2答案:A8. 已知向量a=(1,2),b=(3,-4),求向量a与向量b的数量积。

A. -10B. 10C. -2D. 2答案:B9. 求不定积分∫(1/x) dx。

B. ln|-x|C. ln|x| + CD. ln|-x| + C答案:C10. 设函数f(x)=x^3-6x^2+11x-6,求f'(x)。

A. 3x^2 - 12x + 11B. x^3 - 6x^2 + 11C. 3x^2 - 12x + 6D. 3x^2 - 6x + 11答案:A二、填空题(每题5分,共30分)1. 设函数f(x)=x^3-3x^2+2,求f(1)的值为________。

答案:02. 设函数f(x)=x^2+2x+1,求f''(x)的值为________。

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】

2023年全国硕士研究生招生考试《数学二》真题及答案解析【完整版】一、选择题:1~10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上。

1.1ln 1y x e x ⎛⎫=+ ⎪-⎝⎭曲线的渐近线方程为( )。

A .y =x +e B .y =x +1/e C .y =xD .y =x -1/e 【答案】B【解析】1ln 11lim lim lim ln 1,1x x x x e y x k e x x x →∞→∞→∞⎛⎫+ ⎪-⎛⎫⎝⎭===+= ⎪-⎝⎭ ()()()11lim lim ln lim ln 11111lim ln 1lim 11x x x x x b y kx x e x x e x x x x e x e x e →∞→∞→∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫=-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦⎡⎤=+==⎢⎥--⎣⎦所以斜渐近线方程为y =x +1/e .2.函数()()01cos ,0x f x x x x ≤=+>⎩的原函数为( )。

A .())()ln ,01cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B .())()ln 1,01cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C .())()ln ,01sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D .())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D【解析】当x ≤0时,()(1d ln f x x x C ==+⎰当x >0时,()()()()()2d 1cos d 1dsin 1sin sin d 1sin cos f x x x x xx x x x x x x x x C =+=+=+-=+++⎰⎰⎰⎰原函数在(-∞,+∞)内连续,则在x =0处(110lim ln x x C C -→++=,()220lim 1sin cos 1x x x x C C +→+++=+ 所以C 1=1+C 2,令C 2=C ,则C 1=1+C ,故())()ln 1,0d 1sin cos ,0x C x f x x x x x C x ⎧++≤⎪=⎨⎪+++>⎩⎰,综合选项,令C =0,则f (x )的一个原函数为())()ln 1,01sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩.3.设数列{x n },{y n }满足x 1=y 1=1/2,x n +1=sinx n ,y n +1=y n 2,当n →∞时( )。

考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析)

考研数学二(高等数学)历年真题试卷汇编9(题后含答案及解析) 题型有:1. 选择题 2. 填空题 3. 解答题选择题下列每题给出的四个选项中,只有一个选项符合题目要求。

1.设函数f(x)在x=0处可导,且f(0)=0,则A.一2f’(0).B.一f’(0).C.f’(0).D.0正确答案:B解析:2.函数f(x)=ln|(x一1)(x一2)(x一3)|的驻点个数为A.0B.1C.2D.3正确答案:C解析:令3x2—12x+11=0由于△= 122一12x+11>0,则该方程有两个实根,f(x)有两个驻点.3.曲线y=渐近线的条数为A.0B.1C.2D.3正确答案:C解析:由于=1,则该曲线有水平渐近线y=1.又=∞,则x=1为该曲线的一条垂直渐近线,故应选(C).4.设函数f(x)=(ex一1)(e2x一2)…(enx一n),其中n为正整数,则f’(0)= A.(一1)n一1(n一1)!.B.(一1)n(n一1)!.C.(一1)n1n!.D.(一1)nn!.正确答案:A解析:排除法:当n=2时,f(x)=(ex一1)(e2x一2)f’(x)=ex(e2x一2)+2e2x(ex一1)f’(0)=一1显然,(B)(C)(D)都不正确,故应选(A).5.设函数y=f(x)由方程cos(xy)+lny一x=1确定,则A.2B.1C.一1D.一2正确答案:A解析:由方程cos(xy)+lny一x=1知,当x=0时,y=1,即f(0)=1,以上方程两端对x求导得将x=0,y=1代入上式得y’|x=0=1,即f’(0)=1,6.下列曲线中有渐近线的是A.y=x+sinxB.y=x2+sinxC.y=x+sinD.y=x2+sin正确答案:C解析:由于所以曲线y=x+有斜渐近线y=x,故应选(C).7.设函数f(x)具有2阶导数,g(x)=f(0)(1一x)+f(1)x,则在区间[0,1]上A.当f’(x)≥0时,f(x)≥g(x)B.当f’(x)≥0时,f(x)≤g(x)C.当f”(x)≥0时,f(z)≥g(x)D.当f”(x)≥0时,f(x)≤g(x)正确答案:D解析:由于g(0)=f(0),g(1)=f(1),则直线y=f(0)(1一x)+f(1)x过点(0,f(0))和(1,f(1)),当f”(x)≥0时,曲线y=f(x)在区间[0,1]上是凹的,曲线y=f(x)应位于过两个端点(0,f(0))和(1,f(1))的弦y=f(0)(1一x)+f(1)x的下方,即f(x)≤g(x) 故应选(D).8.曲线上对应于t=1的点处的曲率半径是A.B.C.D.正确答案:C解析:故应选(C).9.设函数f(x)=arctanx,若f(x)=xf’(ξ),则A.B.C.D.正确答案:D解析:由f(x)= arctanx,及f(x)=xf’(ξ)得故应选(D).10.设函数f(x)=(α>0,β>0).若f’(x)在x=0处连续,则A.α一β>1.B.0<α一β≤1.C.α一β>2.D.0<α一β≤2.正确答案:A解析:f一’(0)=0,f+’(0)=该极限存在当且仅当α一1>0,即α>1.此时,α>1,f+’(0)=0,f’(0)=0.当x>0时,f’(x)=axα一1+βxα一β一1cos要使上式的极限存在且为0,当且仅当α一β一1>0.则α一β>1.故应选(A).11.设函数f(x)在(一∞,+∞)内连续,其2阶导函数f”(x)的图形如右图所示,则曲线y=f(x)的拐点个数为A.0B.1C.2D.3正确答案:C解析:由右图知f”(x1)=f”(x2)=0,f”(0)不存在,其余点上二阶导数f”(x)存在且非零,则曲线y=f(x)最多三个拐点,但在x=x1两侧的二阶导数不变号,因此不是拐点,而在x=0和x=x2两侧的二阶导数变号,则曲线y=f(x)有两个拐点,故应选(C).12.设函数f(x)在(一∞,+∞)内连续,其导函数的图形如图所示,则A.函数f(x)有2个极值点,曲线y=f(x)有2个拐点.B.函数f(x)有2个极值点,曲线y=f(x)有3个拐点.C.函数f(x)有3个极值点,曲线y=f(x)有1个拐点.D.函数f(x)有3个极值点,曲线y=f(x)有2个拐点.正确答案:B解析:x1,x3,x5为驻点,而在x1和x3两侧一阶导数f’(x)变号,则为极值点,在x5两侧一阶导数f’(x)不变号,则不是极值点,在x2处一阶导数不存在,但在x2两侧f’(x)不变号,则不是极值点.在x2处二阶导数不存在,在x4和x5处二阶导数为零,在这三个点两侧一阶导函数的增减性发生变化,则都为拐点,故应选(B).13.设函数fi(x)(i=1,2)具有二阶连续导数,且fi”(x0)<0(i=1,2).若两条曲线y=fi(x)(i=1,2)在点(x0,y0)处具有公切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某个邻域内,有A.f1(x)≤f2(x)≤g(x).B.f2(x)≤f1(x)≤g(x).C.f1(x)≤g(x)≤f2(x).D.f2(x)≤g(x)≤f1(x).正确答案:A解析:由函数fi(x)(i=1,2)具有二阶连续导数,且fi”(x0)<0(i=1,2)可知,在x0某邻域内曲线y =fi(x)(i=1,2)是凸的,而两曲线y=fi(x)(i=1,2)在点(x0,y0)处有公共切线y=g(x),且在该点处曲线y=f1(x)的曲率大于曲线y=f2(x)的曲率,则在x0的某邻域内三条曲线如图所示,故在x0点的该邻域内f1(x)≤f2(x)≤g(x)故应选(A).填空题14.曲线y=的渐近线方程为________.正确答案:y=2x.解析:显然曲线y=无水平渐近线和垂直渐近线,则原曲线有斜渐近线y=2x.15.函数y=ln(1一2x)在x=0处的n阶导数y(n)(0)=________.正确答案:一2n(n一1)!.解析:利用ln(l+x)的麦克劳林展开式16.已知一个长方形的长l以2cm/s的速率增加,宽ω以3 cm/s的速率增加,则当l=12 cm,ω=5 cm时,它的对角线增加的速率为________.正确答案:3.解析:设l=x(t),ω=y(t),其对角线长为z(t),则z2(t)=x2(t)+y2(t),2z(t)z’(t)=2x(t)x’(t)+2y(t)y’(t)将x(t)=12,y(t)=5,x’(t)=2,y’(t)=3,z(t)==13代入上式得z’(t)=3.17.设y=y(x)是由方程x2一y+1=ey所确定的隐函数,则|x=0=________.正确答案:1.解析:在方程x2一y+1=ey中令x=0,得y=0,该方程两端对x求导得2x 一y’=eyy’将x=0,y=0代入上式得y’(0)=0,上式再对x求导2一y”=eyy’2+eyy”将x=0,y=0,y’(0)代入上式得y”(0)=1.18.曲线y=x2+x(x<0)上曲率为的点的坐标是________.正确答案:(一1,0).解析:由y=x2+x得,y’=2x+1,y”=2,代入曲率计算公式得由K=得(2x+1)2=1解得x=0或x=一1,又x<0,则x=一1,这时y=0,故所求点的坐标为(一1,0).19.曲线上对应于t=1的点处的法线方程为________.正确答案:y+x=解析:而t=1时,x=则t=1处的法线方程为20.设f(x)是周期为4的可导奇函数,且f’(x)=2(x 一1),x∈[0,2],则f(7)=________.正确答案:1.解析:由f’(x)=2(x一1),x∈[0,2]知,f(x)=(x一1)2+C.又f(x)为奇函数,则f(0)=0,C=一1.f(x)=(x一1)2一1.由于f(x)以4为周期,则f(7)=f[8+(一1)]=f(一1)=一f(1)=1.21.曲线L的极坐标方程是r=θ,则L在点(r,θ)=处的切线的直角坐标方程是________.正确答案:解析:22.=________.正确答案:48.解析:23.函数f(x)=x22x在x=0处的竹阶导数f(n)(0)=________.正确答案:n(n一1)(ln2)n一2.解析:24.曲线y=+arctan(1+x2)的斜渐近线方程为________.正确答案:y=x+解析:则该曲线的斜渐近线方程为y=x+25.已知函数f(x)在(一∞,+∞)上连续,且f(x)=(x+1)2+2∫0xf(t) dt,则当n≥2时,f(n)(0)=________.正确答案:5.2n一1.解析:等式f(x)=(x+1)2+2∫0xf (t)dt两边对x求导得f’(x)=2(x+1)+2f(x),f’(0)=2+2f(0)=4f”(x)=2+2f’(x),f”(0)=2+2f’(0)=10f”‘(x)=2f”(x)f(n)(x)=2f(n一1)(x)=22f(n一2)(x)=…=2n一2f”(x) (n>2)f(n)(0)=2n一22f”(0) (n>2)= 2n一2.10=2n一1.5.26.已知动点P在曲线y=x3上运动,记坐标原点与点P间的距离为l.若点P的横坐标对时间的变化率为常数υ0,则当点P运动到点(1,1)时,l对时间的变化率是________.正确答案:解析:由题设知解答题解答应写出文字说明、证明过程或演算步骤。

2020考研数学二真题及答案

2020考研数学二真题及答案

e x -1ln 1+ x0 0⎰⎰0 2020考研数学二真题及答案一、选择题:1~8 小题,每小题 4 分,共 32 分,下列每小题给出的四个选项中,只有一项符合题目要求的,请将所选项前的字母填在答.题.纸.指定位置上. (1) 当 x → 0+时,下列无穷小量中最高阶是()(A )⎰ x (et 2-1)dt(B ) ⎰xln (1+ t2)dt(C )sin x sin t 2dt【答案】(D )1-cos x (D )sin t 2 dt【解析】由于选项都是变限积分,所以导数的无穷小量的阶数比较与函数的比较是相同的。

(A )(⎰ x(e t 2-1)dt )' = e x-1 ~ x 2(B )(⎰ xln (1+ t 2)dt )' = ln (1+ x 2 )x(C ) (C)(⎰sin x sin t 2dt )' = sin (sin 2 x ) x 2(D )( 01-cos xdt )'=x 1 x 32经比较,选(D )(2) 函数 f (x ) =1 (e x-1)(x - 2)的第二类间断点的个数为( )(A )1(B )2 (C )3 (D )4【答案】(C )【解析】由题设,函数的可能间断点有 x = -1, 0,1, 2 ,由此1lim f (x ) = lim - 1= - e 2lim ln 1+ x = -∞ ;x →-1 x →-1 (e x -1)(x - 2) 3(e -1 -1) x →-11lim f (x ) = lim = - e -1 lim ln(1+ x ) = - 1 ; x →0 x →0 (e x -1)(x - 2) 2 x →0 x 2eex -1ln 1+ x sin t 2 sin(1- cos x )2 e x -1ln 1+ x ⎰2∂f ∂x -n - 2 x →2 x →2 (e x2 x →21lim f (x ) = lim= ln 21lim e x -1 = 0;x →1-1x →1- (e x-1)(x - 2) 1- e x →1- ;lim = ln 2 1lim e x -1 = -∞;x →1+ (e x-1)(x - 2) 1- e x →1+1e x -1 ln 1+ xe ln 3 1lim f (x ) = lim -1)(x - 2) = (e -1) lim x - 2 = ∞ 故函数的第二类间断点(无穷间断点)有 3 个,故选项(C )正确。

2000-2020考研数学二历年真题word版(含答案)

2000-2020考研数学二历年真题word版(含答案)

2017年全国硕士研究生入学统一考试数学二试题一、选择题:1~8小题,每小题4分,共32分。

下列每题给出的四个选项中,只有一个选项是符合题目要求的.(1)若函数0(),0x f x b x >=⎪≤⎩在x=0连续,则 (A)12ab =(B)12ab =- (C)0ab = (D)2ab = (2)设二阶可到函数()f x 满足(1)(1)1,(0)1f f f =-==-且 ()0f x ''>,则 (A) 11()0f x dx ->⎰ (B) 12()0f x dx -<⎰(C) 0110()()f x dx f x dx ->⎰⎰(D)111()()f x dx f x dx -<⎰⎰(3)设数列{}n x 收敛,则(A)当limsin 0n n x →∞=时,lim 0n n x →∞=(B)当lim (0n n n x x →∞+= 时,则lim 0n n x →∞=(C)当2lim()0n n n x x →∞+=,lim 0n →∞=(D)当lim(sin )0n n n x x →∞+=时,lim 0n n x →∞=(4)微分方程248(1cos 2)xy y y e x '''-+=+ 的特解可设为ky =(A)22(cos 2sin 2)xx Aee B x C x ++ (B)22(cos 2sin 2)xx Axe e B x C x ++(C)22(cos 2sin 2)xx Aexe B x C x ++ (D)22(cos 2sin 2)xx Axexe B x C x ++(5)设()f x 具有一阶偏导数,且在任意的(,)x y ,都有(,)(,)0,f x y f x y x y∂∂>∂∂则 (A)(0,0)(1,1)f f > (B)(0,0)(1,1)f f <(C)(0,1)(1,0)f f > (D)(0,1)(1,0)f f <(6)甲乙两人赛跑,计时开始时,甲在乙前方10(单位:m )处,图中,实线表示甲的速度曲线()1v v t = (单位:m/s )虚线表示乙的速度曲线()2v v t =,三块阴影部分面积的数值依次为10,20,3,计时开始后乙追上甲的时刻记为0t (单位:s ),则(A)010t = (B)01520t << (C)025t = (D)025t >()s(7)设A 为三阶矩阵,123(,,)P ααα=为可逆矩阵,使得 1000010002P AP -⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则123(,,)A ααα=(A)12αα+ (B)232αα+ (C)23αα+ (D)122αα+(8)已知矩阵200021001A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,210020001B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,100020000C ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,则 (A) A 与C 相似,B 与C 相似(B) A 与C 相似,B 与C 不相似 (C) A 与C 不相似,B 与C 相似 (D) A 与C 不相似,B 与C 不相似二、填空题:9~14题,每小题4分,共24分.(9)曲线()21arcsin y x x =+的斜渐近线方程为(10)设函数()y y x =由参数方程sin t x t e y t⎧=+⎨=⎩确定,则202t d ydx =(11)()2ln(1)1x dx x +∞++⎰=(12)设函数(),f x y 具有一阶连续偏导数,且()()(),1,0,00y y df x yye dx x y e dy f =++=,则(),f x y = (13)11tan yxdy dx x=⎰⎰(14)设矩阵41212311A a ⎛⎫- ⎪= ⎪ ⎪-⎝⎭的一个特征向量为112⎛⎫⎪⎪ ⎪⎝⎭,则a =三、解答题:15~23小题,共94分。

2022年全国硕士研究生考试《数学》(二)真题及答案

2022年全国硕士研究生考试《数学》(二)真题及答案

2022年全国硕士研究生考试《数学》(二)真题及答案2022年全国硕士研究生考试《数学》(二)真题一、单选题(共14题,共56分)1.设函数f(x)=ln(3x),则'f(2)=()A.4B.ln6C.1/2D.1/62.设函数f ( x) =1-x^2 在区间( , )A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加3.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B.发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生4.设函数f (x)= ln(3x) ,则f' (2) =()A.6C.1/2D.1/65.设函数f (x) =1-x^3在区间( , )A.单调增加B.单调减少C.先单调增加,后单调减少D.先单调减少,后单调增加6.曲线y =| x |与直线y=2所围成的平面图形的面积为()A.2B.4C.6D.87.设A,B是两随机事件,则事件AB表示()A.事件A,B都发生B.事件B发生而事件A不发生C.事件A发生而事件B不发生D.事件A,B都不发生8.曲线的渐近线条数()A.0B.1C.29.设函数,其中n为正整数,则f'(0)=()A.B.C.D.10.设,则数列sn 有界是数列an 收敛的()A.充分必要条件B.充分非必要条件C.必要非充分条件D.即非充分地非必要条件11.设函数f (x, y)为可微函数,且对任意的x, y 都有则使不等式成立的一个充分条件是A.B.C.D.12.设区域D由曲线围成,则A.πB.2C.-2D.-π13.设,其中为任意常数,则下列向量组线性相关的为()A.B.C.D.14.A.B.C.D.二、填空题(共10题,共40分)15.曲线y=x^3 3x^2 5x4的拐点坐标为()16.设函数y=e^x+1,则y''=()17.设曲线y=ax^2+2x 在点(1,a+2) 处的切线与直线y=4x 平行,则a=()18.19.设y =y(x) 是由方程所确定的隐函数,则.=20.21.22.23.24.设A 为3阶矩阵,|A| =3 ,*A 为A 伴随矩阵,若交换A 的第1行与第2行得矩阵B ,则|BA|=()三、计算题(共10题,共40分)25.已知函数1 1 sin x f x x x ,记0 lim x a f x ,(I) 求a 的值(II) 若x 0 时,f x a 与k x 是同阶无穷小,求常数k 的值.26.证明方程x x x 1 n n-1 + n 1的整数,在区间1 ,1 2 内有且仅有一个实根;(II) 记(I) 中的实根为xn,证明lim n n x 存在,并求此极限27.已知函数f ( x) 满足方程f (x) f (x) 2 f (x) 0 及( ) ( ) 2 x f x f x e , (I) 求f (x) 的表达式(II) 求曲线2 2 0 ( ) ( )d x y f x f t t 的拐点.28.计算二重积分d D xy ,其中区域D为曲线r 1 cos 0 与极轴围成.29.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x轴旋转一周所得旋转体的体积V.30.求函数f (x) =x^3-3x^-9x+2的单调区间和极值.31.求函数f (x, y)=x^2+y^2在条件2x+3y=1下的极值.32.设函数y=sinx^2+2x ,求dy.33.已知离散型随机变量X 的概率分布为X 10 20 30 40P 0.2 0.1 0.5 a(1)求常数a ; (2)求X 的数学期望EX .34.求曲线y=x^2与直线y=0,x=1所围成的平面图形绕x 轴旋转一周所得旋转体的体积V .35.36.过(0,1)点作曲线L:y=lnx的切线,切点为A,又L与x轴交于B点,区域D由L与直线AB围成,求区域D的面积及D绕x轴旋转一周所得旋转体的体积.37.38.设(I) 计算行列式A ;(II) 当实数a为何值时,方程组有无穷多解,并求其通解39.已知,二次型的秩为2,(I) 求实数a的值;(II) 求正交变换x=Qy 将f 化为标准形.40.设函数y=sin x^2+2x,求dy41.已知离散型随机变量X的概率分布为X 10 20 30 40Pa(1)求常数a;(2)求X的数学期望EX.。

2023考研数学二真题及解析答案

2023考研数学二真题及解析答案

2023考研数学二真题及解析一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1.曲线1ln e 1y x x=+ −的斜渐近线方程为( ). (A )e y x =+(B )1ey x =+(C )yx = (D )1ey x =−【答案】(B )【解析】方法1. 1ln e 11limlim x x y k x x →∞→∞=+==− ()()11lim lim ln e 1lim ln e ln 111e 1x x x b y x x x x x →∞→∞→∞=−=+−=++− −−()11lim e 1ex x x →∞=− 故曲线的斜渐近线方程为1ey x =+.故选(B ) 方法2. ()()11ln e 11ln 1e 1e 1y x x x x=+=++−−()11ln 1e 1e x x x x α =++=++ −,其中lim 0x α→∞=,故1e y x =+为曲线的斜渐近线. 【评注】由()11lim ln 1e 1e x x x →∞+= − ,知()11ln 1e 1ex x α +=+ − 【评注】1.由()11lim ln 1e 1e x x x →∞ += − ,知()11ln 1e 1e x x α +=+ −2.本题属于常规题:《基础班》《强化班》的例子不再对应列举,《答题模版班》思维定势19【例13】2.函数() 0,()1cos ,0.x f x x x x ≤=+>的一个原函数是( )(A) ), 0,()(1)cos sin ,0.x x F x x x x x −≤= +−>(B))1, 0,()(1)cos sin ,0.x x F x x x x x +≤= +−>(C) ), 0,()(1)sin cos ,0.x x F x x x x x −≤= ++>(D))1, 0,()(1)sin cos ,0.x x F x x x x x +≤= ++>【答案】 (D) .【分析】本题主要考查原函数的概念,分段函数不定积分的求法以及函数可导与连续的关系.【详解】由于当0x <时,)1()lnF xx x C ==++∫当0x >时,()()2()1cos d 1sin cos F x x x x x x x C =+=+++∫ 由于()F x 在0x =处可导性,故()F x 在0x =处必连续 因此,有00lim ()lim ()x x F x F x −+→→=,即 121C C =+.取20C =得)1, 0,()(1)sin cos ,0.x x F x x x x x −+≤= ++> 应选(D) .【评注】此题考查分段函数的不定积分,属于常规题,与2016年真题的完全类似,在《真题精讲班》系统讲解过. 原题为已知函数2(1),1,()ln ,1.x x f x x x −< = ≥ 则()f x 的一个原函数是( )(A) 2(1),1,()(ln 1), 1.x x F x x x x −<=−≥ (B) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= +−≥ (C) 2(1),1,()(ln 1)1, 1.x x F x x x x −<=++≥ (D) 2(1),1,()(ln 1)1, 1.x x F x x x x −<= −+≥3.设数列{}{},n n x y 满足211111,sin ,2n n n n x y x x y y ++====()1,2,n = ,则当n →∞时( ) (A )n x 是n y 的高阶无穷小(B )n y 是n x 的高阶无穷小(C )n x 是n y 的等阶无穷小 (D )n x 是n y 的同阶但不等价无穷小 【答案】(B )【解析】由2111,,2n n y y y +==知2112nn y + =,则有112n n y y +<利用12sin n n n x x x π+=>,则1112n nx x π+<故21111111224444n n nn nn n n n n y y y y y x x x x x πππππ+−+− ≤=≤≤≤= 于是1110lim lim 04nn n n n y x +→∞→∞+ ≤≤= ,由夹逼准则lim 0nn ny x →∞=,选(B ) 【评注】本题属于今年难度较大的题,涉及到两个递推数列确定的无穷小的比较,涉及到不等式的放缩,有一定的综合性.4.若微分方程0y ay by ′′′++=的解在(,)−∞+∞上有界,则( )(A )00a b <>, (B )00a b >>, (C )00a b =>, (D )00a b =<, 【答案】(C )【解析】特征方程为20r ar b ++=,解得1,2r =.记24a b ∆=−当0∆>时,方程的通解为1212()e e r x r x yx c c ⋅⋅=+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆=时,1202ar r −=<=,方程的通解为1112()e e r x r x yx c c x =+,当12,c c 不全为零时()y x 在(,)−∞+∞上无界.当0∆<时,1,22a r i β=−±,方程的通解为()212()e cos sin axy x c x c x ββ−=+.只有当0a =,且240a b ∆=−<,即0b >时,lim ()lim ()0x x y x y x →+∞→−∞==,此时方程的解在(,)−∞+∞上有界. 故选(C )【评注】此题关于x →+∞方向的讨论,在《基础班》习题课上讲解过,见《基础班》习题课第八讲《常微分方程》第15题5.设()y f x =由2,sin ,x t t y t t =+=确定,则( ) (A )()f x 连续,(0)f ′不存在 (B )(0)f ′存在,()f x ′在0x =不连续 (C )()f x ′连续,(0)f ′′不存在 (D )(0)f ′′存在,()f x ′′在0x =不连续 【答案】(C ) 【解析】0t ≥时3,sin ,x t y t t == ,即有sin 33x xy =.0t <时,sin ,x t y t t = =−,即有sin y x x =−.sin ,033sin ,0x x x y x x x ≥= −< ,显然有()f x 在0x =不连续,且(0)0f = 0x >时,sin cos 33(3)9x x x xf x =+′;0x <时,sin ()cos x f x x x ′=−−, 利用导数定义可得()0sin 0330lim 0x x xf x ++→−′==,()0sin 0lim 0x x x f x+−→−′==,即得(0)0f ′= 易验证()0lim ()lim ()00x x f x f x f +−→→′′===,即()f x ′在0x =连续()01sin cos 233930lim 9x x x xf x ++→+′′=,()0sin cos 0lim 2x x x x f x+−→−−′′==−,故(0)f ′′不存在 ,选(C ) 【评注】此题考查参数方程确定的分段函数,只要在参数方程中去掉绝对值的过程,就成了我们常规的分段函数求导的问题,无论是《基础班》第二讲例24,《强化班》第二讲例17. 6.若函数()()121d ln f x x x αα+∞+=∫在0αα=处取得最小值,则0α=( )(A )()1ln ln 2−(B )()ln ln 2−(C )1ln 2−(D )ln 2【答案】(A )【解析】反常积分的判别规律知11α+>,即0α>时反常积分()121d ln x x x α+∞+∫收敛此时()()()212111d ln ln f x x x x αααα+∞+∞+==−∫()11ln 2αα=令()()()2111ln ln 2ln 2ln 2f ααααα′=−−()2111ln ln 20ln 2ααα =−+= 得唯一驻点()1ln ln 2α=−,故选(A )【评注】此题是属于由反常积分确定的函数求最值的问题,积分本身不难,积分结果再求导,找驻点得结果.难度不大,只要基本计算能力过关,可轻松应对.《基础班》《强化班》相应问题得组合而已. 7.设函数()()2e xf x xa =+,若()f x 没有极值点,但曲线()f x 有拐点,则a 的取值范围是( )(A )[)0,1(B )[)1,+∞ (C )[)1,2 (D )[)2,+∞【答案】(C )【解析】()()2e xf x xa =+,()()22e x f x xa x ′=++,()()242e x f x xa x ′′=+++由()()211e x f x x a ′=++−,知10a −≥时,()0f x ′≥,此时()f x 无极值点.由()()222e x f x x a ′′=++−,知20a −<时,()f x ′′在2x =±的左右两侧变号,依题意有[)1,2a ∈,选(C )【评注】本题考查了极值点、拐点的必要条件与判定,题目本身是常规的,分开对这两个考点出题,在《基础班》和《强化班》都讲过,但这种问法有些学生可能会觉得很别扭.8.设A,B 分别为n 阶可逆矩阵,E 是n 阶单位矩阵,*M 为M 的伴随矩阵,则AE OB 为( ) (A )*****−A B B A O A B (B )****− A B A B O B A(C )****−B A B A O A B (D )**** −B A A B O A B 【答案】(D )【解析】由分块矩阵求逆与行列式的公式,结合1∗−=A A A 得11111∗−−−−− − ==A E A E A E E A A AB B O B O B O B O B ∗∗∗∗−=B O A A A B B ,选(D ) 【评注】这钟类型的题在02年,09年均考过完全类似的题,《基础班》第二讲也讲过,原题为【例1】设,A B ∗∗分别为n 阶可逆矩阵,A B 对应的伴随矩阵,∗∗=A O C O B9.二次型()()()222123121323(,,)4f x x x x x x x x x =+++−−的规范形为( ). (A )2212y y +(B )2212y y −(C )222123y y y −−(D )222123y y y +−【答案】(B ) 【详解】因为123(,,)f x x x 222123121323233228x x x x x x x x x =−−+++方法1.二次型的矩阵为 211134143=− −A , 由()()211134730143λλλλλλλ−−−−=−+−=+−=−−+E A ,得特征值为0,7,3−,故选(B )方法2.()222123123121323,,233228f x x x x x x x x x x x x =−−+++()()()22232322211232323233842x x x x x x x x x x x x ++=+++−−−+222222322332323126616222x x x x x x x x x x x +++++− =+− ()22231237222x x x x x +=+−− 故所求规范形为()2212312,,f x x x y y =−,故选(B )【评注】本题考查二次型的规范形,与考查正负惯性指数是同一类题,在《基础班》《强化班》均讲过. 《解题模板班》类似例题为【11】设123123(,,),(,,)T T a a a b b b αβ==,,αβ线性无关,则二次型 123112233112233(,,)()()f x x x a x a x a x b x b x b x =++++的规范型为( ). (A)21y (B)2212y y + (C) 2212y y − (D) 222123y y y ++10.已知向量12121,,1222150390,1====ααββ,若γ既可由12,αα表示,也由与12,ββ表示,则=γ( ).(A )334k (B )3510k(C )112k−(D )158k【答案】(D ) 【解析】由题意可设11212212x y x y +==+γααββ,只需求出21,x x 即可 即解方程组112112220x y y x +−−=ααββ()121212211003,,2150010131910011,−−−−=−→− −−ααββ 得()()2211,,1,3,,1,1TTx k x y y =−−,k 为任意常数11221212133215318x k k k k k x+=−+=−+=−=γαααα,故选(D )【评注】1.此题与《强化班》讲义第三讲练习第12题完全类似,原题为【12】(1)设21,αα,21,ββ均是三维列向量,且21,αα线性无关, 21,ββ线性无关,证明存在非零向量ξ,使得ξ既可由21,αα线性表出,又可由21,ββ线性表出.(2)当 =4311α,=5522α:1231β = − ,2343β−=−时,求所有既可由21,αα线性表出, 又可21,ββ线性表出的向量。

2023年考研数学二真题及答案

2023年考研数学二真题及答案

2023年考研数学二真题及答案一、选择题:1~10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 1ln(e )1y x x =+- 的斜渐近线为( ) A.e y x =+ B.1e y x =+ C.y x = D.1ey x =- 【答案】B.【解析】由已知1ln e 1y x x ⎛⎫=+⎪-⎝⎭,则 1limlimln e ln e 11x x y x x →∞→∞⎛⎫=+== ⎪-⎝⎭, 11lim lim ln e lim ln e 111x x x y x x x x x x →∞→∞→∞⎡⎤⎡⎤⎛⎫⎛⎫-=+-=+- ⎪ ⎪⎢⎥⎢⎥--⎝⎭⎝⎭⎣⎦⎣⎦ 1lim ln e ln e 1x x x →∞⎡⎤⎛⎫=+- ⎪⎢⎥-⎝⎭⎣⎦ 1lim ln 1e(1)x x x →∞⎡⎤=+⎢⎥-⎣⎦1lime(1)ex x x →∞==-,所以斜渐近线为1ey x =+.故选B. 2.函数0()(1)cos ,0x f x x x x ≤=+>⎩的一个原函数为( ).A.)ln ,0()(1)cos sin ,0x x F x x x x x ⎧≤⎪=⎨⎪+->⎩B.)ln 1,0()(1)cos sin ,0x x F x x x x x ⎧+≤⎪=⎨⎪+->⎩C.)ln ,0()(1)sin cos ,0x x F x x x x x ⎧≤⎪=⎨⎪++>⎩D.)ln 1,0()(1)sin cos ,0x x F x x x x x ⎧+≤⎪=⎨⎪++>⎩【答案】D.【解析】由已知0lim ()lim ()(0)1x x f x f x f +-→→===,即()f x 连续. 所以()F x 在0x =处连续且可导,排除A ,C.又0x >时,[(1)cos sin ]cos (1)sin cos (1)sin x x x x x x x x x '+-=-+-=-+, 排除B.故选D.3.设数列{},{}n n x y 满足111111,sin ,22n n n n x y x x y y ++====,当n →∞时( ). A.n x 是n y 的高阶无穷小 B.n y 是n x 的高阶无穷小 C.n x 是n y 的等价无穷小D.n x 是n y 的同阶但非等价无穷小【答案】B. 【解析】在0,2π⎛⎫⎪⎝⎭中,2sin x x π>,从而12sin n n n x x x π+=>.又112n n y y +=,从而 1111122444nnn n nn n ny y y y x x x x ππππ++⎛⎫⎛⎫<=<<= ⎪ ⎪⎝⎭⎝⎭, 所以11lim0n n n y x +→∞+=.故选B. 4. 若0y ay by '''++=的通解在(,)-∞+∞上有界,这( ).A.0,0a b <>B.0,0a b >>C.0,0a b =<D.0,0a b =>【答案】D【解析】微分方程0y ay by '''++=的特征方程为20r ar b ++=.①若240a b -<,则通解为212()e()a x y x C x C x -=+;②若240a b ->,则通解为2212()eeaa x x y x C C ⎛⎛ -- ⎝⎭⎝⎭=+;③若240a b -=,则通解为212()()e a x y x C C x -=+.由于()y x 在(,)-∞+∞上有界,若02a ->,则①②③中x →+∞时通解无界,若02a-<,则①②③中x →-∞时通解无界,故0a =.0a =时,若0b > ,则1,2r =,通解为12()()y x C C =+,在(,)-∞+∞上有界.0a =时,若0b <,则1,2r =,通解为12()e y x C C =+,在(,)-∞+∞上无界.综上可得0a =,0b >.故选D.5. 设函数()y f x =由参数方程2||||sin x t t y t t =+⎧⎨=⎩确定,则( ).A.()f x 连续,(0)f '不存在B.(0)f '存在,()f x '在0x =处不连续C.()f x '连续,(0)f ''不存在D.(0)f ''存在,()f x ''在0x =处不连续【答案】C【解析】0lim lim ||sin 0(0)x t y t t y →→===,故()f x 在0x =连续.0()(0)||sin (0)limlim 02||x t f x f t tf x t t →→-'===+. sin cos ,03()()00()sin cos 0t t tt y t f x t x t t t t t +⎧>⎪⎪''===⎨'⎪--<⎪⎩0t =时,0x =;0t >时,0x >;0t <时,0x <,故()f x '在0x =连续.00sin cos 0()(0)23(0)lim lim 39x t t t tf x f f x t +++→→+-''-''===, 00()(0)sin cos 0(0)lim lim 2x t f x f t t t f x t---→→''----''===-,故(0)f ''不存在.故选C. 6. 若函数121()(ln )αα+∞+=⎰f dx x x 在0=αα处取得最小值,则0=α( )A.1ln(ln 2)-B.ln(ln 2)-C.1ln 2-D.ln 2【答案】A. 【解析】已知112221d(ln )111()d (ln )(ln )(ln )(ln 2)aa a ax f a x x x x x a a +∞+∞+∞-++===-=⎰⎰,则 2111ln ln 2111()ln ln 2(ln 2)(ln 2)(ln 2)a a af a a a a a ⎛⎫'=--=-+ ⎪⎝⎭, 令()0f a '=,解得01.ln ln 2a =-故选A.7.设函数2()()e xf x x a =+.若()f x 没有极值点,但曲线()y f x =有拐点,则a 的取值范围是( ). A.[0,1) B.[1,)+∞ C.[1,2) D. [2,)+∞【答案】C.【解析】由于()f x 没有极值点,但曲线()y f x =有拐点,则2()(2)e xf x x x a '=++有两个相等的实根或者没有实根,2()(42)e xf x x x a ''=+++有两个不相等的实根.于是知440,164(2)0,a a -≤⎧⎨-+>⎩解得12a ≤<.故选C. 8. ,A B 为可逆矩阵,E 为单位阵,*M 为M 的伴随矩阵,则*⎛⎫= ⎪⎝⎭A E O BA.****||||⎛⎫- ⎪⎝⎭A B B A O B AB.****||||⎛⎫- ⎪⎝⎭B A A B O A B C.****||||⎛⎫- ⎪⎝⎭B A B A OA BD.****|||⎛⎫- ⎪⎝⎭A B A B OB |A【答案】B 【解析】由于*||||||||⎛⎫⎛⎫⎛⎫⎛⎫== ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭A E A E A E E O AB O O B O B O B O E O A B , 故*1||||||||-⎛⎫⎛⎫⎛⎫= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭A E A E AB O O B O B O A B1111||||||||----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭A B O A A B O A B O B 1111||||||||||||----⎛⎫-= ⎪⎝⎭A A B A A B B O B A B ****||||⎛⎫-= ⎪⎝⎭A B A B OB A . 故选B.9. 222123121323(,,)()()4()f x x x x x x x x x =+++--的规范形为 A.2212y y +B.2212y y -C.2221234y y y +-D.222123y y y +-【答案】B【解析】222123121323(,,)()()4()f x x x x x x x x x =+++--222123121323233228x x x x x x x x x =--+++,二次型的矩阵为211134143⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A ,21121||134(7)131143141λλλλλλλ---=--=+-----A E21(7)210(7)(3)0141λλλλλλ-=+-=-+-=-, 1233,7,0λλλ==-=,故规范形为2212y y -,故选B.10.已知向量组121212212,1,5,03191⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪==== ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ααββ ,若γ 既可由12,αα 线性表示,又可由12,ββ线性表示,则=γ( )A.33,4k k R ⎛⎫⎪∈ ⎪ ⎪⎝⎭B.35,10k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭C.11,2k k R -⎛⎫ ⎪∈ ⎪ ⎪⎝⎭D.15,8k k R ⎛⎫ ⎪∈ ⎪ ⎪⎝⎭【答案】D【解析】设11223142k k k k=+=+γααββ,则11223142k k k k +--=0ααββ,对关于1234,,,k k k k 的方程组的系数矩阵作初等变换化为最简形,121212211003(,,,)2150010131910011--⎛⎫⎛⎫ ⎪ ⎪=--=-→- ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭A ααββ,解得TTTT1234(,,,)(3,1,1,1)(3,1,1,0)(33,1,1,)k k k k C C C C C =--+-=--+-,故=γ11221211(33)(1)5(1)5,8(1)8C k k C C C k k R C -⎛⎫⎛⎫⎪ ⎪+=-+-=-=∈ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭αααα.故选D.二、填空题:11~16小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11.当0x →时,2()ln(1)f x ax bx x =+++与2()e cos x g x x =-是等价无穷小,则ab =________.【答案】2-【解析】由题意可知,2200()ln(1)1lim lim ()e cos x x x f x ax bx x g x x →→+++==-222022221()2lim 11+()[1()]2x ax bx x x o x x o x x o x →++-+=+--+ 220221(1)()()2lim 3()2x a x b x o x x o x →++-+=+,于是1310,22a b +=-=,即1,2a b =-=,从而2ab =-. 12.曲线y =⎰的孤长为_________.【答案】43π【解析】曲线y =⎰的孤长为x x ==2= 2sin 233022cos d2sin 8cos d x tt t t t ππ==⎰⎰31cos 282tdt π+=⎰ 3014sin 22t t π⎛⎫=+ ⎪⎝⎭43π=13. 设函数(,)z z x y =由方程e 2zxz x y +=-确定,则22(1,1)xz∂=∂_________.【答案】32-【解析】将点(1,1)带入原方程,得0z =. 方程e 2z xz x y +=-两边对x 求偏导,得e2zz zz x x x∂∂++=∂∂, 两边再对x 求偏导,得22222e e 20zz z z z z x x x x x ∂∂∂∂⎛⎫+++= ⎪∂∂∂∂⎝⎭,将1,1,0x y z ===代入以上两式,得(1,1)1z x ∂=∂,22(1,1)32xz∂=-∂.14. 曲线35332x y y =+在1x =对应点处的法线斜率为_________. 【答案】119-【解析】当1x =时,1y =.方程35332x y y =+两边对x 求导,得2429(56)x y y y '=+,将1x =,1y =代入,得9(1)11y '=.于是曲线35332x y y =+在1x =对应点处的法线斜率为119-. 15. 设连续函数()f x 满足(2)()f x f x x +-=,20()d 0f x x =⎰,则31()d f x x =⎰_________.【答案】12【解析】3323121111()d ()d ()d ()d ()d ()d f x x f x x f x x f x x f x x f x x =-=--⎰⎰⎰⎰⎰⎰312()d ()d f x x f x x=-⎰⎰111201(2)d ()d d 2x tf t t f x x x x -=+-==⎰⎰⎰. 16. 13123123121,0,20,2ax x x ax x x x ax ax bx +=⎧⎪++=⎪⎨++=⎪⎪+=⎩ 有解,其中,a b 为常数,若0111412a a a = ,则11120a a ab =________. 【答案】8【解析】方程组有解,则0111101110||12211012001202a a a a a a a ab aa b ==-+=A ,故111280a a ab =.三、解答题:17~22小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本题满分10分)设曲线):(e ()L y y x x =>经过点2(e ,0),L 上任一点(,)P x y 到y 轴的距离等于该点处的切线在y 轴上的截距,(Ⅰ)求()y x ;(Ⅱ)在L 上求一点,使该点的切线与两坐标轴所围三角形面积最小,并求此最小面积. 【解】(Ⅰ)曲线L 在点(,)P x y 处的切线方程为()()Y y y x X x '-=-,令0X =,则切线在y 轴上的截距为()Y y xy x '=-,则()x y xy x '=-,即11y y x'-=-,解得()(l n )y x x C x =-,其中C 为任意常数. 又2(e )0y =,则2C =,故()(2ln )y x x x =-.(Ⅱ)设曲线L 在点(,(2ln ))x x x -处的切线与两坐标轴所围三角形面积最小,此时切线方程为(2ln )(1ln )()Y x x x X x --=--.令0Y =,则ln 1xX x =-;令0X =,则Y x =.故切线与两坐标轴所围三角形面积为211()22ln 12(ln 1)x x S x XY x x x ==⋅⋅=--,则2(2ln 3)()2(ln 1)x x S x x -'=-.令()0S x '=,得驻点32e x =. 当32e e x <<时,()0S x '<;当32e x >时,()0S x '>,故()S x 在32e x =处取得极小值,同时也取最小值,且最小值为332(e )e S =.18.(本题满分12分)求函数2cos (,)e2yx f x y x =+的极值. 【解】由已知条件,有cos (,)e y x f x y x '=+,cos (,)e (sin )y y f x y x y '=-.令(,)0,(,)0x y f x y f x y ''==,解得驻点为1,e k π⎛⎫- ⎪⎝⎭,其中k 为奇数;(e,)k π-,其中k 为偶数.(,)1xxf x y ''=,cos (,)e (sin )y xy f x y y ''=-,cos 2cos (,)e sin e cos y y yy f x y x y x y ''=-. 在点1,e k π⎛⎫- ⎪⎝⎭处,其中k 为奇数,1,1e xx A f k π⎛⎫''=-= ⎪⎝⎭,1,0e xy B f k π⎛⎫''=-= ⎪⎝⎭,21,e e yy C f k π-⎛⎫''=-= ⎪⎝⎭, 由于20AC B -<,故1,e k π⎛⎫- ⎪⎝⎭不是极值点,其中k 为奇数.在点(e,)k π-处,其中k 为偶数,(e,)1xxA f k π''=-=,(e,)0xyB f k π''=-=,2(e,)e yyC f k π-''=-=,由于20AC B ->,且0A >,故(e,)k π-为极小值点,其中k 为偶数,且极小值为2e (e,)2f k π-=-.19.(本题满分12分)已知平面区域(,)|01D x y y x ⎧⎫=≤≤≥⎨⎬⎩⎭, (1)求平面区域D 的面积S .(2)求平面区域D 绕x 一周所形成的旋转体的体积. 【解】(1)222144sec 1d d tan sec sin t S x t t t t t ππππ+∞===⎰⎰⎰222244sin 1d d cos sin 1cos t t t t tππππ==--⎰⎰241cos 11lnln2cos 12t t ππ-==+. (2) 222211111d d 1(1)14V x x x x x x ππππ+∞+∞⎛⎫⎛⎫==-=- ⎪ ⎪++⎝⎭⎝⎭⎰⎰.20.(本题满分12分)设平面区域D 位于第一象限,由曲线221x y xy +-=,222x y xy +-=与直线,0y y ==围成,计算221d d 3Dx y x y +⎰⎰.【解】221d d 3Dx y x y +⎰⎰30d d πθρ=⎰32201d sin 3cos πθρθθ=+⎰322011ln 2d 2sin 3cos πθθθ=+⎰ 32011ln 2d tan 2tan 3πθθ=+⎰==.21.(本题满分12分)设函数()f x 在[,]a a -上有二阶连续导数. (1)证明:若(0)0f =,存在(,)a a ξ∈-,使得21()[()()]f f a f a a ξ''=+-; (2)若()f x 在(,)a a -上存在极值,证明:存在(,)a a η∈-,使得21|()||()()|2f f a f a aη''≥--. 【证明】(1)将()f x 在00x =处展开为22()()()(0)(0)(0)2!2!f x f x f x f f x f x δδ''''''=++=+, 其中δ介于0与x 之间.分别令x a =-和x a =,则21()()(0)()2!f a f a f a ξ'''-=-+,10a ξ-<<, 22()()(0)()2!f a f a f a ξ'''=+,20a ξ<<, 两式相加可得212()()()()2f f f a f a a ξξ''''+-+=, 又函数()f x 在[,]a a -上有二阶连续导数,由介值定理知存在ξ∈12[,](,)a a ξξ⊂-,使得12()()()2f f f ξξξ''''+=, 即21()[()()]f f a f a a ξ=-+. (2)设()f x 在0x 处取得极值,则0()0f x '=.将()f x 在0x 处展开为22000000()()()()()()()()()2!2!f x x f x x f x f x f x x x f x δδ''''--'=+-+=+, 其中δ介于0x 与x 之间.分别令x a =-和x a =,则2100()()()()2!f a x f a f x η''+-=+,10a x η-<<, 2200()()()()2!f a x f a f x η''-=+,02x a η<<, 两式相减可得222010()()()()()()22f a x f a x f a f a ηη''''-+--=-, 所以222010()()()()|()()|22f a x f a x f a f a ηη''''-+--=- 221020|()|()|()|()22f a x f a x ηη''''+-≤+ 220012|()|[()()](|()|max(|()|,|()|))2f a x a x f f f ηηηη''''''''≤++-= 2200|()|[()()]2|()|2f a x a x a f ηη''''≤++-=, 即21|()||()()|2f f a f a aη''≥--.22.(本题满分12分)设矩阵A 满足对任意的123,,x x x 均有112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A . (1)求A(2)求可逆矩阵P 与对角阵Λ,使得1-=P AP Λ. 【解】(1)由112321233232x x x x x x x x x x x ++⎛⎫⎛⎫ ⎪ ⎪=-+ ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A ,得112233*********x x x x x x ⎛⎫⎛⎫⎛⎫ ⎪ ⎪⎪=- ⎪ ⎪⎪ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭A ,即方程组123111211011x x x ⎡⎤⎛⎫⎛⎫⎢⎥ ⎪ ⎪--=⎢⎥ ⎪ ⎪ ⎪ ⎪⎢⎥-⎝⎭⎝⎭⎣⎦0A 对任意的123,,x x x 均成立,故111211011⎛⎫ ⎪=- ⎪ ⎪-⎝⎭A . (2)111101||211(2)20011011λλλλλλλλ---=--=+-----A E , (2)(2)(1)0λλλ=-+-+=,特征值为1232,2,1λλλ=-==-.3111002211011011000⎛⎫⎛⎫ ⎪ ⎪+=→ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,1011⎛⎫ ⎪=- ⎪ ⎪⎝⎭α; 1111042231013013000--⎛⎫⎛⎫ ⎪ ⎪-=-→- ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭A E ,2431⎛⎫ ⎪= ⎪ ⎪⎝⎭α; 211201************⎛⎫⎛⎫ ⎪ ⎪+=→- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭A E ,3102-⎛⎫ ⎪= ⎪ ⎪⎝⎭α, 令123041(,,)130112-⎛⎫ ⎪==- ⎪ ⎪⎝⎭P ααα ,则1200020001--⎛⎫ ⎪== ⎪ ⎪-⎝⎭P AP Λ.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年研究生入学统一考试数学二试题与答案一、选择题:1~8小题,每小题4分,共32分,下列每小题给出的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后的括号内. (1)设2()(1)(2)f x x x x =--,则'()f x 的零点个数为()()A 0 ()B ()C ()D 3(2)曲线方程为()y f x =函数在区间[0,]a 上有连续导数,则定积分0()a t af x dx ⎰()()A 曲边梯形ABCD 面积.()B 梯形ABCD 面积. ()C 曲边三角形ACD 面积.()D 三角形ACD 面积.(3)在下列微分方程中,以123cos 2sin 2x y C e C x C x =++(123,,C C C 为任意常数)为通解的是()(5)设函数()f x 在(,)-∞+∞内单调有界,{}n x 为数列,下列命题正确的是()()A 若{}n x 收敛,则{}()n f x 收敛. ()B 若{}n x 单调,则{}()n f x 收敛. ()C 若{}()n f x 收敛,则{}n x 收敛.()D 若{}()n f x 单调,则{}n x 收敛.(6)设函数f连续,若22(,)uvD F u v =⎰⎰,其中区域uv D 为图中阴影部分,则Fu∂=∂ (7)设A 为n 阶非零矩阵,E 为n 阶单位矩阵.若30A =()A E A -不可逆,E A +不可逆.()B E A -不可逆,()C E A -可逆,E A +可逆.()D E A -可逆,E A +不可逆.(8)设1221A ⎛⎫= ⎪⎝⎭,则在实数域上与A 合同的矩阵为()()A 2112-⎛⎫ ⎪-⎝⎭.()B 2112-⎛⎫ ⎪-⎝⎭.()C 2112⎛⎫ ⎪⎝⎭.()D 1221-⎛⎫ ⎪-⎝⎭. 二、填空题:9-14小题,每小题4分,共24分,请将答案写在答题纸指定位置上. (9)已知函数()f x 连续,且21cos[()]lim1(1)()x x xf x e f x →-=-,则(0)____f =.(10)微分方程2()0x y x e dx xdy -+-=的通解是____y =.(11)曲线()()sin ln xy y x x +-=在点()0,1处的切线方程为 . (12)曲线23(5)y x x =-的拐点坐标为______.(13)设xyy z x ⎛⎫= ⎪⎝⎭,则(1,2)____z x ∂=∂.(14)设3阶矩阵A 的特征值为2,3,λ.若行列式248A =-,则___λ=.三、解答题:15-23小题,共94分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤. (15)(本题满分9分)求极限()40sin sin sin sin lim x x x x x →-⎡⎤⎣⎦. (16)(本题满分10分)设函数()y y x =由参数方程20()ln(1)t x x t y u du =⎧⎪⎨=+⎪⎩⎰确定,其中()x t 是初值问题020xt dx te dtx --⎧-=⎪⎨⎪=⎩的解.求22y x ∂∂. (17)(本题满分9分)求积分1⎰.(18)(本题满分11分)求二重积分max(,1),Dxy dxdy ⎰⎰其中{(,)02,02}D x y x y =≤≤≤≤(19)(本题满分11分)设()f x 是区间[)0,+∞上具有连续导数的单调增加函数,且(0)1f =.对任意的[)0,t ∈+∞,直线0,x x t ==,曲线()y f x =以及x 轴所围成的曲边梯形绕x 轴旋转一周生成一旋转体.若该旋转体的侧面积在数值上等于其体积的2倍,求函数()f x 的表达式.(20)(本题满分11分)(1)证明积分中值定理:若函数()f x 在闭区间[,]a b 上连续,则至少存在一点[,]a b η∈,使得()()()ba f x dx fb a η=-⎰(2)若函数()x ϕ具有二阶导数,且满足32(2)(1),(2)()x dx ϕϕϕϕ>>⎰,证明至少存在一点(1,3),()0ξϕξ''∈<使得 (21)(本题满分11分)求函数222u x y z =++在约束条件22z x y =+和4x y z ++=下的最大值与最小值. (22)(本题满分12分)设矩阵2221212n na a aA a a ⨯⎛⎫⎪⎪= ⎪⎪⎝⎭,现矩阵A 满足方程AX B =,其中()1,,Tn X x x =,()1,0,,0B =,(1)求证()1n A n a =+;(2)a 为何值,方程组有唯一解,并求1x ; (3)a 为何值,方程组有无穷多解,并求通解. (23)(本题满分10分)设A 为3阶矩阵,12,αα为A 的分别属于特征值1,1-特征向量,向量3α满足323A ααα=+,(1)证明123,,ααα线性无关; (2)令()123,,P ααα=,求1P AP -.2008年全国硕士研究生入学统一考试数学二试题解析一、选择题 (1)【答案】D【详解】因为(0)(1)(2)0f f f ===,由罗尔定理知至少有1(0,1)ξ∈,2(1,2)ξ∈使12()()0f f ξξ''==,所以()f x '至少有两个零点.又()f x '中含有因子x ,故0x =也是()f x '的零点,D 正确.本题的难度值为. (2)【答案】C【详解】0()()()()()()aaaaaxf x dx xdf x xf x f x dx af a f x dx '==-=-⎰⎰⎰⎰ 其中()af a 是矩形ABOC 面积,0()a f x dx ⎰为曲边梯形ABOD 的面积,所以0()axf x dx'⎰为曲边三角形的面积.本题的难度值为. (3)【答案】D【详解】由微分方程的通解中含有x e 、cos2x 、sin 2x 知齐次线性方程所对应的特征方程有根1,2r r i ==±,所以特征方程为(1)(2)(2)0r r i r i --+=,即32440r r r -+-=.故以已知函数为通解的微分方程是40y y y ''''''-+-= 本题的难度值为. (4)【答案】A【详解】0,1x x ==时()f x 无定义,故0,1x x ==是函数的间断点因为000ln 11lim ()lim lim lim csc |1|csc cot x x x x x xf x x x x x++++→→→→=⋅=-- 同理0lim ()0x f x -→= 又1111ln 1lim ()lim lim sin lim sin1sin11x x x x x f x x x x ++++→→→→⎛⎫=⋅== ⎪-⎝⎭ 所以0x =是可去间断点,1x =是跳跃间断点.本题的难度值为. (5)【答案】B【详解】因为()f x 在(,)-∞+∞内单调有界,且{}n x 单调.所以{()}n f x 单调且有界.故{()}n f x 一定存在极限.本题的难度值为. (6)【答案】A【详解】用极坐标得()222()2011,()vu uf r r Df u v F u v dv rdr v f r dr +===⎰⎰⎰所以()2Fvf u u∂=∂ 本题的难度值为. (7)【答案】C【详解】23()()E A E A A E A E -++=-=,23()()E A E A A E A E +-+=+= 故,E A E A -+均可逆. 本题的难度值为. (8)【答案】D【详解】记1221D -⎛⎫= ⎪-⎝⎭,则()2121421E D λλλλ--==---,又()2121421E A λλλλ---==----所以A 和D 有相同的特征多项式,所以A 和D 有相同的特征值.又A 和D 为同阶实对称矩阵,所以A 和D 相似.由于实对称矩阵相似必合同,故D 正确.本题的难度值为. 二、填空题 (9)【答案】2【详解】222220001cos[()]2sin [()2]2sin [()2]()lim lim lim ()[()2]4(1)()x x x x xf x xf x xf x f x x f x xf x e f x →→→-⋅==⋅- 所以(0)2f = 本题的难度值为. (10)【答案】()x x e C --+【详解】微分方程()20x y x e dx xdy -+-=可变形为x dy yxe dx x--= 所以111()dx dx x x x x xy e xe e dx C x xe dx C x e C x ----⎡⎤⎛⎫⎰⎰=+=⋅+=-+⎢⎥ ⎪⎝⎭⎣⎦⎰⎰ 本题的难度值为. (11)【答案】1y x =+【详解】设(,)sin()ln()F x y xy y x x =+--,则1cos()11cos()x y y xy F dy y xdx F x xy y x--'-=-=-'+-, 将(0)1y =代入得01x dydx ==,所以切线方程为10y x -=-,即1y x =+ 本题的难度值为.(12)【答案】(1,6)-- 【详解】53235y x x =-⇒2131351010(2)333x y x x x-+'=-= 1x =-时,0y ''=;0x =时,y ''不存在在1x =-左右近旁y ''异号,在0x =左右近旁0y ''>,且(1)6y -=- 故曲线的拐点为(1,6)-- 本题的难度值为. (13)【答案】21)2- 【详解】设,y xu v x y==,则v z u = 所以121()ln v v z z u z v y vu u u x u x v x x y-∂∂∂∂∂=⋅+⋅=-+⋅∂∂∂∂∂所以(1,2)21)z x ∂=-∂ 本题的难度值为. (14)【答案】-1【详解】||236A λλ =⨯⨯=3|2|2||A A =本题的难度值为. 三、解答题 (15)【详解】方法一:4300[sin sin(sin )]sin sin sin(sin )lim lim x x x x x x x x x→→--= 方法二:331sin ()6x x x o x =-+331sin(sin )sin sin (sin )6x x x o x =-+(16)【详解】方法一:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+所以2222ln(1)2(1)ln(1)21dydy t t dt t t dxt dx dt t +⋅===+++方法二:由20x dxte dt--=得2x e dx tdt =,积分并由条件0t x =得21x e t =+,即2ln(1)x t =+所以2222ln(1)2(1)ln(1)21x dydy t t dt t t e x dxt dx dt t +⋅===++=+所以22(1)x d ye x dx=+本题的难度值为. (17)【详解】 方法一:由于21x -→=+∞,故21⎰是反常积分.令arcsin x t =,有sin x t =,[0,2)t π∈方法二:21⎰12201(arcsin )2x d x =⎰ 令arcsin x t =,有sin x t =,[0,2)t π∈故,原式21164π=+ 本题的难度值为.(18)【详解】曲线1xy =将区域分成两个区域1D 和23D D +,为了便于计算继续对 区域分割,最后为()max ,1Dxy dxdy ⎰⎰(19)【详解】旋转体的体积20()tV f x dx π=⎰,侧面积02(tS f x π=⎰,由题设条件知上式两端对t求导得2()(f t f t =y '=由分离变量法解得1ln(y t C =+,即t y Ce =将(0)1y =代入知1C =,故t y e =,1()2t t y e e -=+于是所求函数为1()()2x x y f x e e -==+本题的难度值为.(20)【详解】(I)设M 与m 是连续函数()f x 在[,]a b 上的最大值与最小值,即 由定积分性质,有()()()bam b a f x dx M b a -≤≤-⎰,即()baf x dx m M b a≤≤-⎰由连续函数介值定理,至少存在一点[,]a b η∈,使得()()b af x dx f b aη=-⎰即()()()ba f x dx fb a η=-⎰(II)由(I)的结论可知至少存在一点[2,3]η∈,使32()()(32)()x dx ϕϕηϕη=-=⎰又由32(2)()()x dx ϕϕϕη>=⎰,知23η<≤对()x ϕ在[1,2][2,]η上分别应用拉格朗日中值定理,并注意到(1)(2)ϕϕ<,()(2)ϕηϕ<得在12[,]ξξ上对导函数()x ϕ'应用拉格朗日中值定理,有 本题的难度值为.(21)【详解】方法一:作拉格朗日函数22222(,,,,)()(4)F x y z x y z x y z x y z λμλμ=++++-+++-令2222022020040x y z F x x F y y F z F x y z F x y z λμλμλμλμ'=++=⎧⎪'=++=⎪⎪'=-+=⎨⎪'=+-=⎪'=++-=⎪⎩解方程组得111222(,,)(1,1,2),(,,)(2,2,8)x y z x y z ==-- 故所求的最大值为72,最小值为6.方法二:问题可转化为求2242242u x y x x y y =++++在224x y x y +++=条件下的最值设44222222(,,)2(4)F x y u x y x y x y x y x y λλ==++++++++-令323222442(12)0442(12)040x y F x xy x x F y x y y y F x y x y λλλ'⎧=++++=⎪'=++++=⎨⎪'=+++-=⎩ 解得1122(,)(1,1),(,)(2,2)x y x y ==--,代入22z x y =+,得122,8z z == 故所求的最大值为72,最小值为6. 本题的难度值为.(22)【详解】(I)证法一:证法二:记||n D A =,下面用数学归纳法证明(1)n n D n a =+. 当1n =时,12D a =,结论成立. 当2n =时,2222132a D a aa==,结论成立.假设结论对小于n 的情况成立.将n D 按第1行展开得 故||(1)n A n a =+证法三:记||n D A =,将其按第一列展开得2122n n n D aD a D --=-, 所以211212()n n n n n n D aD aD a D a D aD ------=-=- 即12122()2n n n n n n n n D a aD a a a aD a a D ----=+=++=++(II)因为方程组有唯一解,所以由Ax B =知0A ≠,又(1)n A n a =+,故0a ≠. 由克莱姆法则,将n D 的第1列换成b ,得行列式为 所以11(1)n n D nx D n a-==+ (III)方程组有无穷多解,由0A =,有0a =,则方程组为此时方程组系数矩阵的秩和增广矩阵的秩均为1n -,所以方程组有无穷多解,其通解为()()10000100,TTk k +为任意常数.本题的难度值为. (23)【详解】(I)证法一:假设123,,ααα线性相关.因为12,αα分别属于不同特征值的特征向量,故12,αα线性无关,则3α可由12,αα线性表出,不妨设31122l l ααα=+,其中12,l l 不全为零(若12,l l 同时为0,则3α为0,由323A ααα=+可知20α=,而特征向量都是非0向量,矛盾)∴32321122A l l αααααα=+=++,又311221122()A A l l l l ααααα=+=-+ ∴112221122l l l l ααααα-+=++,整理得:11220l αα+=则12,αα线性相关,矛盾.所以,123,,ααα线性无关.证法二:设存在数123,,k k k ,使得1122330k k k ααα++=(1)用A 左乘(1)的两边并由11,A αα=-22A αα=得1123233()0k k k k ααα-+++=(2)(1)—(2)得113220k k αα-=(3)因为12,αα是A 的属于不同特征值的特征向量,所以12,αα线性无关,从而130k k ==,代入(1)得220k α=,又由于20α≠,所以20k =,故123,,ααα线性无关.(II)记123(,,)P ααα=,则P 可逆,所以1100011001P AP --⎛⎫ ⎪= ⎪ ⎪⎝⎭.本题的难度值为.。

相关文档
最新文档