圆锥曲线192条结论新
高中数学圆锥曲线结论(最完美版本)
圆锥曲线二级推论
5. 若 P0 (x0, y0 ) 在双曲线
x2 a2
y2 b2
1(a>0,b>0)上,则过
P0 的双曲线的切线方程是
x0 x a2
y0 y b2
1.
6. 若 P0 (x0, y0 ) 在双曲线 x2 y2 1(a>0,b>0)外 ,则过
a2 b2
Po 作双曲线的两条切线切点为
P1、P2,则切点弦 P1P2 的直线方程 是 x0 x y0 y 1.
a2 b2
7. 双曲线 x2 y2 1(a>0,b>o)的
a2 b2
左右焦点分别为 F1,F 2,点 P 为 双曲线上任意一点 F1PF2 ,则 双曲线的焦点角形的面积为
SF1PF2
b2co t 2
.
8.
双曲线
x2 a2
y2 b2
1(a>0,b>o)的
焦半径公式:( F1(c, 0) , F2 (c, 0) 当 M (x0, y0 ) 在右支上时, | MF1 | ex0 a ,| MF2 | ex0 a .
当 M (x0, y0 ) 在左支上时, | MF1 | ex0 a ,| MF2 | ex0 a
MF⊥NF.
11. AB 是双曲线
x2 a2
y2 b2
1(a>0,b>0)的不平行
于对称轴的弦,M (x0 , y0 ) 为 AB 的
中点,则 KOM
K AB
b2 x0 a2 y0
,即
K AB
b2 x0 a2 y0
。
12. 若 P0 (x0, y0 ) 在双曲线 x2 y2 1(a>0,b>0)内,则被
圆锥曲线知识要点及结论个人总结
《圆锥曲线》知识要点及重要结论一、椭圆1定义 平面内到两定点 F 「F 2的距离的和等于常数 2a(2^|F^2)的点P 的轨迹叫做椭 圆•若2a = F ,F 2,点P 的轨迹是线段F I F 2・若0 ::: 2a ::: F ,F 2,点P 不存在•2 2务 与=1(a b 0),两焦点为 R (_c,0), F 2(c,0). a b2 2=1(a b ■ 0),两焦点为 F i (0,_c), F 2(0,C ).其中 a 2"2 cla b3几何性质椭圆是轴对称图形,有两条对称轴 .椭圆是中心对称图形,对称中心是椭圆的中心椭圆的顶点有四个,长轴长为2a ,短轴长为2b ,椭圆的焦点在长轴上•2 2若椭圆的标准方程为 务•与=1(a b ■ 0),则- a 空x 空a, -b 曲乞b ; a b2 2若椭圆的标准方程为=1(a b 0),则-b 辽x 乞b,-a y 乞a .a 2b 2二、双曲线1定义 平面内到两定点 F 1, F 2的距离之差的绝对值等于常数 2a(0 ::: 2a :::R F ?)的点的轨迹叫做双曲线.若2^|F 1F 2,点P 的轨迹是两条射线.若2^|F 1F 2,点P 不存在.2 22 标准方程 务—£=1(a ■ 0,b0),两焦点为 F 1(-c,0), F 2(C ,0).a b2 2令…占二“ 0,b 0),两焦点为 F 1 (0^c ), F 2(0, c ).其中 c 2 二 a 2 b 2. a b3几何性质双曲线是轴对称图形,有两条对称轴;双曲线是中心对称图形,对称中心是双曲线的中心 双曲线的顶点有两个 A 1, A 2,实轴长为2a ,虚轴长为2b ,双曲线的焦点在实轴上2 2J 壬-1(a 0,b 0),则 x 乞-a 或x — a, y R ;a b2-牛=1(a 0,b 0),则 y — -a 或 y — a, x R .b 22标准方程 若双曲线的标准方程为 若双曲线的标准方程为2a4渐近线双曲线的渐进线是它的重要几何特征, 每一双曲线都对应确定双曲线的渐进线, 组渐进线却对应无数条双曲线 .2 2 2 2与双曲线 笃-与 "(a 0,b ■ 0)共渐进线的双曲线可表示为笃-笃二a ba b定要“消元后的方程的二次项系数=0”和“ .0”同时成5等轴双曲线:实轴长等于虚轴长的双曲线叫做等轴双曲线2 2 2 2等轴双曲线的标准方程为 笃一爲=1(a . 0)或爲-笃=1(a .0).a aa a等轴双曲线的渐近线方程为 y= x .6共轭双曲线:实轴为虚轴,虚轴为实轴的双曲线互为共轭双曲线2 2 2 2如:笃-Xr =1(a 0,b - 0)的共轭双曲线为 Xr =1(a 0,b - 0),它们的焦点到 a b b ax 禾廿y = _ a三、抛物线1定义 平面内与一个定点 F 和一条定直线l(F 不在I 上)的距离相等的点的轨迹叫做抛物 线•定点F 叫做抛物线的焦点,定直线 I 叫做抛物线的准线• 2标准方程(1) y 2=2px(p>0),焦点为(#,0),准线方程为x =—号,抛物线张口向右.⑵ y 2- -2px(p0),焦点为(-号,0),准线方程为x =号,抛物线张口向左•⑶x 2=2py(p0),焦点为 硝) ,准线方程为y = 一号,抛物线张口向上.⑷X 2 = -2 py (p 0),焦点为 (0,诗) ,准线方程为y 二号,抛物线张口向下. 其中p 表示焦点到准线的距离. 3几何性质2 2 双曲线x y2-.2ab2 2yx 2.2 a b=1( a 0, b 0)有两条渐近线y=1( a 0, b 0)有两条渐近线y a a x 和yx .即b b 2 2 x y=02■ 2ab22yx2.2ab但对于同直线与双曲线有两个交点的条件,原点的距离相等,因而在以原点为圆心,..a 2 b 2为半径的圆上•且它们的渐近线都是双曲线抛物线是轴对称图形,有一条对称轴.若方程为『=2px(p .0)或y = _2px(p ■ 0),则对称轴是x 轴,若方程为x 2 =2py(p . 0)或x 2 =_2py(p 0),则对称轴是y 轴.若抛物线方程为 2y = 2 px( p . 0),则 x _ 0, y R . 若抛物线方程为 2y - -2 px( p - 0),则 x _ 0, y R . 若抛物线方程为 x = 2 py( p . 0),则 y _ 0,x R .若抛物线方程为 x = -2py (p 0),则 y _ 0, x R .圆锥曲线的一些重要结论【几个重要结论】2 21已知椭圆 笃•与 "(a b 0)的两焦点为Fj-cQEgO),P(x 0,y 0)为椭圆上一a b点,则 PF 」=J(x ° +c)2 +y ; = J(x ° +c)2 +b 2(1 —爭)ms 丿 丿cx 0 cx 0因为 一a 乞 x 0 乞 a , -c 0 _ c,0 ::: a -c 0a c ,aa所以 PF^-cx°+a .同理,PF 2 =2a — PF,| =a —绝.aa2 2已知双曲线 务-占-1(a 0,b 0)的左、右焦点分别为Fj-cQ), F 2(C ,0) ,P(x 0,y 0)为a b双曲线上一点,则PF 1, PF 2 = 也—aaa2 22椭圆 J 七=1(a b 0)的两焦点为F I ,F 2,P 为椭圆上一点,若• F 1PF 2 7,则 a bb 2 sin : ’ 2 丄 b tan 1 cos : 2解:根据椭圆的定义可得 PR + PF 2 =2a ①c X 。
高中数学圆锥曲线结论(最完美版本)
椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,那么焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 假设000(,)P x y 在椭圆22221x y a b+=上,那么过0P 的椭圆的切线方程是00221x x y ya b +=.6. 假设000(,)P x y 在椭圆22221x y a b+=外 ,那么过Po 作椭圆的两条切线切点为P 1、P 2,那么切点弦P 1P 2的直线方程是00221x x y ya b+=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,那么椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.8. 椭圆22221x y a b+=〔a >b >0〕的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - ,2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,那么MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q交于点N ,那么MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,那么22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,那么焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.〔内切:P 在右支;外切:P 在左支〕5. 假设000(,)P x y 在双曲线22221x y a b-=〔a>0,b >0〕上,那么过0P 的双曲线的切线方程是00221x x y ya b-=. 6. 假设000(,)P x y 在双曲线22221x y a b-=〔a>0,b >0〕外 ,那么过Po 作双曲线的两条切线切点为P 1、P 2,那么切点弦P 1P 2的直线方程是00221x x y ya b-=. 7. 双曲线22221x y a b-=〔a >0,b >o 〕的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,那么双曲线的焦点角形的面积为122t2F PF S b co γ∆=.8. 双曲线22221x y a b-=〔a >0,b >o 〕的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,那么MF ⊥NF. 10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,那么MF ⊥NF.11. AB 是双曲线22221x y a b-=〔a >0,b >0〕的不平行于对称轴的弦,M ),(00y x 为AB 的中点,那么0202y a x b K K ABOM =⋅,即0202y a x b K AB =。
圆锥曲线常用结论(收藏版)
二、通径(垂直焦点所在轴的焦点弦):
①椭圆:通径=2b2/a, 焦点弦以通径最短;
②双曲线:通径=2b2/a, 同侧焦点弦以通径最短;
③抛物线:通径=2p 焦点弦以通径最短;
1.已知椭圆 x 2 y 2 1 ,过焦点的直线与椭圆交于 A,B 两点,则弦|AB|的长度范围是
;
42
解:显然,焦点弦|AB|为通径时最小,为 2b2/a=2;
= 0, AF1
• AF2
= c2,
则椭圆离心率 e=
;
6.椭圆
左右焦点分别为 F1,F2, 过 F1 的直线交椭圆于 A,B 两点,若|AF2|+|BF2|的最
大值为 8,则 b 的值是( )
2.√3; 3.2; 4.1+√2; 5.(√5-1)/2; 6.√6
三、斜率结论:垂径定理
C
O A
B ①AB 为弦,中点为 C,
A
C
则 KAB·KOC= - b2/a2
B O
P A
O
②AB 为中心弦,P 为椭 B
P
圆上任意点,则有
B
KAP·KBP= - b2/a2
A
O
①AB 为弦,中点为 C, 则 KAB·KOC= b2/a2 ②AB 为中心弦,P 为双 曲线上点,则有
KAP·KBP= b2/a2
1.4x2+9y2=144 内的一点 P(3,2), 过点 P 的弦以 P 为中点,那么这弦所在的直线方程是
为长轴时最大,为 2a=4;
∴2 ≤|AB|≤4
2.设直线 L 过双曲线 C:的一个焦点,且与 C 的一条对称轴垂直,L 与 C 交于 A,B 两点,|AB|为 C 的
实轴长的 2 倍,则 C 的离心率为
数学-圆锥曲线常考的93个二级结论
圆锥曲线常考的93 个二级结论一、椭圆1.是椭圆上的任意一点,是椭圆的一个焦点,则的取值范围是.2.是椭圆上的任意一点,、是椭圆的左右焦点,则的取值范围是.3.是椭圆上的任意一点,、是椭圆的左右焦点,则的取值范围是.4.为椭圆上一点,其中是椭圆的左右焦点,,则..5.为椭圆上一点,其中是椭圆的左右焦点,则为短轴端点时最大.6.为椭圆上一点,其中是椭圆的左右顶点,则为短轴端点时最大.7.已知椭圆,若点是椭圆上关于原点对称的两点,是椭P 12222=+by a x 1F 1PF [,]a c a c -+P 12222=+by a x 1F 2F 12PF PF ⋅22[,]b a P 12222=+by a x 1F 2F 12PF PF ⋅u u u r u u u r2222[,]b c a c --P ()012222>>=+b a by a x 21,F F θ=∠21PF F 122tan2F PF S b θ∆=1222F PF C a c ∆=+P ()012222>>=+b a by a x 21,F F P 12F PF ∠P ()012222>>=+b a by a x 12,A A P 12A PA ∠12222=+by a x ()0>>b a B A ,M圆上异于的一点.若的斜率分别为,则.8.若是椭圆的不垂直于对称轴的弦,为的中点,则. 9.若是椭圆不垂直于对称轴的切线,为切点,则.10.过圆上任意点作椭圆()的两条切线,则两条切线垂直.11.过椭圆()上任意不同两点作椭圆的切线,如果切线垂直且相交于,则动点的轨迹为圆. 12.以焦点弦为直径的圆必与对应准线相离.13.以焦半径为直径的圆与以长轴为直径的圆内切.14.设为椭圆的左、右顶点,则在边(或)上的旁切圆,必与所在的直线切于(或).15.椭圆的两个顶点为,,与轴平行的直线交椭圆于时与交点的轨迹方程是.16.若在椭圆上,则过的椭圆的切线方程是.,A B MB MA ,21,k k 2122b k k a⋅=-AB 22221x y a b +=M AB 22OM ABb k k a⋅=-l 22221x y a b +=M 22l OM b k k a ⋅=-2222x y a b +=+P 22221x y a b+=0a b >>22221x y a b+=0a b >>,A B P P 2222x y a b +=+1PF 12,A A 12F PF ∆2PF 1PF 12A A 2A 1A 22221x y a b +=()0>>b a 1(,0)A a -2(,0)A a y 12,P P 11A P 22A P 22221x y a b-=00(,)P x y 22221x y a b +=P 00221x x y ya b+=17.若在椭圆外 ,则过作椭圆的两条切线切点为,则切点弦的直线方程是. 18.若点在椭圆()内,过点作椭圆的弦(不过椭圆中心),分别过作椭圆的切线,则两条切线的交点的轨迹方程为直线. 19.若在椭圆内,则被所平分的中点弦的方程是. 20.若在椭圆内,则过的弦中点的轨迹方程是. 21.若是椭圆上对中心张直角的弦,则. 22.过椭圆焦点的弦被焦点分得两个焦半径倒数和是定值.23.过椭圆焦点且互相垂直的弦长倒数之和是定值.24.过椭圆焦点互相垂直的直线与椭圆相交构成四边形面积的取值范围是00(,)P x y 22221x y a b+=P 12,P P 12PP 00221x x y ya b+=()00,M x y 22221x y a b+=0a b >>M AB ,A B P 00221x x y ya b+=00(,)P x y 22221x y a b +=P 2200002222x x y y x y a b a b+=+00(,)P x y 22221x y a b +=P 22002222x x y yx y a b a b+=+PQ 22221x y a b+=()0>>b a 22221111||||OP OQ a b+=+22ab2222a b ab +.25.过椭圆焦点互相垂直的直线被椭圆截得弦长之和的取值范围是.26.设为椭圆上的一个定点,是动弦,则为直角弦的充要条件是过定点.27.若是过椭圆()的焦点的一条弦(非通径),弦的中垂线交轴于,则. 28. 若是椭圆()的左右顶点,点是直线()上的一个动点(不在椭圆上),直线及分别与椭圆相交于,则直线必与轴相交于定点.29.过椭圆()的焦点作一条直线与椭圆相交于,与轴相交于,若,,则为定值,且.30.过椭圆()的焦点作一条直线与椭圆相交于,与相应准线相交于,若,,则为定值,且.2422228[,2](+)a b b a b 2222282(+)[,]+ab a b a b a()000,y x P ()012222>>=+b a by a x 21P P 21P P 21P P ⎪⎪⎭⎫⎝⎛+--+-022*******,y b a b a x b a b a M AB 22221x y a b+=0a b >>F AB x N 2AB NF e=,A B 22221x y a b+=0a b >>P x t =,0t a t ≠≠P PA PB ,M N MNx 2,0a Q t ⎛⎫⎪⎝⎭22221x y a b+=0a b >>F ,M N y P PM MF λ= PN NF λ= λμ+222a bλμ+=-22221x y a b+=0a b >>F ,M N P PM MF λ= PN NF μ=λμ+0λμ+=31.若是垂直椭圆()长轴的动弦,是椭圆上异于顶点的动点,直线分别交轴于,若,,则为定值,且.32.若是垂直椭圆()长轴的动弦,是椭圆上异于顶点的动点,直线分别交轴于,为长轴顶点,若,,则为定值,且.33.若是椭圆()上任意两点,点关于轴对称点为,若直线与轴分别相交于点,则为定值,且.34.若是椭圆()上关于轴对称的任意两个不同的点,点是轴上的定点,直线交椭圆于另一点,则直线恒过轴上的定点,且定点为.35.过椭圆准线上一点作椭圆的两条切线,切点分别为,则切点弦的直线必过相应的焦点,且垂直切点弦.36.为椭圆的焦点弦,则过的切线的交点必在相应的准线上.注:本文以焦点在轴上的椭圆为例,焦点在轴时上述结论未必完全一致,请慎用.MN 22221x y a b+=0a b >>P ,MP NP x ,E F PE EM λ= PF FN μ=λμ+0λμ+=MN 22221x y a b+=0a b >>P ,MP NP x ,E F A OE EA λ= OF FA μ=λμ+1λμ+=-,M P 2222:1x y C a b+=0a b >>M x N ,PM PN x ()(),0,,0A m B n mn 2mn a =,A B 2222:1x y C a b +=0a b >>x (),0P m x PB C E AE x 2,0a Q m ⎛⎫⎪⎝⎭M ,A B AB F MF AB AB ,A B M x y二、双曲线1.为双曲线左上一点,若是左焦点,则的取值范围是,若是右焦点,则的取值范围是.2.是双曲线上的任意一点,、是双曲线的左右焦点,则的取值范围是.3.是双曲线上的任意一点,、是双曲线的左右焦点,则的取值范围是.4.为双曲线上一点,其中是双曲线的左右焦点,,则.5.已知双曲线,若点是双曲线上关于原点对称的两点,是双曲线上异于的一点.若的斜率分别为,则.6.是双曲线的不平行于对称轴的弦,为的中点,则.7.以焦点弦为直径的圆必与对应准线相交.P )0,0(12222>>=-b a b y a x F PF [,)c a -+∞F PF [,)c a ++∞P )0,0(12222>>=-b a by a x 1F 2F 12PF PF ⋅2[,)b +∞P )0,0(12222>>=-b a by a x 1F 2F 12PF PF ⋅2[,)b -+∞P )0,0(12222>>=-b a by a x 21,F F θ=∠21PF F 122tan2FP F b S θ∆=)0,0(12222>>=-b a b y a x B A ,M B A ,MB MA ,21,k k 2122b k k a⋅=AB 22221x y a b -=M AB 22OM AB b k k a⋅=8.以焦半径为直径的圆必与以实轴为直径的圆外切.9.设为双曲线上一点,则的内切圆必切于与在同侧的顶点.10.双曲线的两个顶点为,,与轴平行的直线交双曲线于时与交点的轨迹方程是.11.若在双曲线上,则过的双曲线的切线方程是. 12.若在双曲线外 ,则过作双曲线的两条切线切点为,则切点弦的直线方程是. 13.若在双曲线内,则被所平分的中点弦的方程是. 14.若在双曲线内,则过的弦中点的轨迹方程是. 15.设为双曲线上的一个定点,是动弦,则为直角弦的充要条件是过定点.PF P 12F PF ∆P )0,0(12222>>=-b a b y a x 1(,0)A a -2(,0)A a y 12,P P 11A P 22A P 22221x y a b+=00(,)P x y )0,0(12222>>=-b a b y a x P 00221x x y ya b-=00(,)P x y )0,0(12222>>=-b a by a x P 12,P P 12PP 00221x x y ya b-=00(,)P x y )0,0(12222>>=-b a b y a x P 2200002222x x y y x y a b a b-=-00(,)P x y )0,0(12222>>=-b a b y a x P 22002222x x y yx y a b a b-=-()000,y x P ()012222>>=-b a by a x 21P P 21P P 21P P ⎪⎪⎭⎫⎝⎛-+--+022*******,y b a b a x b a b a M16.为双曲线上一点,若是一个焦点,以为直径的圆与圆的位置关系是外切或内切.17.过双曲线焦点的弦被焦点分得两个焦半径倒数和是定值. 18.过双曲线焦点且互相垂直的弦长倒数之和是定值.19.过双曲线()的焦点作一条直线与椭圆相交于,与相应准线相交于,若,,则为定值,且.20.若是垂直双曲线()实轴的动弦,是双曲线上异于顶点的动点,直线分别交轴于,若,,则为定值,且.21.若是垂直双曲线()实轴的动弦,是双曲线上异于顶点的动点,直线分别交轴于,为长轴顶点,若,,则为定值,且.22.若是双曲线()上任意两点,点关于轴对称点为,若直线与轴分别相交于点,则为定值,且.23.若是双曲线()上关于轴对称的任意两个不同的点,点是轴上的定点,直线交双曲线一点,则直线恒过轴上的定P )0,0(12222>>=-b a by a x F PF 222a y x =+22ab 2222a b ab +22221x y a b-=0,0a b >>F ,M N P PM MF λ= PN NF μ=λμ+0λμ+=MN 22221x y a b-=0,0a b >>P ,MP NP x ,E F PE EM λ= PF FN μ=λμ+0λμ+=MN 22221x y a b-=0,0a b >>P ,MP NP x ,E F A OE EA λ=OF FA μ=λμ+1λμ+=-,M P 2222:1x y C a b -=0,0a b >>M x N,PM PN x ()(),0,,0A m B n mn 2mn a =,A B 2222:1x y C a b-=0,0a b >>x (),0P m x PB C E AE x点,且定点为.24.从双曲线()的右焦点向双曲线的动切线引垂线,则垂足的轨迹为圆:.25.双曲线上任一点处的切线交准线于,与相应的焦点的连线交双曲线于,则必与该双曲线相切,且.26.若是过双曲线()的焦点的一条弦(非通径,且为单支弦),弦的中垂线交轴于,则2,0a Q m ⎛⎫⎪⎝⎭22221x y a b-=0,0a b >>222x y a +=P M P F Q MQ MF PQ ⊥AB 22221x y a b-=0,0a b >>F AB x M 2AB MF e=三、抛物线1.以抛物线的焦点弦为直径的圆与抛物线的准线相切.2.过抛物线焦点弦的两端点向准线作垂线,以两垂足为直径端点的圆与焦点弦相切.3.以抛物线焦半径为直径的圆与轴相切.4.过抛物线焦点弦的抛物线上端点向y 轴作垂线,垂足为M ,则以OM 为直径的圆与焦半径相切.5.若线段为抛物线的一条焦点弦,则. 6.设抛物线方程为,过焦点的弦的倾斜角为,则焦点弦. 7.若是抛物线的焦点弦,且,,则,. 8.抛物线方程为,过的直线与之交于、两点,则.反之也成立.9.抛物线上一点处的切线方程为.10.过抛物线焦点弦的两端点作抛物线的切线,两切线交点在抛物线的准线上. 11.过抛物线准线上任一点作抛物线的切线,则过两切点的弦必过焦点. 12.切线交点与弦中点连线平行于对称轴.y AB 2:2(0)C y px p =>112AF BF p+=)0(22>=p px y AB α222sin 2sin AOB p p AB S αα∆==,AB 22(0)y px p =>11(,)A x y 22(,)B x y 2124p xx =212y y p =-22(0)y px p =>(2,0)p A B OA OB ⊥22y px =00(,)x y 00()y y p x x =+13.过抛物线焦点且互相垂直的直线被抛物线截得弦长倒数之和是定值. 14.过抛物线焦点互相垂直的直线与抛物线相交构成四边形面积的取值范围是,15.过抛物线焦点互相垂直的直线与抛物线截得弦长之和的取值范围是.16.过直线()上但在抛物线()外(即抛物线准线所在区域)一点向抛物线引两条切线,切点分别为,则直线必过定点,且有. 17.过抛物线()的对称轴上任意一点()作抛物线的两条切线,切点分别为,则切点弦所在的直线必过点.18.若是垂直抛物线()对称轴的动弦,是椭圆上异于顶点的动点,直线分别交轴于,若,,则为定值,且.19.过抛物线()的焦点作一条直线与椭圆相交于,与相应准线相交于,若,,则为定值,且.20.是垂直抛物线()对称轴的动弦,是抛物线上异于顶点的动点,直线分别交轴于,为长轴顶点,若,,则为定值,且.12p2[8,)p +∞[8,)p +∞x m =0m ≠22y px =0p >M ,A B AB (),0N m -2AB MN p k k m=22y px =0p >(),0M m -0m >,A B AB (),0N m MN 22y px =0p >P ,MP NP x ,E F PE EM λ= PF FN μ= λμ+0λμ+=22y px =0p >F ,M N P PM MF λ= PN NF μ= λμ+0λμ+=MN 22y px =0p >P ,MP NP x ,E F A OE EA λ= OF FA μ= λμ+112λμ+=21.若是抛物线()上关于轴对称的任意两个不同的点,点是轴上的定点,直线交抛物线一点,则直线恒过轴上的定点,且定点为.22.抛物线的准线上任一点处的切点弦过其焦点,且.23.抛物线上任一点处的切线交准线于,与焦点的连线交抛物线于,则必与该抛物线相切,且.24.若是过抛物线()的焦点的一条弦(非通径),弦的中垂线交轴于,则. 25.设为抛物线上的一个定点,是动弦,则为直角弦的充要条件是过定点.26.若是抛物线()上异于顶点的两个动点,若,过作,则动点的轨迹方程为().27.若是抛物线()上异于顶点的两个动点,若,则.28.过抛物线()上任一点作两条弦,则()的充要条件是直线过定点. 29.在抛物线()的对称轴上存在一个定点,使得过该点的任,A B 2:2C y px =0p >x (),0P m x PB E AE x (),0Q m -M PQ F MF PQ ⊥P M P F Q MQ MF PQ ⊥AB 22y px =0p >F AB x M 2AB MF=()00,N x y px y 22=AB AB AB ()002,x p y +-,A B 22y px =0p >O OA OB ⊥O OM AB ⊥M 2220x y px +-=0x ≠,A B 22y px =0p >O OA OB ⊥()2min 4AOB S p ∆=22y px =0p >()00,M x y ,MA MB MA MB k k λ=0λ≠AB 002,p N x y λ⎛⎫-- ⎪⎝⎭22y px =0p >(),0M p意弦恒有. 30.抛物线()上两点、连线斜率若存在即为. 31.抛物线()上一点处切线的斜率若存在即为. 注:本文以为例,其他情况上述结论未必完全一致,请慎用.AB 222111p MA MB +=22y px =0p >A B 2A Bp k y y =+22y px =0p >A A p k y =22y px =。
圆锥曲线通用结论
圆锥曲线常用结论(自己选择)椭 圆点P 处的切线 PT 平分△ PF 1F 2在点P 处的外角.PT 平分△ PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直 径的圆,除去长轴的两个端点 .以焦点弦PQ 为直径的圆必与对应准线相离. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.2y_b 2ex 0,| MF 21 a ex o (R ( c,0) , F 2(c,0) M (x °, y 。
)).设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点, 连结AP 和 AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点,贝U MF 丄NF.1. 2. 3. 4. 5. 6.7. 8. 9.10. 11.12. 2 x 若P o ( x o , y o )在椭圆— a2 (x)右P o ( x o , y o )在椭圆~ a 点弦P 1P 2的直线方程是 2yb 22 y 孑 X o X ~2~a1上,则过P o 的椭圆的切线方程是 弩a1外,则过Po 作椭圆的两条切线切点为y o y 1眉 1.y o y 1盲 1.P 1、P 2,则切2X 椭圆一2a2yb 2 1 (a > b > 0)的左右焦点分别为F 1 , F 2,点P 为椭圆上任意一点F 1PF 2则椭圆的焦点角形的面积为 S F 1PF 2b 2 tan2x 2椭圆右 a| MF 1 | a1 (a > b > 0 )的焦半径公式:过椭圆一个焦点 F 的直线与椭圆交于两点P 、Q, A 1、 A 2为椭圆长轴上的顶点, A 1P 和A 2Q 交于点M , A 2P 和A 1Q 交于点 N ,贝U MF 丄NF.2xAB 是椭圆一2a 2 ,ab 2X o 2a y ok OM k AB即K AB2y_ b 21的不平行于对称轴的弦,M (X o , y °)为AB 的中点,则若P o (x °, y °)在椭圆2 X""2 a2b 21内,则被Po所平分的中点弦的方程是2、双曲线1. 点P 处的切线 PT 平分A PF i F 2在点P 处的内角.2.PT 平分A PF i F 2在点P 处的内角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴 为直径的圆,除去长轴的两个端点 •3. 以焦点弦PQ 为直径的圆必与对应准线相交.4.以焦点半径PF i 为直径的圆必与以实轴为直径的圆 相切.(内切:P 在右支;外切:P 在左支)X o X~2~ ayoyb 2X o~2 a2y o b 22x13.若 P o (X o ,y o )在椭圆—ab 21内,则过 Po 的弦中点的轨迹方程是b 2X o X ay o y 5. 若P o (X o , y o )在双曲线 2X~2a 2当 1 (a > 0,b >0) 上,则过P o 的双曲线的切线方程b曰 X o X y o y是 2 , 2a b 1. 6. 若P o (X o , y o )在双曲线 2X~2a2y2 1 (a > 0,b > 0)夕卜,则过Po 作双曲线的两条切b 27. 8. 9.线切点为P 1、P 2,则切点弦P 1P 2的直线方程是—^2~ aV o Y 1 b 21.双曲线 意一点F 1PF 2 (a > 0,b >o )的左右焦点分别为 ,则双曲线的焦点角形的面积为 2 2x y2 ,2a b当M (X o , y o )在右支上时, 当M (X o ,y o )在左支上时, 双曲线(a > 0,b >o )的焦半径公式: F 1 , F 2,点P 为双曲线上任2S F 1PF 2b C°t"2 .(£( c,0) , F 2(C ,0) IMF 1I IMF 1IeX o a , | MF 2 a , | MF 21| ex o a .eX) a设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点, A 为双曲线长轴上一个顶点, 连结AP 和AQ 分别交相应于焦点 F 的双曲线准线于M 、N 两点,贝U MF 丄NF.210.过双曲线一个焦点F的直线与双曲线交于两点P、Q, A1、A2为双曲线实轴上的顶点,A i P 和A 2Q 交于点M , A 2P 和A i Q 交于点N ,贝U MF 丄NF.2 2x y1. 椭圆二 2 1 (a > b > o )的两个顶点为 A( a,0),A 2(a,0),与y 轴平行的直a b22x y线交椭圆于 P 1、P 2时A 1P 1与A 2P 2交点的轨迹方程是 —2 1 .a b222.过椭圆 笃 与 1 (a > 0, b >0)上任一点A(X o ,y °)任意作两条倾斜角互补的直a bb 2x线交椭圆于B,C 两点,则直线BC 有定向且k Bc(常数)•a y o2 2xy3.若P 为椭圆 r 2 1 (a > b > 0)上异于长轴端点的任一点,F 1, F 2是焦点,a ba c PRF 2 , PF 2F 1 ,贝U ta n —cot —.a c 2 22 24. 设椭圆 令 七 1 (a > b >0)的两个焦点为 F 1、F 2,P (异于长轴端点)为椭圆a b上任意一点,在△ PF 1F 2中,记 FfF 2 , PF | F 2 , F-! F 2P,则有sin ce .sin sin a225.若椭圆 令 七 1 (a > b > 0)的左、右焦点分别为 F 1、F 2,左准线为L ,则当0 a b2x11. AB 是双曲线—ab 21 (a > 0,b > 0)的不平行于对称轴的弦, M (X o , y o )为 AB12.13. 的中点,贝y K OM K AB2X 若P o (x o , y o )在双曲线— a2 X o方程是竽ay o y右P o (X o , y o )在双曲线 2m □ x程是一2a2y_ b 2X °X ~2~ a b 2X o~2 a y o 2a2x~~2ay o y b 2 2 yb 2 2y o2yb 2 ,即 K AB b 2X o ~~2 a y o1 (a > o,b > o )内,则被 1 (a > o,b > o )内,则过Po 所平分的中点弦的Po 的弦中点的轨迹方椭圆与双曲线的对偶性质 --(会推导的经典结论)6.7.8.9.10.11.12.13.v e W、2 1时,可在椭圆上求一点P,使得PF1是P到对应准线距离d与PF2的比例中项•2xP为椭圆ra则2a |AF2|椭圆(x X o)22a2 2B b2x已知椭圆—a|PA|(yb(Ax o2y_ 1b2 11(a> b>0)|PF I |y。
【高考数学】圆锥曲线的常用结论-突破满分数学之圆锥曲线
焦点的位置 图形
焦点在 x 轴上
y M
cc
F1 O
F2 x
一、椭圆
焦点在 y 轴上
y
F2 c
M
Oc
x
F1
标准方程 范围 顶点 轴长 焦点 焦距 对称性 离心率
+ =1(a>b>0)
+ =1(a>b>0)
−a≤x≤a 且−b≤y≤b A1(−a,0)、A2(a,0)、B1(0,−b)、B2(0,b)
−b≤x≤b 且−a≤y≤a A1(0,−a)、A2(0,a)、B1(−b,0)、B2(b,0)
短轴的长=2b F1(−c,0)、F2(c,0)
|F1F2|=2c(c2=a2−b2)
长轴的长=2a F1(0,−c)、F2(0,c)
关于 x 轴、y 轴、原点对称
e= =
(0<e<1) e 越小,椭圆越圆;e 越大,椭圆越扁
.
13. 已知 A、B 是椭圆上的两点,线段 AB 的垂直平分线与 x 轴相交于点 P(x0,0),
则
−
a2
− b2 a
<x0<
a2
− b2 a
.
14.
离心率 e= c =
a
1
−
b a
2
、e2=1−
b a
2
15.
2b2
过焦点且垂直于长轴的弦叫通经,其长度为
.
a
16. 从椭圆的一个焦点出发的光线,经椭圆反射后,反射光线必经过椭圆的另一个焦点.
.
1
(2)焦点三角形的面积:S
∆PF1F2
=c|yP|=b2tan
有关圆锥曲线的经典结论(精选课件)
有关圆锥曲线的经典结论★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此!有关解析几何的经典结论一、椭 圆1.点P 处的切线PT平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线P T上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点..3..4. 以焦点弦PQ 为直径的圆必与对应准线相离。
5.以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.6. 若000(,)P x y 在椭圆22221x y a b+=上,则过0P 的椭圆的切线方程是00221x x y y a b+=.7. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P1P2的直线方程是00221x x y yab+=. 8. 椭圆22221x y a b+= (a〉b >0)的左右焦点分别为F 1,F2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=.9. 椭圆22221x y a b +=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).10. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥N F..11..12. 过椭圆一个焦点F 的直线与椭圆交于两点P、Q , A 1、A 2为椭圆长轴上的顶点,A 1P和A 2Q 交于点M,A 2P和A 1Q 交于点N ,则MF ⊥NF 。
.13..14. A B是椭圆22221x y a b+=的不平行于对称轴的弦,M),(00y x 为AB 的中点,则22OM AB b k k a⋅=-,即0202y a x b K AB -=.15. 若000(,)P x y 在椭圆22221x y a b+=内,则被Po所平分的中点弦的方程是2200002222x x y y x y a b a b +=+.16. 若000(,)P x y 在椭圆22221x y a b+=内,则过Po 的弦中点的轨迹方程是22002222x x y yx y a b a b+=+.二、双曲线1.点P 处的切线PT 平分△PF 1F 2在点P 处的内角。
【高中数学】圆锥曲线的相关结论192条
的充要条件为 , , 的横坐标(纵坐标)成等差数列.
结论 54:焦点在 轴上的双曲线(或焦点在 轴)上三点 , , 的焦半径成等差数
列的充要条件为 , , 的横坐标(纵坐标)成等差数列.
结论 55:焦点在 轴上的抛物线(或焦点在 轴)上三点 , , 的焦半径成等差数
列的充要条件为 , , 的横坐标(纵坐标)成等差数列.
x0
mx
a2
m
y0
n y
b2
n
1.
结论 18:点 M ( x0 , y0 )在抛物线 y n2 2 px m外,过点 M 作抛物线的两条切
线,切点分别为 A , B ,则切点弦 AB 的直线方程为
y0 ny n px x0 2m.
结论 16:(补充)点 M
(
x0
,
y0
)在椭圆
x
a
【高中数学】圆锥曲线的相关结论192条
结论 1:过圆 x 2 y 2 2a 2 上任意点 P 作圆 x 2 y 2 a 2 的两条切线,则两条切线垂直.
结论 2:过圆 x 2
y2
a2
b
2
上任意点
P
作椭圆
x a
2 2
y2 b2
1( a
b 0 )的两条切线,
则两条切线垂直.
结论 3:过圆 x 2
结论 47:椭圆的准线上任一点 处的切点弦 过其相应的焦点 ,且 ⊥ .
结论 48:双曲线的准线上任一点 处的切点弦 过其相应的焦点 ,且 ⊥ .
结论 49:抛物线的准线上任一点 处的切点弦 过其焦点 ,且 ⊥ .
结论 50:椭圆上任一点 处的切线交准线于 , 与相应的焦点 的连线交椭圆于 ,
则 必与该椭圆相切,且 ⊥ .
圆锥曲线192条结论(清晰版本)
结论 13:点 M
(
x0
,
y
0
)在椭圆
x
a
m
2
2
y
n2
b2
1上,过点 M
作椭圆的切线方程
为
(x0
m)( x a2
m)
( y0
n)( y b2
n)
1.
结论 14:点 M
(
x0
,
y
0
)在双曲线
x
a
m2
2
y
x0
mx
a2
m
y0
n y
b2
n
1.
2
结论 15:点 M ( x0 , y0 )在抛物线 y n2 2 px m上,过点 M 作抛物线的切线方 程为 y0 ny n px x0 2m.
,
y0
)在椭圆
x a
2 2
y2 b2
1( a b 0 )上,过点 M
作椭圆的切线方
程为
x0 x a2
y0 y b2
1.
结论 8:点 M
(
x0
,
y0
)在椭圆
x a
2 2
y2 b2
1( a b 0 )外,过点 M
作椭圆的两条切
线,切点分别为
A,B
,则切点弦
AB
的直线方程为
x0 x a2
y0 y b2
a )作
双曲线(单支)的两条切线,切点分别为 A ,B ,则切点弦 AB 所在的直线必过点 P( a 2 ,0) . m
结论 31:过抛物线 y 2 2 px( p 0 )外任意一点 M 作抛物线的两条切线,切点分别为 A ,
B ,弦 AB 的中点为 N ,则直线 MN 必与其对称轴平行.
有关圆锥曲线的经典结论
★说明:圆锥曲线我们并未学完,有些内容(如焦半径公式),将此资料发到群里是想让大家在日常学习过程中自我感悟使用,不要过分纠结于此!有关解析几何的经典结论一、椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切。
5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b +=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y ya b+=。
7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=。
8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF.10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q , A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b +=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
(完整word版)高中数学圆锥曲线重要结论讲义
2 ,圆锥曲线重要结论点P 处的切线 PT 平分△ PF 1 F 2在点P 处的外角.PT 平分△ PF 1F 2在点P 处的外角,则焦点在直线 PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点 以焦点弦PQ 为直径的圆必与对应准线 相离. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆 内切. 2x ~2 a 2x ~2 a 若P o (x o , y o )在椭圆 若P o (x o , y o )在椭圆 2 x 椭圆一2a 2 x 椭圆一2a|MF 1 | a 2y_ 孑2y_ b 2 2 占 1上,则过P 。
的椭圆的切线方程是 写 b a 2 占 1外,则过Po 作椭圆的两条切线切点为 b P 1、P 2, (a > b > 0)的左右焦点分别为 F 1, F 2,点P 为椭圆上任意一点 (a > b > 0)的焦半径公式: ex 0,|MF 2〔a egF, c,0) , F 2C O) M (x °, y °)). 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结 丄NF. 过椭圆一个焦点 2 x AB 是椭圆—a则切点弦P 1P 2的直线方程是一与~y °y 1. a bF 1PF 2,则椭圆的焦点角形的面积为S F 1PF2b 2門.AP 和AQ 分别交相应于焦点 F 的椭圆准线于 M 、N 两点, F 的直线与椭圆交于两点 P 、Q, A 1、A 2为椭圆长轴上的顶点,2芯 1的不平行于对称轴的弦,M (x °,y °)为AB 的中点,贝y k oM k ABbA 1P 和A 2Q 交于点 M , A 2P 和A 1Q 交于点N ,贝y MF 丄NF.a MF1. 2. 3. 4. 5. 6. 7. 8.9.10. 11.即K AB b2x o~2 ay o双曲线1. 点P处的切线PT平分△ PF1F2在点P处的内角.2. PT平分△ PF1F2在点P处的内角,则焦点在直线PT上的射影H点的轨迹是以长轴为直径的圆,除去长轴的两个端点3. 以焦点弦PQ为直径的圆必与对应准线相交.4.5.6. 以焦点半径PF1为直径的圆必与以实轴为直径的圆2x~2a2x~2a相切.(内切:P在右支;外切:P在左支)7.8.9. 若P o(x°, y o)在双曲线若P°(x。
高中数学圆锥曲线重要结论
专业整理分享圆锥曲线重要结论椭 圆1. 点P 处的切线PT 平分△PF 1F 2在点P 处的外角.2. PT 平分△PF 1F 2在点P 处的外角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相离.4. 以焦点半径PF 1为直径的圆必与以长轴为直径的圆内切.5. 若000(,)P x y 在椭圆22221x y a b +=上,则过0P 的椭圆的切线方程是00221x x y y a b +=. 6. 若000(,)P x y 在椭圆22221x y a b+=外 ,则过Po 作椭圆的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b +=. 7. 椭圆22221x y a b+= (a >b >0)的左右焦点分别为F 1,F 2,点P 为椭圆上任意一点12F PF γ∠=,则椭圆的焦点角形的面积为122tan 2F PF S b γ∆=. 8. 椭圆22221x y a b+=(a >b >0)的焦半径公式:10||MF a ex =+,20||MF a ex =-(1(,0)F c - , 2(,0)F c 00(,)M x y ).9. 设过椭圆焦点F 作直线与椭圆相交 P 、Q 两点,A 为椭圆长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的椭圆准线于M 、N 两点,则MF ⊥NF. 10. 过椭圆一个焦点F 的直线与椭圆交于两点P 、Q, A 1、A 2为椭圆长轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是椭圆22221x y a b+=的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则22OM AB b k k a ⋅=-,即0202y a x b K AB -=。
专业整理分享双曲线1. 点P 处的切线PT 平分△PF 1F 2在点P 处的内角.2. PT 平分△PF 1F 2在点P 处的内角,则焦点在直线PT 上的射影H 点的轨迹是以长轴为直径的圆,除去长轴的两个端点.3. 以焦点弦PQ 为直径的圆必与对应准线相交.4. 以焦点半径PF 1为直径的圆必与以实轴为直径的圆相切.(内切:P 在右支;外切:P 在左支)5. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)上,则过0P 的双曲线的切线方程是00221x x y y a b -=. 6. 若000(,)P x y 在双曲线22221x y a b-=(a >0,b >0)外 ,则过Po 作双曲线的两条切线切点为P 1、P 2,则切点弦P 1P 2的直线方程是00221x x y y a b -=. 7.双曲线22221x y a b-=(a >0,b >o )的左右焦点分别为F 1,F 2,点P 为双曲线上任意一点12F PF γ∠=,则双曲线的焦点角形的面积为122t 2F PF S b co γ∆=.8.双曲线22221x y a b-=(a >0,b >o )的焦半径公式:(1(,0)F c - , 2(,0)F c当00(,)M x y 在右支上时,10||MF ex a =+,20||MF ex a =-.当00(,)M x y 在左支上时,10||MF ex a =-+,20||MF ex a =--9. 设过双曲线焦点F 作直线与双曲线相交 P 、Q 两点,A 为双曲线长轴上一个顶点,连结AP 和AQ 分别交相应于焦点F 的双曲线准线于M 、N 两点,则MF ⊥NF.10. 过双曲线一个焦点F 的直线与双曲线交于两点P 、Q, A 1、A 2为双曲线实轴上的顶点,A 1P 和A 2Q 交于点M ,A 2P 和A 1Q 交于点N ,则MF ⊥NF.11. AB 是双曲线22221x y a b -=(a >0,b >0)的不平行于对称轴的弦,M ),(00y x 为AB 的中点,则0202y a x b K K AB OM =⋅,即0202y a x b K AB =。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a )作
双曲线(单支)的两条切线,切点分别为 A ,B ,则切点弦 AB 所在的直线必过点 P( a 2 ,0) . m
结论 31:过抛物线 y 2 2 px( p 0 )外任意一点 M 作抛物线的两条切线,切点分别为 A ,
B ,弦 AB 的中点为 N ,则直线 MN 必与其对称轴平行.
结论
线,切点分别为 A , B .
(1)当 n 0 , m a 时,则切点弦 AB 所在的直线必过点 P( a 2 ,0) ; m
(2)当 m 0 , n b 时,则切点弦 AB 所在的直线必过点 Q(0, b2 ) . n
结论
30:过双曲线
x a
2 2
y2 b2
1( a 0,b 0 )的实轴上任意一点 M (m,0) ( m
结论 13:点 M
(
x0
,
y
0
)在椭圆
x
a
m
2
2
y
n2
b2
1上,过点 M
作椭圆的切线方程
为
(x0
m)( x a2
m)
( y0
n)( y b2
n)
1.
结论 14:点 M
(
x0
,
y
0
)在双曲线
x
a
m2
2
y n2
b2
1上,过点 M
作双曲线的切线
方程为
x0
mx
a2
m
y0
n y
b2
n
1.
2
结论 15:点 M ( x0 , y0 )在抛物线 y n2 2 px m上,过点 M 作抛物线的切线方 程为 y0 ny n px x0 2m.
(
x0
,
y0
)在双曲线
x a
2 2
y2 b2
1( a
0,b 0 )内,过点 M
作
双曲线的弦 AB (不过双曲线中心),分别过 A、B 作双曲线的切线,则两条切线的交点 P
的轨迹方程为直线:
x0 x a2
y0 y b2
1.
结论 11:点 M ( x0 , y0 )在抛物线 y 2 2 px ( p 0 )上,过点 M 作抛物线的切线方
结论 51:双曲线上任一点 处的切线交准线于 , 与相应的焦点 的连线交双曲线于
,则 必与该双曲线相切,且 ⊥ .
结论 52:抛物线上任一点 处的切线交准线于 , 与焦点 的连线交抛物线于 ,则
必与该抛物线相切,且 ⊥ .
结论 53:焦点在 轴上的椭圆(或焦点在 轴)上三点 , , 的焦半径成等差数列
( .
)的一个焦点, 是椭圆上任意一点,则焦
结论 42: 是双曲线
(
)的右焦点, 是双曲线上任意一点.
(1)当点 在双曲线右支上,则焦半径
;
(2)当点 在双曲线左支上,则焦半径
.
结论 43: 是抛物线
(
)的焦点, 是抛物线上任意一点,则焦半径
=
.
结论 44:椭圆上任一点 处的法线平分过该点的两条焦半径的夹角(或者说 处的切线
的充要条件为 , , 的横坐标(纵坐标)成等差数列.
结论 54:焦点在 轴上的双曲线(或焦点在 轴)上三点 , , 的焦半径成等差数
列的充要条件为 , , 的横坐标(纵坐标)成等差数列.
结论 55:焦点在 轴上的抛物线(或焦点在 轴)上三点 , , 的焦半径成等差数
列的充要条件为 , , 的横坐标(纵坐标)成等差数列.
x0
mx
a2
m
y0
n y
b2
n
1.
结论 18:点 M ( x0 , y0 )在抛物线 y n2 2 px m外,过点 M 作抛物线的两条切
线,切点分别为 A , B ,则切点弦 AB 的直线方程为
y0 ny n px x0 2m.
结论 16:(补充)点 M
(
x0
,
y0
)在椭圆
x
a
32:若椭圆
x a
2 2
y2 b2
1( a
b
0
)与双曲线
x2 m2
y2 n2
1(m 0 ,n
0 )共
焦点,则在它们交点处的切线相互垂直.
结论 33:过椭圆外一定点 P 作其一条割线,交点为 A , B ,则满足 AP BQ AQ BP
的动点 Q 的轨迹就是过 P 作椭圆两条切线形成的切点弦所在的直线方程上.
1.
结论 8:(补充)点 M
(
x0
,
y0
)在椭圆
x a
2 2
y2 b2
1( a
b 0 )内,过点 M
作椭圆
的弦 AB (不过椭圆中心),分别过 A、B 作椭圆的切线,则两条切线的交点 P 的轨迹方程
为直线:
x0 x a2
y0 y b2
1.
1
结论 9:点 M
(
x0
,
y0
)在双曲线
x2 a2
P
作双曲线
x a
2 2
y2 b2
1的两条切
线,则两条切线垂直.
结论 4:过圆 x 2 y 2 a 2 上任意不同两点 A , B 作圆的切线,如果切线垂直且相交于 P ,
则动点 P 的轨迹为圆: x 2 y 2 2a 2 .
结论
5:过椭圆
x a
2 2
y2 b2
1( a
b
0 )上任意不同两点 A , B 作椭圆的切线,如果切
线垂直且相交于 P ,则动点 P 的轨迹为圆 x 2 y 2 a 2 b 2 .
结论
6:过双曲线
x aLeabharlann 2 2y2 b21( a
b
0 )上任意不同两点 A , B 作双曲线的切线,如
果切线垂直且相交于 P ,则动点 P 的轨迹为圆 x 2 y 2 a 2 b 2 .
结论 7:点 M
(
x0
结论
16:点
M
(
x0
,
y
0
)在椭圆
x
a
m2
2
y
n2
b2
1外,过点 M
作椭圆的两条切线,
切点分别为
A
,
B
,则切点弦
AB
的直线方程为
(x0
m)( x a2
m)
( y0
n)( y b2
n)
1.
结论 17:点 M
(
x0
,
y
0
)在双曲线
x
a
m2
2
y n2
b2
1外,过点 M
作双曲线的两条
切线,切点分别为 A , B ,则切点弦 AB 的直线方程为
3
的直线必过相应的焦点 F ,且 MF 垂直切点弦 AB . 结论 21:过抛物线准线上一点 M 作抛物线的两条切线,切点分别为 A ,B ,则切点弦 AB 的直线必过焦点 F ,且 MF 垂直切点弦 AB . 结论 22: AB 为椭圆的焦点弦,则过 A , B 的切线的交点 M 必在相应的准线上. 结论 23: AB 为双曲线的焦点弦,则过 A , B 的切线的交点 M 必在相应的准线上. 结论 24: AB 为抛物线的焦点弦,则过 A , B 的切线的交点 M 必在准线上. 结论 25:点 M 是椭圆准线与长轴的交点,过点 M 作椭圆的两条切线,切点分别为 A , B , 则切点弦 AB 就是通径. 结论 26: 点 M 是双曲线准线与实轴的交点,过点 M 作双曲线的两条切线,切点分别为 A , B ,则切点弦 AB 就是通径. 结论 27: M 为抛物线的准线与其对称轴的交点,过点 M 作抛物线的两条切线,切点分别为 A , B ,则切点弦 AB 就是其通径.
,
y0
)在椭圆
x a
2 2
y2 b2
1( a b 0 )上,过点 M
作椭圆的切线方
程为
x0 x a2
y0 y b2
1.
结论 8:点 M
(
x0
,
y0
)在椭圆
x a
2 2
y2 b2
1( a b 0 )外,过点 M
作椭圆的两条切
线,切点分别为
A,B
,则切点弦
AB
的直线方程为
x0 x a2
y0 y b2
程为 y0 y p(x x0 ) .
结论 12:点 M ( x0 , y0 )在抛物线 y 2 2 px ( p 0 )外,过点 M 作抛物线的两条切
线,切点分别为 A , B ,则切点弦 AB 的直线方程为 y0 y p(x x0 ) .
结论 12:(补充)点 M ( x0 , y0 )在抛物线 y 2 2 px ( p 0 )内,过点 M 作抛物线的 弦 AB ,分 别过 A、B 作抛 物线 的切 线, 则两 条切 线的 交点 P 的轨 迹方 程为 直线 : y0 y p(x x0 ) .
结论 28:过抛物线 y 2 2 px ( p 0 )的对称轴上任意一点 M (m,0) ( m 0 )作抛物
线的两条切线,切点分别为 A , B ,则切点弦 AB 所在的直线必过点 N (m,0) .
结论
29:过椭圆
x a
2 2
y2 b2
1( a b 0 )的对称轴上任意一点 M (m, n) 作椭圆的两条切
5
平分过该点的两条焦半径的夹角的外角),亦即椭圆的光学性质.
结论 45:双曲线上任一点 处的切线平分过该点的两条焦半径的夹角(或者说 线平分过该点的两条焦半径的夹角的外角),亦即双曲线的光学性质.
处的法
结论 46:抛物线上任一点 亦即抛物线的光学性质.