华理线代作业答案第七册(可直接使用).doc

合集下载

华东理工高等数学作业本第7次作业答案

华东理工高等数学作业本第7次作业答案

华东理工高等数学作业本第7次作业答案第2章(之6)第7次作业教学内容:§2.2.4极限的运算法则E §2.2.5无穷小的比较**1.试求下列极限:(1)xx x 10211lim ??? ??+→;(2)111)313(lim -→++x x x x ;(3)x x x sin 20)31(lim +→;(4)nnn x 2sin2lim ∞→(x 为不等于零的常数).解:(1)xx x 10211lim ??? ??+→=22211])21[(lim 1ex x x =+→(2) 2132132)1(231111e lim 3221lim )313(lim ==??+-+=+++→+?-+→-→xx xx xx x x ex x xx .(3)xx x sin2)31(lim +→6e =.(4) 原式=xx nnn =?∞→22lim .**2.试求()x x f cos =的导数。

解:()()x x x x x f x ?-?+='→?cos cos lim 0x x x x x ????? ?+-=→?2sin2sin 2lim 022sin2sin lim 0x xx x x+-=→?22sinlim 2sin lim 00x xx x x x+-=→?→?x sin -=,()()x x x f sin cos -=' ='∴.**3。

的存在性研究极限)0(cos 22lim >-→a xaxx .解:x ax x 2sin2lim→=原式axax x ax x x ==++→→2sin2lim2sin 2limaxax x ax x x -=-=--→→2sin2lim2sin 2lim,所以原极限不存在由于左、右极限不相等.4.选择题**(1)时(),则当,设133)(11)(3→-=+-=x x x xx x βα.)()()(; )()()(; )()()(;)()()(高阶的无穷小是比高阶的无穷小是比是等价无穷小与等价无穷小是同阶无穷小,但不是与x x D x x C x x B x x A αββαβαβα答:A**(2)在点,则曲线为可导函数且满足设)(12)()(lim)(0x f y xx a f a f x f x =-=--→处的切线斜率为, 2)(1)(1)(2)()())((--D C B A a f a分析:1)(21)()(lim212)()(lim-='=---=--→→a f xa f x a f xx a f a f x x ,2)(-='∴a f .)(D 答**(3)设xx x f sin )2()(+=,则)(x f 在0=x 处 ( )(A )2)0(='f (B )0)0(='f (C )1)0(='f (D )不可导=+=-→→2)2(sin lim )0()(lim 00x x x x f x f x x)(A 答***5.适当选取A 、k 的值,使下式成立:kAx x x ~sin 1tan 1+-+(当0→x ).解:x x xx x xx x x x x sin 1tan 1)cos cos 1(sin sin 1tan 1sin tan sin 1tan 1++ +-=+++-=+-+x x x x x cos )sin 1tan 1(2sin2sin 2+++?=,0→x时,x x ~sin ,∴ 上式等价于 411)2(232xx x =+??,3,41==∴k A .6.当0→x 时,试确定下列各无穷小对x 的阶数. *(1)2310000x x +; **(2)31)1(x x x +解:(1)1000010000lim2230=+→xxx x ,∴ 阶数为2。

线代参考答案(完整版)

线代参考答案(完整版)

线性代数练习题 第一章 行 列 式系 专业 班 姓名 学号第一节 行列式的定义一.选择题1.若行列式x52231521- = 0,则=x [ C ] (A )2 (B )2- (C )3 (D )3- 2.线性方程组⎩⎨⎧=+=+473322121x x x x ,则方程组的解),(21x x = [ C ](A )(13,5) (B )(13-,5) (C )(13,5-) (D )(5,13--)3.方程093142112=x x根的个数是 [ C ] (A )0 (B )1 (C )2 (D )34.下列构成六阶行列式展开式的各项中,取“+”的有 [ A D ] (A )665144322315a a a a a a (B )655344322611a a a a a a (C )346542165321a a a a a a (D )266544133251a a a a a a 5.若55443211)541()1(a a a a a l k l k N -是五阶行列式ij a 的一项,则l k ,的值及该项的符号为[ B ](A )3,2==l k ,符号为正; (B )3,2==l k ,符号为负; (C )2,3==l k ,符号为正; (D )2,3==l k ,符号为负6.下列n (n >2)阶行列式的值必为零的是 [ B ] (A) 行列式主对角线上的元素全为零 (B) 三角形行列式主对角线上有一个元素为零 (C) 行列式零的元素的个数多于n 个 (D) 行列式非零元素的个数小于n 个 二、填空题 1.行列式1221--k k 0≠的充分必要条件是 3,1k k ≠≠-2.排列36715284的逆序数是 133.已知排列397461t s r 为奇排列,则r = 2,8,5 s = 5,2,8 ,t = 8,5,2 4.在六阶行列式ij a 中,623551461423a a a a a a 应取的符号为 负 。

线性代数习题及答案-华南理工大学工版

线性代数习题及答案-华南理工大学工版

习题一1.计算下列排列的逆序数 1)9级排列 134782695; 2)n 级排列 (1)21n n -。

解:(1)(134782695)04004200010τ=++++++++= ;(2)[(1)21]n n τ-=(1)(1)(2)102n n n n --+-+++=。

2.选择i 和k ,使得: 1)1274i 56k 9成奇排列;2)1i 25k 4897为偶排列。

解:(1)令3,8i k ==,则排列的逆序数为:(127435689)5τ=,排列为奇排列。

从而3,8i k ==。

(2)令3,6i k ==,则排列的逆序数为:(132564897)5τ=,排列为奇排列。

与题意不符,从而6,3i k ==。

3.由定义计算行列式11122122313241424344455152535455000000000a a a a a a a a a a a a aaaa 。

解:行列式=123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑,因为123,,j j j 至少有一个大于3,所以123123j j j a a a中至少有一数为0,从而12345123450j j j j j a a a a a =(任意12345,,,,j j j j j ),于是123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-=∑。

4.计算行列式:1)402131224---; 2)1111111*********----; 3)41241202105200117;4)1464161327912841512525--;5)2222222222222222(1)(2)(3)(1)(2)(3)(1)(2)(3)(1)(2)(3)a a a a b b b b c c c c d d d d ++++++++++++。

线性代数与几何答案华南理工大

线性代数与几何答案华南理工大

线性代数与几何答案华南理工大【篇一:华南理工大学线性代数与解析几何试卷(14)】s=txt>华南理工大学期末考试《线性代数-2007》试卷a注意事项:1. 考前请将密封线内填写清楚;2. 所有答案请直接答在试卷上(或答题纸上); 3.考试形式:开(闭)卷;一、单项选择题(每小题2分,共30分)。

1.设矩阵a1 2??3 4??, b1 23??456??, c??14?25,则下列矩阵运算无意义的是【】36??a. bacb. abcc. bcad. cab2.设n阶方阵a满足a2–e =0,其中e是n阶单位矩阵,则必有【】a. a=a-1b. a=-ec. a=ed. det(a)=13.设a为3阶方阵,且行列式det(a)=?12,则a*【】 a. ?14b. 14c. ?1d. 1 4.设a为n阶方阵,且行列式det(a)=0,则在a的行向量组中【】a.必存在一个行向量为零向量b.必存在两个行向量,其对应分量成比例c. 存在一个行向量,它是其它n-1个行向量的线性组合d. 任意一个行向量都是其它n-1个行向量的线性组合5.设向量组a1,a2,a3线性无关,则下列向量组中线性无关的是【】 a.a1?a2,a2?a3,a3?a1 b. a1,a2,2a1?3a2 c. a2,2a3,2a2?a3 d.a1,a2,a1?a36.向量组(i): a1,?,am(m?3)线性无关的充分必要条件是【】a.(i)中任意一个向量都不能由其余m-1个向量线性表出b.(i)中存在一个向量,它不能由其余m-1个向量线性表出 c.(i)中任意两个向量线性无关d.存在不全为零的常数k1,?,km,使k1a1kmam?0【】a.a的行向量组线性相关 b. a的列向量组线性相关 c. a的行向量组线性无关 d. a的列向量组线性无关a1x1a2x2a3x308.设ai、bi均为非零常数(i=1,2,3),且齐次线性方程组?bx?bx?bx?02233?11的基础解系含2个解向量,则必有【】a.a1a2b2b30 b.a1a2b1b20 c.a1a3a1a2a30 d.b1b2b1b2b3【】9.方程组?x?2x?x?1 有解的充分必要的条件是1233 x3x2xa123?2x1x2x31a. a=-3b. a=-2c. a=3d. a=2【】a. 方程组有无穷多解b. 方程组可能无解,也可能有无穷多解c. 方程组有唯一解或无穷多解d. 方程组无解12. n阶方阵a相似于对角矩阵的充分必要条件是a有n个【】a.互不相同的特征值b.互不相同的特征向量c.线性无关的特征向量d.两两正交的特征向量13. 下列子集能作成向量空间rn的子空间的是【】a. {(a1,a2,?,an)|a1a2?0}b. {(a1,a2,?,an)|c. {(a1,a2,?,an)|a1?1}d. {(a1,a2,?,ana)|?an1i?nii0} 1}14.【】1001?1 2a. 011b. ?5?2-10 1 -1c. ?1 -11 0d.0 -10 -11 0 015.若矩阵a?0 2 a正定,则实数a的取值范围是【】 0 a 8?? a.a 8b. a>4c.a<-4 d.-4 <a<4二、填空题(每小题2分,共20分)。

华南理工大学线性代数 课后习题答案

华南理工大学线性代数 课后习题答案

n
0 0 0
0
0 0 0
解:D (1) n 1 0
习题一部分讲解
第 一 章 7 题 : 求 A 2 和 A 2 n 1 , 其 中 1 1 A 1 1 1 1 2 解: A 1 1 4 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 4 0 0 0 1 4 0 0 0 4 0 0 0 4 0 0 1 1 1 1
T
a11 证: 设A a n1 c11 T 令AA C c n1
a1n ann c1n O cnn
n k 1
n k 1
n k 1
aik aik aik 2 =0 (i=1,2,...,n) cii aik aki 则 aik 0 (i 1, 2,..., n; k 1, 2,..., n) 0 0 所以,A O 0 0 第一章14 题: (E A)(E A A A ) E
(是方阵)
(2) (En uu )(En uu ) En ( (u u ) )uu En
T T T T

当u O, 矩阵uu T O, 则数( (u T u ) ) 0 当 u u 1 0,
T
uT u 1
第一章25题 : 设 A为 n阶矩阵, x是每个元素都是1的 n维列向量。 证明:(1) 列向量 Ax的 第 i个 元 素等于 A的 第 i行 元素之和 ; 1 a11 a1n 证: 记 A , x a n1 ann 1 a11 a12 a1n 1 n a1 j A第1行 元素之和 a21 a22 a2 n j 1 Ax 1 n A第 n行 元素之和 a a 1 nj a a n2 nn n1 j 1 所以,列向量 Ax的第 i个元素等于 A的第 i行 元素之和

华东理工大学线性代数册答案届版

华东理工大学线性代数册答案届版

华东理工大学线性代数作业簿(第一册)学院__________ 专业____________ 班级_______________ 学号__________ 姓名____________ 任课教师___________ 1.1 矩阵的概念1. 矩阵 A a ij 2i j 2 3.解:A2.设1 0 00 1 0 0 3 0 05 2A ,B 0 1 0 0 ,C 2 3 0, D0 3 00 40 0 10 0 4 1 0 0 3其中对角阵为___ ,三角阵有_解:对角阵为D;三角阵有A,C, D.1.2 矩阵的运算3 1 1 2 1 11. 已知2 3X O ,求矩阵X .2 0 23 1 1解:依题意,由3X 6422421311 4 3 3,1 1 1 5 ,41 1即得X 31 13 32. 如果矩阵A m n 与B t s 满足AB BA,试求m,n,t,s 之间的关系解:m nt s.3. 填空:4 3 1 7(1) 1 2 3 25 7 0 11(2) 1, 2, 3 23 ___________1(3) 2 1, 2 ;3__________________1 3 1214 0 0 1 2(4)1 1 3 4 1 3 14 0 235 1 2解:(1) 6 ;(2) 14;(3) 2 4 ;(4) 6 7820 5649 3 60104. 已知矩阵 A 0 0 1 ,试求与 A 可交换的所有矩阵 000解:由可交换矩阵的定义,知道所求矩阵必为 abc其为 B d e f ,于是有ghi010aAB 0 0 1 d000g abc0BA d e f 0ghi0def由 AB BA ,即得 g h i000由相应元素相等,则得 d gabc故 B 0 a b (a,b,c 均为任意常数) 为与 A 可交换的所有矩阵00a2a 33x 3 (a 12 a 21 )x 1x 2 (a 13 a 31) x 1 x 3 (a 23 a 32)x 2x 33 阶方阵,不妨设b c d e fe f = ghi ,h i 0 0 0 1 0 0 a b 0 1 0 d e , 0 00 g h0ab0 d e ,0gh h 0,a e i,b f ,a 11 a 12 a 13 x 1(1)x 1, x 2, x 3 a 21a 22 a 23 x 2 ;a 31a 32a 33x 35. 计算下列各题:解:原式等于: 2 a11x1 2 a22x21 33(2) A,求A 2008解:记 A,则A 2A 3 ,Q 2008 3669(3) 解: A9 200820071,1,13)669A .A 9.1,1,1 23 1,1,1 2328A2561 26. 利用等式17 62 3 2 0 7 335 1257 0 3 5 273 2 31 0,5 2 5 70 1,计算 1756.3512 .55解: 176 2 3 2 0 73 3197 12663512 5 7 0 3 527385 29227. 某公司为了技术革新,计划对职工实行分批脱产轮训,已知该 公司现有 2000 人正在脱产轮训,而不脱产职工有 8000人,若每 年从不脱产职工中抽调 30%的人脱产轮训, 同时又有 60%脱产轮 训职工结业回到生产岗位, 设职工总数不变, 令资料个人收集整理,勿做 商业用途0.7 0.6 8000 A , X0.3 0.42000试用 A 与 X 通过矩阵运算表示一年后和两年后的职工状况, 并据 此计算届时不脱产职工与脱产职工各有多少人 . 解:一年后职工状况为: AX 3200不脱产职工 6800 人,轮训职工 3200 人.6800 2 6680 两年后职工状况为: A A 2 X3200 3320不脱产职工 6680 人,轮训职工 3320 人. 218. 设矩阵 A 24 12 ,B求:(1) A T B T B T A T ; (2) A 2 B 2.解: (1) A T B T B T A T10 20 0 0 10 20 5 10 0 0 5 10 (2) A 2 B 22 1 2 13 1 314 24 2 6 2 620 0 15 5 15 5.0 0301030 10 .9. 设 A 是对称矩阵, B 是反对称矩阵,则( )是反对称矩阵(A ) AB BA; (B ) AB BA; (C ) (AB)2 ; (D ) BAB . 解:B.1 2 110.试将矩阵 A 3 0 12 23 解:11. 设 A 是反对称矩阵, B 是对称矩阵,试证: AB 是反对称矩阵 的充分必要条件为 AB BA. 证:必要性 :由(AB)Τ AB 及(AB)Τ B ΤA Τ B( A) BA 即得 AB BA. 充分性: 若 AB BA ,则(AB)Τ B ΤA Τ B( A) BA AB ,知 AB 是反对称阵 .表示成对称矩阵与反对称矩阵之和11A 12(A A T ) 12(A A T )1 5 3 0 1 12 2 2 2 53 1 0122 223 331 12 22212. 设 f (x) a m x m项式,f (A)1)2) 设A解:(1)f(a mm1am 1 1m a m 1xm a m A1L a1xm1a m 1A L证明 f (证明f (A)a0,记 f (A) 为方阵A的多a1A a0If ( 1)f ( 2)Pf ( )Pf(1) 0f ( 2)2) A A kf(A) f(P 1)Pf ( )P 13.设矩阵A a 1a m Pm11m12a1a1001aam 1m12 a1 a0k P 1mP1ma m 1P1P1a1P a0PP 1T2 T ,其中I 为n 阶单位阵,为n 维列向量,试证 A 为对称矩阵,且A2 I .证:A T(I 2 T )T I T2( T )T T2(T)T I 2 T 故 A 是对称矩阵,且T 2A2(I 2 T )(IT2T) 4T4 (( T T ))2 T I .(T)21.3 逆矩阵1. 设A为n 阶矩阵,且满足A2A ,则下列命题中正确的是().A) A O ;B) A I ;(C)若 A 不可逆,解:D.则A O ;( D )若 A 可逆,则A I.2. 设n阶矩阵A、(A)CA2B B、I;C 满足ABAC I ,则必有().(B)A T B T A T C T I ;(C)解:B.BA2C I;D)A2B2A2C2I .3.已知矩阵A 111111111111111,求A n及A 1(n是正整数).11证:由A2 4I ,即可得nnA n (A 2)2(4I)2 2nI, n 为偶数 An 1A n 1A (4I) 2 A 2n 1A, n 为奇数及 A (1A ) I ,亦即 A 1 1A . 444. 已知 n 阶矩阵 A 满足 A 2 2A 3I O ,求: A 1, (A 2I) 1, (A 4I) 1.( A 2I ) 解:依题意,有 A (A 2I ) 3I ,即 A(A 2I)I ,故311A 1 (A 2I );( A 2I )1A ,33再由已知凑出 (A 4I)(A 2I) 5I ,即得11(A 4I) 1 1(A 2I).55. 设 A 、 B、ABI 为同阶可逆阵, 试证: (1) A B 1 可逆;(2) AB 11A 1也可逆,且有AB1111A 1ABA 证:(1) AB 1ABB 1B 1(A B I)B1A B 1 可逆(2)证法 一:AB 11A 1A B11A B11A B 1 A 1AB11I IB1A 1AB A B 1(ABAA)1AB 11A 1可逆,且 AB 1 1A 11ABA A .证法二: 由(1)得 AB 11B(AB I) 1 ,因此1A B 1 A 1(ABA A) B(AB I) 1 A 1 (ABA A) 11B(AB I) 1(AB I)A A 1A(BA I) BA BA I I1 1 1 11A B 1 A 1可逆,且 A B 1 A 1 ABA A .。

化学工业出版社《线性代数》第7章习题解答

化学工业出版社《线性代数》第7章习题解答

习题七(P274-276)1.设3,R αβ∈,以下哪些函数(,)αβ定义了3R 的一个内积? (1)1122332332(,)22a b a b a b a b a b αβ=+++-, 否 (2)1122332332(,)a b a b a b a b a b αβ=++-- , 是(3)222222112233(,)a b a b a b αβ=++ , 否(4)1133(,)a b a b αβ=+ , 否 2.以下哪些函数定义了[1,1]C -上的一个内积.(1)1221(,)()()f g f x g x dx -=⎰ (⨯) (2)11(,)()()f g xf x g x dx -=⎰ (⨯) (3)121(,)()()f g x f x g x dx -=⎰(√)(4)11(,)()()f g xf x g x dx -=-⎰(⨯)(5)11(,)()()x f g e f x g x dx --=⎰(√)3.设A 是正定矩阵,在nR 中对任两个向量12(,,,)T n x x x α= ,12(,,,)T n y y y β= ,定义(,)T A αβαβ=,证明:在这个定义下nR 构成欧氏空间,并写出这个空间的柯西——施瓦兹不等式. 证明:(1)(,)()(,)T T T A A βαβααβαβ=== (2)(,)()()(,)T T k k A k A k αβαβαβαβ===(3)设:,(,)()(,)(,)n T T T R A A A γαβγαβγαγβγαγβγ∈+=+=+=+(4)由A 的正定性知(,)0T A αααα=≥,当且仅当0α=时,0TA αα=,即(,)0αα=,从而n R 在(,)T A αβαβ=定义下构成欧氏空间。

又(,)TA αβαβαββ=.柯西——施瓦兹不等式为()T A αβ≤4. 在4R 中,求,αβ之间的夹角,αβ(内积按对应分量乘积之和).(1)(2,1,3,2)(1,2,2,1)αβ==-(2)(1,1,1,2)(3,1,1,0)αβ==-解:(1)(,)0.,2παβαβ=∴=(2)(,)(,) 3.cos ,αβαβαβαβαβ=====⋅,从而,arc αβ=5.在4R 中求一单位向量与()()()1,1,1,1,1,1,1,1,2,1,1,3---正交. 解:设所求向量为1234(,,,)x x x x α=,应有:12341234123400230x x x x x x x x x x x x +-+=⎧⎪--+=⎨⎪+++=⎩ 解之得:411423433,0,x x x x x =-==-, 又 222212341x x x x +++=,得:4x =,(,0,,α∴= 6. 把向量组标准正交化(内积为对应分量乘积之和):1(1,1,0,0)α=,2(1,0,1,0)α=,3(1,0,0,1)α=-。

华理概率论答案第七册

华理概率论答案第七册

解:(1) 由矩法原则可知:EX = 0 ⋅ θ 2 + 1⋅ 2θ (1 − θ ) + 2 ⋅ θ 2 + 3 ⋅ (1 − 2θ ) = 3 − 4θ = X ,
3 +1+ 3 + 0 + 3 +1+ 2 + 3 ˆ =1。 = 2 ,故 θ 的矩估计值 θ M 8 4 (2) 注意该总体为离散型,且分布律不能由解析式表示。 似然函数
−∞ −∞ +∞ +∞
θ +1 , θ +2
设X =
1 n θ +1 X i 为样本均值, 则应有: X = , ∑ θ +2 n i =1
ˆ = 2X −1 ; 解得 θ 的矩法估计量为: θ 1− X
设 ( x1 , x 2, L,x n ) 是样本 ( X 1 , X 2, L,X n ) 的观察值, 则似然函数为:
解: (1)矩估计 总体均值: EX = 0 ⋅ 样本平均值: X = 令 EX = X ,即 (2)极大似然 设 ( X 1 , X 2, L,X n ) 的一组观测值为 ( x1 , x 2, L,x n ) ,
1 1 1 1 N ( N − 1) N − 1 , = + 1 ⋅ + L + ( N − 1) ⋅ = ⋅ 2 2 N N N N
∧ ∧

1 1 ⎞ 1 1 1 ⎛1 ⎛1 1 1⎞ ˆ1 = E ⎜ X 1 + X 2 + X 3 ⎟ = EX 1 + EX 2 + EX 3 = ⎜ + + ⎟ μ = μ , Eμ 4 4 ⎠ 2 4 4 ⎝2 ⎝2 4 4⎠ 1 1 ⎞ 1 1 1 ⎛1 ⎛1 1 1⎞ ˆ 2 = E ⎜ X 1 + X 2 + X 3 ⎟ = EX 1 + EX 2 + EX 3 = ⎜ + + ⎟ μ = μ , Eμ 3 3 ⎠ 3 3 3 ⎝3 ⎝3 3 3⎠ 2 1 ⎞ 2 2 1 ⎛2 ⎛ 2 2 1⎞ ˆ 3 = E ⎜ X 1 + X 2 + X 3 ⎟ = EX 1 + EX 2 + EX 3 = ⎜ + + ⎟ μ = μ , Eμ 5 5 ⎠ 5 5 5 ⎝5 ⎝ 5 5 5⎠ ˆ 3 都是 μ 的无偏估计. ˆ2 , μ ˆ1 , μ 所以, μ (2)由于样本 X 1 , X 2 ,L, X n 独立同分布,那么 1 1 ⎞ 1 1 1 3 ⎛1 ˆ1 = D ⎜ X 1 + X 2 + X 3 ⎟ = DX 1 + DX 2 + DX 3 = , Dμ 4 4 ⎠ 4 16 16 8 ⎝2 1 1 ⎞ 1 1 1 1 ⎛1 ˆ 2 = D ⎜ X 1 + X 2 + X 3 ⎟ = DX 1 + DX 2 + DX 3 = , Dμ 3 3 ⎠ 9 9 9 3 ⎝3 2 1 ⎞ 4 4 1 9 ⎛2 ˆ3 = D ⎜ X 1 + X 2 + X 3 ⎟ = Dμ DX 1 + DX 2 + DX 3 = , 5 5 ⎠ 25 25 25 25 ⎝5 ˆ 3 > Dμ ˆ 2 ,故 μ ˆ1 > Dμ ˆ 2 最有效. 可知 Dμ

华东理工分析化学课后答案

华东理工分析化学课后答案
(1)分离非极性物质一般选用非极性固定液,这时试样中各组分按沸点次序先后流 出色谱柱,沸点低的先出峰,沸点高的后出峰。
(2)分离极性物质,选用极性固定液,这时试样中各组分主要按极性顺序分离, 极性小的先流出色谱柱,极性大的后流出色谱柱。
(3)分离非极性和极性混合物时,一般选用极性固定液,这时非极性组分先出峰, 极性组分(或易被极化的组分)后出峰。
故:(1)不变化,(2)增加,(3)不改变,(4)减小
5.试以塔板高度H做指标,讨论气相色谱操作条件的选择.
解:提示:主要从速率理论(van Deemer equation)来解释,同时考虑 流速的影响,选择最佳载气流速.P13-24。 (1)选择流动相最佳流速。 (2)当流速较小时,可以选择相对分子质量较大的载气(如 N2,Ar),而当流速较大时,应该选择相对分子质量较小的载气 (如H2,He),同时还应该考虑载气对不同检测器的适应性。 (3)柱温不能高于固定液的最高使用温度,以免引起固定液的 挥发流失。在使最难分离组分能尽可能好的分离的前提下,尽 可能采用较低的温度,但以保留时间适宜,峰形不拖尾为度。
当流速较小时,分子扩散 (B 项 ) 就成为色谱峰扩张的主要因素,此时应采用相对分 子质量较大的载气 (N2 , Ar ) ,使组分在载气中有较小 的扩散系数。而当流速较大 时,传质项 (C 项 ) 为控制因素,宜采用相对分子质量较小的载气 (H2 ,He ) ,此时组 分在载气中有较大的扩散系数,可减小气相传质阻力,提高柱效。
7. 当下述参数改变时: (1)增大分配比,(2) 流动相速度 增加, (3)减小相比, (4) 提高柱温,是否会使色谱峰变 窄?为什么?
答:(1)保留时间延长,峰形变宽 (2)保留时间缩短,峰形变窄 (3)保留时间延长,峰形变宽 (4)保留时间缩短,峰形变窄

东华理工大学线性代数练习册答案

东华理工大学线性代数练习册答案
换页
班级:学号:姓名:序号:
3
2512
3714
5927
4612
?
??
?
?
43
21
1331
41
32
24
42
251215221522
371417340216
2
592729570113
461216420120
152215221522
012001200120
..............................
......1......
nn
nn
nn
n
nnnnn
?
?
?
=×××?
换页
班级:学号:姓名:序号:
7
1
!()!(1)!2!1!
ijn
njinn

=?=?

?
3.
1
2
3
11111
11111
11111(012)
()
()
A
行列式主对角线的元素全为零
()
B
三角形行列式主对角线有一个元素为零
()
C
行列式零元素的个数多于n个
()
D
行列式非零元素的个数小于n个
4.如果
()
()()
()()
30
40
50
A0B1
C1D3
xkyz
yz
kxyz
kk
kk
+?=

华理线代作业答案第七册

华理线代作业答案第七册

华东理工大学线性代数 作业簿(第七册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________5.1 方阵的特征值与特征向量1. 求下列矩阵的特征值与特征向量:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=201034011A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122212221A . 解:(1)由 11043012|A I |---=---λλλλ0)1)(2(2=--=λλ,解得A 的特征值为: 2,1321===λλλ,当121==λλ时, 解方程 ()0A I x -=, 由210101420~012101000A I -⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1211p , 故对应121==λλ的全部特征向量为 )0(1≠k kp ;当23=λ时, 解方程 0)2(=-x E A , 由3101002410010100000A I ~-⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002p ,故对应23=λ的全部特征向量为 )0(2≠k kp .解: (2) 由122212221|A I |--=--λλλλ0)5()1(2=-+=λλ, 解得A 的特征值为: 5,1321=-==λλλ, 当121==λλ时, 解方程 ()0A I x +=, 由222111222~000222000A I ⎡⎤⎡⎤⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111p , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011p ,故对应121-==λλ的全部特征向量为 )0(212211≠+k k p k p k ;当53=λ时, 解方程: (5)0A I x -=, 由4221015242~011224000A I --⎡⎤⎡⎤⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113p , 故对应53=λ的全部特征向量为)0(3≠k kp .2. 已知3阶矩阵A 的特征值为2,1,1-,235A A B -=,求B 的特征值.解: 容易证明, 当λ是A 的特征值时, 则矩阵A 的多项式)(A f 必有特征值)(λf .设235)(A A A f B -==, 则B 有特征值: 4)1(-=f , 6)1(-=-f , 12)2(-=f .3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100321z y x A , 且A 的特征值为3,2,1, 求z y x ,,.解:0]2))(1)[(1(10321||=----=---=-x y z y x I A λλλλλλλ,因为A 有特征值为3,2,1得: ⎩⎨⎧=----=----0]2)3)(31)[(31(0]2)2)(21)[(21(x y x y ,即⎩⎨⎧=-+=-+03022y x y x , 解得 ⎩⎨⎧=-=41y x , z 无限制, 故R z y x ∈=-=,1,1.4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53342111a A , 且A 有特征值2,6321===λλλ, 则a =( ).(A)2; (B)2-; (C)4; (D)4-.解: B . 一方面24||321==λλλA ; 又)6(653342111||a a A +=---=, 所以得2-=a .5.设向量T k ]1,,1[=α是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=211121112A 的逆矩阵1-A 的特征向量, 试求常数k 的值.解:设λαα=-1A , 左乘A 得 αλαA =, 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1121112111211k k λ, 即⎩⎨⎧+=+=)22()3(1k k k λλ, 解得⎩⎨⎧-==2111k λ,⎩⎨⎧==14122k λ, 故有2-=k 或1=k .6. 设21,ξξ分别是矩阵A 属于不同特征值21,λλ的特征向量, 试证: 21ξξ+不可能是A 的特征向量.解: 设21ξξ+是A 的对应于特征值0λ的特征向量, 即有201021021)()(ξλξλξξλξξ+=+=+A ,另一方面, 又有22112121)(ξλξλξξξξ+=+=+A A A ,综合得0)()(220110=-+-ξλλξλλ,再由定理“矩阵对应于不同特征值的特征向量是线性无关的”, 知必有 ,02010=-=-λλλλ 即得 21λλ=, 与已知条件21λλ≠矛盾, 故命题得证.7. 设B A ,为n 阶矩阵, 证明AB 与BA 有相同的特征根. 证明: 只要证明AB 的特征值都是BA 的特征值即可.如果0是AB 的特征值, 则得 0||=AB , 从而0||||||||===AB B A BA , 故0也是BA 的特征值;再设λ是AB 的任意一个非零特征值, 对应的特征向量为x , 即有x x AB λ=)(,两边左乘B 得 Bx x AB B λ=)(, 即)())((Bx Bx BA λ=,显然0≠Bx (否则有0)()(===Bx A x AB x λ, 得到0=λ, 矛盾), 故λ也是BA 的特征值, 对应的特征向量为Bx .8.设A 为实正交矩阵, 即T A A I =, 证明: A 的特征值的绝对值只能是1或1-.证明: 设λ是A 的特征值, x 是对应λ的特征向量, 即有x Ax λ=,所以有x x x x Ax Ax T T T 2)()(λλλ==,另一方面, 又有()T T T T T Ax Ax x A Ax x Ix x x ===,结合上述两式得12=λ, 即1±=λ.5.2 相似矩阵1.已知A 是n 阶可逆矩阵, 如果A 与矩阵B 相似,则下列四个命题中,(1)AB 与BA 相似, ﻩ (2)2A 与2B 相似, (3)1-A 与1-B 相似, (4)T A 与T B 相似, 正确的命题共有( ).(A)4; (B)3; (C )2; (D)1.解:A. (2)、(3)、(4)显然;(1)成立是因为1()B BA B AB -=.2. 问下列矩阵能否与对角阵相似?为什么?(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300320321A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301121402A ; (3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=201335212A . 解:(1)显然A 有三个不同的特征值3,2,1, 故A 有三个线性无关的特征向量, 从而A 相似于对角阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ300020001. (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-λλλλ301121402I A , 由0)1()2(2=+--=-λλλI A 得A的特征值.1,2321-===λλλ再由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-000000101~1011014042I A 知方程组0)2(=-x I A 有两个线性无关的特征向量;而单根13-=λ必有另一特征向量, 故A 有三个线性无关的特征向量,从而三阶矩阵A 能够相似于对角阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-122. (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=-λλλλ201335212I A , 由0)1(3=+-=-λλI A 得A 的特征值.1321-===λλλ再由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+000110101~101325213I A , 知方程组0)(=+x I A 只有一个线性无关的特征向量, 即三阶矩阵A 没有三个线性无关的特征向量, 故A 不能相似于任何对角矩阵. 3. 设矩阵460350361A ⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦. (1)证明A 可对角化; (2)计算nA . 解:(1) 由)2()1(2+--=-λλλI A , 可得矩阵A 的特征值位2,1321-===λλλ.对应特征值121==λλ, 有两个线性无关特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0121p , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002p ; 对应特征值23-=λ, 有一个线性无关特征向量 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1113p ; 因为A 有三个线性无关的特征向量, 所以A 可对角化.取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==110101102][321p p p P , 则有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Λ=-2111AP P ; (2)由(1)知1-Λ=P P A , 而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-021*******P , 故 11)(--Λ=Λ=P P P P A n n n⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=021121011)2(11110101102n nn⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+--+--+----=1)2(22)2(10)2(21)2(10)2(22)2(2nn n n n n.4.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x A 10100002与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=10000002y B 相似, (1)求y x ,;(2)求一个满足B AP P =-1的可逆阵P . 解: (1)由A 相似于B , 得 ||||I B I A λλ-=-, 即λλλλλλ----=---1000002110002y x ,亦即)1)()(2(]1)()[2(+--=---λλλλλλy x ,解之得 1,0==y x ;(2)A 与B 有相同的特征值1,1,2321-===λλλ,解方程组 0)2(=-x I A , 得特征向量 T p ]0,0,1[1=, 解方程组 0)(=-x I A , 得特征向量 T p ]0,1,0[2=, 解方程组 0)(=+x I A , 得特征向量 T p ]1,1,0[3-=,取 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==110110001],,[321p p p P , 则有B AP P =-1.5.3 实对称矩阵1.求正交矩阵Q , 将下列矩阵正交对角化.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=020212022A ; (2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=542452222A . 解: (1)由λλλλ-------=-20212022||I A )4)(1)(2(--+-=λλλ, 可得特征值为4,1,2321==-=λλλ,当,21-=λ 解方程组0)2(=+x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2211ξ, 单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221311q ; 当,12=λ 解方程组0)(=-x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2122ξ,单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=212312q ;当,43=λ 解方程组0)4(=-x A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1223ξ,单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122313q ; 取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==12221222131],,[321q q q Q , 则有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-4121AQ Q . (2) 由λλλλ-------=-542452222||I A )10()1(2---=λλ, 可得 特征值为10,1321===λλλ,当,121==λλ 解方程组0)(=-x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0121ξ, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1022ξ,正交化得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==01211ξβ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=><><-=5425101254102,,1111222ββββξξβ, 再单位化得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==01251||111ββq , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==542531||222ββq ;当,103=λ 解方程组0)10(=-x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2213ξ,单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=221313q , 取⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--==3253503253451315252],,[321q q q Q , 则有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10111AQ Q .2. 已知3阶实对称矩阵A 的特征值为6,3,3, 对应于特征值3的特征向量为T ]1,0,1[1-=α, T ]1,2,1[2-=α, 求A 的对应于特征值6的特征向量及矩阵A . 解: 实对称矩阵的不同特征值所对应的特征向量是正交的,所以A 的对应特征值6的特征向量为T x x x ],,[3213=α与21,αα都正交,于是得到031=+-x x 和02321=+-x x x ,取一非零解T ]1,1,1[3=α,再取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111120111],,[321αααP , 则有1336P AP -⎛⎫ ⎪= ⎪ ⎪⎝⎭,所以华理线代作业答案第七册1336A P P -⎛⎫ ⎪= ⎪ ⎪⎝⎭1111120111633111120111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=41114111422212130361633111120111.。

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)(共6页)

线性代数课后习题答案(共10篇)[模版仅供参考,切勿通篇使用]感恩作文线性代数课后习题答案(一):高等数学线性代数,概率统计第二版课后答案姚孟臣版最佳答案: 您好,我看到您的问题很久没有人来回答,但是问题过期无人回答会被扣分的并且你的悬赏分也会被没收!所以我给你提几条建议: 线性代数课后习题答案(二): 谁知道《线性代数与解析几何教程》(上册)的课后习题答案在哪下?但一定要真实,这本书是大一要学的,樊恽,刘宏伟编科学出版社出版.急不知道线性代数课后习题答案(三):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值答案书上突然冒出一句“显然R(A)=1”,让我非常困惑, R(A) = R(aaT) 线性代数课后习题答案(四):求线性代数(第三版),高等教育出版社的习题参考答案华中科技大学数学系的线性代数课后习题答案书店都有卖的,尤其是华科附近的小书店,盗版一大堆~ 线性代数课后习题答案(五):线性代数:假如一道题目要求某矩阵,如果我求出的矩阵与答案所给的矩阵是等价的,能算是正确答案么?如果只是某两行或某两列位置调换了一下,也不能算是正确答案吗?线性代数课后习题答案应该不正确吧.以我理解矩阵的等价是说 QAP=B A等价到B 是通过了一系列的初等变化,那你求出的矩阵只有一个,要想变成其他还要再变换,就不是原题目的条件了还是不正确啊.行调换或列调换等于在原矩阵左边或右边乘上个初等矩阵线性代数课后习题答案(六):线性代数第五章的课后习题:设a=(a1,a2,...,an)T,a1≠0,A=aaT,证明λ=0是A的n-1重特征值;求出来对角阵只有一个非零特征值,为什么0就是A的N-1重特征值了?再问一下当0是特征值时对应的特征向量有什么特点么?所求得的对角阵与A 相似,所以A 与对角阵有相同的特征值,看对角阵,有一个非零特征值和0(N –1)重.所以A 也是这样应该懂了吧线性代数课后习题答案(七):线性代数问题.设A=E-a^Ta,a=[a1,a2,……,an],aa^T=1,则A不能满足的结论是().^T=A ^T=A^-1 ^T=E ^2=A只会证A对,不要用排除法.A²=E由A,知A^T=AAA^T=A²=(E-a^Ta)(E-a^Ta)=E-a^Ta-a^Ta+a^Taa^Ta=E-2a^Ta+a^T(aa^T)a=E-2a^Ta+a^Ta==E-a^Ta=A所以C错. 线性代数课后习题答案(八):线性代数,对称矩阵的证明题如果n阶实对称矩阵A满足A^3=En,证明:A一定是单位矩阵答案是这样的,有点不懂的地方:因为A^3=En所以A的特征值一定是x^3=1的实根(1.是不是因为对应的多项式为f(x)=x^3-1,所以,f(λ)=λ^3-1=0?)所以λ1=λ2=λ3=1A相似于单位矩阵必有A=En(2.我觉得因为A是对称矩阵所以必有正交阵P,使得P^-1*A*P=P"*A*P=∧,∧的对角元为1,1,1,所以相似于E,可是方阵是n阶,λ只是一个特征值,那么就能相似于En吗?相似的对角阵不是应该也是n阶吗,应该有n个特征值啊!)第一问:因为A是实对称矩阵,所以存在正交矩阵PP"AP=∧∧是A的特征值构成的对角阵A=P∧P"A^3=P∧^3P"=E所以∧^3=E所以λ1^3.λn^3都等于1所以λ1=λ2=..=λn=1第二问:因为有n个特征值,且实对称阵必能相似于对角阵(书上的定理)所以A相似于这n个特征值构成的对角阵P"*A*P=E所以 A=PEP"=PP"=E刚才看错题目了,如果还有什么不明白可以发信给我,给你详细讲解线性代数课后习题答案(九):线性代数线性方程组问题公共解和同解方程组大题,遇到过不少次了答案的作法让人晕作法1:分别求出基础解析方程组1的 k1()+k2()方程组2的:k3()+k4()然后对比,综合得出一个k()方法2:先求出方程组1的解,然后代入方程组2..方法3:做一个联合的系数矩阵,很大的,然后说求出来的解就是它们的. 我的问题在于:上面的方法我自己能想到1 2,但是不清楚所谓的公共解和同解的区别在哪里?另外,为什么很错题,这几个方法不论求公共解还是同解都能通用?什么时候用哪个方法啊?两个方程组的公共解,可用方法3.若是两个方程组同解,方法3就不灵了公共解是两个方程组解的交集,包含在两个方程组的解集中同解方程组,两个方程组的解集一样,即基础解系等价(可互相线性表示)这类题目一般综合性强,需根据具体情况来分析使用哪个方法比如:一个方程组可得出明显的基础解系,那么代入另一方程组就方便一些.你可以看看此类的题目,先自己做做看,用什么方法,再与解答比较,最后总结一下,大有好处若有看不透的题目,就拿来问一下,我帮你分析线性代数课后习题答案(十):一道线性代数的题目题目是判断正误若α1,α2,……αs线性相关,则其中每一个向量都是其余向量的线性组合.我知道答案是错误但是请问反例怎么举拿0和一个非零的放到一起,线性相关,0可以写成非零的那个的线性组合,非零的那个不能写成0的线性组合。

线代课后习题答案(全部)

线代课后习题答案(全部)

线性代数同济大学第五版全部课后题答案 第一章 行列式1. 利用对角线法则计算下列三阶行列式: (1)381141102---;解 381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8 -0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1) =-24+8+16-4=-4. (2)b a c a c b cb a ;解 ba c a cb cb a=acb +bac +cba -bbb -aaa -ccc =3abc -a 3-b 3-c 3.(3)222111c b a c b a ;解 222111c b a c b a=bc 2+ca 2+ab 2-ac 2-ba 2-cb 2 =(a -b )(b -c )(c -a ).(4)y x y x x y x y yx y x +++.解 yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3 =-2(x 3+y 3).2. 按自然数从小到大为标准次序, 求下列各排列的逆序数:(1)1 2 3 4; 解 逆序数为0 (2)4 1 3 2;解 逆序数为4: 41, 43, 42, 32. (3)3 4 2 1;解 逆序数为5: 3 2, 3 1, 4 2, 4 1, 2 1. (4)2 4 1 3;解 逆序数为3: 2 1, 4 1, 4 3. (5)1 3 ⋅ ⋅ ⋅ (2n -1) 2 4 ⋅ ⋅ ⋅ (2n );解 逆序数为2)1(-n n :3 2 (1个) 5 2, 5 4(2个)7 2, 7 4, 7 6(3个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)(6)1 3 ⋅⋅⋅(2n-1) (2n) (2n-2) ⋅⋅⋅ 2.解逆序数为n(n-1) :3 2(1个)5 2, 5 4 (2个)⋅⋅⋅⋅⋅⋅(2n-1)2, (2n-1)4, (2n-1)6,⋅⋅⋅, (2n-1)(2n-2) (n-1个)4 2(1个)6 2, 6 4(2个)⋅⋅⋅⋅⋅⋅(2n)2, (2n)4, (2n)6,⋅⋅⋅, (2n)(2n-2) (n-1个)3.写出四阶行列式中含有因子a11a23的项.解含因子a11a23的项的一般形式为(-1)t a11a23a3r a4s,其中rs是2和4构成的排列,这种排列共有两个,即24和42.所以含因子a11a23的项分别是(-1)t a11a23a32a44=(-1)1a11a23a32a44=-a11a23a32a44,(-1)t a11a23a34a42=(-1)2a11a23a34a42=a11a23a34a42.4.计算下列各行列式:(1)71100251020214214; 解 71100251020214214010014231020211021473234-----======c c c c 34)1(143102211014+-⨯---= 143102211014--=01417172001099323211=-++======c c c c .(2)2605232112131412-; 解 2605232112131412-26053212213041224--=====c c 041203212213041224--=====r r 0000003212213041214=--=====r r . (3)efcf bf de cd bd aeac ab ---;解 efcf bf de cd bd aeac ab ---e c b e c b e c b adf ---=a b c d e f a d f b c e 4111111111=---=.(4)dc b a 100110011001---. 解d c b a 100110011001---dc b aab ar r 10011001101021---++===== d c a ab 101101)1)(1(12--+--=+01011123-+-++=====cd c ada ab dc ccdad ab +-+--=+111)1)(1(23=abcd +ab +cd +ad +1. 5. 证明:(1)1112222b b a a b ab a +=(a -b )3;证明1112222b b a a b ab a +00122222221213a b a b a a b a ab a c c c c ------=====ab a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--==(a -b )3 . (2)y x z x z y zy x b a bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax )(33+=+++++++++;证明bzay by ax bx az by ax bx az bz ay bxaz bz ay by ax +++++++++bz ay by ax x by ax bx az z bxaz bz ay y b bz ay by ax z by ax bx az y bx az bz ay x a +++++++++++++=bz ay y x by ax x z bxaz z y b y by ax z x bx az y z bz ay x a +++++++=22z y x y x z xz y b y x z x z y z y x a 33+=y x z x z y zy x b y x z x z y z y x a 33+=y x z x z y zy x b a )(33+=.(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ; 证明2222222222222222)3()2()1()3()2()1()3()2()1()3()2()1(++++++++++++d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2, c 2-c 1得) 5232125232125232125232122222++++++++++++=d d d d c c c c b b b b a a a a (c 4-c 3, c 3-c 2得)022122212221222122222=++++=d d c c b b a a . (4)444422221111d c b a d c b a d c b a =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ); 证明 444422221111d c b a d c b a d c b a )()()(0)()()(001111222222222a d d a c c a b b a d d a c c a b b ad a c a b ---------=)()()(111))()((222a d d a c c a b b d c b a d a c a b +++---=))(())((00111))()((a b d b d d a b c b c c b d b c a d a c a b ++-++------=)()(11))()()()((a b d d a b c c b d b c a d a c a b ++++-----= =(a -b )(a -c )(a -d )(b -c )(b -d )(c -d )(a +b +c +d ). (5)12211 000 00 1000 01a x a a a a x x xn n n+⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--- =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n .证明 用数学归纳法证明.当n =2时, 2121221a x a x a x a x D ++=+-=, 命题成立. 假设对于(n -1)阶行列式命题成立, 即 D n -1=x n -1+a 1 x n -2+ ⋅ ⋅ ⋅ +a n -2x +a n -1, 则D n 按第一列展开, 有 11100 100 01)1(11-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅--+=+-xx a xD D n n n n =xD n -1+a n =x n +a 1x n -1+ ⋅ ⋅ ⋅ +a n -1x +a n . 因此, 对于n 阶行列式命题成立.6. 设n 阶行列式D =det(a ij ), 把D 上下翻转、或逆时针旋转90︒、或依副对角线翻转, 依次得n nn n a a a a D 11111 ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=, 11112 n nn n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= , 11113 a a a a D n nnn ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=,证明D D D n n 2)1(21)1(--==, D 3=D .证明 因为D =det(a ij ), 所以 nnn n n n nnnn a a a a a a a a a a D 2211111111111 )1( ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-⋅⋅⋅=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--=-- )1()1(331122111121nnn n nn n n a a a a a a a a D D n n n n 2)1()1()2( 21)1()1(--+-+⋅⋅⋅++-=-=.同理可证 nnn n n n a a a a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=- )1(11112)1(2D D n n Tn n 2)1(2)1()1()1(---=-=. D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(.7. 计算下列各行列式(D k 为k 阶行列式):(1)aaD n 11⋅⋅⋅=, 其中对角线上元素都是a , 未写出的元素都是0; 解aa a a a D n 0 0010 000 00 000 0010 00⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=(按第n 行展开) )1()1(10 00 00 000 0010 000)1(-⨯-+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-=n n n aa a )1()1(2 )1(-⨯-⋅⋅⋅⋅-+n n n a a an n n nn a a a+⋅⋅⋅-⋅-=--+)2)(2(1)1()1(=a n -a n -2=a n -2(a 2-1).(2)xa aa x a a a xD n ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅= ; 解 将第一行乘(-1)分别加到其余各行, 得 ax x a ax x a a x x a a a a x D n --⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅--⋅⋅⋅--⋅⋅⋅=000 0 00 0, 再将各列都加到第一列上, 得ax ax a x aaa a n x D n -⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-+=0000 0 000 00 )1(=[x +(n -1)a ](x -a )n -1. (3)111 1 )( )1()( )1(1111⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅--⋅⋅⋅-=---+n a a a n a a a n a a a D n n n nn n n ; 解 根据第6题结果, 有 nnn n n n n n n n a a a n a a a n a a aD )( )1()( )1( 11 11)1(1112)1(1-⋅⋅⋅--⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=---++此行列式为范德蒙德行列式.∏≥>≥++++--+--=11)1(1)]1()1[()1(j i n n n n j a i a D∏≥>≥++---=112)1()]([)1(j i n n n j i∏≥>≥++⋅⋅⋅+-++-⋅-⋅-=1121)1(2)1()()1()1(j i n n n n n j i∏≥>≥+-=11)(j i n j i .(4)nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112; 解nnnnn d c d c b a b a D ⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=11112(按第1行展开) nn n n n nd d c d c b a b a a 00011111111----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=0)1(1111111112c d c d c b a b a b nn n n n nn ----+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-+. 再按最后一行展开得递推公式D 2n =a n d n D 2n -2-b n c n D 2n -2, 即D 2n =(a n d n -b n c n )D 2n -2. 于是 ∏=-=ni i i i i n D c b d a D 222)(.而 111111112c b d a d c b a D -==, 所以 ∏=-=n i i i i i n c b d a D 12)(. (5) D =det(a ij ), 其中a ij =|i -j |; 解 a ij =|i -j |, 04321 4 01233 10122 21011 3210)det(⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅==n n n n n n n n a D ij n 043211 11111 11111 11111 1111 2132⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅--⋅⋅⋅-=====n n n n r r r r15242321 0 22210 02210 00210 0001 1213-⋅⋅⋅----⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅----⋅⋅⋅---⋅⋅⋅--⋅⋅⋅-+⋅⋅⋅+=====n n n n n c c c c =(-1)n -1(n -1)2n -2.(6)nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 1111121, 其中a 1a 2 ⋅ ⋅ ⋅ a n≠0.解nn a a a D +⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅+⋅⋅⋅+=1 11 1 111 1121 nn n n a a a a a a a a a c c c c +-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-⋅⋅⋅-=====--100001 000 100 0100 0100 0011332212132 1111312112111000011 000 00 11000 01100 001 ------+-⋅⋅⋅-⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅-⋅⋅⋅-⋅⋅⋅⋅⋅⋅=nn n a a a a a a a a∑=------+⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=n i i n n a a a a a a a a 1111131******** 00010 000 00 10000 01000 001)11)((121∑=+=ni i n a a a a .8. 用克莱姆法则解下列方程组: (1)⎪⎩⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x ;解 因为 14211213513241211111-=----=D , 142112105132412211151-=------=D , 284112035122412111512-=-----=D , 426110135232422115113-=----=D , 14202132132212151114=-----=D , 所以 111==DD x , 222==D D x , 333==D D x , 144-==D Dx .(2)⎪⎪⎩⎪⎪⎨⎧=+=++=++=++=+150650650651655454343232121x x x x x x x x x x x x x .解 因为 665510006510006510065100065==D , 150751001651000651000650000611==D , 114551010651000650000601000152-==D , 703511650000601000051001653==D , 39551601000051000651010654-==D , 2121100005100065100651100655==D , 所以66515071=x , 66511452-=x , 6657033=x , 6653954-=x , 6652124=x .9. 问λ, μ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解?解 系数行列式为μλμμμλ-==1211111D .令D =0, 得 μ=0或λ=1.于是, 当μ=0或λ=1时该齐次线性方程组有非零解.10. 问λ取何值时, 齐次线性方程组⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ有非零解?解 系数行列式为λλλλλλλ--+--=----=101112431111132421D=(1-λ)3+(λ-3)-4(1-λ)-2(1-λ)(-3-λ) =(1-λ)3+2(1-λ)2+λ-3. 令D =0, 得λ=0, λ=2或λ=3.于是, 当λ=0, λ=2或λ=3时, 该齐次线性方程组有非零解.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗?解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610, 所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的: (1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0.(2)若A 2=A , 则A =0或A =E ;解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ,⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ, 由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121.9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A , 故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ;解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ; 解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x , 从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,所以A 可逆, 而A +2E =A 2, |A +2E |=|A 2|=|A |2≠0, 故A +2E 也可逆. 由 A 2-A -2E =O ⇒A (A -E )=2E⇒A -1A (A -E )=2A -1E ⇒)(211E A A -=-, 又由 A 2-A -2E =O ⇒(A +2E )A -3(A +2E )=-4E⇒ (A +2E )(A -3E )=-4 E ,所以 (A +2E )-1(A +2E )(A -3E )=-4(A +2 E )-1,)3(41)2(1A E E A -=+-. 16. 设A 为3阶矩阵, 21||=A , 求|(2A )-1-5A *|. 解 因为*||11A A A =-, 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A =|-2A -1|=(-2)3|A -1|=-8|A |-1=-8⨯2=-16. 17. 设矩阵A 可逆, 证明其伴随阵A *也可逆, 且(A *)-1=(A -1)*.证明 由*||11A A A =-, 得A *=|A |A -1, 所以当A 可逆时, 有 |A *|=|A |n |A -1|=|A |n -1≠0,从而A *也可逆.因为A *=|A |A -1, 所以(A *)-1=|A |-1A . 又*)(||)*(||1111---==A A A A A , 所以 (A *)-1=|A |-1A =|A |-1|A |(A -1)*=(A -1)*.18. 设n 阶矩阵A 的伴随矩阵为A *, 证明:(1)若|A |=0, 则|A *|=0;(2)|A *|=|A |n -1.证明(1)用反证法证明. 假设|A *|≠0, 则有A *(A *)-1=E , 由此得 A =A A *(A *)-1=|A |E (A *)-1=O ,所以A *=O , 这与|A *|≠0矛盾,故当|A |=0时, 有|A *|=0.(2)由于*||11A A A =-, 则AA *=|A |E , 取行列式得到 |A ||A *|=|A |n .若|A |≠0, 则|A *|=|A |n -1;若|A |=0, 由(1)知|A *|=0, 此时命题也成立.因此|A *|=|A |n -1.19. 设⎪⎪⎭⎫ ⎝⎛-=321011330A , AB =A +2B , 求B . 解 由AB =A +2E 可得(A -2E )B =A , 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E A B ⎪⎪⎭⎫ ⎝⎛-=011321330. 20. 设⎪⎪⎭⎫ ⎝⎛=101020101A , 且AB +E =A 2+B , 求B . 解 由AB +E =A 2+B 得(A -E )B =A 2-E ,即 (A -E )B =(A -E )(A +E ).因为010********||≠-==-E A , 所以(A -E )可逆, 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B .21. 设A =diag(1, -2, 1), A *BA =2BA -8E , 求B . 解 由A *BA =2BA -8E 得 (A *-2E )BA =-8E , B =-8(A *-2E )-1A -1 =-8[A (A *-2E )]-1 =-8(AA *-2A )-1 =-8(|A |E -2A )-1 =-8(-2E -2A )-1 =4(E +A )-1=4[diag(2, -1, 2)]-1)21 ,1 ,21(diag 4-==2diag(1, -2, 1).22. 已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A , 且ABA -1=BA -1+3E , 求B . 解 由|A *|=|A |3=8, 得|A |=2. 由ABA -1=BA -1+3E 得 AB =B +3A ,B =3(A -E )-1A =3[A (E -A -1)]-1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-1030060600600006603001010010000161. 23. 设P -1AP =Λ, 其中⎪⎭⎫ ⎝⎛--=1141P , ⎪⎭⎫ ⎝⎛-=Λ2001, 求A 11.解 由P -1AP =Λ, 得A =P ΛP -1, 所以A 11= A =P Λ11P -1.|P |=3, ⎪⎭⎫ ⎝⎛-=1141*P , ⎪⎭⎫ ⎝⎛--=-1141311P ,而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-=Λ11111120 012001,故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=68468327322731. 24. 设AP =P Λ, 其中⎪⎪⎭⎫⎝⎛--=111201111P , ⎪⎪⎭⎫ ⎝⎛-=Λ511,求ϕ(A )=A 8(5E -6A +A 2). 解 ϕ(Λ)=Λ8(5E -6Λ+Λ2)=diag(1,1,58)[diag(5,5,5)-diag(-6,6,30)+diag(1,1,25)] =diag(1,1,58)diag(12,0,0)=12diag(1,0,0). ϕ(A )=P ϕ(Λ)P -1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=1111111114.25. 设矩阵A 、B 及A +B 都可逆, 证明A -1+B -1也可逆, 并求其逆阵. 证明 因为A -1(A +B )B -1=B -1+A -1=A -1+B -1,而A -1(A +B )B -1是三个可逆矩阵的乘积, 所以A -1(A +B )B -1可逆, 即A -1+B -1可逆.(A -1+B -1)-1=[A -1(A +B )B -1]-1=B (A +B )-1A . 26. 计算⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121. 解 设⎪⎭⎫ ⎝⎛=10211A , ⎪⎭⎫ ⎝⎛=30122A , ⎪⎭⎫ ⎝⎛-=12131B , ⎪⎭⎫ ⎝⎛--=30322B ,则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫⎝⎛+=222111B A O B B A A , 而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A , 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521,即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521. 27. 取⎪⎭⎫ ⎝⎛==-==1001D C B A , 验证|||||||| D C B A D C B A ≠.解 4100120021100101002000021010010110100101==--=--=D C B A , 而 01111|||||||| ==D C B A ,故 |||||||| D C B A D C B A ≠.28. 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A , 求|A 8|及A 4. 解 令⎪⎭⎫ ⎝⎛-=34431A , ⎪⎭⎫ ⎝⎛=22022A ,则 ⎪⎭⎫⎝⎛=21A O O A A ,故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A , 1682818281810||||||||||===A A A A A .⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A .29. 设n 阶矩阵A 及s 阶矩阵B 都可逆, 求 (1)1-⎪⎭⎫ ⎝⎛O B A O ; 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211C C C C O B A O , 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143. 由此得 ⎪⎩⎪⎨⎧====s n EBC O BC O AC E AC 2143⇒⎪⎩⎪⎨⎧====--121413B C OC OC A C ,所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111. (2)1-⎪⎭⎫ ⎝⎛B C O A . 解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-43211D D D D B C O A , 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321.由此得 ⎪⎩⎪⎨⎧=+=+==s nEBD CD O BD CD OAD E AD 423121⇒⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D ,所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A . 30. 求下列矩阵的逆阵:(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025; 解 设⎪⎭⎫ ⎝⎛=1225A , ⎪⎭⎫ ⎝⎛=2538B , 则 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A , ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=--8532253811B .于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛----850032000052002125003800001200251111B A B A .(2)⎪⎪⎪⎭⎫⎝⎛4121031200210001. 解 设⎪⎭⎫ ⎝⎛=2101A , ⎪⎭⎫ ⎝⎛=4103B , ⎪⎭⎫ ⎝⎛=2112C , 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001.第二章 矩阵及其运算1. 已知线性变换:⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x , 求从变量x 1, x 2, x 3到变量y 1, y 2, y 3的线性变换. 解 由已知:⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x ,故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y ,⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y .2. 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ,⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y , 求从z 1, z 2, z 3到x 1, x 2, x 3的线性变换.解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z ,所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x .3. 设⎪⎪⎭⎫ ⎝⎛--=111111111A , ⎪⎪⎭⎫⎝⎛--=150421321B , 求3AB -2A 及A T B .解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503,⎪⎪⎭⎫⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T .4. 计算下列乘积:(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134;解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫⎝⎛=49635.(2)⎪⎪⎭⎫⎝⎛123)321(;解 ⎪⎪⎭⎫⎝⎛123)321(=(1⨯3+2⨯2+3⨯1)=(10).(3))21(312-⎪⎪⎭⎫⎝⎛;解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫⎝⎛---=632142. (4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412 ; 解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫ ⎝⎛---=6520876.(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x ;解⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x=(a 11x 1+a 12x 2+a 13x 3 a 12x 1+a 22x 2+a 23x 3 a 13x 1+a 23x 2+a 33x 3)⎪⎪⎭⎫⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=.5. 设⎪⎭⎫ ⎝⎛=3121A , ⎪⎭⎫ ⎝⎛=2101B , 问:(1)AB =BA 吗? 解 AB ≠BA .因为⎪⎭⎫ ⎝⎛=6443AB , ⎪⎭⎫ ⎝⎛=8321BA , 所以AB ≠BA .(2)(A +B )2=A 2+2AB +B 2吗? 解 (A +B )2≠A 2+2AB +B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148,但 ⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫ ⎝⎛=27151610,所以(A +B )2≠A 2+2AB +B 2. (3)(A +B )(A -B )=A 2-B 2吗? 解 (A +B )(A -B )≠A 2-B 2.因为⎪⎭⎫ ⎝⎛=+5222B A , ⎪⎭⎫ ⎝⎛=-1020B A ,⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A ,而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A ,故(A +B )(A -B )≠A 2-B 2.6. 举反列说明下列命题是错误的:(1)若A 2=0, 则A =0;解 取⎪⎭⎫ ⎝⎛=0010A , 则A 2=0, 但A ≠0. (2)若A 2=A , 则A =0或A =E ; 解 取⎪⎭⎫ ⎝⎛=0011A , 则A 2=A , 但A ≠0且A ≠E . (3)若AX =AY , 且A ≠0, 则X =Y .解 取 ⎪⎭⎫ ⎝⎛=0001A , ⎪⎭⎫ ⎝⎛-=1111X , ⎪⎭⎫ ⎝⎛=1011Y , 则AX =AY , 且A ≠0, 但X ≠Y .7. 设⎪⎭⎫ ⎝⎛=101λA , 求A 2, A 3, ⋅ ⋅ ⋅, A k . 解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA , ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎪⎭⎫ ⎝⎛=101λk A k . 8. 设⎪⎪⎭⎫ ⎝⎛=λλλ001001A , 求A k . 解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ, ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A , ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A , ⋅ ⋅ ⋅ ⋅ ⋅ ⋅,⎝⎛=k A k k k k k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫ . 用数学归纳法证明:当k =2时, 显然成立.假设k 时成立,则k +1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A ⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ,由数学归纳法原理知:⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(121. 9. 设A , B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵.证明 因为A T =A , 所以(B T AB )T =B T (B T A )T =B T A T B =B T AB ,从而B T AB 是对称矩阵.10. 设A , B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB =BA .证明 充分性: 因为A T =A , B T =B , 且AB =BA , 所以 (AB )T =(BA )T =A T B T =AB ,即AB 是对称矩阵.必要性: 因为A T =A , B T =B , 且(AB )T =AB , 所以AB =(AB )T =B T A T =BA .11. 求下列矩阵的逆矩阵:(1)⎪⎭⎫ ⎝⎛5221; 解 ⎪⎭⎫ ⎝⎛=5221A . |A |=1, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A ,故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225. (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos ; 解 ⎪⎭⎫ ⎝⎛-=θθθθc o s s i n s i n c o s A . |A |=1≠0, 故A -1存在. 因为 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A , 所以 *||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos . (3)⎪⎪⎭⎫ ⎝⎛---145243121; 解 ⎪⎪⎭⎫ ⎝⎛---=145243121A . |A |=2≠0, 故A -1存在. 因为 ⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A , 所以 *||11A A A =-⎪⎪⎪⎭⎫ ⎝⎛-----=1716213213012. (4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2⋅ ⋅ ⋅a n ≠0) .解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021, 由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 . 12. 解下列矩阵方程:(1)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛12643152X ; 解 ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232. (2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311*********X ; 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X ⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫ ⎝⎛---=32538122. (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X ;解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111. (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X . 解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=201431012. 13. 利用逆矩阵解下列线性方程组: (1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x ;解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x ,从而有 ⎪⎩⎪⎨⎧===001321x x x .(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x .解 方程组可表示为⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x , 故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x , 故有 ⎪⎩⎪⎨⎧===305321x x x . 14. 设A k =O (k 为正整数), 证明(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1. 证明 因为A k =O , 所以E -A k =E . 又因为E -A k =(E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1),所以 (E -A )(E +A +A 2+⋅ ⋅ ⋅+A k -1)=E ,由定理2推论知(E -A )可逆, 且(E -A )-1=E +A +A 2+⋅ ⋅ ⋅+A k -1.证明 一方面, 有E =(E -A )-1(E -A ).另一方面, 由A k =O , 有E =(E -A )+(A -A 2)+A 2-⋅ ⋅ ⋅-A k -1+(A k -1-A k )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),故 (E -A )-1(E -A )=(E +A +A 2+⋅ ⋅ ⋅+A k -1)(E -A ),两端同时右乘(E -A )-1, 就有(E -A )-1(E -A )=E +A +A 2+⋅ ⋅ ⋅+A k -1.15. 设方阵A 满足A 2-A -2E =O , 证明A 及A +2E 都可逆, 并求A -1及(A +2E )-1.证明 由A 2-A -2E =O 得A 2-A =2E , 即A (A -E )=2E ,或 E E A A =-⋅)(21, 由定理2推论知A 可逆, 且)(211E A A -=-. 由A 2-A -2E =O 得A 2-A -6E =-4E , 即(A +2E )(A -3E )=-4E ,或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A +2E )可逆, 且)3(41)2(1A E E A -=+-.证明 由A 2-A -2E =O 得A 2-A =2E , 两端同时取行列式得 |A 2-A |=2,即 |A ||A -E |=2,故 |A |≠0,。

线代第七章习题解答

线代第七章习题解答

第七章习 题 一1.解:解方程组10Tx α=,即12340x x x x +++=的一个基础解系2a =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0010'α3=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0100,4a =⎪⎪⎪⎪⎪⎭⎫⎝⎛1000,采用斯密特正交化过程将其正交化为1β =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛1111, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=11312β, ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=12013β, ⎪⎪⎪⎪⎪⎭⎫⎝⎛-=10014β,单位化:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-=121121123121'2β,30'β ⎪ ⎪=,⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=210021'4β 2. 解: 采用斯密特正交化过程将其正交化为:⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=212121211β, ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=0210212β, ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1231211211213β, ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=06162214β 3. 解:将A 分块:),,(321a a a A =则321,,a a a 为标准正交向量组,满足:⎩⎨⎧≠==j i ji a a j i 01),(代入数字求得a=b=- 6,c=-3,d=-6。

4.证明:()22I A +=I , ()I A 2+=()TI A 2+从而()()I I A I A T=++22,于是A+2I 是正交阵。

5.求b a ,,使得⎪⎪⎪⎭⎫⎝⎛b a 2121为正交阵 解:由⎩⎨⎧≠==j i j i a a j i 01),(得21-=a ,21=b 或21=a ,21-=b6. 设⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=10021021b a A 为正交阵,求b a ,。

解:由⎩⎨⎧≠==ji j i a a j i 01),(得21-=a ,21=b 或21=a ,21-=b习题二1 .(1).解:A 的特征多项式为||(1)(3)I A λλλλ-=--,A 的特征值为1230,1,3λλλ===当0=λ代入0)(=-x A I λ .求得 ⎪⎪⎪⎭⎫ ⎝⎛-=1111ξ 单位化:⎪⎪⎪⎭⎫⎝⎛-=111311e当1=λ代入 0)(=-x A I λ.求得 ⎪⎪⎪⎭⎫ ⎝⎛-=0112ξ 单位化:⎪⎪⎪⎭⎫ ⎝⎛-=011212e当3=λ代入0)(=-x A I λ求得⎪⎪⎪⎭⎫ ⎝⎛=2113ξ 单位化:⎪⎪⎪⎭⎫ ⎝⎛=211611e令),,(321e e e P =,P 是正交矩阵, ⎪⎪⎪⎭⎫⎝⎛=300010000AP P T。

线性代数习题参考答案

线性代数习题参考答案

线性代数习题参考答案(总96页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i = ,j = 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3.证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n2n 。

4.若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么 5.n 阶行列式中,若负项的个数为偶数,则n 至少为多少(提示:利用3题的结果) 6.利用对角线法则计算下列三阶行列式(1)21141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解

线性代数课后习题答案全习题详解(总92页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章 行列式1.利用对角线法则计算下列三阶行列式:(1)381141102---; (2)b a c a c b c b a ; (3)222111c b a c b a ; (4)y x y x x y x yyx y x +++. 解 (1)=---381141102811)1()1(03)4(2⨯⨯+-⨯-⨯+⨯-⨯)1()4(18)1(2310-⨯-⨯-⨯-⨯-⨯⨯- =416824-++-=4-(2)=ba c a cb cb a ccc aaa bbb cba bac acb ---++3333c b a abc ---=(3)=222111c b a c b a 222222cb ba ac ab ca bc ---++))()((a c c b b a ---=(4)yx y x x y x y yx y x +++yx y x y x yx y y x x )()()(+++++=333)(x y x y -+-- 33322333)(3x y x x y y x y y x xy ------+= )(233y x +-=2.按自然数从小到大为标准次序,求下列各排列的逆序数: (1)1 2 3 4; (2)4 1 3 2; (3)3 4 2 1; (4)2 4 1 3; (5)1 3 … )12(-n 2 4 … )2(n ;(6)1 3 … )12(-n )2(n )22(-n … 2. 解(1)逆序数为0(2)逆序数为4:4 1,4 3,4 2,3 2(3)逆序数为5:3 2,3 1,4 2,4 1,2 1 (4)逆序数为3:2 1,4 1,4 3(5)逆序数为2)1(-n n :3 2 1个 5 2,54 2个 7 2,7 4,7 6 3个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个 (6)逆序数为)1(-n n3 2 1个 5 2,54 2个 ……………… … )12(-n 2,)12(-n 4,)12(-n 6,…,)12(-n )22(-n )1(-n 个4 2 1个 6 2,6 4 2个 ……………… … )2(n 2,)2(n 4,)2(n 6,…,)2(n )22(-n )1(-n 个3.写出四阶行列式中含有因子2311a a 的项.解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++∴44322311a a a a -和42342311a a a a 为所求.4.计算下列各行列式:(1)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢71100251020214214; (2)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢-265232112131412; (3)⎥⎥⎦⎥⎢⎢⎣⎢---ef cf bf de cd bd ae acab ; (4)⎥⎥⎥⎥⎦⎥⎢⎢⎢⎢⎣⎢---d c b a 100110011001 解(1)7110025*******21434327c c c c --0100142310202110214---=34)1(143102211014+-⨯---=143102211014-- 321132c c c c ++1417172001099-=0(2)265232112131412-24c c -2605032122130412-24r r -0412032122130412- 14r r -0000032122130412-=0(3)ef cf bf de cd bd ae ac ab ---=e c b e c b e c b adf ---=111111111---adfbce =abcdef 4(4)d c b a 100110011001---21ar r +dc b a ab 100110011010---+=12)1)(1(+--dc a ab 10111--+ 23dc c +010111-+-+cd c ada ab =23)1)(1(+--cdadab +-+111=1++++ad cd ab abcd5.证明: (1)1112222b b a a b ab a +=3)(b a -;(2)bz ay by ax bx az by ax bx az bz ay bx az bz ay by ax +++++++++=yx z x z y zy x b a )(33+;(3)0)3()2()1()3()2()1()3()2()1()3()2()1(2222222222222222=++++++++++++d d d d c c c c b b b b a a a a ;(4)444422221111d c b a d c b a d c b a ))()()()((d b c b d a c a b a -----=))((d c b a d c +++-⋅;(5)1221100000100001a x a a a a x x x n n n +-----n n n n a x a x a x ++++=--111 .证明(1)00122222221312a b a b a a b a ab a c c c c ------=左边a b a b a b a ab 22)1(22213-----=+21))((a b a a b a b +--= 右边=-=3)(b a(2)bz ay by ax z by ax bx az y bx az bz ay x a ++++++分开按第一列左边bzay by ax x by ax bx az z bxaz bz ay y b +++++++ ++++++002y by ax z x bx az y z bz ay x a 分别再分bz ay y x by ax x z bx az z y b +++zy x y x z xz y b y x z x z y z y x a 33+分别再分右边=-+=233)1(yx z x z y zy x b y x z x z y z y x a(3) 2222222222222222)3()2()12()3()2()12()3()2()12()3()2()12(++++++++++++++++=d d d d d c c c c c b b b b b a a a a a 左边9644129644129644129644122222141312++++++++++++---d d d d c c c c b b b b a a a a c c c c c c 964496449644964422222++++++++d d d d c c c c b b b b a a a a 分成二项按第二列964419644196441964412222+++++++++d d d c c c b b b a a a 949494949464222224232423d d c c b b a a c c c c c c c c ----第二项第一项06416416416412222=+ddd c c c bb b a a a (4) 444444422222220001ad a c a b a ad a c a b a a d a c a b a ---------=左边=)()()(222222222222222a d d a c c a b b a d a c a b ad a c a b --------- =)()()(111))()((222a d d a c c a b b a d a c ab a d ac a b ++++++--- =⨯---))()((ad a c a b )()()()()(00122222a b b a d d a b b a c c a b b bd b c a b +-++-++--+ =⨯-----))()()()((b d b c a d a c a b )()()()(112222b d a b bd d b c a b bc c ++++++++=))()()()((d b c b d a c a b a -----))((d c b a d c +++-(5) 用数学归纳法证明.,1,2212122命题成立时当a x a x a x a x D n ++=+-==假设对于)1(-n 阶行列式命题成立,即 ,122111-----++++=n n n n n a x a x a x D:1列展开按第则n D1110010001)1(11----+=+-x xa xD D n n n n 右边=+=-n n a xD 1 所以,对于n 阶行列式命题成立.6.设n 阶行列式)det(ij a D =,把D 上下翻转、或逆时针旋转 90、或依副对角线翻转,依次得n nn n a a a a D 11111 =, 11112n nn n a a a a D = ,11113a a a a D n nnn =,证明D D D D D n n =-==-32)1(21,)1(.证明 )det(ij a D =nnnn nn n nn n a a a a a a a a a a D 2211111111111)1(--==∴ =--=--nnn n nnn n a a a a a a a a 331122111121)1()1( nnn n n n a a a a 111121)1()1()1(---=--D D n n n n 2)1()1()2(21)1()1(--+-+++-=-= 同理可证nnn n n n a a a a D 11112)1(2)1(--=D D n n Tn n 2)1(2)1()1()1(---=-= D D D D D n n n n n n n n =-=--=-=----)1(2)1(2)1(22)1(3)1()1()1()1(7.计算下列各行列式(阶行列式为k D k ):(1)aaD n 11 =,其中对角线上元素都是a ,未写出的元素都是0;(2)xaaax aa a x D n=; (3) 1111)()1()()1(1111n a a a n a a a n a a a D n n n nn n n ------=---+; 提示:利用范德蒙德行列式的结果. (4) nnn nn d c d c b a b a D000011112=; (5)j i a a D ij ij n -==其中),det(;(6)nn a a a D +++=11111111121 ,021≠n a a a 其中.解(1) aa a a a D n 010000000000001000=按最后一行展开)1()1(1000000000010000)1(-⨯-+-n n n aa a)1)(1(2)1(--⋅-+n n n a a a (再按第一行展开)n n n nn a a a+-⋅-=--+)2)(2(1)1()1(2--=n n a a )1(22-=-a a n(2)将第一行乘)1(-分别加到其余各行,得ax x a ax x a a x x a aa a x D n ------=0000000 再将各列都加到第一列上,得ax ax a x aaa a n x D n ----+=000000000)1( )(])1([1a x a n x n --+=- (3) 从第1+n 行开始,第1+n 行经过n 次相邻对换,换到第1行,第n 行经)1(-n 次对换换到第2行…,经2)1(1)1(+=++-+n n n n 次行交换,得nn n n n n n n n n a a a n a a a n a a aD )()1()()1(1111)1(1112)1(1-------=---++此行列式为范德蒙德行列式∏≥>≥++++--+--=112)1(1)]1()1[()1(j i n n n n j a i a D∏∏≥>≥+++-++≥>≥++-•-•-=---=111)1(2)1(112)1()][()1()1()]([)1(j i n n n n n j i n n n j i j i∏≥>≥+-=11)(j i n j i(4) n nnnn d c d c b a b a D 011112=nn n n n nd d c d c b a b a a 0000000011111111----展开按第一行0000)1(1111111112c d c d c b a b a b nn n n n nn ----+-+2222 ---n n n n n n D c b D d a 都按最后一行展开由此得递推公式:222)(--=n n n n n n D c b d a D 即 ∏=-=ni i i i i n D c b d a D 222)(而 111111112c b d a d c b a D -==得 ∏=-=ni i i i i n c b d a D 12)((5)j i a ij -=0432********0122210113210)det( --------==n n n n n n n n a D ij n ,3221r r r r --0432111111111111111111111 --------------n n n n,,141312c c c c c c +++152423210222102210002100001---------------n n n n n =212)1()1(----n n n(6)nn a a D a +++=11111111121 ,,433221c c c c c c ---n n n n a a a a a a a a a a +-------10000100010000100010001000011433221展开(由下往上)按最后一列))(1(121-+n n a a a a nn n a a a a a a a a a --------00000000000000000000000000022433221 nn n a a a a a a a a ----+--000000000000000001133221 ++ nn n a a a a a a a a -------000000000000000001143322n n n n n n a a a a a a a a a a a a 322321121))(1(++++=---)11)((121∑=+=ni in a a a a8.用克莱姆法则解下列方程组:⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++;01123,2532,242,5)1(4321432143214321x x x x x x x x x x x x x x x x ⎪⎪⎪⎩⎪⎪⎪⎨⎧=+=++=++=++=+.15,065,065,065,165)2(5454343232121x x x x x x x x x x x x x解 (1)11213513241211111----=D 8120735032101111------=145008130032101111---=1421420005410032101111-=---= 112105132412211151------=D 11210513290501115----=1121023313090509151------=2331309050112109151------=1202300461000112109151-----=14200038100112109151----=142-= 112035122412111512-----=D 811507312032701151-------=3139011230023101151-=2842840001910023101151-=----=426110135232422115113-=----=D ; 14202132132212151114=-----=D1,3,2,144332211-========∴DDx D D x D D x D D x (2) 510006510006510065100065=D 展开按最后一行61000510065100655-'D D D ''-'=65 D D D ''-'''-''=6)65(5D D '''-''=3019D D ''''-'''=1146566551141965=⨯-⨯=(,11的余子式中为行列式a D D ',11的余子式中为a D D ''''类推D D ''''''',) 5100165100065100650000611=D 展开按第一列6510065100650006+'D 46+'=D 460319+''''-'''=D 1507= 51165100065000601000152=D 展开按第二列5100651006500061-6510065000610005-365510651065⨯-=1145108065-=--= 51100650000601000051001653=D 展开按第三列5100650006100051650061000510065+6100510656510650061+= 703114619=⨯+= 51000601000051000651010654=D 展开按第四列61000510065100655000610005100651--51065106565--=395-= 110051000651000651100655=D 展开按最后一列D '+10005100651006512122111=+= 665212;665395;665703;6651145;665150744321=-==-==∴x x x x x . 9.齐次线性方程组取何值时问,,μλ⎪⎩⎪⎨⎧=++=++=++0200321321321x x x x x x x x x μμλ有非零解解 μλμμμλ-==12111113D , 齐次线性方程组有非零解,则03=D即 0=-μλμ 得 10==λμ或不难验证,当,10时或==λμ该齐次线性方程组确有非零解.10.齐次线性方程组取何值时问,λ⎪⎩⎪⎨⎧=-++=+-+=+--0)1(0)3(2042)1(321321321x x x x x x x x x λλλ 有非零解解λλλ----=111132421D λλλλ--+--=101112431)3)(1(2)1(4)3()1(3λλλλλ-------+-=3)1(2)1(23-+-+-=λλλ齐次线性方程组有非零解,则0=D 得 32,0===λλλ或不难验证,当32,0===λλλ或时,该齐次线性方程组确有非零解.第二章 矩阵及其运算1 已知线性变换⎪⎩⎪⎨⎧++=++=++=3213321232113235322y y y x y y y x y y y x求从变量x 1 x 2 x 3到变量y 1 y 2 y 3的线性变换 解 由已知⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛221321323513122y y y x x x故 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-3211221323513122x x x y y y ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛----=321423736947y y y⎪⎩⎪⎨⎧-+=-+=+--=321332123211423736947x x x y x x x y x x x y2 已知两个线性变换⎪⎩⎪⎨⎧++=++-=+=32133212311542322y y y x y y y x y y x ⎪⎩⎪⎨⎧+-=+=+-=323312211323z z y z z y z z y求从z 1 z 2 z 3到x 1 x 2 x 3的线性变换解 由已知⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛221321514232102y y y x x x ⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-=321310102013514232102z z z⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛----=321161109412316z z z所以有⎪⎩⎪⎨⎧+--=+-=++-=3213321232111610941236z z z x z z z x z z z x3 设⎪⎪⎭⎫ ⎝⎛--=111111111A ⎪⎪⎭⎫⎝⎛--=150421321B 求3AB 2A 及A TB解 ⎪⎪⎭⎫⎝⎛---⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=-1111111112150421321111111111323A AB⎪⎪⎭⎫⎝⎛----=⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛-=2294201722213211111111120926508503⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛--=092650850150421321111111111B A T4 计算下列乘积(1)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134解 ⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-127075321134⎪⎪⎭⎫ ⎝⎛⨯+⨯+⨯⨯+⨯-+⨯⨯+⨯+⨯=102775132)2(71112374⎪⎪⎭⎫ ⎝⎛=49635(2)⎪⎪⎭⎫⎝⎛123)321(解 ⎪⎪⎭⎫⎝⎛123)321((132231)(10)(3))21(312-⎪⎪⎭⎫⎝⎛解 )21(312-⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛⨯-⨯⨯-⨯⨯-⨯=23)1(321)1(122)1(2⎪⎪⎭⎫ ⎝⎛---=632142(4)⎪⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412解 ⎪⎪⎪⎭⎫⎝⎛---⎪⎭⎫ ⎝⎛-20413121013143110412⎪⎭⎫⎝⎛---=6520876(5)⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x解⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321332313232212131211321)(x x x a a a a a a a a a x x x(a 11x 1a 12x 2a 13x 3 a 12x 1a 22x 2a 23x 3 a 13x 1a 23x 2a 33x 3)⎪⎪⎭⎫ ⎝⎛321x x x322331132112233322222111222x x a x x a x x a x a x a x a +++++=5 设⎪⎭⎫ ⎝⎛=3121A ⎪⎭⎫⎝⎛=2101B 问(1)AB BA 吗 解 AB BA 因为⎪⎭⎫ ⎝⎛=6443AB ⎪⎭⎫⎝⎛=8321BA 所以AB BA(2)(A B)2A 22AB B 2吗 解 (A B)2A 22AB B 2 因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=+52225222)(2B A ⎪⎭⎫ ⎝⎛=2914148但⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=++43011288611483222B AB A ⎪⎭⎫⎝⎛=27151610所以(A B)2A 22AB B 2 (3)(A B)(A B)A 2B 2吗 解 (A B)(A B)A 2B 2因为⎪⎭⎫ ⎝⎛=+5222B A⎪⎭⎫ ⎝⎛=-1020B A⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=-+906010205222))((B A B A而 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-718243011148322B A故(A B)(A B)A 2B 26 举反列说明下列命题是错误的 (1)若A 20 则A 0 解 取⎪⎭⎫ ⎝⎛=0010A 则A 20 但A 0(2)若A 2A 则A 0或A E 解 取⎪⎭⎫ ⎝⎛=0011A 则A 2A 但A 0且A E(3)若AX AY 且A 0 则X Y 解 取⎪⎭⎫ ⎝⎛=0001A⎪⎭⎫ ⎝⎛-=1111X ⎪⎭⎫ ⎝⎛=1011Y则AX AY 且A 0 但X Y7 设⎪⎭⎫ ⎝⎛=101λA 求A 2A 3Ak解 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=12011011012λλλA⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛==1301101120123λλλA A A⎪⎭⎫ ⎝⎛=101λk A k8设⎪⎪⎭⎫ ⎝⎛=λλλ001001A 求A k解 首先观察⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=λλλλλλ0010010010012A ⎪⎪⎭⎫ ⎝⎛=222002012λλλλλ⎪⎪⎭⎫ ⎝⎛=⋅=3232323003033λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=43423434004064λλλλλλA A A ⎪⎪⎭⎫ ⎝⎛=⋅=545345450050105λλλλλλA A A⎝⎛=kA k k kk k k k k k k λλλλλλ0002)1(121----⎪⎪⎪⎭⎫用数学归纳法证明 当k 2时 显然成立 假设k 时成立,则k 1时,⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎭⎫ ⎝⎛-=⋅=---+λλλλλλλλλ0010010002)1(1211k k k k k k k k k k k k A A A⎪⎪⎪⎪⎭⎫ ⎝⎛+++=+-+--+11111100)1(02)1()1(k k k k k k k k k k λλλλλλ 由数学归纳法原理知⎪⎪⎪⎪⎭⎫ ⎝⎛-=---k k k k k k k k k k k A λλλλλλ0002)1(1219 设A B 为n 阶矩阵,且A 为对称矩阵,证明B T AB 也是对称矩阵证明 因为A T A 所以(B T AB)T B T (B T A)T B T A T B B T AB 从而B T AB 是对称矩阵10 设A B 都是n 阶对称矩阵,证明AB 是对称矩阵的充分必要条件是AB BA 证明 充分性 因为A T A B T B 且AB BA 所以(AB)T (BA)T A T B T AB 即AB 是对称矩阵必要性 因为A T A B T B 且(AB)T AB 所以 AB (AB)T B T A T BA 11 求下列矩阵的逆矩阵 (1)⎪⎭⎫⎝⎛5221解⎪⎭⎫ ⎝⎛=5221A |A|1 故A 1存在 因为 ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛=1225*22122111A A A A A故 *||11A A A =-⎪⎭⎫ ⎝⎛--=1225 (2)⎪⎭⎫ ⎝⎛-θθθθcos sin sin cos 解 ⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos A |A|10 故A 1存在 因为⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=θθθθcos sin sin cos *22122111A A A A A所以*||11A A A =-⎪⎭⎫ ⎝⎛-=θθθθcos sin sin cos(3)⎪⎪⎭⎫⎝⎛---145243121解 ⎪⎪⎭⎫⎝⎛---=145243121A |A|20 故A 1存在因为⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛=214321613024*332313322212312111A A A A A A A A A A所以 *||11A A A =-⎪⎪⎪⎭⎫⎝⎛-----=1716213213012(4)⎪⎪⎪⎭⎫ ⎝⎛n a a a 0021(a 1a 2a n0)解 ⎪⎪⎪⎭⎫ ⎝⎛=n a a a A 0021由对角矩阵的性质知 ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=-n a a a A 10011211 12 解下列矩阵方程 (1)⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛12643152X解⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=-126431521X ⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=12642153⎪⎭⎫ ⎝⎛-=80232(2)⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛--234311111012112X 解 1111012112234311-⎪⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛-=X⎪⎪⎭⎫ ⎝⎛---⎪⎭⎫ ⎝⎛-=03323210123431131 ⎪⎪⎭⎫⎝⎛---=32538122 (3)⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-101311022141X解 11110210132141--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=X ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=210110131142121⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛=21010366121⎪⎪⎭⎫ ⎝⎛=04111 (4)⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛021102341010100001100001010X解 11010100001021102341100001010--⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=X⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---⎪⎪⎭⎫ ⎝⎛=010100001021102341100001010⎪⎪⎭⎫ ⎝⎛---=20143101213 利用逆矩阵解下列线性方程组(1)⎪⎩⎪⎨⎧=++=++=++3532522132321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛321153522321321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-0013211535223211321x x x从而有 ⎪⎩⎪⎨⎧===001321x x x(2)⎪⎩⎪⎨⎧=-+=--=--05231322321321321x x x x x x x x x解 方程组可表示为⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----012523312111321x x x故 ⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛-----=⎪⎪⎭⎫ ⎝⎛-3050125233121111321x x x故有 ⎪⎩⎪⎨⎧===35321x x x14 设A k O (k 为正整数) 证明(E A)1E A A 2 A k1证明 因为A k O 所以E A k E 又因为E A k (E A)(E A A 2A k 1)所以 (E A)(E A A 2 A k 1)E 由定理2推论知(E A)可逆 且(E A)1E A A 2A k1证明 一方面 有E (E A)1(E A) 另一方面 由A k O 有 E (E A)(A A 2)A 2A k1(A k1A k )(E A A 2 A k 1)(E A)故 (E A)1(E A)(E A A 2 A k 1)(E A) 两端同时右乘(E A)1就有(E A)1(E A)E A A 2A k115 设方阵A 满足A 2A 2E O 证明A 及A 2E 都可逆 并求A 1及(A 2E)1证明 由A 2A 2E O 得A 2A 2E 即A(A E)2E 或E E A A =-⋅)(21由定理2推论知A 可逆 且)(211E A A -=-由A 2A 2E O 得 A 2A 6E 4E 即(A 2E)(A 3E)4E或 E A E E A =-⋅+)3(41)2( 由定理2推论知(A 2E)可逆 且)3(41)2(1A E E A -=+-证明 由A 2A 2E O 得A 2A 2E 两端同时取行列式得 |A 2A|2 即 |A||A E|2 故 |A|0所以A 可逆 而A 2E A 2 |A 2E||A 2||A|20 故A 2E 也可逆 由 A 2A 2E O A(A E)2E A 1A(A E)2A 1E)(211E A A -=-又由 A 2A 2E O (A 2E)A 3(A 2E)4E(A 2E)(A 3E)4 E所以 (A 2E)1(A 2E)(A 3E)4(A 2 E)1)3(41)2(1A E E A -=+- 16 设A 为3阶矩阵 21||=A 求|(2A)15A*|解 因为*||11A A A =- 所以 |||521||*5)2(|111----=-A A A A A |2521|11---=A A|2A 1|(2)3|A 1|8|A|1821617 设矩阵A 可逆 证明其伴随阵A*也可逆 且(A*)1(A 1)*证明 由*||11A A A =- 得A*|A|A 1所以当A 可逆时 有|A*||A|n |A 1||A|n 1从而A*也可逆 因为A*|A|A 1所以(A*)1|A|1A又*)(||)*(||1111---==A A A A A 所以(A*)1|A|1A |A|1|A|(A 1)*(A 1)*18 设n 阶矩阵A 的伴随矩阵为A* 证明 (1)若|A|0 则|A*|0 (2)|A*||A|n 1证明(1)用反证法证明 假设|A*|0 则有A*(A*)1E 由此得A A A*(A*)1|A|E(A*)1O所以A*O 这与|A*|0矛盾,故当|A|0时 有|A*|0 (2)由于*||11A A A =- 则AA*|A|E 取行列式得到|A||A*||A|n 若|A|0 则|A*||A|n 1若|A|0 由(1)知|A*|0 此时命题也成立因此|A*||A|n119设⎪⎪⎭⎫ ⎝⎛-=321011330A AB A 2B 求B解 由AB A 2E 可得(A 2E)B A 故⎪⎪⎭⎫ ⎝⎛-⎪⎪⎭⎫ ⎝⎛---=-=--321011330121011332)2(11A E AB ⎪⎪⎭⎫⎝⎛-=01132133020 设⎪⎪⎭⎫⎝⎛=101020101A 且AB E A 2B 求B解 由AB E A 2B 得 (A E)B A 2E 即 (A E)B (A E)(A E)因为01001010100||≠-==-E A 所以(A E)可逆 从而⎪⎪⎭⎫⎝⎛=+=201030102E A B21 设A diag(1 2 1) A*BA 2BA 8E 求B解 由A*BA 2BA 8E 得(A*2E)BA 8EB 8(A*2E)1A 1 8[A(A*2E)]1 8(AA*2A)1 8(|A|E 2A)18(2E 2A)14(E A)14[diag(2 1 2)]1)21 ,1 ,21(diag 4-=2diag(1 2 1)22已知矩阵A 的伴随阵⎪⎪⎪⎭⎫⎝⎛-=8030010100100001*A且ABA 1BA13E 求B 解 由|A*||A|38 得|A|2 由ABA1BA13E 得AB B 3AB 3(A E)1A 3[A(E A 1)]1A11*)2(6*)21(3---=-=A E A E⎪⎪⎪⎭⎫⎝⎛-=⎪⎪⎪⎭⎫⎝⎛--=-103006060060000660300101001000016123 设P 1AP 其中⎪⎭⎫ ⎝⎛--=1141P ⎪⎭⎫⎝⎛-=Λ2001求A 11解 由P 1AP得A P P 1所以A 11 A=P 11P 1.|P|3 ⎪⎭⎫⎝⎛-=1141*P ⎪⎭⎫ ⎝⎛--=-1141311P而 ⎪⎭⎫⎝⎛-=⎪⎭⎫⎝⎛-=Λ11111120 012001故 ⎪⎪⎪⎭⎫⎝⎛--⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛--=31313431200111411111A ⎪⎭⎫ ⎝⎛--=6846832732273124 设AP P 其中⎪⎪⎭⎫⎝⎛--=111201111P ⎪⎪⎭⎫ ⎝⎛-=Λ511 求(A)A 8(5E 6A A 2) 解 ()8(5E 62)diag(1158)[diag(555)diag(6630)diag(1125)]diag(1158)diag(1200)12diag(100) (A)P ()P 1*)(||1P P P Λ=ϕ⎪⎪⎭⎫ ⎝⎛------⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛---=1213032220000000011112011112⎪⎪⎭⎫⎝⎛=111111111425 设矩阵A 、B 及A B 都可逆 证明A 1B 1也可逆 并求其逆阵证明 因为 A 1(A B)B 1B1A1A1B1而A 1(A B)B 1是三个可逆矩阵的乘积 所以A 1(A B)B 1可逆 即A1B 1可逆(A1B 1)1[A 1(A B)B 1]1B(A B)1A26 计算⎪⎪⎪⎭⎫⎝⎛---⎪⎪⎪⎭⎫⎝⎛30003200121013013000120010100121解 设⎪⎭⎫ ⎝⎛=10211A ⎪⎭⎫ ⎝⎛=30122A ⎪⎭⎫ ⎝⎛-=12131B ⎪⎭⎫ ⎝⎛--=30322B则 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A而 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛--+⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛=+4225303212131021211B B A ⎪⎭⎫ ⎝⎛--=⎪⎭⎫ ⎝⎛--⎪⎭⎫ ⎝⎛=90343032301222B A 所以 ⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛2121B O B E A O E A ⎪⎭⎫ ⎝⎛+=222111B A O B B A A ⎪⎪⎪⎭⎫⎝⎛---=9000340042102521 即 ⎪⎪⎪⎭⎫ ⎝⎛---⎪⎪⎪⎭⎫ ⎝⎛30003200121013013000120010100121⎪⎪⎪⎭⎫ ⎝⎛---=9000340042102521 27 取⎪⎭⎫ ⎝⎛==-==1001D C B A 验证|||||||| D C B A D C B A ≠解41001200210100101002000021010010110100101==--=--=D C B A而01111|||||||| ==D C B A故 |||||||| D C B A D C B A ≠28 设⎪⎪⎪⎭⎫ ⎝⎛-=22023443O O A 求|A 8|及A 4解 令⎪⎭⎫ ⎝⎛-=34431A ⎪⎭⎫ ⎝⎛=22022A 则 ⎪⎭⎫ ⎝⎛=21A O O A A故 8218⎪⎭⎫ ⎝⎛=A O O A A ⎪⎭⎫ ⎝⎛=8281A O O A 1682818281810||||||||||===A A A A A⎪⎪⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=464444241422025005O O A O O A A29 设n 阶矩阵A 及s 阶矩阵B 都可逆 求 (1)1-⎪⎭⎫⎝⎛O B A O解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211C C C C O B A O 则 ⎪⎭⎫ ⎝⎛O B A O ⎪⎭⎫ ⎝⎛4321C C C C ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=s n E O O E BC BC AC AC 2143由此得 ⎪⎩⎪⎨⎧====s n E BC O BC O AC E AC 2143⎪⎩⎪⎨⎧====--121413B C O C O C A C所以 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛---O A B O O B A O 111(2)1-⎪⎭⎫ ⎝⎛B C O A解 设⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛-43211D D D D B C O A 则 ⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛++=⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛s n E O O E BD CD BD CD AD AD D D D D B C O A 4231214321由此得 ⎪⎩⎪⎨⎧=+=+==s nE BD CD O BD CD OAD E AD 423121⎪⎩⎪⎨⎧=-===----14113211B D CA B D O D A D所以 ⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-----11111B CA B O A BC O A30 求下列矩阵的逆阵(1)⎪⎪⎪⎭⎫⎝⎛2500380000120025 解 设⎪⎭⎫ ⎝⎛=1225A ⎪⎭⎫ ⎝⎛=2538B 则⎪⎭⎫⎝⎛--=⎪⎭⎫ ⎝⎛=--5221122511A ⎪⎭⎫⎝⎛--=⎪⎭⎫⎝⎛=--8532253811B于是 ⎪⎪⎪⎭⎫ ⎝⎛----=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛----850032000052002125003800001200251111B A B A(2)⎪⎪⎪⎭⎫ ⎝⎛4121031200210001解 设⎪⎭⎫ ⎝⎛=2101A ⎪⎭⎫ ⎝⎛=4103B ⎪⎭⎫ ⎝⎛=2112C 则⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫⎝⎛------1111114121031200210001B CA B O A BC O A⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=411212458103161210021210001第三章 矩阵的初等变换与线性方程组1.把下列矩阵化为行最简形矩阵:(1) ⎪⎪⎪⎭⎫ ⎝⎛--340313021201; (2)⎪⎪⎪⎭⎫⎝⎛----174034301320; (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311; (4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132.解 (1) ⎪⎪⎪⎭⎫ ⎝⎛--340313*********2)3()2(~r r r r -+-+⎪⎪⎪⎭⎫ ⎝⎛---020********* )2()1(32~-÷-÷r r ⎪⎪⎪⎭⎫ ⎝⎛--01003100120123~r r -⎪⎪⎪⎭⎫⎝⎛--300031001201 33~÷r ⎪⎪⎪⎭⎫ ⎝⎛--100031001201323~r r +⎪⎪⎪⎭⎫ ⎝⎛-1000010012013121)2(~r r r r +-+⎪⎪⎪⎭⎫⎝⎛100001000001(2) ⎪⎪⎪⎭⎫ ⎝⎛----1740343013201312)2()3(2~r r r r -+-+⨯⎪⎪⎪⎭⎫ ⎝⎛---31003100132021233~r r r r ++⎪⎪⎪⎭⎫ ⎝⎛000031001002021~÷r ⎪⎪⎪⎭⎫⎝⎛000031005010 (3) ⎪⎪⎪⎪⎭⎫⎝⎛---------12433023221453334311141312323~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛--------1010500663008840034311)5()3()4(432~-÷-÷-÷r r r ⎪⎪⎪⎪⎭⎫⎝⎛-----22100221002210034311 2423213~r r r r r r ---⎪⎪⎪⎪⎭⎫⎝⎛---000000000022********(4) ⎪⎪⎪⎪⎭⎫⎝⎛------34732038234202173132 242321232~rr r r rr ---⎪⎪⎪⎪⎭⎫ ⎝⎛-----1187701298804202111110141312782~rr r r r r --+⎪⎪⎪⎪⎭⎫⎝⎛--410004100020201111134221)1(~r r r r r --⨯↔⎪⎪⎪⎪⎭⎫⎝⎛----0000041000111102020132~rr +⎪⎪⎪⎪⎭⎫⎝⎛--000004100030110202012.设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛987654321100010101100001010A ,求A 。

华理线性代数答案

华理线性代数答案

(2)
⎡ 2 1 ⎤ ⎡ 2 1 ⎤ ⎡ 3 −1⎤ ⎡ 3 −1⎤ A2 − B 2 = ⎢ ⎥⎢ ⎥−⎢ ⎥⎢ ⎥ ⎣ −4 −2 ⎦ ⎣ −4 −2 ⎦ ⎣ −6 2 ⎦ ⎣ −6 2 ⎦ ⎡ 0 0 ⎤ ⎡ 15 −5⎤ ⎡ −15 5 ⎤ =⎢ ⎥. ⎥−⎢ ⎥=⎢ ⎣ 0 0 ⎦ ⎣ −30 10 ⎦ ⎣ 30 −10⎦
⎡ 6 −2 2 ⎤ ⎡ −2 −1 1⎤ ⎡ 4 −3 3⎤ 3X = ⎢ ⎥+⎢ ⎥=⎢ ⎥, ⎣ −4 0 4 ⎦ ⎣ 3 1 1⎦ ⎣ −1 1 5⎦ ⎡ 4 ⎤ ⎢ 3 −1 1 ⎥ 即得 X = ⎢ ⎥. ⎢− 1 1 5 ⎥ ⎢ 3 3 3⎥ ⎣ ⎦ 2. 如果矩阵 Am × n 与 B t × s 满足 AB = BA ,试求 m, n, t , s 之间的关系. 解: m = n = t = s . 3. 填空: ⎡ 4 3 1 ⎤ ⎡7 ⎤ ⎥⎢ ⎥ (1) ⎢ ; ⎢1 −2 3⎥ ⎢ 2 ⎥ = ⎢ ⎣5 7 0⎥ ⎦⎢ ⎣1 ⎥ ⎦ __________
⎡ ⎢ 解:记 A = ⎢ ⎢ ⎢ ⎣
1 2 3 2

⎡ 1 3⎤ ⎢− ⎥ 2 ⎥ ,则 A 2 = ⎢ 2 1 ⎥ ⎢ 3 ⎢ ⎥ 2 ⎦ ⎣ 2

3⎤ ⎥ 2 ⎥, 1 − ⎥ 2 ⎥ ⎦
⎡ −1 0 ⎤ A3 = ⎢ ⎥ = − I ,∵ 2008 = 3 × 669 + 1 ⎣ 0 −1⎦
不脱产职工 6680 人,轮训职工 3320 人.
⎡2 1⎤ ⎡ 3 −1⎤ 8. 设矩阵 A = ⎢ ,B = ⎢ ⎥ ⎥, ⎣ −4 −2 ⎦ ⎣ −6 2 ⎦
求: (1) AT BT − BT AT ;
(2) A2 − B 2 .

华南理工大学《线性代数与概率统计》随堂练习及答案

华南理工大学《线性代数与概率统计》随堂练习及答案

第一章行列式·1.1 行列式概念1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:B第一章行列式·1.2 行列式的性质与计算1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:C4.(单选题)答题: A. B. C. D. (已提交)参考答案:D5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:B7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:B10.(单选题)答题: A. B. C. D. (已提交)参考答案:C第一章行列式·1.3 克拉姆法则1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:C第二章矩阵·2.2 矩阵的基本运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:D第二章矩阵·2.3 逆矩阵1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:D4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:B8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:D10.(单选题)答题: A. B. C. D. (已提交)参考答案:B第二章矩阵·2.4 矩阵的初等变换与矩阵的秩1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:C10.(单选题)答题: A. B. C. D. (已提交)参考答案:D11.(单选题)答题: A. B. C. D. (已提交)参考答案:B12.(单选题)答题: A. B. C. D. (已提交)参考答案:A13.(单选题)答题: A. B. C. D. (已提交)参考答案:B第三章线性方程组·3.1 线性方程组的解1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A第三章线性方程组·3.2 线性方程组解的结构1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:C第四章随机事件及其概率·4.1 随机事件1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B第四章随机事件及其概率·4.2 随机事件的运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为()A.0.8 ;B.0.85;C.0.97;D.0.96.答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.4 条件概率与事件的独立性1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:AA4.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.0.8 ; B.0.72 ; C.0.9 ; D.0.27 .答题: A. B. C. D. (已提交)参考答案:B5.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()A.0.9 ; B.0.72 ; C.0.98 ; D.0.7答题: A. B. C. D. (已提交)参考答案:C6.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.0.1 ; B.0.3 ; C.0.27 ; D.0.26答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.5 全概率公式与贝叶斯公式1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:C1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.2 离散型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率?A 0.1743;B 0.2743;C 0.3743;D 0.4743答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.3 连续型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A第五章随机变量及其分布·5.4 正态分布1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C。

华理高数答案第7章

华理高数答案第7章

第7章 (之1) 第31次作业教学内容: §7.1定积分的微元法 7.2.1平面图形的面积1.选择题:* (1) ⎰=b adx x f s s )(21则表示的面积(如图),和 ( )21122121)()()()(s s D s s C s s B s s A ---+ 答( C )* (2) 面积轴所围成的平面图形的及曲线y b a b y a y x y )0(ln ,ln ,ln <<====A 为 ( )⎰⎰⎰⎰ab ba e ee exbaybaxdx D dx e C dy e B xdx A ln )()()(ln )(ln ln ln ln 答( B )*** (3) 面积轴所围成的平面图形的及过原点的该曲线的切线曲线y e y x,= 为=A ( )⎰⎰⎰⎰----11011)()()ln (ln )()()()ln (ln )(dxex e D dy y y y C dx xe e B dy y y y A xex x e答( D )*** (4) )()0(cos =>=A a a 积所围成的平面图形的面曲线θρ⎰⎰⎰⎰-20222022222022cos 212)(cos 21)(cos 21)(cos 21)(πππππθθθθθθθθd a D d a C d a B d a A 答( D )*2.在下面图中用阴影标出一块与所示定积分之值相等的面积。

⎰--+1122]2[dy y y2x** 3. .4,)(2积所围成的平面图形的面和求曲线方法积分和对对用两种==y x y y x⎰-=202)4(2:dx x s 解=-2413302()x x =-⋅=28138323(). dy y s ⎰=402=433204y =⋅=438323.** 4. 所围及求曲线方法积分和对对用两种31,0,1,)(2====x x y xy y x 成的平面图.形的面积解交点:(,),(,),11319⎰=3121dx x s =-=-=11132313x⎰⋅+-=191912)11(dy ys929132(192)2(191+--=+-=y y =23**** 5. 求极坐标中区域()(){}θρθρθρsin 2,cos 12,≤+≤=D 的面积。

线性代数习题7参考答案

线性代数习题7参考答案

线性代数习题7参考答案1.填空与选择(1) 若A=12421110⎛⎫⎪λ ⎪⎝⎭,为使矩阵A 的秩有最小秩,则λ应为__94_____.(2) ⎪⎪⎪⎭⎫ ⎝⎛=⨯111ααααααnn A ,1)(-=n A R .则α=________11n-____________. (3) 若方阵A 与方阵B 等价,则( a )a. R(A)=R(B)b. A =Bc. -1-1A =Bd.存在可逆矩阵P ,使P -1A=B (4)设A,B 为n 阶矩阵,且R(A)=R(B), 则( d )a. AB=BA;b. 存在可逆矩阵P, 使P -1AP=B;c. 存在可逆矩阵C, 使C T AC=B;d. 存在可逆矩阵P,Q ,使PAQ=B. (5) 一个矩阵在( d )时可能改变它的秩。

a. 作转置b. 作初等变换c. 乘一个可逆方阵d. 乘一个不可逆方阵 (6) 若n 阶矩阵A 的秩为n-3(n 4≥),则A 的伴随矩阵*A 的秩为 b .a. n-2b. 0c. 1d. 不确定(7) 设二阶矩阵,A B 都是非零矩阵,且0AB =,则()R A =_____1________(8)假设43102R(A )=2,B=020-103⨯⎛⎫⎪ ⎪⎝⎭, 求()__2___R AB =.2. 解241241231-3-711314120-2-423546=3-2830357782-374300000~+⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪- ⎪ ⎪⎝⎭⎝⎭↔令原矩阵为A r r r r r r 213123~--r r r r 11314011220224400000⎛⎫ ⎪-- ⎪-- ⎪⎝⎭322~-r r 1131401122000000000⎛⎫⎪-- ⎪ ⎪⎝⎭()2=10∴=≠23,其中一个最高阶非零子式为12R A3. 解:方法一:()()()()()()()()2=211120=321=122=2A a a a a A R A a R A a R A +-∴≠≠-≠==- 当且时,;当时,;当时,;方法二:()()111111011110012r a aA a a a a a a ⎛⎫⎛⎫ ⎪⎪=-- ⎪ ⎪ ⎪ ⎪-+⎝⎭⎝⎭~ ()()()()()()112=321=122=2a a R A a R A a R A ∴≠≠-==-当且时,;当时,;当时,;4.解:方法一:()()1=12R A k =当时,显然(2)()()()3222222=3620222222kkR A k k kk==+-=当时,A6k ∴= 方法二:()()22222202022220022222262220002r kk k k k A k kk k k k ⎛⎫⎛⎫⎪-- ⎪⎪⎪= ⎪-- ⎪ ⎪⎪-+⎪⎝⎭ ⎪⎝⎭~()()()()1=122=36R A k R A k ∴==-当时,显然 当时,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

华东理工大学线性代数 作业簿(第七册)学 院____________专 业____________班 级____________学 号____________姓 名____________任课教师____________5.1 方阵的特征值与特征向量1. 求下列矩阵的特征值与特征向量:(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=201034011A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=122212221A . 解:(1)由 11043012|A I |---=---λλλλ0)1)(2(2=--=λλ,解得A 的特征值为: 2,1321===λλλ,当121==λλ时, 解方程 ()0A I x -=, 由210101420~012101000A I -⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1211p , 故对应121==λλ的全部特征向量为 )0(1≠k kp ;当23=λ时, 解方程 0)2(=-x E A , 由3101002410010100000A I ~-⎡⎤⎡⎤⎢⎥⎢⎥-=-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002p , 故对应23=λ的全部特征向量为 )0(2≠k kp .解: (2) 由122212221|A I |--=--λλλλ0)5()1(2=-+=λλ,解得A 的特征值为: 5,1321=-==λλλ, 当121==λλ时, 解方程 ()0A I x +=, 由222111222~000222000A I ⎡⎤⎡⎤⎢⎥⎢⎥+=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0111p , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1011p ,故对应121-==λλ的全部特征向量为 )0(212211≠+k k p k p k ;当53=λ时, 解方程: (5)0A I x -=, 由4221015242~011224000A I --⎡⎤⎡⎤⎢⎥⎢⎥-=--⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦, 得基础解系为 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1113p , 故对应53=λ的全部特征向量为)0(3≠k kp .2. 已知3阶矩阵A 的特征值为2,1,1-,235A A B -=,求B 的特征值. 解: 容易证明, 当λ是A 的特征值时, 则矩阵A 的多项式)(A f 必有特征值)(λf .设235)(A A A f B -==, 则B 有特征值: 4)1(-=f , 6)1(-=-f , 12)2(-=f .3.设矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=100321z y x A , 且A 的特征值为3,2,1, 求z y x ,,. 解: 0]2))(1)[(1(10321||=----=---=-x y z y x I A λλλλλλλ,因为A 有特征值为3,2,1得: ⎩⎨⎧=----=----0]2)3)(31)[(31(0]2)2)(21)[(21(x y x y ,即⎩⎨⎧=-+=-+03022y x y x , 解得 ⎩⎨⎧=-=41y x , z 无限制, 故 R z y x ∈=-=,1,1.4.设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=53342111a A , 且A 有特征值2,6321===λλλ, 则a =( ).(A)2; (B)2-; (C)4; (D)4-.解: B. 一方面24||321==λλλA ; 又)6(653342111||a a A +=---=, 所以得2-=a .5.设向量T k ]1,,1[=α是矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=211121112A 的逆矩阵1-A 的特征向量, 试求常数k 的值.解:设λαα=-1A , 左乘A 得 αλαA =, 即 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡1121112111211k k λ, 即⎩⎨⎧+=+=)22()3(1k k k λλ, 解得⎩⎨⎧-==2111k λ,⎩⎨⎧==14122k λ, 故有2-=k 或1=k .6. 设21,ξξ分别是矩阵A 属于不同特征值21,λλ的特征向量, 试证: 21ξξ+不可能是A 的特征向量.解: 设21ξξ+是A 的对应于特征值0λ的特征向量, 即有201021021)()(ξλξλξξλξξ+=+=+A , 另一方面, 又有22112121)(ξλξλξξξξ+=+=+A A A ,综合得0)()(220110=-+-ξλλξλλ,再由定理“矩阵对应于不同特征值的特征向量是线性无关的”, 知必有 ,02010=-=-λλλλ 即得 21λλ=, 与已知条件21λλ≠矛盾, 故命题得证.7. 设B A ,为n 阶矩阵, 证明AB 与BA 有相同的特征根. 证明: 只要证明AB 的特征值都是BA 的特征值即可.如果0是AB 的特征值, 则得 0||=AB , 从而0||||||||===AB B A BA , 故0也是BA 的特征值;再设λ是AB 的任意一个非零特征值, 对应的特征向量为x , 即有x x AB λ=)(,两边左乘B 得 Bx x AB B λ=)(, 即)())((Bx Bx BA λ=,显然0≠Bx (否则有0)()(===Bx A x AB x λ, 得到0=λ, 矛盾), 故λ也是BA 的特征值, 对应的特征向量为Bx . 8.设A 为实正交矩阵, 即T A A I =, 证明: A 的特征值的绝对值只能是1或1-.证明: 设λ是A 的特征值, x 是对应λ的特征向量, 即有x Ax λ=,所以有x x x x Ax Ax T T T 2)()(λλλ==,另一方面, 又有()T T T T T Ax Ax x A Ax x Ix x x ===,结合上述两式得12=λ, 即1±=λ.5.2 相似矩阵1.已知A 是n 阶可逆矩阵, 如果A 与矩阵B 相似,则下列四个命题中,(1)AB 与BA 相似, (2)2A 与2B 相似, (3)1-A 与1-B 相似, (4)T A 与T B 相似, 正确的命题共有( ).(A)4; (B)3; (C)2; (D)1.解:A. (2)、(3)、(4)显然;(1)成立是因为1()B BA B AB -=.2. 问下列矩阵能否与对角阵相似?为什么?(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=300320321A ; (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=301121402A ; (3) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=201335212A . 解:(1)显然A 有三个不同的特征值3,2,1, 故A 有三个线性无关的特征向量, 从而A 相似于对角阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=Λ300020001. (2)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-----=-λλλλ301121402I A , 由0)1()2(2=+--=-λλλI A 得A 的特征值.1,2321-===λλλ再由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=-000000101~1011014042I A 知方程组0)2(=-x I A 有两个线性无关的特征向量;而单根13-=λ必有另一特征向量, 故A 有三个线性无关的特征向量,从而三阶矩阵A 能够相似于对角阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-122. (3)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-------=-λλλλ201335212I A , 由0)1(3=+-=-λλI A 得A 的特征值.1321-===λλλ再由⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=+000110101~101325213I A , 知方程组0)(=+x I A 只有一个线性无关的特征向量, 即三阶矩阵A 没有三个线性无关的特征向量, 故A 不能相似于任何对角矩阵. 3. 设矩阵460350361A ⎡⎤⎢⎥=--⎢⎥⎢⎥--⎣⎦. (1)证明A 可对角化; (2)计算n A . 解:(1) 由)2()1(2+--=-λλλI A , 可得矩阵A 的特征值位2,1321-===λλλ.对应特征值121==λλ, 有两个线性无关特征向量⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0121p , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1002p ; 对应特征值23-=λ, 有一个线性无关特征向量 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1113p ; 因为A 有三个线性无关的特征向量, 所以A 可对角化.取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==110101102][321p p p P , 则有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=Λ=-2111AP P ; (2)由(1)知1-Λ=P P A , 而⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=-021*******P , 故11)(--Λ=Λ=P P P P A n n n⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=021121011)2(11110101102n nn⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-+--+--+--+----=1)2(22)2(10)2(21)2(10)2(22)2(2nn n n n n.4.已知矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=x A 10100002与⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=10000002y B 相似, (1)求y x ,;(2)求一个满足B AP P =-1的可逆阵P . 解: (1)由A 相似于B , 得 ||||I B I A λλ-=-, 即λλλλλλ----=---1000002110002y x ,亦即)1)()(2(]1)()[2(+--=---λλλλλλy x ,解之得 1,0==y x ;(2)A 与B 有相同的特征值1,1,2321-===λλλ,解方程组 0)2(=-x I A , 得特征向量 T p ]0,0,1[1=, 解方程组 0)(=-x I A , 得特征向量 T p ]0,1,0[2=, 解方程组 0)(=+x I A , 得特征向量 T p ]1,1,0[3-=,取 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==110110001],,[321p p p P , 则有B AP P =-1.5.3 实对称矩阵1.求正交矩阵Q , 将下列矩阵正交对角化.(1)⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=020212022A ; (2) ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----=542452222A . 解: (1)由λλλλ-------=-20212022||I A )4)(1)(2(--+-=λλλ, 可得特征值为4,1,2321==-=λλλ,当,21-=λ 解方程组0)2(=+x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2211ξ, 单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=221311q ; 当,12=λ 解方程组0)(=-x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2122ξ,单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=212312q ; 当,43=λ 解方程组0)4(=-x A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=1223ξ,单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=122313q ; 取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==12221222131],,[321q q q Q , 则有 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=-4121AQ Q .(2) 由λλλλ-------=-542452222||I A )10()1(2---=λλ, 可得特征值为10,1321===λλλ,当,121==λλ 解方程组0)(=-x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=0121ξ, ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=1022ξ,正交化得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==01211ξβ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=><><-=5425101254102,,1111222ββββξξβ, 再单位化得 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-==01251||111ββq , ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡==542531||222ββq ; 当,103=λ 解方程组0)10(=-x I A , 得基础解系⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=2213ξ,单位化得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=221313q , 取⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡--==3253503253451315252],,[321q q q Q , 则有⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=-10111AQ Q .2. 已知3阶实对称矩阵A 的特征值为6,3,3, 对应于特征值3的特征向量为T ]1,0,1[1-=α, T ]1,2,1[2-=α, 求A 的对应于特征值6的特征向量及矩阵A .解: 实对称矩阵的不同特征值所对应的特征向量是正交的,所以A 的对应特征值6的特征向量为T x x x ],,[3213=α与21,αα都正交,于是得到031=+-x x 和02321=+-x x x ,取一非零解T ]1,1,1[3=α,再取⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--==111120111],,[321αααP , 则有1336P AP -⎛⎫⎪= ⎪ ⎪⎝⎭, 所以1336A P P -⎛⎫⎪= ⎪ ⎪⎝⎭1111120111633111120111-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--= ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=41114111422212130361633*********.。

相关文档
最新文档