随机信号分析答案(赵淑清版)2
随机信号分析课后习题答案
1第一次作业:练习一之1、2、3题1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由1)(=⎰∞∞-dx x f得 2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F2解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
随机信号分析(第3版)习题及答案
1. 2. 3. 4. 5.6.有四批零件,第一批有2000个零件,其中5%是次品。
第二批有500个零件,其中40%是次品。
第三批和第四批各有1000个零件,次品约占10%。
我们随机地选择一个批次,并随机地取出一个零件。
(1) 问所选零件为次品的概率是多少?(2) 发现次品后,它来自第二批的概率是多少?解:(1)用i B 表示第i 批的所有零件组成的事件,用D 表示所有次品零件组成的事件。
()()()()123414P B P B P B P B ====()()()()12341002000.050.420005001001000.10.110001000P D B P D B P D B P D B ========()11110.050.40.10.10.16254444P D =⨯+⨯+⨯+⨯=(2)发现次品后,它来自第二批的概率为,()()()()2220.250.40.6150.1625P B P D B P B D P D ⨯===7. 8.9. 设随机试验X 的分布律为求X 的概率密度和分布函数,并给出图形。
解:()()()()0.210.520.33f x x x xδδδ=-+-+-()()()()0.210.520.33F x u x u x u x =-+-+-10.11. 设随机变量X 的概率密度函数为()xf x ae -=,求:(1)系数a ;(2)其分布函数。
解:(1)由()1f x dx ∞-∞=⎰()()2xxx f x dx ae dx ae dx e dx a ∞∞∞---∞-∞-∞==+=⎰⎰⎰⎰所以12a =(2)()1()2xxtF x f t dt e dt --∞-∞==⎰⎰所以X 的分布函数为()1,0211,02xx e x F x e x -⎧<⎪⎪=⎨⎪-≥⎪⎩12.13.14.X Y求:(1)X 与Y 的联合分布函数与密度函数;(2)X 与Y 的边缘分布律;(3)Z XY =的分布律;(4)X 与Y 的相关系数。
随机信号分析习题答案(部分)
1-9 已知随机变量X 的分布函数为20,0(),011,1X x F x kx x x <⎧⎪=≤≤⎨⎪>⎩求:①系数k ; ②X 落在区间(0.3,0.7)内的概率; ③随机变量X 的概率密度。
解:第①问 利用()X F x 右连续的性质 k =1第②问{}{}{}()()0.30.70.30.70.70.30.7P X P X F P X F =<<=<≤-=-第③问 201()()0X X xx d F x f x elsedx ≤<⎧==⎨⎩1-10已知随机变量X 的概率密度为()()xX f x kex -=-∞<<+∞(拉普拉斯分布),求:①系数k ②X 落在区间(0,1)内的概率 ③随机变量X 的分布函数 解: 第①问 ()112f xd x k ∞-∞==⎰ 第②问{}()()()211221x x P x X x F x F xfx d x<≤=-=⎰ 随机变量X 落在区间12(,]x x 的概率12{}P x X x <≤就是曲线()y f x =下的曲边梯形的面积。
{}{}()()1010101112P X P X f x dxe -<<=<≤==-⎰第③问()102102xx e x f x e x -⎧≤⎪⎪=⎨⎪>⎪⎩()00()110022111010222xx xxx x x x F x f x dxe dx x ex e dx e dxx e x -∞-∞---∞=⎧⎧≤≤⎪⎪⎪⎪==⎨⎨⎪⎪+>->⎪⎪⎩⎩⎰⎰⎰⎰1-11 某繁忙的汽车站,每天有大量的汽车进出。
设每辆汽车在一天内出事故的概率为0.0001,若每天有1000辆汽车进出汽车站,问汽车站出事故的次数不小于2的概率是多少?,(01)p q λ→∞→→∞→−−−−−−−−→−−−−−−−−→−−−−−−−−→n=1n ,p 0,np=n 成立,0不成立-分布二项分布泊松分布高斯分布汽车站出事故的次数不小于2的概率()()P(2)101k P k P k ≥=-=-= 答案0.1P(2)1 1.1k e -≥=-100.1n p ≥≤实际计算中,只需满足,二项分布就趋近于泊松分布()np!k e P X k k λλλ-===1-12 已知随机变量(,)X Y 的概率密度为(34)0,0(,)0x y XY kex y f x y -+⎧>>⎪=⎨⎪⎩,,其它求:①系数k ?②(,)X Y 的分布函数?③{01,02}P X X <≤<≤?第③问 方法一:联合分布函数(,)XY F x y 性质:若任意四个实数1212,,,a a b b ,满足1212,a a b b ≤≤,则121222111221{,}(,)(,)(,)(,)XY XY XY XY P a X a b Y b F a b F a b F a b F a b <≤<≤=+--{01,02}(1,2)(0,0)(1,0)(0,2)XY XY XY XY P X Y F F F F ⇒<≤<≤=+--方法二:利用(){(,)},XY DP x y D f u v dudv∈∈⎰⎰)(210{01,02},XY P X Y f x y dxdy <≤<≤=⎰⎰1-13 已知随机变量(,)X Y 的概率密度为101,(,)0x y xf x y ⎧<<<=⎨⎩,,其它 ①求条件概率密度(|)X f x y 和(|)Y f y x ?②判断X 和Y 是否独立?给出理由。
随机信号分析 第1章概率论
例1.1 若上述情况下X的密度函数是指数的,即
1 y / b 若b 0, 则y 0 则可以直接得出: Y ( y) p e |b| 若b 0, 则y 0
p X ( x) e x ( x 0),
例1.2 设密度函数PX(x)和前例相同,求Y=X+a时Y的密度 函数
几何分布 : 在贝努利试验中, 设 事件 A 发生的概率为 p , 随机
变量 X(A) 是 A 首次发生的试验次数, 则
P( X k ) p(1 p)
k 1
超几何分布 H(n, M, N) : N 件产品中有 M 件是次品 。从 N 件产品中任选 n 件, 则其中有 k 件是次品的概率为
1 k nk P( X k ) n CM CN M CN
N , M , n , k 皆为正整数 。
N≧ M ≧ k ,
N≧n≧k,
k ≧ max [ 0 , n+M-N ]
均匀分布u(a,b) f(x)=1/b-a
1 b-a a
F(x) f(x)
b
x
指 数 分布
1 a
F(x)
f(x)
随机变量的概念 某随机实验可能有许多个结果,我们可以引 入一变量X,它将随机地取某些数值,用这些数 值来表示各个可能的结果,这一变量X就称之为 随机变量。 当随机变量X的取值个数是有限的或可数无 穷个时,则称它为离散随机变量;否则,就称它 为连续随机变量,即可能的取值充满某一有限或 无限区间。 如果一个随机实验需要用多个随机变量 ( X1 ,X2,…,Xn )表示,则多个随机变量 (X1 ,X2,…,Xn)的总体称为n维随机变量
i 1
a
6
P( X a )
随机信号分析答案(赵淑清版)3
第三次作业:练习一之9、10、11题1.9随机变量X 和Y 分别在[0,a ]和[0,2π]上均匀分布,且互相独立。
对于a b <,证明:a bY b x P π2)cos (=<证:rv . X 和Y 分别在[0,a ]和[0,2π]上均匀分布 有⎪⎪⎩⎪⎪⎨⎧≤≤=其它001)(ax a X f 和⎪⎪⎩⎪⎪⎨⎧≤≤=其它0202)(ππy Y f⎪⎩⎪⎨⎧≤≤<≤⇒⎭⎬⎫<≤<20cos 0cos cos πy y b x a b y b Y b x Y b x cos <)20,cos 0()cos (π≤≤<≤=<y y b x p y b x p⎰⎰=2/0cos 0),(πyb dxdy y x f dy⎰⎰=2/0cos 0)()(πyb dxdy y f x f dy 因为rv . X 和Y 相互独立⎰⎰⋅=2/0cos 021ππyb dxdy a dy⎰⋅=2/0cos 2ππydy a bab π2=命题得证1.10 已知二维随机变量(21,X X )的联合概率密度为),(2121x x f X X ,随机变量(21,X X )与随机变量(21,Y Y )的关系由下式唯一确定⎩⎨⎧+=+=2111221111Y d Y c X Y b Y a X ⎩⎨⎧+=+=212211dX cX Y bX aX Y 证明:(21,Y Y )的联合概率密度为),(1),(21112111212121y d y c y b y a f bcad y y f X X Y Y ++-=证:做由),(2121y y f Y Y 到),(2121x x f X X 的二维变换),(2121x x f X X =J ),(2121y y f Y Y ),(2121y y f Y Y =J1),(2121x x f X X bc ad d c b a x y x y x y x y J -==∂∂∂∂∂∂∂∂=22122111 ),(1),(21112111212121y d y c y b y a f bc ad y y f X X Y Y ++-=1.11 随机变量X,Y 的联合概率密度为2,0)sin(),(π≤≤+=y x y x A y x f XY求:(1)系数A ;(2)X,Y 的数学期望;(3)X,Y 的方差;(4)X,Y 的相关矩及相关系数。
(完整word版)随机信号分析习题.(DOC)
随机信号分析习题一1. 设函数⎩⎨⎧≤>-=-0 ,0 ,1)(x x e x F x ,试证明)(x F 是某个随机变量ξ的分布函数.并求下列概率:)1(<ξP ,)21(≤≤ξP 。
2. 设),(Y X 的联合密度函数为(), 0, 0(,)0 , otherx y XY e x y f x y -+⎧≥≥=⎨⎩, 求{}10,10<<<<Y X P 。
3. 设二维随机变量),(Y X 的联合密度函数为⎥⎦⎤⎢⎣⎡++-=)52(21exp 1),(22y xy x y x f XY π 求:(1)边沿密度)(x f X ,)(y f Y(2)条件概率密度|(|)Y X f y x ,|(|)X Y f x y4. 设离散型随机变量X 的可能取值为{}2,1,0,1-,取每个值的概率都为4/1,又设随机变量3()Y g X X X ==-。
(1)求Y 的可能取值 (2)确定Y 的分布. (3)求][Y E 。
5. 设两个离散随机变量X ,Y 的联合概率密度为:)()(31)1()3(31)1()2(31),(A y A x y x y x y x f XY --+--+--=δδδδδδ试求:(1)X 与Y 不相关时的所有A 值。
(2)X 与Y 统计独立时所有A 值。
6. 二维随机变量(X ,Y )满足:ϕϕsin cos ==Y Xϕ为在[0,2π]上均匀分布的随机变量,讨论X ,Y 的独立性与相关性。
7. 已知随机变量X 的概率密度为)(x f ,求2bX Y =的概率密度)(y f .8. 两个随机变量1X ,2X ,已知其联合概率密度为12(,)f x x ,求12X X +的概率密度?9. 设X 是零均值,单位方差的高斯随机变量,()y g x =如图,求()y g x =的概率密度()Y f y\10. 设随机变量W 和Z 是另两个随机变量X 和Y 的函数222W X Y Z X⎧=+⎨=⎩ 设X ,Y 是相互独立的高斯变量。
《随机信号分析》-高新波等-课后答案
C = *第0章1/1;1/ 2;1/ 3;1/4;1/ 5;1/ 6;2 /1;2 / 2;2 / 3;2 /4;2 / 5;2/6;3/l;3/2;3/3;3/4;3/5;3/6;4/l;4/2;4/3;4/4;4/5;4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/64 = {l/l;2/2;3/3;4/4;5/5;6/6}1/5;!/ 6;2 /4;2 / 5;2 / 6;3 / 3;3 / 4;3 / 5;3 / 6;4 / 2;4 / 3;4 / 4;4 / 5;'4/6;5/l;5/2;5/3;5/4;5/5;5/6;6/l;6/2;6/3;6/4;6/5;6/6 /1 /1;1 / 2;1 / 3;1 / 4;1 / 5;1 / 6;2 /1;2 / 2;2 / 3;2 / 4;2 / 5;2 / 6;3 /1;3 / 2;'3/3;3/4;3/5;3/6;4/l;4/2;4/3;5/l;5/2;5/3;6/l;6/2;6/3B =0.2(2)'0用)=x < 00<x<30x 2/12 2x -3-x 2/4,3<x <41 x>4P (l<x<7/2)=f^v +⑴⑶0.3E (X )= L 2<T :t/r = £ ~^y %dy =E (X2)=「Ji 奇dx = 了241a\^e~y 晶尸dy = 2a 2r (2)= 2a 2o(x)=£(/)-(研x))2=2尸_m S=04292S 0.4⑴£(Jf)=(-1)x03+0x0.44-1x03=0£(K)=1x0.4+2x0.2+3x0.4=2(2)由于存在X=0的情况,所以研Z)不存在(3)E(Z)=(-1-1)2x0.2+(-1-2)2xO.l+(O-l)2xO.l+(0-3)2x0.3+(l-l)2xO.1+0-2)2x0.1+(1-3)2x0.1=5 0.5X=ln*,当\dy\=^M=^e(Iny-mf2/”00.6t2+勺血s=£0<x<l,0<.y<2f32\X x~.—+—s as=(363-)7X*i X丁-312=诉号>=2尸号间=fp+导=土名/(x)0.7££be~^x+y^dxdy=[/>(1-e~'\~y dy=/>(1-e-,)= 1,/>=(!—e~x尸/(x)=he~x Ve-y dy=—^e~x fi<x<\f(y)=be~y^e~x dx—e~y,y>00.8(1)x,v不独立⑵F(z)=££~'|(X+yY{x+y}dxdy=£|/『(xe~x +ye~x}ixdy =g按(1一(1+Z一*片5+*(]_e-(z-y)肱,=]_]+z+/2\2f(z)=F'(z)=\+z+—e~:-(1+z)e~z=—e-2,z>0、2)20.9。
随机信号分析与处理答案
随机信号分析与处理答案【篇一:随机信号分析与生活】>指导老师:xxx20 年月日姓名:xxx学号:xxxxxxxx目录交通 ....................................................................................................... .. 21 目的 (2)2 论文的主要内容 (2)3 引言 (3)4 马尔科夫预测法的基本原理 (4)5 交通流数据清洗及去噪 (5)6 交通流预测模型构造 (5)7 总结 (6)气象 ....................................................................................................... .. 61、基于最大事后概率的最大似然估计 (7)2、基于tof的空气场温度可视化实验 (9)2..1 实验系统 (9)2.2 空气场温度设定 ........................................................................92.3 tof 测量 .....................................................................................93、总结 (10)股票 (11)参考文献 (13)随机信号分析与处理时研究随机信号的特点及其处理方法的专业基础课程,时目标检测、估计、滤波等信号处理的理论基础,在通信、雷达、自动控制、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论将广泛和深入。
交通短时交通流预测对城市交通流控制与诱导系统的发展具有着重要的意义,预测结果的好坏将直接影响到城市交通流控制与诱导的效果。
随机信号分析基础(第5章习题讲解)
rect ( ) 2a a2 2 a a 2 2 2 a ( 0 ) a ( 0 )2 sin ( ) 2 ( )2 2
2
( 0 ) ( 0 )
系统所示的传函为:
t 1 RC j RC h(t ) (t ) e , H ( ) RC 1 j RC
5.31 解:由题可知
得到:
e j e j z z 1 cos 2 2
2
GY ( ) GX ( ) H ( )
2
1 H ( ) 1.64 1.6 cos
1 H (Z ) 1.64 0.8Z 0.8 Z 1 1 1 (0.8Z 1) (0.8Z 1 1)
p
k0 ai RY (k i), i 0 RY (k ) p a R (k i ) 2 , k 0 i Y i i 0
p
i 0
2 RY ( p) 1 X RY (0) RY (1) R (1) R (0) R (1) a R ( p 1 ) Y Y Y Y 1 0 RY (1) 0 a RY (1) RY (0) p RY ( p)
5.26 解:由题可知,所求的系统为一白化滤 波器,有:
GY ( ) H ( ) GX ( ) 1
H ( )
2
2
2 8 ( 8 j )( 8 j ) 2 3 ( 3 j )( 3 j )
稳定的最小相位系统的H(s)的极点在左半S平面,而 零点不在右半S平面。
电子科技大学随机信号分析CH2习题及答案
2.1 掷一枚硬币定义一个随机过程:cos ()2t X t tπ⎧=⎨⎩出现正面出现反面 设“出现正面”和“出现反面”的概率相等。
试求:(1)()X t 的一维分布函数(,12)X F x ,(,1)X F x ;(2)()X t 的二维分布函数12(,;12,1)X F x x ;(3)画出上述分布函数的图形。
2.3 解:(1)一维分布为: ()()(;0.5)0.50.51X F x u x u x =+-()()(;1)0.510.52X F x u x u x =++-(2) cos ()2t X t t π⎧=⎨⎩出现正面出现反面{}{}(0.5)0,(1)1,0.5(0.5)1,(1)2,0.5X X X X ==-==依概率发生依概率发生 二维分布函数为()()121212(,;0.5,1)0.5,10.51,2F x x u x x u x x =++--2.2 假定二进制数据序列{B(n), n=1, 2, 3,….}是伯努利随机序列,其每一位数据对应随机变量B(n),并有概率P[B(n)=0]=0.2和 P[B(n)=1]=0.8。
试问,(1)连续4位构成的串为{1011}的概率是多少?(2)连续4位构成的串的平均串是什么?(3)连续4位构成的串中,概率最大的是什么?(4)该序列是可预测的吗?如果见到10111后,下一位可能是什么?2.4解:解:(1){}()()()()101111021310.80.20.80.80.1024P P B n P B n P B n P B n ⎡⎤⎣⎦==⋅+=⋅+=⋅+=⎡⎤⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎣⎦=⨯⨯⨯=(2)设连续4位数据构成的串为B(n),B(n+1),B(n+2),B(n+3),n=1, 2, 3,…. 其中B(n)为离散随机变量,由题意可知,它们是相互独立,而且同分布的。
所以有:串(4bit 数据)为:∑=+=30)(2)(k k k n B n X ,其矩特性为:因为随机变量)(n B 的矩为:均值:8.08.012.00)]([=⨯+⨯=n B E方差:[]()(){}222222()00.210.80.80.80.80.16Var B n B n B n ⎡⎤=E -E ⎡⎤⎣⎦⎣⎦=⨯+⨯-=-=所以随机变量)(n X 的矩为:均值:[]303300[()]2()2()20.812k k k kk k E X n E B n k E B n k ===⎡⎤=+⎢⎥⎣⎦=+=⨯=∑∑∑方差:()[]3033200[()]2()2()40.1613.6k k k k k k D X n D B n k D B n k ===⎡⎤=+⎢⎥⎣⎦=+=⨯=∑∑∑如果将4bit 串看作是一个随机向量,则随机向量的均值和方差为:串平均:()()()(){}{},1,2,30.8,0.8,0.8,0.8B n B n B n B n ⎡⎤E +++=⎣⎦串方差:()()()(){}{},1,2,30.16,0.16,0.16,0.16Var B n B n B n B n ⎡⎤+++⎣⎦= (3)概率达到最大的串为{}1,1,1,1(4)该序列是不可预测的,因为此数据序列各个数据之间相互独立,下一位数据是0或1,与前面的序列没有任何关系。
北邮随机信号分析与处理第2章习题解答_2
不满足严格平稳。
思考:是否满足广义平稳?
3
2.17
随机过程由下述三个样本函数组成,且等概率发生:
X (t, e1 ) 1, X (t, e2 ) sin t, X (t, e3 ) cos t (1)计算均值 mX (t ) 和自相关函数 RX (t1 , t2 );
(2)该过程是否为平稳随机过程? 解: 1 1 1
ftp服务器地址
ftp://10.108.142.57
用户名和密码均为:sjxhfx
包括每次课的课件和部分习题解答
1
2.14
广义平稳随机过程 Y (t ) 的自相关矩阵如下,试确定矩阵中用 表示的元素。 2 1.3 0.4 2 1.2 0.8 RY 0.4 1.2 1.1 0.9 2 解:由自相关函数的性质
2
2.15
根据掷骰子试验,定义随机过程为
K X (t ) cos t ( K 1, 2,3, 4,5,6) 3 (1)求 X (1) 、X (2) 的概率密度; (2) X (t ) 是否为平稳随机过程?
解:
1/ 2, K 1,5 1/ 2, K 2, 4 K X (1) cos 1, K 3 3 1, K 6
E[ A(t1 ) A(t2 )cos t1 cos t2 ] E[ A(t1 ) B(t2 )cos t1 sin t2 ] E[ B(t1 ) A(t2 )sin t1 cos t2 ] E[ B(t1 ) B(t2 )sin t1 sin t2 ] RA (t1, t2 )cos t1 cos t2 RB (t1, t2 )sin t1 sin t2 R( )cos t1 cos t2 R( )sin t1 sin t2 R( )cos(t1 t2 ) R( )cos( )
随机信号分析中文版答案
1≤ y ≤ 6
1 b−a
+∞ −∞
X 1 ⋅⋅⋅ X n 相互独立
φ X (ω ) = ∫
i
f X ( xi )e jω xi dxi
=∫
b
a
1 jω xi 1 1 jωb e dxi = (e − e jω a ) b−a b − a jω
(b+ a ) ⎛ (b − a )ω ⎞ jω 2 = Sa ⎜ ⎟e 2 ⎝ ⎠
π
2
−2+
π2
8
2 2 2 ∴ D [ x] = σ X =E⎡ ⎣x ⎤ ⎦ − E [ x] 2 =σy =
π
2
−2+
π2
8
−
π2
16
=
π2
16
+
π
2
−2
(4)
Rxy = E [ xy ]
π 1 π 2 2 xy sin ( x + y ) dxdy 2 ∫0 ∫0 π π ⎤ 1 π ⎡ = ∫ 2 x ⎢ − y cos ( x + y ) 02 + sin ( x + y ) 02 ⎥ dx 2 0 ⎣ ⎦
5
《随机信号分析》 课后习题答案
武汉理工大学信息工程学院
cx1x 2 = rx1x 2 − mx1mx 2 cx1x 2 ⎞ ⎛10 2 ⎞ ⎛c cx ( x1, x 2) = ⎜ x1x1 ⎟=⎜ ⎟ ⎝ cx 2 x1 cx 2 x 2 ⎠ ⎝ 2 10 ⎠
1 − f x ( x1 , x2 ) = e 192π
1.8 解: C XY = E[( x − mx )( y − m y )] = E[ XY ] − mx m y = m11 − mx m y
随机信号分析1-3部分答案
1.1 离散随机变量X 由0,1,2,3四个样本组成,相当于四元通信中的四个电平,四个样本的取值概率顺序为1/2,1/4,1/8,和1/8。
求随机变量的数学期望和方差。
解:875.087813812411210)(][41==⨯+⨯+⨯+⨯===∑=i i i x X P x X E81)873(81)872(41)871(21)870(])[(][2224122⨯-+⨯-+⨯-+⨯-=-=∑=i i i P X E x X D109.16471==1.2 设连续随机变量X 的概率分布函数为⎪⎩⎪⎨⎧≥<≤-+<=21201)](2πΑsin[0.500)(x x x x x F求(1)系数A ;(2)X 取值在(0.5,1)内的概率)15.0(<<x P 。
解:⎪⎩⎪⎨⎧<≤-π==其他0201)](2π[cos 2)()(x x A dx x dF x f 由 1)(=⎰∞∞-dx x f得2A 021)](2πAsin[1)]d (2π[cos 2=-=-π⎰∞∞-x x x A 21A =35.042)]15.0(2[sin 21)]11(2[sin 21)5.0(F )1(F )15.0(==-π--π=-=<<x P1.3 试确定下列各式是否为连续随机变量的概率分布函数,如果是概率分布函数,求其概率密度。
(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x (2)⎪⎩⎪⎨⎧≥<≤<=1110Α00)(2x x x x x F (3)0)]()([)(>--=a a x u x u a xx F (4)0)()()(>---=a a x u axa x u a x x F解:(1)⎪⎩⎪⎨⎧<≥-=-000e 1)(2x x x F x 当0≥x 时,对于12x x ≥,有)()(12x F x F ≥,)(x F 是单调非减函数; 1)(0≤≤x F 成立;)()(x F x F =+也成立。
(仅供参考)随机信号分析与处理简明教程--第二章习题答案
证明:设τ = t2 − t1
Rz
(τ
)
=
E[z( t1 )z( t 2
)]
≤
E[
z2
(t1)
+ 2
z2
(t2
)]
=
1 2
E[z2
(t1 )
+
z2
(t2
)]
=
1 2
E[z
2
(t1
)]+
1 2
E[z2(t2 Nhomakorabea)]=
1 2
(R
z
(0)
+
R
z
(0))
=
R
z
(0)
(平稳过程)
所以, R z (0)
= σz2
+
可看作一个随机过程 X (t) = Acos(Ωt + Θ) ,其中 A, Ω, Θ 是相互独立的随机变量,且已知
f
A
(a)
=
⎧ ⎪ ⎨
2a A02
,
a ∈ (0, A0 ) ,
fΩ (ω) = ⎪⎨⎧1010 ,
ω
∈ (250,350) ,
fΘ (θ
)
=
⎪⎧ ⎨
1 2π
,
θ ∈ (0, 2π )
⎪⎩0, 其他
第 2 章习题解答
2.1 设有正弦波随机过程 X (t) = V cosωt ,其中 0 ≤ t < ∞ , ω 为常数,V 是均匀分布于 [0,1] 区间的随机变量。
(1)画出该过程两条样本函数;
(2)确定随机变量
X (ti ) 的概率密度,画出 ti
=
0,
π 4ω
随机信号分析 课后答案(赵淑清 郑薇 著) 哈尔滨工业大学出版社
⎧ X 1 = a1Y1 + b1Y2 ⎨ ⎩ X 2 = c1Y1 + d1Y2
证明: ( Y1 , Y2 )的联合概率密度为
⎧Y1 = aX 1 + bX 2 ⎨ ⎩Y2 = cX 1 + dX 2
f Y1Y2 ( y1 , y 2 ) =
1 f X X (a1 y1 + b1 y 2 , c1 y1 + d1 y 2 ) ad − bc 1 2
∂y1 a b ∂x 2 = = ad − bc ∂y 2 c d ∂x 2
f Y1Y2 ( y1 , y 2 ) =
1 f X X (a1 y1 + b1 y 2 , c1 y1 + d1 y 2 ) ad − bc 1 2
2 求: (1)系数 A; (2)X,Y 的数学期望; (3)X,Y 的方差; (4)X,Y 的相关矩及相关 系数。
∞
欲满足
−∞
∫ f ( x)dx = 1 ,也必须使 A=1。
1> x ≥ 0 x<0
⎧2 x 所以, f ( x) == ⎨ ⎩0
(3) F ( x) =
x [u ( x ) − u ( x − a )] a > 0 a ⎧x ⎪ [u ( x) − u ( x − a)] 0 ≤ x < a 上式可改写为 F ( x) = ⎨ a ⎪ 其他 ⎩0 对于 x 2 > a > x1 , F ( x2 ) ≥ F ( x1 ) 不成立。 所以, F ( x ) 不是连续随机变量的概率分布函数。
⎧ −x dF ( x) ⎪ 1 e 2 = ⎨2 求得, f ( x) = dx ⎪ ⎩0
⎧0 ⎪ (2) F ( x) = ⎨Αx 2 ⎪1 ⎩ x<0 0 ≤ x <1 x ≥1
随机信号习题及答案
Y (t ) ___
_
___。
5. 已知平稳过程 X (t ) 的自相关函数为 R X (τ ) = 16 +
1 1+ 5
τ
,则其均值为
,方差
为 。 6. 若一高斯过程是宽平稳的,则必定是 ;若一个高斯过程不同时刻状态间是互不相关 的,则必定是 的(独立、不独立、不一定) 。 7. 若线性系统输入为高斯过程,则该系统输出仍为 。 二、简答题 1. 请给出随机过程为宽平稳随机过程满足的条件。 2. 若平稳随机过程是信号电压,试说明其数字期望、均方值、方差的物理意义。 3. 给出平稳过程的自相关函数的性质。 4. 写出随机过程的两个定义。 5. 随机过程有那两个变化特性,如何理解其随机性? 6. 叙述“狭义平稳”的定义;如何理解这个定义在实际应用中的困难? 7. (a)随机过程的遍历性与平稳性的关系是什么?(b) 简述“狭义遍历”与“宽遍历”的关系。 三、计算题 1 设随机振幅信号为
−10 t
10 , 4 + j 5ω
U (t ) 的系统的输入端,求系统输出随机信号的表达式。 −3t 4-2 已知系统的单位冲激响应 h(t ) = 5e U (t ) ,设其输入随机信号为 X (t ) = M + 4 cos(2t + Θ), (− ∞ < t < ∞ ) ,其中 M 是随机变量, Θ 是 (0,2π ) 上均匀分布的随机变量, 且 M 和 Θ 相互独立,求输出信号的表达式。
1.
第一章 二进制无记忆不对称信道,如图所示,传输 0,1,分别以 A0 和 A1 代表发送 0 和 1,以 3 5 B0 和 B1 代表接收 0 和 1 码,两个正确的转移概率分别为 P ( B0 / A0 ) = , P( B1 / A1 ) = , 6 4 1 1 两个错误的转移概率分别为 P ( B1 / A0 ) = , P( B0 / A1 ) = ,且先验概率相等,即: 6 4 1 P ( A0 ) = P( A1 ) = ,求:①B 端接收到 0 码及 1 码的概率 P ( B0 ) 及 P( B1 ) ;②当分别收到 2
(完整版)随机信号处理考题答案
(完整版)随机信号处理考题答案填空:1.假设连续随机变量的概率分布函数为F(x)则F(-∞)=0, F (+∞)=12.随机过程可以看成是样本函数的集合,也可以看成是随机变量的集合3.如果随机过程X(t)满足任意维概率密度不随时间起点的变化而变化,则称X(t)为严平稳随机过程,如果随机过程X(t)满足均值为常数,自相关函数只与时间差相关则称X(t)为广义平稳随机过程4.如果一零均值随机过程的功率谱,在整个频率轴上为一常数,则称该随机过程为白噪声,该过程的任意两个不同时刻的状态是不相关5. 宽带随机过程通过窄带线性系统,其输出近似服从正态分布,窄带正态噪声的包络服从瑞利分布,而相位服从均匀分布6.分析平稳随机信号通过线性系统的两种常用的方法是冲激响应法,频谱法7.若实平稳随机过程相关函数为Rx(τ)=25+4/(1+6τ),则其均值为5或-5,方差为4 7.匹配滤波器是输出信噪比最大作为准则的最佳线性滤波器。
1.广义各态历经过称的信号一定是广义平稳随机信号,反之,广义平稳的随机信号不一定是广义各态历经的随机信号2.具有高斯分布的噪声称为高斯噪声,具有均匀分布的噪声叫均匀噪声,而如果一个随机过程的概率谱密度是常数,则称它为白噪声3.白噪声通过都是带宽的线性系统,输出过程为高斯过程4.平稳高斯过程与确定的信号之和是高斯过程,确定的信号可以认为是该过程的数学期望5.平稳正态随机过程的任意概率密度只由均值和协方差阵确定1.白噪声是指功率谱密度在整个频域内均匀分布的噪声。
3.对于严格平稳的随机过程,它的均值与方差是与时间无关的函数,即自相关函数与时间间隔有关,与时间起点无关。
4.冲激响应满足分析线性输出,其均值为_____________________。
5.偶函数的希尔伯特变换是奇函数。
6.窄带随机过程的互相关函数公式为P138。
1.按照时间和状态是连续还是离散的,随机过程可分为四类,这四类是连续时间随机过程,离散型随机过程、随机序列、离散随机序列。
随机信号的相关函数
随机信号的自相关函数(一)实例分析:现代通信中,跳频扩谱通信或是ASK 调制中,想传递的信息都是用若干频率的正弦波的有无来代表,发送的序列属于随机序列。
在传输的过程中由于受到强烈的加性白噪声干扰使原信号被噪声淹没,日常生活中,人们密切相关的手机通讯就是这样一个容易受到环境天气等影响,信道同样也存在这样一些噪声干扰。
我们从时域波形已经完全不能区分哪些是信号哪些是噪声了。
这个时候一般的幅度检测已经失效了。
试想我们是否可以利用相关函数从噪声中提取有用信号呢?针对这样的疑问我们做一个简单的分析。
发送序列()X n ,噪声序列为Ns()n ,实际接收到的解调后的序列是()Y n 。
三者之间的关系是:()()Ns()Y n X n n =+接收端的信号()Y n 的自相关函数:()[()()]y R m E Y n Y n m =+{[()()][()()]}E X n Ns n X n m Ns n m =++++()()()()X XNs NsX Ns R m R m R m R m =+++信号和白噪声不相关,即()()0XNs NsX R m R m ==。
而白噪声的自相关函数是一个脉冲:2()()Ns Ns R m m σδ=。
对于()X R m ,当发送某个频率的正弦波时它也是同频率的正弦波,如果发送零即无信号时它也是零。
计算出接收到信号的自相关函数()Y R m ,去除白噪声的冲激项就可以判断出信号的有无以及正弦波频率的大小。
(二)MATLAB仿真clear;n=[1:30]; % 序列长度x=10*sin(2*pi*0.1*n); % 正弦信号x,频率 f=0.1,周期T=10 noise=20*randn(1,30); % 噪声信号Rns=xcorr(noise,'unbiased')y=x+noise; %接受信号Ry=xcorr(y,'unbiased');subplot(411);plot(x,'*');xlabel('n');ylabel('A');title('(a) 发送的正弦波序列')subplot(412);plot(noise,'^')xlabel('n');ylabel('A');title('(b) 白噪声干扰信号')subplot(413);plot(Rns,'p')xlabel('m');ylabel('Rns');title('(c) 噪声的自相关函数')subplot(414);plot(Ry-Rns,'x')xlabel('m');ylabel('Rout');title('(d) 输出的自相关')(三)仿真结果051015202530-1010nA(a) 发送的正弦波序列051015202530-5050nA(b) 白噪声干扰信号0102030405060-5000500m R n s(c) 噪声的自相关函数0102030405060-2000200mR o u t(d) 输出的自相关(四)小结本案例中以一个正弦信号为输入信号,从仿真程序中可以很明显的看出输出自相关函数的周期和原正弦信号保持相同都是T=10,所以我们可以用以判断正弦信号的有无及大小。