磁共振成像(MRI)基本知识及临床应用

合集下载

磁共振临床应用培训

磁共振临床应用培训

磁共振临床应用培训
磁共振成像(MRI)是一种重要的医学成像技术,广泛应用于辅助医生诊断和治疗疾病。

以下是磁共振临床应用培训的一些基本知识点:
1. MRI的原理:MRI利用强磁场和变幅和变频的电磁场,将
人体内的原子核排列重新定向,然后通过检测这些原子核发出的信号,生成图像。

2. MRI的影像质量:MRI图像的清晰度和细节呈正比例关系,一些影像质量因素如噪声、伪影、畸变等都会影响图像的清晰度。

3. MRI的临床应用:MRI可以用于肿瘤筛查、脑损伤检测、
心血管疾病诊断、骨骼及关节疾病诊断等领域。

4. MRI的预备工作:在进行MRI检查前需要排除身体内的金
属/铁制品,如心脏起搏器、人工心脏瓣膜、人工器官、铁片等。

如果检查部位需要进食磁性药片,则需要在进食前几小时内禁食。

5. MRI的注意事项:磁共振检查过程中需要患者保持完全静止,呼吸深而缓慢,避免消耗过多氧气。

以上是磁共振临床应用培训的一些基本知识点,需要进一步的学习和实践。

磁共振常用技术及临床应用

磁共振常用技术及临床应用

磁共振常用技术及临床应用
磁共振成像(Magnetic Resonance Imaging, MRI)是一种常用的医学影
像学技术,通过利用人体组织对磁场和射频脉冲的不同响应来获得高
分辨率的图像,被广泛用于医学诊断和研究领域。

下面将介绍磁共振
常用技术及其在临床应用中的重要性。

一、磁共振技术分类
1. 结构成像技术:包括T1加权成像、T2加权成像、FLAIR成像等,用于显示人体不同组织的结构和形态。

2. 功能成像技术:包括脑功能磁共振成像(fMRI)、扩散张量成像(DTI)等,用于评估人体器官的功能状态和活动。

3. 成像后处理技术:包括磁共振波谱成像、磁共振弹性成像等,用
于进一步分析和诊断疾病。

二、磁共振在临床应用中的重要性
1. 提高诊断准确性:磁共振成像具有较高的分辨率和对比度,能够
清晰显示人体组织结构和病变情况,有助于医生准确诊断疾病。

2. 无创伤性:相比X射线和CT等影像学检查,磁共振成像不使用
放射线,对患者无损伤,适合长期监测和儿童、孕妇等特殊人群。

3. 多种功能检查:磁共振技术可以提供多种不同的成像方式,如
T1、T2、DWI等,可以全方位检查人体器官的结构和功能。

4. 临床研究应用广泛:磁共振技术不仅用于疾病的诊断,还广泛用于临床研究,如神经科学、肿瘤学等方面。

总之,磁共振成像技术在临床医学中具有重要的地位和作用,不断推动医疗影像学的发展和进步。

希望随着科技的不断发展,磁共振技术能够更加完善和普及,造福更多的患者。

MRI成像的原理及临床应用

MRI成像的原理及临床应用

MRI成像的原理及临床应用MRI(磁共振成像)是一种先进的医学影像检查技术,通过利用人体组织中的氢原子在强磁场和无线电波作用下产生的信号来生成高分辨率的图像。

MRI成像原理非常复杂,但简单来说,它利用水分子中的氢原子核(质子)在强磁场中的旋转和无线电波的激发来生成影像。

在医学上,MRI技术已经成为非常重要的诊断工具,广泛应用于各种疾病的检查和诊断。

2.无线电波激发:MRI设备通过发射高频无线电波信号来激发人体组织中的氢原子核。

3.信号接收:激发的质子核在放松过程中会释放出无线电信号,并被接收线圈捕获。

这些信号被电脑转换成图像。

4.信号处理:电脑利用接收到的信号对其进行处理,生成高分辨率的影像,显示人体组织的结构和病变情况。

MRI临床应用:1.诊断脑部疾病:MRI成像在脑部疾病的诊断中具有很高的准确性,可以检测脑卒中、脑肿瘤、脑出血等疾病,并为医生提供详细的解剖结构信息。

2.骨骼和关节疾病:MRI成像可以非常清晰地显示骨骼和关节组织的结构,对骨折、软骨损伤、关节疾病等疾病的诊断和治疗具有重要意义。

3.腹部疾病:MRI成像可以检测腹部内脏器官的异常,如肝脏、胰腺、肾脏、胃肠道等器官的疾病,提供准确的诊断信息。

4.心血管疾病:MRI成像对心脏和血管的结构和功能有很高的分辨率,可以检测心肌梗塞、心肌病变、心腔扩张等心血管疾病。

5.乳腺肿瘤诊断:MRI成像对乳腺肿瘤的早期诊断和定位具有重要意义,可以帮助医生提前发现和治疗乳腺癌等疾病。

6.妇科疾病:MRI成像可以检测子宫、卵巢、输卵管等女性生殖器官的异常改变,用于诊断子宫肌瘤、卵巢囊肿、子宫内膜异位等妇科疾病。

总的来说,MRI成像技术在医学影像学中起着至关重要的作用,为医生提供了高分辨率、非侵入性的影像信息,有助于帮助医生准确诊断疾病、制定有效的治疗方案。

随着技术的不断发展和改进,MRI成像在临床应用中的前景将更加广阔。

磁共振成像技术的原理和医学应用

磁共振成像技术的原理和医学应用

磁共振成像技术的原理和医学应用磁共振成像技术(Magnetic Resonance Imaging, MRI)是一种基于原子核磁共振现象的成像技术,已经成为现代医学检查的重要手段之一。

MRI以其非侵入性、高分辨率、多参数成像等特点,在身体不同部位疾病的早期诊断、治疗、研究及评估方面受到广泛关注。

本文将从MRI的原理、分类和医学应用三个方面进行阐述。

一、MRI的原理MRI是一种基于核磁共振现象的成像技术。

在磁场中,原子核因为量子力学效应的作用,会产生自旋,这个自旋具有磁性。

若对物质进行放射激发,则原子核将吸收能量并进入激发状态,待刺激结束后,会产生相移,但方向大小不会改变。

在加磁场的作用下,不同位置的原子核产生不同的共振信号,通过测量这些共振信号,可以得出物质内部的信号强度和空间位置信息。

MRI的成像需要一个高强度静态磁场(通常是1.5T或3.0T)和弱变化的高频交变电场(通常是射频脉冲)。

磁共振信号是由梯度磁场作用下,被激发的原子核沿着空间坐标方向释放的。

梯度磁场的作用是制造空间上的微弱变化,使成像对象内部的原子核可以感受到梯度磁场的方向和大小,从而产生不同位置、不同方向的MRI信号。

二、MRI的分类MRI按成像所需的时间长度可分为快速成像和慢速成像两类。

常用的快速成像技术有短时重复时间(Short Time Repetition,STIR)、体液抑制成像(Fluid Attenuation Inversion Recovery,FLAIR)和弥散加权成像(Diffusion Weighted Imaging,DWI)等。

慢速成像技术有T1加权成像(T1 Weighted Imaging,T1WI)、T2加权成像(T2 Weighted Imaging,T2WI)和常规序列成像等。

MRI按成像方式可分为断层成像和三维成像两类。

断层成像(Slice Imaging)是在一个平面内取得的图像,主要用于观察人体各组织在某个切片上的分布及形态特征。

mri的原理及临床应用

mri的原理及临床应用

MRI的原理及临床应用1. MRI的基本原理MRI(Magnetic Resonance Imaging)磁共振成像是一种使用强磁场和无线电波来生成人体内部图像的成像技术。

MRI利用原子核的自旋来获得图像,主要通过以下几个步骤实现:•静态磁场:在MRI过程中,患者被置于一个强磁场中,通常为1.5或3.0特斯拉的磁场。

这个静态磁场会影响人体内原子核的自旋定向。

•射频脉冲:为了生成图像,MRI系统会向患者体内的组织发出一系列特定频率的无线电波脉冲。

这些射频脉冲会使原子核的自旋发生共振。

•回波信号:当射频脉冲结束后,组织内原子核的自旋会重新恢复到静态磁场的定向。

在这个过程中,原子核会发出回波信号,称为MR信号。

•信号接收和处理:MRI系统会接收并处理这些MR信号,通过对信号的测量和处理,生成图像。

2. MRI的临床应用MRI作为一种非侵入性无辐射的成像技术,在临床医学中有广泛的应用。

以下列举了MRI在不同领域的临床应用:2.1 脑部成像•成像脑部结构:MRI可以产生高分辨率的脑部图像,用于检测中风、肿瘤、多发性硬化症等颅内疾病。

•功能性MRI:通过测量脑血流和氧合水平,可以研究大脑功能活动的变化,如在任务执行期间脑部的活动情况。

•毛细血管成像:MRI可以显示毛细血管供血和血液供应异常,如动脉瘤和脑血管开放性病变。

2.2 心脏成像•心脏解剖学:MRI可以提供详细的心脏解剖结构图像,用于检测心脏瓣膜病变、冠状动脉狭窄和心脏肿瘤等。

•心脏功能评估:通过MRI可以测量心脏的体积、收缩功能和血流动力学参数,用于评估心脏功能和病变。

•纤维束成像:MRI可以显示心肌纤维束的分布和方向,对评估心脏组织结构和纤维束连通性有重要意义。

2.3 肌肉骨骼成像•关节疾病检测:MRI可以显示关节软骨、韧带和肌腱的损伤和病变,对于关节炎、关节滑囊炎等疾病的诊断和治疗具有重要意义。

•脊柱成像:MRI对于评估脊柱和椎间盘的退行性变、椎体骨折和脊椎肿瘤等病变具有高分辨率的成像效果。

磁共振成像的原理和临床应用

磁共振成像的原理和临床应用

磁共振成像的原理和临床应用磁共振成像(Magnetic resonance imaging,MRI)是一种高级的医学影像学技术,具有无辐射、高分辨率、多平面重建、互补和定量分析等优势。

本文将探讨MRI的原理和其在临床中的应用。

一、MRI的原理MRI通过将组织暴露于极强的磁场中,然后用无线电波和梯度线圈来产生信号,进而使用计算机将这些信号转化为图像。

这个过程涉及到一系列的过渡态,从基于水分子的信号生成到结构特异性的图像形成。

MRI的原理是基于核磁共振(Nuclear magnetic resonance,NMR)技术的,该技术最早用于化学物质的分析。

原子核不停地旋转,当一个人将其置于磁场中,原子核便会根据自己的自旋状况对骨架产生不同的反应。

这些反应由计算机捕捉并编码成影像,就像一副影像反映了头骨里口袋里的电位一样。

二、MRI的临床应用1.诊断肿瘤MRI在诊断肿瘤方面有很大的作用。

相对于其他影像技术,MRI可以更清晰地显示肿瘤的形状、大小和位置。

通过MRI扫描,医生可以观察肿瘤是否蔓延到周围血管和组织,为治疗提供重要依据。

2.观察神经系统MRI对于研究神经系统非常有用。

医生可以观察脑、脊柱和神经根的结构和功能。

例如,在诊断下肢麻木的患者时,医生可以使用MRI来查看患者是否存在间盘突出、脊柱压缩或椎间盘疾病。

3.评估心脏健康MRI可以评估心脏的结构和功能。

它可以测量心脏室壁的厚度、心脏大小和氧化细胞的分布。

这些信息有助于医生诊断心脏病并评估心脏健康状况,包括心衰、心肌梗死和瓣膜异常等疾病。

4.研究关节疾病MRI对于关节疾病的研究也非常有帮助。

它可以观察骨、关节软骨和其他软组织。

如果患者有肿胀、疼痛和关节运动受限的症状,MRI可以检查足部、手部、膝部和肩部等关节的状况,确定问题所在。

5.评估器官功能MRI还可以评估内脏器官的功能,如肝脏、肾脏和胰腺等。

使用MRI扫描可以检查器官的大小、形状和是否存在异常。

磁共振知识点总结

磁共振知识点总结

磁共振知识点总结一、磁共振成像(MRI)基本原理。

1. 原子核特性。

- 许多原子核都具有自旋特性,例如氢原子核(单个质子)。

当置于外磁场中时,这些自旋的原子核会发生能级分裂,产生两种不同的能量状态(平行和反平行于外磁场方向)。

- 两种状态的能量差与外磁场强度成正比,公式为Δ E = γℏ B_0,其中γ是旋磁比(不同原子核有不同的旋磁比),ℏ是约化普朗克常数,B_0是外磁场强度。

2. 射频脉冲(RF)的作用。

- 当施加一个频率与原子核进动频率相同(拉莫尔频率,ω_0=γ B_0)的射频脉冲时,原子核会吸收能量,从低能级跃迁到高能级,处于激发态。

- 射频脉冲停止后,原子核会释放能量回到低能级,这个过程产生磁共振信号。

3. 弛豫过程。

- 纵向弛豫(T1弛豫)- 也称为自旋 - 晶格弛豫。

是指处于激发态的原子核将能量传递给周围晶格(分子环境),恢复到纵向平衡状态的过程。

- T1值反映了组织纵向弛豫的快慢,不同组织的T1值不同。

例如,脂肪组织的T1值较短,水的T1值较长。

- 横向弛豫(T2弛豫)- 也称为自旋 - 自旋弛豫。

是指激发态的原子核之间相互作用,导致横向磁化矢量衰减的过程。

- T2值反映了组织横向弛豫的快慢,一般来说,纯水的T2值较长,固体组织的T2值较短。

二、MRI设备组成。

1. 磁体系统。

- 主磁体。

- 产生强大而均匀的外磁场B_0,是MRI设备的核心部件。

常见的磁体类型有永磁体、常导磁体和超导磁体。

- 永磁体:不需要电源,磁场强度相对较低(一般小于0.5T),维护成本低,但重量大。

- 常导磁体:通过电流产生磁场,磁场强度一般在0.2 - 0.5T,需要大量电力供应,产生热量多。

- 超导磁体:利用超导材料在超导状态下的零电阻特性,通过强大电流产生高磁场(1.5T、3.0T甚至更高),磁场均匀性好,但需要液氦冷却,设备成本和维护成本高。

- 梯度磁场系统。

- 由X、Y、Z三个方向的梯度线圈组成,用于在主磁场基础上产生线性变化的梯度磁场。

磁共振的原理和临床应用

磁共振的原理和临床应用

磁共振的原理和临床应用1. 磁共振的基本原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种常用的医学成像技术,利用核磁共振现象,通过对人体组织的水分子进行成像和分析。

其基本原理如下:•磁共振现象:当原子核的自旋角动量与外加磁场共振时,能够吸收特定频率的辐射能量,产生共振现象。

•磁场:MRI使用强磁场,使得人体内部的水分子自旋与磁场共振。

•平静的磁场:待检查者需要置入平静的磁场中,通常需要躺在磁系统内的磁共振室中。

•RF信号:通过辐射频率(RF范围)的信号激发水分子,以在信号中收集并处理得到图像。

2. 磁共振的临床应用磁共振技术在医学领域中有广泛的应用,包括但不限于以下几个方面。

2.1 诊断应用•头部和神经系统:磁共振成像技术对于检测脑部疾病,如肿瘤、脑梗死、脑出血等,具有较高的分辨率和敏感性。

•胸部和肺部:磁共振技术可用于检测肺部疾病,如肺结节、肺癌、支气管炎等,尤其非常适用于对于无放射性辐射的儿童。

•心脏和血管:磁共振技术能够清晰显示心脏和血管结构,用于检测心脏病变,如心肌梗死、心肌炎等,并提供血流动力学信息。

•骨骼和关节:磁共振技术在骨骼和关节方面的应用主要用于检测骨骼肌肉、关节软骨、骨髓等病变,如骨折、关节炎、骨肿瘤等。

2.2 术前评估和手术导航•肿瘤手术前评估:通过磁共振技术,医生可以更加准确地评估肿瘤的位置、形态和大小等信息,为手术提供重要的参考。

•脑手术导航:磁共振成像可以为脑外科手术提供细致、高分辨率的解剖图像,辅助医生进行手术操作。

2.3 世界卫生组织指南应用•癌症诊断:磁共振技术在癌症的早期诊断中起着重要的作用,能够帮助医生更早地发现病变,提高治疗效果。

•心血管疾病评估:磁共振技术可以提供心脏和血管的高分辨率图像,用于评估心脏结构和功能,帮助诊断和治疗心血管疾病。

•神经系统疾病评估:磁共振技术对于神经系统疾病,如脑卒中、癫痫、脑瘤等的评估具有高度的敏感性和特异性。

磁共振成像的基本原理和应用

磁共振成像的基本原理和应用

磁共振成像的基本原理和应用1. 介绍磁共振成像(Magnetic Resonance Imaging,MRI)是一种无创、非放射性的医学成像技术。

它利用核磁共振现象,在人体或物体内部生成高质量的二维或三维图像。

MRI技术已经广泛应用于临床医学、生物医学研究和材料科学等领域,为人们提供了重要的诊断和研究工具。

2. 基本原理MRI技术基于核磁共振现象,核磁共振是原子核在外加磁场和射频脉冲作用下发生的现象。

2.1 磁场MRI中使用的主磁场通常是由强大的超导磁体产生的恒定磁场。

该磁场可以将原子核的自旋磁矩定向,并为后续的成像过程提供必要的条件。

2.2 射频脉冲射频脉冲是一个特定频率的交变电磁场,用于改变原子核的自旋状态。

当射频脉冲作用于原子核时,原子核的自旋会从低能级跃迁到高能级。

射频脉冲的特定属性可以决定后续信号的强度和获取的图像特征。

2.3 自旋回弹和信号检测在射频脉冲作用结束后,原子核的自旋会重新回到低能级。

在回到低能级的过程中,原子核会发射出一定的能量,即MR信号。

这个信号可以通过感应线圈进行检测和记录。

2.4 图像重建通过对检测到的信号进行处理和分析,可以生成人体或物体内部的图像。

图像重建的过程主要包括数据采集、数据处理和图像生成。

最终的图像可以显示不同组织结构、器官或病变的特征。

3. 应用领域MRI技术在医学和科学研究中有着广泛的应用。

以下是一些常见的应用领域:3.1 临床医学•脑部成像:MRI可以提供详细的脑部结构、解剖和病变信息,用于脑卒中、肿瘤和神经系统疾病的诊断和治疗监测。

•心脏成像:MRI可以检测心脏结构和功能,帮助评估心脏病变和心血管疾病。

•关节成像:MRI可以观察关节的软组织结构和病变,用于骨关节炎、关节损伤等的诊断。

•肝脏成像:MRI可以评估肝脏肿瘤、肝硬化等疾病,并提供手术规划和治疗监测的指导。

3.2 生物医学研究•神经科学研究:MRI可以用于研究大脑的结构和功能,探究神经系统的工作机制和疾病的发生机理。

磁共振成像的临床应用

磁共振成像的临床应用

磁共振成像的临床应用正文:1:引言磁共振成像(MRI)作为一种无创的影像学技术,在临床医学领域具有广泛的应用。

本文将介绍磁共振成像在临床中的各种应用,包括诊断、治疗规划和治疗后评估等。

2: MRI基本原理磁共振成像利用原子核的自旋和磁场之间的相互作用,通过加以脉冲序列和梯度磁场图像。

本节将详细介绍MRI的基本原理,包括梯度磁场的产生、脉冲序列的分类和信号检测等。

3: MRI诊断应用3.1 头颅MRI头颅MRI广泛应用于神经科学领域,如脑肿瘤、脑血管病、神经退行性疾病等的诊断。

本节将介绍如何通过头颅MRI获取高分辨率的脑部影像,以及如何应用这些影像进行疾病诊断。

3.2 心脏MRI心脏MRI是评估心脏结构和功能的重要工具。

它可以提供详细的心脏解剖学和功能信息,对心脏病的诊断和治疗规划具有重要意义。

本节将介绍心脏MRI的常用技术和临床应用。

3.3 肝脏MRI肝脏MRI广泛应用于肝脏病的诊断和治疗。

通过不同的MRI技术,可以评估肝脏的形态、血供和代谢功能。

本节将介绍肝脏MRI的常见应用,如肝脏肿瘤的诊断和评估、肝脏疾病的鉴别诊断等。

3.4 骨骼MRI骨骼MRI可以提供骨骼系统的详细解剖学信息,对骨折、关节疾病和骨肿瘤等疾病的诊断和治疗起到重要作用。

本节将介绍骨骼MRI的常用技术和临床应用,以及如何分析和解释骨骼MRI影像。

4: MRI治疗规划和治疗后评估4.1 放射治疗规划磁共振成像可以用于放射治疗规划,通过获取高分辨率的图像,帮助医生确定肿瘤的位置、形态和边界。

本节将介绍MRI在放射治疗规划中的应用,包括结合其他影像学技术进行治疗规划和剂量计算等。

4.2 治疗后评估磁共振成像可以用于评估治疗的效果,包括检测肿瘤的缩小、病灶的消失等。

本节将介绍MRI在治疗后评估中的应用,以及如何分析和解释治疗后的MRI影像。

5:附件本文档附有以下附件:附件1:头颅MRI图像示例附件2:心脏MRI图像示例附件3:肝脏MRI图像示例附件4:骨骼MRI图像示例6:法律名词及注释6.1 MRI(磁共振成像):一种无创的影像学技术,通过利用原子核的自旋和磁场之间的相互作用图像。

磁共振成像

磁共振成像
•避免患者穿戴任何金属物品带入MRI检查室,包括钱币,手机, 磁卡(电话卡、银行卡等),钥匙,手表、打火机、金属皮带、 金属项链、金属耳环、金属纽扣、胸罩及其他金属饰品; 影响磁场均匀性,干扰图像、形成伪影,不利于病变显示; 强磁场可将金属物品吸附至MR机上,造成MR机损坏,甚至伤 害到受检者; 手机、磁卡、手表等贵重物品可因强磁场的作用而损坏,造 成个人财物的损失。
•幽闭恐惧症患者不适于此项检查,对他们而言,身处核磁共 振成像机器中是一种非常可怕的体验。
3.临床应用
3.1 优势
(1)无电离辐射危害; (2)多方位成像(横断面、冠状面、矢状面和任意斜面); (3)显示解剖细节更好; (4)对组织结构的细微病理变化更敏感(如骨髓浸润,非移位
性轻微骨折,脑水肿等); (5)通过信号可确定组织类型(如脂肪,血液和水); (6)软组织分辨率高、对比好。
➢ 曾用名:核磁共振成像、核磁共振体层成像、核磁共振 CT等;日本学者提出去掉“核”字,称为“磁共振成 像”,该提法被采纳。
➢ 学术成就:几十年期间(1952~2003),MRI相关研究 已在物理、化学、生理学/医学3领域、6获诺贝尔奖。
1.2 MRI设备构成
➢ 由磁体系统、梯度磁场系统、射频系统、计算机系统及其它辅 助设备构成。
2.2 检查前询问及பைடு நூலகம்查
(3)对体内有金属弹片、术后银夹,金属内固定板、假关节等 的患者,MRI检查要持慎重态度,必需检查时要严密观察,患者 如有局部不适,应立即中止检查。 ✓金属异物在高磁场中发生移动可致邻近大血管和重要组织损 伤,如眼睛内的金属片移动可导致患者眼睛受伤甚至失明; ✓磁场可使动脉瘤夹、金属支架移位,导致它们所修补的动脉 发生破裂(材质不同影响不同,不锈钢材质的危险较大,镍钛合 金相对较安全)。 ✓有些假牙也具有铁磁性,如允许尽量摘掉后再行检查; ✓大多数整形外科植入品,即使属于铁磁性,一般也不会出现 问题,因为它们已经牢牢嵌入到骨骼中。 ✓体内多数部位的金属不会引发问题:在体内时间达到数周(>6 周) 即可形成足够多的疤痕组织使其固定在原位。

磁共振基础知识及.T磁共振

磁共振基础知识及.T磁共振
• 相同条件下,同一序列约节省20%时间。
脑结构成像
• 更快的成像速度:有利于意识不清及不配 合的患者及儿童检查。
• 应用flip angle sweep and parallel imaging 的FSE T2WI:成像时间从2分7秒降到8秒
MR images in a 19-year-old male patient with multiple sclerosis
假肢、金属关节、铁磁性异物(弹片等)者;
• ④妊娠三个月内的早期妊娠者。
• 2.下列情况为相对禁忌症,经适当处置可进行磁共振检查:
• ①带有金属避孕环的患者如必须进行MR检查,应取环后 再行检查;
• ②危重病人需要使用生命支持系统者;
• ③癫痫患者(应在充分控制症状的前提下进行磁共振检 查);
• ④幽闭恐怖症患者,如必须进行MR检查,应在给于适量 镇静剂后进行;
• MRI可直接显示脊髓的全貌,因而对脊髓肿 瘤或椎管内肿瘤、脊髓白质病变、脊髓空
洞、脊髓损伤等有重要的诊断价值。对椎 间盘病变,MRI可显示其变性、突出或膨出。 显示椎管狭窄也较好。对于颈、胸椎,CT 常显示不满意,而MRI显示清楚。另外, MRI对显示椎体转移性肿瘤也十分敏感。
(四)心血管系统的MRI检查
• 与X线和CT成像的原理不同,MRI没有X线辐 射,而主要利用质子密度与质子的弛豫时 间(T1与T2)的差异成像,尤其是弛豫时间 更为重要。
• 因为质子在人体中的差异仅10%,但弛豫 时间可相差百分之数百。
三、磁共振成像脉冲序列及临床应 用
• 磁共振成像是利用脉冲序列进行的,充分 理解各种脉冲序列的基本构建和特点是保 证MR图像技术质量和提高诊断准确率的前
3.0 T TR/TE/IR: 12 000/140/2850; turbo factor, 38; NEX 1; acquisition time, 4 minutes

磁共振的原理和临床应用

磁共振的原理和临床应用

磁共振的原理和临床应用磁共振成像(Magnetic Resonance Imaging,MRI)是一种非侵入性的医学成像技术,利用磁共振现象对人体进行断层成像,是当代医学影像学中较为常见的影像学检查方法之一、磁共振成像原理和临床应用广泛,下面将详细介绍。

磁共振成像的原理主要基于人体组织中的氢原子核含量,因为人体中的大部分组织都含有氢原子核。

氢原子核由质子组成,其具有自旋,因此在外磁场的作用下,质子的自旋会发生预cession运动。

在磁共振成像中,首先需要对患者进行磁场的生成。

常用的磁场是强大的静态磁场,通常使用超导磁体生成高强度的磁场,使得人体中的氢原子核达到热平衡状态。

在磁场中,氢原子核的质子会在自旋状态上进行预cession运动,而且质子的预cession频率与外磁场强度存在直接的关系。

为了激发氢原子核的共振,还需要对患者施加特定的无线电频率的脉冲。

这个频率需要与氢原子核的共振频率相匹配,才能使得氢原子核的自旋状态发生变化。

当氢原子核受到脉冲的激发后,会从高能级跃迁到低能级,并且会释放出能量。

这些释放的能量可以被接收线圈捕捉到,然后经过信号增强和放大处理,最终生成图像。

图像的对比度与各组织的氢原子核密度和自旋湍流相关。

磁共振成像具有许多优势,因此在临床上得到了广泛应用。

首先,磁共振成像无辐射,相比于传统的X射线和CT扫描,能够更好地保护患者的健康。

其次,磁共振成像对于软组织的分辨力较高,可以对人体的各个部位进行高分辨率的成像。

此外,磁共振成像可以提供多平面重建的图像,方便医生进行观察和病灶定位。

在临床上,磁共振成像的应用范围广泛。

在神经学领域,磁共振成像可以用于检测脑结构和功能异常,例如癫痫、脑卒中和脑肿瘤等。

在骨科领域,磁共振成像可以用于检测骨髓病变、关节炎和髓周肿瘤等疾病。

在心血管领域,磁共振成像可以用于评估心功能和心脏病变等问题。

此外,磁共振成像还可以用于检测妇科疾病、乳腺癌、肝脏疾病等。

简述磁共振成像的基本原理及应用

简述磁共振成像的基本原理及应用

简述磁共振成像的基本原理及应用基本原理磁共振成像(Magnetic Resonance Imaging,MRI)是一种利用核磁共振现象进行成像的非侵入性医学影像技术。

其基本原理如下:1.磁场梯度:在MRI中,人体被置于强大的静态磁场中,通常为1.5或3.0特斯拉。

静态磁场的存在使得水和其他组织中的原子核具有旋磁性。

为了增加成像的精度,还需要在这个主磁场的基础上建立磁感应梯度,它们可以使不同位置的原子核在频率上有所区别。

2.平行放射磁场:在强大的静态磁场中所产生的射频激励场通过放射磁场线圈,使静态磁场与梯度场之间形成垂直的旋转磁场。

这个旋转磁场的频率与静态磁场的拉比频率一致,从而实现了核磁共振。

3.磁共振信号:当原子核受到平行放射磁场的激励后,它们会产生共振信号。

这些信号通过射频线圈和梯度线圈接收,并转化为电信号进行分析和处理。

4.影像重建:通过将接收到的信号进行编码和处理,可以重建出人体内部的结构图像。

具体的图像重建算法包括Fourier变换和反射变换等。

应用领域磁共振成像技术在医学领域有着广泛的应用,以下是几个常见的应用领域:1.神经科学:MRI可以用于研究人脑的结构和功能。

通过对脑部进行扫描,可以观察到不同脑区的活动情况,进而了解大脑的功能区域和脑网络连接。

2.肿瘤诊断:MRI可以通过扫描人体内部的软组织,帮助医生检测和诊断肿瘤。

与其他成像技术相比,MRI在肿瘤检测方面更具优势,因为它能够提供更详细的图像信息。

3.心血管疾病:MRI可以用来评估心脏和血管的结构和功能。

它可以检测心脏瓣膜功能异常、心脏肌肉的供血情况以及动脉硬化等心血管疾病。

4.骨骼和关节疾病:MRI可用于检测骨骼和关节疾病,如骨折、骨关节炎等。

它能提供高分辨率的图像,准确地显示骨骼和关节的结构和损伤程度。

5.妇科疾病:MRI可以帮助医生检测和诊断妇科疾病,如子宫肌瘤、卵巢肿瘤等。

它能提供清晰的图像,帮助医生确定病变的位置、大小和性质。

磁共振成像(MRI)的基本原理和基本临床应用

磁共振成像(MRI)的基本原理和基本临床应用

7、T1弛豫时间(T1值)
别名:纵向弛豫时间 自旋-晶格弛豫时间 热弛豫时间 第一弛豫时间
规定:自旋质子受90°RF脉冲激励后,横向磁矩 渐缩小,纵向磁矩呈指数增长,纵向磁矩 从零增长到其最大值的63%所需的时间
0.15T 时组织的 T1 值
组织 脂肪 肝 脑白质 脑灰质 脾 肾皮质
T1 值(ms) 170 250 350 500 450 340
脉冲重复时间(TR):两次90°脉冲之间的时间 回波时间(TE):90°脉冲至回波信号产生所需的时间
SE 序列加权参数与 TR 和 Tቤተ መጻሕፍቲ ባይዱ 的关系
加权 TR
T1WI

T2WI

PDWI 长
短 TR<800ms 长 TR>1500ms
TE 图像主要产生的因素

组织 T1 值

组织 T2 值

组织质子密度
5、射频脉冲(RF脉冲)
使在外磁场作用下重新取向排列的质子总核磁矩 (M0)偏转获得一个XY平面横向磁矩(MXY)的电磁波。
伴发质子吸收能量,从低能级跃迁到高能级。
RF(radio frequency)脉冲频率应与自旋质子的共 振频率相等。
RF脉冲依使总核磁矩M0偏转角大小命名。 常用的是90°和180°RF脉冲。
几种原子核的旋磁比常数
原子核 1H 19F 31P 23Na 13C
旋磁比常数(MHz/T) 42.58 40.05 17.23 11.26 10.71
不同外磁场下氢的共振频率
MR机净磁场强度(T) 0.15 0.3 0.5 0.6 1.0 1.5 2.0
共振频率(MHz) 6.4 12.8 21.3 25.5 42.6 63.9 85.3

MRI临床应用

MRI临床应用

MRI临床应用MRI临床应用一、引言本文档旨在介绍MRI(磁共振成像)在临床应用方面的相关知识。

MRI是一种非侵入性的医学成像技术,通过利用磁场和无害的无线电波,可以人体内部的详细影像,对诊断和治疗提供重要的信息。

本文将详细介绍MRI的基本原理、常见的临床应用领域以及相关注意事项。

二、MRI基本原理1:磁共振原理MRI利用核磁共振原理,通过对人体组织中的水、脂肪等含有氢原子的物质进行激发和接收信号,得到影像信息。

核磁共振的基本原理是利用强大的磁场使人体组织中的原子核产生共振,然后通过接收得到的信号来构建影像。

2:磁场和扫描序列MRI使用强大的磁场来激发原子核共振并接收其信号。

磁场的强度通常以特斯拉(Tesla,T)为单位表示。

不同类型的磁场可以用于不同的临床应用,包括1.5T、3T等。

扫描序列是MRI中用来获取不同类型影像的一系列参数设定,例如脉冲序列、重复时间(TR)、回波时间(TE)等。

三、MRI临床应用领域1:神经影像学MRI在神经影像学中有广泛的应用。

它可以用于诊断中风、脑肿瘤、多发性硬化症等疾病,并提供详细的解剖结构和病变的特征信息。

此外,功能性磁共振成像(fMRI)可以用于研究脑活动的区域和连接,对神经系统功能有更深入的理解。

2:心血管影像学MRI在心血管影像学中可以高分辨率的心脏和血管影像,用于评估心脏结构和功能、检测动脉瘤、瓣膜疾病等。

MRI还可以进行心脏灌注成像和心肌纤维束成像,对心脏病变进行评估。

3:骨骼影像学MRI可以提供骨骼系统的详细解剖信息,并检测骨折、骨肿瘤、关节炎等疾病。

MRI在骨髓影像学中也有应用,可以评估骨髓疾病如白血病、贫血等。

4:腹部影像学MRI在腹部影像学中可以检测肝脏、胰腺、胆囊、肾脏等器官的结构和功能。

它可以识别肿瘤、囊肿、炎症等病变,并提供详细的解剖信息。

5:妇科影像学MRI在妇科影像学中可用于评估子宫、卵巢、乳腺等器官的病变。

它可以检测子宫肌瘤、卵巢囊肿、乳腺肿瘤等,并提供病变的大小、位置等详细信息。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号对比,而长TR则不能。

T1加权像(T1 weighted image,T1WI) 在SE 序列中,选用短TR(通常小于500ms)、短TE
(通常小于30ms)所获得图像的影像对比主要
由T1信号对比决定,此种图像称为T1加权像。
T1WI 突出组织T1弛 豫
短TR(200-500ms) 短TE(<20ms)
☉通过调节TR和TE的长短可分别获得反映组织的T1、T2 及质子密度特性的MR图像。
☉其中T1WI具有较高的信噪比,适于显示解剖结构,也 是增强扫描的常用序列; ☉T2WI则更易于显示水肿和液体,而病变组织常含有较 多水分,在T2WI上显示为高信号,因而更易于显示病 变; ☉PDWI常可较好地显示出血管结构。
(longitudinal relaxation)
横向磁化开始消失—横向驰豫 (transverse relaxation)
(2)纵向驰豫
高能级(指向下)质子逐个回到低能级(指向上),纵向磁化 增加并复原
纵向弛豫

也称为T1弛豫,是指90度脉冲中止后,在主 磁场的作用下,纵向磁化矢量开始恢复,直 至恢复到平衡状态的过程。
重建MRI图像
三、MRI的物理学基本知识
1、人体MR成像的物质基础

原子的结构
电子:负电荷 中子:无电荷
质子:正电荷
原子核总是绕着自身的轴旋转--自旋 ( Spin )
原 子 核 自 旋 产 生 核 磁
所有的原子核都可产生核磁吗?
质子为偶数,中子为偶数 不产生核磁
质子为奇数,中子为奇数 质子为奇数,中子为偶数
90度 脉冲
T1曲线
(T1 curve)
以时间为横轴,以纵向磁化为纵轴绘制的一条曲线 T1曲线向上走行
纵向驰豫时间-T1
(Iongiudinal relaxation time, T1)
纵向磁化增加到复原所需的时间
•用T1值来描述组织T1弛豫的快慢,T1值是纵向磁 化恢复至原磁矢量的63%所需时间
磁共振成像(MRI)基本知识及临床应用
中南大学湘雅二医院放射医学教研室
一、MRI扫描仪的基本 硬件构成
MRI仪由以下几部分组成
– 主磁体 – 计算机系统 – 其他辅助设备
1、主磁体
•MRI按磁场产生方式分类
主 磁 体
永磁
常导
电磁 超导
0.35T 永磁磁体
1.5T 超导磁体

MR按主磁场的场强分类 – MRI图像信噪比与主磁场场强成正比 • 低场: 小于0.5T • 中场:0.5T-1.0T
• 高场: 1.5T - 2.0T
• 超高场强:3.0T - 4.7T - 7T
1.5T
3.0T
0.23T
0.5T
1.0T
2、计算机系统及谱仪

数据的运算


控制扫描
显示图像
3、其他辅助设备
检查台 激光照相机 液氦及水冷却 系统 空调 自动洗片机等
内 发射90度(射频)脉冲 中止90度(射频)脉冲 接收体内发出的信号
产生核磁
何种原子核用于人体MR成像?
•用于人体MRI的为1H(氢质子),原因有:
–1、1H的磁化率很高;
–2、1H占人体原子的绝大多数。
•通常所指的MRI为氢质子的MR图像。
通常情况下人体内氢质子的核磁状态
通常情况下,尽管每个质子自旋均产生一个小的 磁场,但呈随机无序排列,磁化矢量相互抵消, 人体并不表现出宏观磁化矢量。
长TR(>2000ms) 长TE(>50ms)
T2WI
重要提示!!!

人体大多数病变的T1值、T2值均较相应的
正常组织大,因而在T1WI上比正常组织
“黑”,在T2WI上比正常组织“白”。
长TR (>2000ms) 短TE(<20ms)
PD
常见组织的T1 、 T2
水 脂肪 T1 、 T2 长 T1 、 T2 短 T1 、 T2 长
T1WI
回波时间(echo
time,TE):指从
90度脉冲开始至获得回波的时间。 TE决定T2信号加权,使用长TE可获 得T2信号对比。
T2加权像(T2 weighted image,T2WI)
选用长TR(通常大于1500ms)、长TE(通常大于 80ms)所获图像的影像对比主要由T2信号对比决定, 此种图像称为T2加权像
射频脉冲效应(二)横向磁化
(transverse magnetization )
引起质子同步、同速运动,处于同相(inphase),在XY平面上产生新的 磁化即横向磁化
5、射频线圈关闭后发生了什么?
驰豫
Relaxation
放松 、 休息
(1)驰 豫
中止射频脉冲,同时独立发生两个过程: 纵向磁化开始恢复—纵向驰豫
用T2值来描述组织T2弛豫的快慢,T2值是横 向磁化减小至原磁矢量的37%所需时间
不同的组织横向弛豫速度不同(T2值不同)

要 提 示
不同组织有着不同 – 质子密度 – 横向(T2)弛豫速度 – 纵向(T1)弛豫速度
这是 MRI 显示解剖
结构和病变的基础
6、脉冲序列
使纵向磁化倾斜90度脉冲为90度脉冲,
自旋回波 (SE) 序列应用举例
经典序列,获得T1WI, T2WI, PDWI,图像质量较好 慢性硬膜下血肿 正常脂肪 组织
T1WI
T2WI
自旋回波 (SE) 序列应用举例
硬膜下积液
亚急性早期硬膜下血肿
T1WI
T2WI

多参数成像的经 典序列 有利于准确诊断

T1WI T2WI
慢性硬膜下血肿
2、反转恢复序列
肝癌
男 28岁 体检发现肝内占位 乙肝13年 AFP(-)
MRI平扫+C
4、回波平面成像(echo planar imaging,EPI) EPI是目前成像速度最快的技术,EPI最大的优
点是扫描时间极短而图像质量相当高,可最大
限度除去运动伪影,适用于心脏成像、腹部成
不同组织有不同的T1弛豫时间
(3)横向驰豫
不同频率的质子因周围磁场不均匀性,很快失去相位一致性, 横向磁化减少、消失—横向驰豫.
横向驰豫时间-T2
(transverse relaxation time, T2)
横向磁化减小到消失所需的时间
T2曲线
(T2 curve)
以时间为横轴,以纵向磁化为纵轴绘制的一条曲线 T2曲线向下走行
1、多参数成像 MRI是多参数成像,其成像参数
主耍包括T1、T2和质子密度等, 同一部位可获得T1、T2和PDWI 等多种围像。
MRI图像特点:1. 多参数成像
何为多参数成像?
T1WI
T1WI+C
2、多方位成像 可获得轴位、冠状位、矢状位及
任意倾斜层面,有利于解剖和病
变的显示。

增强扫描还可以评价脑内病变的血脑屏障功能、 肝内病变的血供方式等。
MRI增强扫描
3mm层厚,T1WI+C
右侧微小听神经瘤
MRI图像特点:增强扫描
T1WI+C 3×4㎝ 脑内三级星形细胞瘤
T2WI
T1WI
(五)、MRI检查技术及其应用
(一)脉冲序列
●常用的脉冲序列有自旋回波(spin echo,SE)
4、质子驰豫增强效应 一些顺磁性物质和超顺磁性物质,可缩 短周围质子的弛豫时间,此效应称为质 子驰豫增强效应(proton relaxation enhancment effect),是MRI行对比剂增 强的基础。
对比剂增强

利用磁共振对比剂改变质子的T1、T2弛豫时间 来增强或降低组织的信号。一般应用其缩短T1 时间、使T1WI信号增高来提高发现疾病的敏感 性,或增加定性诊断的特异性。
(纵向弛豫)差别 – T2 加权成像( T2WI ) ---- 突出组织 T2 弛豫 (横向弛豫)差别 – 质子密度加权成像( PD )-突出组织氢质 子含量差别
重复时间(repetition
time,TR)指在
脉冲序列中,两次90度脉冲之间的间 隔时问。TR的长短决定着能否显示出
组织间T1的差别,伎用短TR可获得T1
病变组织含水量高
(四)
MRI图像特点:
1、多参数成像
MRI是多参数成像,其成像参数主耍包括T1、T2和 质子密度等,同一部位可获得T1、T2和PDWI等多种 围像。 2、多方位成像
一次检查,可获得轴位、冠状位、矢状位及灶意倾 斜层面,有利于解剖和病变的显示。 3、MRI是信号,不是密度。 4、质子驰豫增强效应(造影剂对比增强)
序列、梯度回波(gradient echo,GRE)序列、 反转恢复(inversion recovery,IR)序列等。 ●脉冲序列决定获得组织的何种信号
1、SE序列
☉常规SE脉冲序列是临床上最常用的成像序列。
☉该序列先发射一次90RF激励脉冲,然后施加180复相脉 冲,使质子相位重聚,产生自旋回波信号。
把人体放进大磁场
人体进入主磁体发生了什么?
织进 质入 子主 的磁 核场 磁前 状、 态后 人 体 组
质子排列
无强磁场—排列无序
在强磁场内—排列有序
平行于(指向上),反平 行于(指向下)磁力线 前者处于低能级,略多
病人成磁体
磁化沿磁场纵 轴方向
2、纵向磁化
(longitudinal magnetization)
反转恢复序列:通过 在90°RF前使用 180°的反转RF,并 调节其与90°RF之间 的间隔,可分别抑制 不同组织的信号(如 脂肪或水)

(1)STIR脉冲序列是IR脉冲序列的一个类型, 选择一个特定的TI值,在脂肪质子的纵向磁化
相关文档
最新文档