2017年成人高考高起专数学试题及答案

合集下载

2017年成人高考高起专《数学》真题及答案

2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x4的最小正周期是()A.8πB.4πC.2πD.2π3.函数y=√x(x−1)的定义城为( )A.{x|x≥0}B.{x|x≥1}C.{x|0≤x≤1}D.{x|x≤0或x≥1}4.设a,b,c为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.a2>b2D.ac>bc5.若π2<θ<π,且sinθ=13,则cosθ=( )A.2√23B.− 2√23C. − √23D.√236.函数y=6sinxcosc的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x2+bx+c的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=09.函数y=1x是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16) B.(-3,18) C.(-3,16) D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为()A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。

(完整版)2017年成人高考高起专《数学》真题及答案

(完整版)2017年成人高考高起专《数学》真题及答案

2017年成人高等学校高起点招生全国统一考试数 学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=( )A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)2.函数y=3sin x 4的最小正周期是( )A.8πB.4πC.2πD.2π 3.函数y=√x(x −1)的定义城为( )A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则( )A.a -c>b -cB.|a|>|b|C.a 2>b 2D.ac>bc 5.若π2<θ<π,且sin θ=13,则cos θ=( )A .2√23 B.− 2√23 C. − √23 D. √236.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x 2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<0 8.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x -y+1=0B.x+y -5=0C.x -y -1=0D.x -2y+1=09.函数y=1x 是( ) A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有( )A.60个B.15个C.5个D.10个11.若lg5=m,则lg2=( )A.5mB.1-mC.2mD.m+112.设f(x+1)=x(x+1),则f(2)= ( )A.1B.3C.2D.613.函数y=2x 的图像与直线x+3=0的交点坐标为( )A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为( )A.1B.4C.2D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为( )A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=( )A.100B.40C.10D.2017.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为( )A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b= .19.已知直线1和x -y+1=0关于直线x=-2对称,则1的斜率为= .20.若5条鱼的平均质量为0.8kg,其中3条的质量分别为0.75kg,0.83kg 和0.78kg ,则其余2条的平均质量为 kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a= .三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22. (本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x3+3x2+4x+a的切线,求切点坐标和a的值。

成人高考成人函授高起专数学真题及答案

成人高考成人函授高起专数学真题及答案

成人高考成人函授高起专数学真题及答案2017年成人高等学校招生全国统一考试数学试数学一、选择题:本大题共17小题,每小题5分,共85分(1)设集合A={0,1},B={0,1,2},则A∩B=()(A){0,1}(B){0,2}(C){1,2}(D){0,1,2,}(2)函数y =sin cos x x 的最小正周期是()(A)2π (B)π (C)π2 (D)4π(3)在等差数列}{n a 中,132,6a a ==,则7a =()(A)14 (B)12 (C)10 (D)8(4)设甲:x >1;乙:2e >1,则()(A)甲是乙的必要条件,但不是乙的充分条件。

(B)甲是乙的充分条件,但不是乙的必要条件。

(C)甲不是乙的充分条件,也不是乙的必要条件(D)甲是乙的充分必要条件。

(5)不等式231x -≤的解集是()(A){|13x x ≤≤}(B){|12x x x ≤-≥或}(C){|12x x ≤≤}(D){|23x x ≤≤}(6)下列函数中,为偶函数的是()(A)2log y x = (B)2y x x =+ (C)4y x = (D)2y x =(7)点(2,4)关于直线y x =的对称点的坐标是()(A)(-2,4)(B)(-2,-4)(C)(4,2)(D)(-4,-2)(8)将一颗骰子抛掷一次,得到的点数为偶数的概率为()(A)23 (B)12 (C)13 (D)16(9)在△ABC 中,若AB=3,A=45°,C=30°,则BC=()(A)(B)(10)下列函数张中,函数值恒为负值的是(D )(A)y x =(B)21y x =-+(C)2y x =(D)21y x =--(11)过点(0,1)且与直线10x y ++=垂直的直线方程为()(A)y x =(B)21y x =+(C)1y x =+(D)1y x =-(12)设双曲线221169x y -=的渐近线的斜率为k ,则︱k ︱=()(A)916 (B)34 (C)43 (D)169(13)2364+19log 81=()(A)8 (B)10 (C)12 (D)14(14)tan α=3,则tan()4πα+=()(A)2 (B)12(C)-2 (D)-4(15)函数21ln(1)1y x x =-+-的定义域为()(A){x ︱<-1或x >1}(B)R(C){x ︱-1<x <1}(D){x ︱<1或x >1}(16)某同学每次投蓝投中的概率25,该同学投篮2次,只投进1次的概率为()(A)625 (B)925 (C)1225 (D)35(17)曲线342y x x =-+在点(1,-1)处的切线方程为()(A)0x y += (B)0x y -=(C)20x y --= (D)20x y +-=二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。

2017成考数学试题答案

2017成考数学试题答案

2017成考数学试题答案一、选择题1. 问题:若a、b、c为等差数列,且a+b+c=6,b-c=2,求a的值。

答案:首先,设等差数列的公差为d。

根据题意,我们可以得到两个方程:2b=a+c,以及b-c=2。

将第二个方程改写为c=b-2,代入第一个方程,得到2b=a+(b-2),解得a=b-2。

再结合a+b+c=6,代入a和c的表达式,得到b-2+b+b-2=6,解得b=2,进而得到a=0。

二、填空题1. 问题:已知函数f(x)=ax^2+bx+c在点x=1取得极小值,且f(0)=1,f(2)=5,求a、b、c的值。

答案:由于f(x)在x=1处取得极小值,所以f'(1)=0。

首先求导数f'(x)=2ax+b,代入x=1得到2a+b=0。

又因为f(0)=c=1,f(2)=4a+2b+c=5,联立以上三个方程,解得a=1,b=-2,c=1。

三、解答题1. 问题:解方程组:\begin{cases}x+y=3 \\2x-y=1\end{cases}答案:我们可以使用加减消元法来解这个方程组。

将两个方程相加,得到3x=4,解得x=4/3。

然后将x的值代入第一个方程,得到y=3-4/3=5/3。

所以,方程组的解为x=4/3,y=5/3。

2. 问题:计算定积分∫(0 to 2) (2x+1)dx。

答案:首先,我们需要找到被积函数(2x+1)的原函数。

通过对x进行积分,我们得到原函数为x^2+x。

然后,我们将积分区间的上下限代入原函数,计算定积分的值。

所以,定积分的值为(x^2+x)|0 to 2 =(2^2+2) - (0^2+0) = 8。

3. 问题:已知函数g(x)=x^3-3x^2+2x,在区间[-1,2]上的最大值为M,在区间[-1,2]上的最小值为m,求M和m的值。

答案:为了找到函数g(x)在区间[-1,2]上的最大值和最小值,我们首先需要求出函数的导数g'(x)=3x^2-6x+2。

2017年成人高考高数真题及答案解析

2017年成人高考高数真题及答案解析

2017年成人高等学校专升本招生全国统一考试高等数学(一)一、选择题:每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求。

1.当0→x 时,下列变量是无穷小量的为( ) A.21xB.x2 C.x sin D.()e x +ln 2.=⎪⎭⎫⎝⎛+→xx x 21lim 0( ) A.e B.1-e C.2e D.2-e3.若函数()⎪⎩⎪⎨⎧=≠=-0,0,21x a x e x f x,在x=0处连续,则常数a=( ) A.0 B.21C.1D.2 4.设函数()x x x f ln =,则()='e f ( ) A.-1 B.0 C.1 D.25.函数()x x x f 33-=的极小值为( ) A.-2 B.0 C.2 D.46.方程132222=++z y x 表示的二次曲面是( ) A.圆锥面 B.旋转抛物面 C.球面 D.椭球面7.若()1210=+⎰dx k x ,则常数=k ( ) A.-2 B.-1 C.0 D.18.设函数()x f 在[]b a ,上连续且()0>x f ,则( ) A.()0>dx x f ba ⎰B.()0<dx x f ba ⎰C.()0=⎰dx x f ba D.()dx x f ba⎰的符号无法确定9.空间直线231231-=-+=-z y x 的方向向量可取为( ) A.(3,-1,2) B.(1,-2,3) C.(1,1,-1) D.(1,-1,-1)10.一直a 为常数,则幂级数()∑∞=+-121n nan ( ) A.发散 B.条件收敛 C.绝对收敛 D.敛散性与a 的取值有关 二、填空题:11~20小题,每小题4分,共40分。

将答案填写在答题卡相应题号后。

11.()=--→2sin 2lim2x x x _________12.曲线121++=x x y 的水平渐进方程为_________ 13.若函数()x f 满足()21='f ,则()()=--→11lim 21x f x f x _________ 14.设函数()xx x f 1-=,则()='x f _______15.()⎰-=+22cos sin ππdx x x _______16.⎰+∞=+0211dx x __________ 17.一直曲线22-+=x x y 的切线l 斜率为3,则l 的方程为_________ 18.设二元函数()y x z +=2ln ,则=∂∂xz_________ 19.设()x f 为连续函数,则()='⎪⎭⎫ ⎝⎛⎰xdt t f 0__________ 20.幂级数∑∞=03n n nx 的收敛半径为_________三、解答题:21~28题,共70分,接答应写出推理、演算步骤21.求201sin lim x x e x x --→22.设⎪⎩⎪⎨⎧+=+=3211ty tx ,求dx dy23.已知x sin 是()x f 的一个原函数,求()⎰'dx x f x24.计算dx x⎰+401125.设二元函数122+-+=y x y x z ,求yx zx z ∂∂∂∂∂2及26.计算二重积分⎰⎰+Ddxdy y x 22,其中区域(){}4,22≤+=y x y x D27.求微分方程2x dxdyy 的通解28.用铁皮做一个容积为V 的圆柱形有盖桶,证明当圆柱的高等于底面直径时,所使用的铁皮面积最小2017年成人高等学校专升本招生全国统一考试高等数学(一)试题答案解析1.【答案】C【解析】00sin sin lim 0==→x x2.【答案】C【解析】222021lim 21lim e x x xx xx =⎪⎭⎫ ⎝⎛+=⎪⎭⎫ ⎝⎛+⋅→→3.【答案】B【解析】因为函数()x f 在0=x 处连续,则()()21021lim lim 00====-→→f a e x f x x x4.【答案】D【解析】因为()()1ln ln ln +='+='x x x x x f ,所以()21ln =+='e e f 5.【答案】A【解析】因为()332-='x x f ,令()0='x f ,得驻点11-=x ,12=x ,又()x x f 6='' ()0<61-=-''f ,()0>61=''f ,所以()x f 在12=x 处取得极小值,且极小值()2311-=-=f6.【答案】D【解析】可将原方程化为13121222=++z y x ,所以原方程表示的是椭球面。

2017年成人高考高起专数学真题及答案解析(可编辑修改word版)

2017年成人高考高起专数学真题及答案解析(可编辑修改word版)

2 2 32017 年成人高等学校高起点招生全国统一考试数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150 分。

考试时间150 分钟。

第I 卷(选择题,共85 分)一、选择题(本大题共17 小题,每小题5 分,共85 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,4.5,6)x2.函数y=3sin4的最小正周期是( )A.8πB.4πC.2πD.2π3.函数y= x(x ‒ 1)的定义城为( )A.{x|x ≥ 0}B.{x|x ≥ 1}C.{x|0 ≤ x ≤ 1}D.{x|x ≤ 0或x ≥ 1}4.设a,b,c 为实数,且a>b,则( )A.a-c>b-cB.|a|>|b|C.a2>b2D.ac>bcπ15.若2<θ<π,且sinθ=3,则cos θ=( )2 2 2 2A. B. ‒3 C. ‒ 3 D. 36.函数y=6sinxcosc 的最大值为( )A.1B.2C.6D.37.右图是二次函数y=x2+bx+c 的部分图像,则( )A.b>0,c>0B.b>0,c<0C.b<0,c>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为( )A.x-y+1=0B.x+y-5=0C.x-y-1=0D.x-2y+1=019.函数y=x是( )A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5 个不同的点,以这5 个点中任意3 个为顶点的三角形共有( )A.60 个B.15 个C.5 个D.10 个11.若lg5=m,则lg2=( )x 2 = 1 A. 5mB.1-mC.2mD.m+112.设 f(x+1)=x(x+1),则 f(2)= ( )A.1B.3C.2D.613. 函数 y=2x 的图像与直线 x+3=0 的交点坐标为( )1111A.(-3,-6)B.(-3,8)C.(-3,6)D.(-3,-8)y 214. 双曲线3 -的焦距为( ) A.1B.4C.2D.x 2 y 215. 已知三角形的两个顶点是椭圆 C :25+16=1 的两个焦点,第三个顶点在 C 上,则该三角形的周长为( ) A.10B.20C.16D.2616.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=()A.100B.40C.10D.2017.若 1 名女生和 3 名男生随机地站成一列,则从前面数第 2 名是女生的概率为( )1A.41B.31C.23D.4第Ⅱ卷(非选择题,共 65 分)二、填空题(本大题共 4 小题,每小题 4 分,共 16 分) 18.已知平面向量 a=(1,2),b=(-2,3),2a+3b=.19. 已知直线 1 和 x-y+1=0 关于直线 x=-2 对称,则 1 的斜率为= .20. 若 5 条鱼的平均质量为 0.8kg,其中 3 条的质量分别为 0.75kg,0.83kg 和 0.78kg ,则其余 2条的平均质量为kg.2121.若不等式|ax+1|<2 的解集为{x|-3<x<2},则 a=.三.解答题(本大题共 4 小题,共 49 分.解答应写出推理、演算步骤)22. (本小题满分 12 分)设{a n }为等差数列,且a 2 + a 4 ‒ 2a 1=8. (1)求{a n }的公差 d;(2)若a 1=2,求{a n }前 8 项的和S 8.223.(本小题满分 12 分)设直线 y=x+1 是曲线 y=x 3+3x 2+4x+a 的切线,求切点坐标和 a 的值。

2017年成人高考高数一真题及答案

2017年成人高考高数一真题及答案

24.设√ = t,则 x = 2 , = 2,0 ≤ ≤ 2
4
2
2
1

= ∫
= ∫ (1 −
)
1+
0 1 + √
0 1+t
0
1
2
= 2,|20 − ln(1 + ) |20 = 2 ∗ (2 − 3)
= 4 − 23
25.因为 = 2 2 + − + 1,所以
20.幂级数∑∞
=0 3 的收敛半径为
三、解答题(21-28 题,共 70 分)
21. limx→0
−sin −1
2
2


22.设 x=1+t
3
y=1+t
dy
求dx
23.已知sin 是函数f(x)的一个原函数,求∫ ′ ()
4
24.计算∫0
1
1+√


2
25.设二元函数z = x 2 2 + − + 1,求及
3
dy
27.y dx = 2
y
dy
= 2
dx
1
1
两边同时积分,2 y 2 = 3 3 + 1
3y 2 = 2 3 + 1
y2 =
2 3
+ 1
3
28.设圆柱形的底面半径为 r,高为 h,则V = 2 ℎ
所用铁皮面积S = 2 + 2ℎ
dS
令dr = 4πr − 2πh = 0
26. 计算二重积分∬ √ 2 + 2 ,其中区域 = *(, )| 2 + 2 ≤ 4+。

成人高考成人函授高起专数学真题及答案

成人高考成人函授高起专数学真题及答案

2017 年景人高等学校招生全国一致考试数学试数学一、选择题:本大题共17小题,每题5分,共85分1)设会合A={0,1},B={0,1,2},则A∩B=()(A){0,1}(B){0,2}(C){1,2}(D){0,1,2,}(2)函数y sinxcosx的最小正周期是()(A)(B)(C)2(D)42(3)在等差数列{a n}中,a12,a36,则a7()(A)14(B)12(C)10(D)8(4)设甲:x>1;乙:e2>,则()1(A)甲是乙的必需条件,但不是乙的充足条件。

(B)甲是乙的充足条件,但不是乙的必需条件。

(C)甲不是乙的充足条件,也不是乙的必需条件(D)甲是乙的充足必需条件。

(5)不等式2x3的解集是()1(A){x|1x3}(B){x|x1或x2}(C){x|1x2}(D){x|2x3}(6)以下函数中,为偶函数的是()(A)ylog2x(B)yx2x(C)y4(D)yx2x(7)点(2,4)对于直线y x的对称点的坐标是()(A)(-2,4)(B)(-2,-4)(C)(4,2)(D)(-4,-2)(8)将一颗骰子投掷一次,获得的点数为偶数的概率为()(A)2(B)1(C)1(D)132369)在△ABC中,若AB=3,A=45°,C=30°,则BC=()(A)32(B)23(C)3(D)22 10)以下函数张中,函数值恒为负值的是(D)(A)y x(B)y x21(C)y x2(D)y x2 1(11)过点(0,1)且与直线x y 1 0垂直的直线方程为()((A)y x(B)y 2x 1(C)y x 1(D)y x 1((2(12)设双曲线xy1的渐近线的斜率为k,则︱k︱=()16 9(A)9(B)3(C)4(D)1616439213)643+log181=()9(A)8(B)10(C)12(D)14(14)tan=3,则tan()()=4(A)2(B)1(C)-2(D)-42(15)函数y ln(x1)21的定义域为()x1(A){x︱<-1或x>1}(B)R(C){x︱-1<x<1}(D){x︱<1或x>1}(16)某同学每次投蓝投中的概率2,该同学投篮2次,只投进1次的概率为5()(A)6(B)9(C)12(D)3 2525255(17)曲线y x34x2在点(,-1)处的切线方程为()1(A)x y0(B)x y0(C)x y20(D)x y20二、填空题:本大题共4小题,每题4分,共16分,把答案填在题中横线上。

2017年成考高起点数学(理)真题及答案

2017年成考高起点数学(理)真题及答案

2017年成考高起点数学(理)真题及答案一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=()A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}【答案】A【考情点拨】本题主要考查的知识点为交集.【应试指导】M∩N={2,4}.最小正周期是()2.函数的y=sinπ4A.8πB.4πC.2πD.【答案】A【考情点拨】本题主要考查的知识点为最小正周期.=8π.【应试指导】T=2π143.函数的定义域为()A.B.C.D..【答案】D【考情点拨】本题主要考查的知识点为定义域.【应试指导】x(x-1)≥0时,原函数有意义,即x≥1或x≤0.4.设a,b,C为实数,且a>b,则()A.B.C.D.【答案】A【考情点拨】本题主要考查的知识点为不等式的性质. 【应试指导】a>b,则a-c>b-c.5.若()A.B.C.D.【答案】B【考情点拨】本题主要考查的知识点为三角函数.【应试指导】因为π2<θ<π,所以cosθ<0,cosθ=−√1−sin2θ=−√1−(13)2=−2√23.6.函数的最大值为A.1B.2C.6D.3【答案】D【考情点拨】本题主要考查的知识点为函数的最大值.【应试指导】y=6sinxcosx=3sin2x,当sin2x=1时y取最大值3.7.右图是二次函数Y=X2+bx+C的部分图像,则()A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<0【答案】A【考情点拨】本题主要考查的知识点为二次函数图像.【应试指导】由图像可知,当x=0时y=c>0,也就是图像与y轴的交点;图像的对称<0,则b>0轴x=−b28.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为()A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=0【答案】C【考情点拨】本题主要考查的知识点为垂直平分线方程.【应试指导】线段AB的斜率为k1=3−1=−1,A、B(的中点坐标为(3,2),则AB的垂直平分线方程y-2=x-3,即x-y-1=0.9.函数()A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增【答案】C【考情点拨】本题主要考查的知识点为函数的奇偶性及单调性.【应试指导】f(−x)=−1x =−f(x),f′(x)=−1x2,当x<0或x>0时f(x)<0,故y=1x是奇函数,且在(-∞,0)和(0,+∞)上单调递减.10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()A.60个B.15个C.5个D.10个【答案】D【考情点拨】本题主要考查的知识点为效列组合.【应试指导】C:=5×4×33×2=10.11.若()A.5mB.1-mC.2mD.m+1【答案】B【考情点拨】本题主要考查的知识点为对数函数.=1−lg5=1−m.【应试指导】lg2=lg10512.设f(x+1)-x(x+1),则f(2)=()A.1B.3C.2D.612.【答案】C【考情点拨】本题主要考查的知识点为函数.【应试指导】f(2)=f(1+1)=1×(1+1)=2.13.函数y=2x的图像与直线x+3=0的交点坐标为()A.B.C.D.【答案】B【考情点拨】本题主要考查的知识点为线的交点.,则函数y=2ˣ与直线x+3=0的交点坐标为【应试指导】x+3=0,x=−3,y=2−2=18)(−3,1814.双曲线的焦距为()A.1B.4C.2D.根号2【答案】B【考情点拨】本题主要考查的知识点为双曲线的焦距.【应试指导】c=√a2+b2=√3+1=2,则双曲线的焦距2c=4.15.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为()A.10B.20C.16D.26【答案】C【考情点拨】本题主要考查的知识点为椭圆的性质.【应试指导】椭圆的两个焦点的距离为2c=2√a2−b2=6.又因为第三个顶点在C上,则该点与两个焦点问的距离的和为2a=2×5=10,则三角形的周长为10+6=16.16.在等比数列{an}中,若a3a4=l0,则ala6+a2a5=()A.100B.40C.10D.20【答案】D【考情点拨】本题主要考查的知识点为等比数列.q1•a1q3=a12q5=10,a1a6=a12q5,a2a5=a1q•a4q4=【应试指导】a i a4=α1a13q5,a1a6+a2a6=2a1a4=2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为()A.1B .13C .12D .34【答案】A【考情点拨】本题主要考查的知识点为随机事件的概率. 【应试指导】设A 表示第2名是女生,P (A )=1C 41=14.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。

成人高考高起专《数学》真题及答案解析优选

成人高考高起专《数学》真题及答案解析优选

2017年成人高等学校高起点招生全国统一考试数学本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分。

满分150分。

考试时间150分钟。

第I 卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M ∩N=()A.{2,4)B.(2,4,6)C.(1,3,5)D.{1,2,3,,6)2.函数y=3sin x 4的最小正周期是()π π π π 3.函数y=√x(x −1)的定义城为()A.{x|x ≥0}B.{x|x ≥1}C.{x|0≤x ≤1}D.{x|x ≤0或x ≥1} 4.设a,b,c 为实数,且a>b,则()>b-c B.|a|>|b| C.a 2>b 2>bc 5.若π2<θ<π,且sin θ=13,则cos θ=()A .2√23 B.− 2√23 C. − √23 D. √23 6.函数y=6sinxcosc 的最大值为()7.右图是二次函数y=x 2+bx+c 的部分图像,则()>0,c>0 >0,c<0 <0,c>0 <0,c<008.已知点A(4,1),B(2,3),则线段AB 的垂直平分线方程为+1=0 +y-5=0 =0 +1=09.函数y=1x 是()A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+ ∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有()个 个 个 个11.若lg5=m,则lg2=()+112.设f(x+1)=x(x+1),则f(2)=()13.函数y=2x 的图像与直线x+3=0的交点坐标为()A.(-3,-16)B.(-3,18)C.(-3,16)D.(-3,-18) 14.双曲线y 23-x 2=1的焦距为()D.√215.已知三角形的两个顶点是椭圆C :x 225+y 216=1的两个焦点,第三个顶点在C 上,则该三角形的周长为()16.在等比数列{a n }中,若d 3a 4=10,则a 1a 6,+a 2a 5=()17.若1名女生和3名男生随机地站成一列,则从前面数第2名是女生的概率为()A.14B.13C.12D.34 第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分,共16分)18.已知平面向量a=(1,2),b=(-2,3),2a+3b=.19.已知直线1和x-y+1=0关于直线x=-2对称,则1的斜率为=.20.若5条鱼的平均质量为,其中3条的质量分别为,和,则其余2条的平均质量为kg.21.若不等式|ax+1|<2的解集为{x|-23<x<12},则a=.三.解答题(本大题共4小题,共49分.解答应写出推理、演算步骤)22.(本小题满分12分)设{a n }为等差数列,且a 2+a 4−2a 1=8.(1)求{a n }的公差d;(2)若a 1=2,求{a n }前8项的和S 8.23.(本小题满分12分)设直线y=x+1是曲线y=x 3+3x 2+4x+a 的切线,求切点坐标和a 的值。

2017年成人高考(成人函授)高起专数学真题及答案

2017年成人高考(成人函授)高起专数学真题及答案

2017年成人高等学校招生全国统一考试数学试数 学一、选择题:本大题共17小题,每小题5分,共85分(1)设集合A={0,1},B={0,1,2},则A∩B=( )(A){0,1} (B){0,2} (C){1,2} (D){0,1,2,}(2)函数y =sin cos x x 的最小正周期是( ) (A)2π (B)π (C)π2 (D)4π(3)在等差数列}{n a 中,132,6a a ==,则7a =( )(A)14 (B)12 (C)10 (D)8(4)设甲:x >1;乙:2e >1,则( )(A)甲是乙的必要条件,但不是乙的充分条件。

(B)甲是乙的充分条件,但不是乙的必要条件。

(C)甲不是乙的充分条件,也不是乙的必要条件 (D)甲是乙的充分必要条件。

(5)不等式231x -≤的解集是( )(A){|13x x ≤≤} (B){|12x x x ≤-≥或}(C){|12x x ≤≤} (D){|23x x ≤≤}(6)下列函数中,为偶函数的是( )(A)2log y x = (B)2y x x =+ (C)4y x = (D)2y x =(7)点(2,4)关于直线y x =的对称点的坐标是( )(A)(-2,4) (B)(-2,-4) (C)(4,2) (D)(-4,-2)(8)将一颗骰子抛掷一次,得到的点数为偶数的概率为( ) (A)23 (B)12 (C)13 (D)16(9)在△ABC 中,若AB=3,A=45°,C=30°,则BC=( )(A) (B)(D)(10)下列函数张中,函数值恒为负值的是( D )(A)y x = (B)21y x =-+ (C)2y x = (D)21y x =--(11)过点(0,1)且与直线10x y ++=垂直的直线方程为( )(A)y x = (B)21y x =+ (C)1y x =+ (D)1y x =-(12)设双曲线221169x y -=的渐近线的斜率为k ,则︱k ︱=( ) (A)916 (B)34 (C)43 (D)169(13)2364+19log 81=( )(A)8 (B)10 (C)12 (D)14(14)tan α=3,则tan()4πα+=( ) (A)2 (B)12(C)-2 (D)-4(15)函数21ln(1)1y x x =-+-的定义域为( ) (A){x ︱<-1或x >1} (B)R(C){x ︱-1<x <1} (D){x ︱<1或x >1}(16)某同学每次投蓝投中的概率25,该同学投篮2次,只投进1次的概率为( )(A)625 (B)925 (C)1225 (D)35(17)曲线342y x x =-+在点(1,-1)处的切线方程为( )(A)0x y += (B)0x y -=(C)20x y --= (D)20x y +-=二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中横线上。

成人高考高起点数学考试真题和答案解析

成人高考高起点数学考试真题和答案解析

2017年成考高起点数学(理)真题及答案第1卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N=【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)=【】A.1B.3C.2D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.10D.2017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。

2017年成人高考数学完整版.doc

2017年成人高考数学完整版.doc

2017年成人高等学校招生全国统一考试高起点数学第I卷(选择题,共85分)一、选择题(本大题共17小题,每小题5分,共85分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设集合M={1,2,3,4,5),N={2,4,6),则M∩N= 【】A.{2,4}B.{2,4,6}C.{1,3,5}D.{1,2,3,4,5,6}2.函数的最小正周期是【】A.8πB.4πC.2πD.3.函数的定义域为【】A.B.C.D.4.设a,b,C为实数,且a>b,则【】A.B.C.D.5.若【】A.B.C.D.6.函数的最大值为A.1B.2C.6D.37.右图是二次函数Y=X2+bx+C的部分图像,则【】A.b>0,C>0B.b>0,C<0C.b<0,C>0D.b<0,c<08.已知点A(4,1),B(2,3),则线段AB的垂直平分线方程为【】A.z-Y+1=0B.x+y-5=0C.x-Y-1=0D.x-2y+1=09.函数【】A.奇函数,且在(0,+∞)单调递增B.偶函数,且在(0,+∞)单调递减C.奇函数,且在(-∞,0)单调递减D.偶函数,且在(-∞,0)单调递增10.一个圆上有5个不同的点,以这5个点中任意3个为顶点的三角形共有【】A.60个B.15个C.5个D.10个11.若【】A.5mB.1-mC.2mD.m+112.设f(x+1)一x(x+1),则f(2)= 【】A.1B.3D.613.函数y=2x的图像与直线x+3=0的交点坐标为【】A.B.C.D.14.双曲线的焦距为【】A.1B.4C.2D.根号215.已知三角形的两个顶点是椭圆的两个焦点,第三个顶点在C上,则该三角形的周长为【】A.10B.20C.16D.2616.在等比数列{a n}中,若a3a4=l0,则a l a6+a2a5=【】A.100B.40C.1017.若l名女牛和3名男生随机地站成一列,则从前面数第2名是女生的概率为【】A.B.C.D.第Ⅱ卷(非选择题,共65分)二、填空题(本大题共4小题,每小题4分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

24.(本小题满分 12 分)
如图,AB 与半径为 1 的圆 0 相切于 A 点,AB=3,AB 与圆 0 的弦 AC 的夹角为 50°.求
(1)AC:
(2)△ABC 的面积.(精确到 0.01)
C `
A
B
25. (本小题满分 13 分) 已知关于 x,y 的方程x + 4xsinθ-4ycosθ=0. (1)证明:无论θ为何值,方程均表示半径为定长的圆; (2)当θ=π时,判断该圆与直线 y=x 的位置关系.
4
圆心 O 到直线 y=x 的距离 d=1అ అ =2=r. 即当θ=π时,圆与直线 y=x 相切.
4
2017 年成人高考高起专数学试题
1.设集合 M={1,2,3,4,5),N={2,4,6),则 M∩N=( )
A.{2,4)
B.(2,4,6) C.(1,3,5) D.{1,2,3,4.5,6)
2.函数 y=3sinx的最小正周期是( )
4
A.8π
B.4π
C.2π
D.2π
3.函数 y= x(x − 1)的定义城为( ) A.{x|x≥0} B.{x|x≥1} C.{x|0 ≤x≤1} D.{x|x ≤0 或 x ≥1}
A.b>0,c>0 B.b>0,c<0 C.b<0,c>0 D.b<0,c<0
0
8.已知点 A(4,1),B(2,3),则线段 AB 的垂直平分线方程为( ) A.x-y+1=0 B.x+y-5=0 C.x-y-1=0 D.x-2y+1=0
9.函数 y=1是( )
x
A.奇函数,且在(0,+∞)单调递增 B.偶函数,且在(0,+ ∞)单调递减
=4d=8, d=2. (2)s =na1 ( అ1)
=2×8+ ×( −1) ×2 =72.
23.因为直线 y=x+1 是曲线的切线,所以 y'=3x +6x+4=1.解得 x=-1. 当 x=-1 时,y=0, 即切点坐标为(-1,0). 故 0=( − 1)3+3× ( − 1) +4×(-1)+a=0 解得 a=2.
24.(1)连结 OA,作 OD⊥AC 于 D. 因为 AB 与圆相切于 A 点,所以∠OAB=90°. 则∠0AC=90°=50°-40°. AC=2AD =2OA·cos∠OAC =2cos 40° ≈1.54. (2)S△ABC=1AB·ACsin∠BAC
=1 × 3 × cos 40° × sin 50° =3os240° =l.78.
19.已知直线 1 和 x-y+1=0 关于直线 x=-2 对称,则 1 的斜率为=
.
20.若 5 条鱼的平均质量为 0.8kg,其中 3 条的质量分别为 0.75kg,0.83kg 和 0.78kg,则其
余 2 条的平均质量为
kg.
21.若不等式|ax+1|<2 的解集为{x|- <x<1},则 a=
C `
D
A
B
25. (1)证明: 化简原方程得 X2+4xsinθ+4sin2θ+y2-4ycos +4cos θ-4sin2θ-4cos θ=0, (36+2sinθ)2+(y-2cosθ)2=4, 所以,无论θ为何值,方程均表示半径为 2 的圆。 (2)当θ=π时,该圆的圆心坐标为 O(- , ).
4
一、选择题 1.A 2.A 3.D 4.A 5.B 6.D 7.A 8.C 9.C 10.D 11.B 12.C 13.B 14.B 15.C 16.D 17.A
二、填空题 18. (-4,13) 19.-1 20.0.82 21.2
三、解答题 22.因为{ }为等差数列,所以 (1) + 4-2 1= 1+d+ 1+3d-2 1
4.设 a,b,c 为实数,且 a>b,则( )
A.a-c>b-c
B.|a|>|b| C.a >b
D.ac>bc
5.若π<θ<π,且 sinθ=1,则cos θ=( )
3
A. 3
B.−
3
C. −
3
6.函数 y=6sinxcosc 的最大值为( )
D.
3
A.1 B.2
C.6
D.3
7.右图是二次函数 y=x +bx+c 的部分图像,则( )
C.奇函数,且在(-∞,0)单调递减 D.偶函数,且在(-∞,0)单调递增
10.一个圆上有 5 个不同的点,以这 5 个点中任意 3 个为顶点的三角形共有( )
A.60 个 B.15 个
C.5 个
D.10 个
11.若 lg5=m,则 lg2=( )
A.5m
B.1-m
C.2m
D.m+1
12.设 f(x+1)=x(x+1),则 f(2)= ( )
A.1 B.3
C.2
D.6
13.函数 y= x的图像与直线 x+3=0 的交点坐标为( )
A.(-3,-1)
B.(-3,1)
C.(-3,1)
D.(-3,-1)
14.双曲线y
3
-x
= 1 的焦距为(

A的两个顶点是椭圆 C:x +y =1 的两个焦点,第三个顶点在 C 上,则该三角
51
形的周长为( )
A.10
B.20
C.16
D.26
16.在等比数列{an}中,若d3a4=10,则a1a ,+a a5=( )
A.100
B.40
C.10
D.20
17.若 1 名女生和 3 名男生随机地站成一列,则从前面数第 2 名是女生的概率为( )
A.1
B.1
C.1
D.3
4
3
4
18.已知平面向量 a=(1,2),b=(-2,3),2a+3b= .
.
3
三.解答题(本大题共 4 小题,共 49 分.解答应写出推理、演算步骤)
22. (本小题满分 12 分)
设{ }为等差数列,且 (1)求{ }的公差 d;
4 − 1=8.
(2)若 1=2,求{ 前 8 项的和 .
23.(本小题满分 12 分) 设直线 y=x+1 是曲线 y= 3+3 +4x+a 的切线,求切点坐标和 a 的值。
相关文档
最新文档